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ABSTRACT

The problem of wave interaction with multiple adjacent floating solar panels with arbitrary types
and numbers of constraints is considered. All the solar panels are assumed to be homogeneous, with
the same physical properties, as well as modelled by using the Kirchhoff-Love plate theory. The
motion of the fluid is described by the linear velocity potential theory. The domain decomposition
method is employed to obtain the solutions. In particular, the entire fluid domain is divided into two
types, the one below the free surface, and the other below elastic plates. The velocity potential in
the free surface domain is expressed into a series of eigenfunctions. By contrast, the boundary
integral equation and Green function are employed to construct the velocity potential of fluid
beneath the entire elastic cover, with unknowns distributed along two interfaces and jumps of
physical parameters of the plates. All these unknowns are solved from the system of linear equations,
which is established from the matching conditions of velocity potentials and edge conditions. This
approach is confirmed with much higher computational efficiency compared with the one only
involving eigenfunction expansion for the fluid beneath each plate. Extensive results and

discussions are provided for the reflection and transmission coefficients of water waves, maximum
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deflection and principal strain of the elastic plates, especially, the influence of different types and

numbers of edge constraints are investigated in detail.

L. INTRODUCTION

In recent years, photovoltaic (PV), commonly referred to as the solar panel, has emerged as one of
the most economically viable renewable energy technologies in history'. Typically, the deployment
of solar panels necessitates vast expanses of land to generate a substantial amount of electricity.
However, this can pose challenges in regions where land resources are limited. Furthermore, there
is also significant competition for land that serves multiple purposes, including agriculture for food
production and conservation efforts to protect biodiversity. Consequently, a pivotal consideration
arises regarding the optimal placement of these solar panels’. One of the solutions is to deploy
floating solar panels at seas’. However, ocean waves may pose a substantial challenge to the
effective operation of solar panels. On the one hand, the wave-induced motions of floating solar
panels may adversely impact their energy efficiency. On the other hand, large movements or
deformation caused by waves may carry the risk of structural damage, resulting in significant
economic losses. Therefore, it is necessary to investigate the hydrodynamic properties of floating

solar panels in ocean waves.

Research based on linear theories has been well applied to hydroelasticity, such as sea-ice dynamics
and wave-ice-structure interactions, where the linearized velocity potential theory is employed to
describe the motion of fluid, and the ice sheet is modelled as a thin elastic plate. In particular, Fox
and Squire” studied wave transmission and reflection by a semi-infinite floating ice sheet through
the method of matched eigenfunction expansions (MEE), where the edge of the sheet was assumed
to be free to move. Later, a similar problem was considered by Balmforth and Craster”, where the
Timoshenko-Mindlin equation was adopted to describe the ice sheet, and the Wiener-Hopf technique
was used to derive the solution. Meylan and Squire” proposed an approximated solution based on
an analytical solution of a semi-infinite ice sheet *. Wu, ef a/.” studied the same problem and solved

it exactly through MEE.

For multiple floating ice plates, Sturova® studied the water wave diffraction by a semi-infinite
2
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composite elastic plate, which was modelled as a combination of two ice sheets of different
properties, where one is of finite size and the other is semi-infinite. Evans and Porter” considered
the problem of wave diffraction by an ice sheet fully covering the water surface with a narrow crack
of infinite extent, where the free edge conditions were imposed at the crack. In their work, MEE
and Green function methods were both employed to derive the solution. Williams and Squire!”
investigated the wave scattering by three floating ice sheets of different properties based on the
method of Wiener-Hopf technique and residue calculus. The works mentioned above pertain to
plates that are either interconnected or separated by minimal gaps. However, there are instances
where the spacing between two plates may be obvious. For example, Chung and Fox'' studied the
reflection and transmission of waves across a gap between two semi-infinite ice sheets. Shi, ez a/.'”
studied the problem of wave diffraction by multiple wide-space ice sheets approximately.
Furthermore, if offshore structures such as ships working in polar regions, the effects of structures
should be further considered. Typically, Ren, e al."* considered the wave-excited motions of a body
floating on water confined between two semi-infinite ice sheets, where the fluid domain was divided

into several sub-regions, and the MEE was applied to match the solution at each interface.

The thin elastic plate model and linearized velocity potential theory were also used to study the
interaction between water waves and floating offshore structures. For example, Karmakar and
Soares'* derived an analytical solution for a floating elastic plate with two edges moored to the
seabed based on MEE, where the mooring lines were modelled as springs to provide extra vertical
reaction. Mohapatra, ez al.'” considered the problem of wave diffraction by a finite floating elastic
plate with an inner compressible force. Karmakar, ez a.'® solved the problem of wave interaction
with multiple articulated floating elastic plates fully covering the entire free surface by using MEE.
Later, Praveen, ef al.'” further extended it to plates of finite size. A more recent work by Zhang, et
al." studied the hydroelastic response of two floating photovoltaic structures over stepped seabed

condition.

As discussed above, a considerable volume of studies have been conducted to investigate the
hydrodynamic properties of floating elastic structures. In the context of floating solar panels at sea,

it is observed that their hydrodynamic performance do exhibit certain similarities with ice sheets.
3
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For instance, when an ice sheet or a group of floating solar panels covers a large amount of free
surface region, the structural elasticity in both cases is quite important. Nonetheless, the
hydrodynamic problems for ice sheets and floating solar panels also show discernible differences.
For example, ice sheets inherently exist in nature, and it is common to assume that the edge of sea
ice is free to move'”. By contrast, solar panels are human-made, and their edge conditions are much
more complicated, which should be determined based on the connections between each two adjacent
panels, as well as the mooring lines used in the structure. Besides, ice sheets are normally shown in
nature with diverse physical properties”’ (e.g., thickness). By contrast, one floating solar farm
usually consists of solar panels with identical properties. These distinct differences suggest that the
solution procedure developed for issues involving ice sheets may not be entirely suitable and
efficient to solve problems of floating solar panels. In particular, when addressing problems
involving ice sheets of different properties, a conventional approach is to treat the fluid beneath each
ice sheet as a subdomain, and the velocity potential in each subdomain is written into a series of
eigenfunctions with unknown coefficients. Subsequently, the velocity potential can be matched at
each interface by using MEE to solve these unknowns, a typical example is given by Ren, ef al."”.
Although this approach has demonstrated considerable efficacy in numerous applications, it may
not be so numerically efficient for the current floating panels problem we considered in this work.
In the case of the floating solar panels, the problem will be highly computationally demanding if we
choose to follow the regular procedure above to expand the velocity potential into a series of
eigenfunctions in each subdomain, especially when the numbers of panels and constraints are large
or even huge. Therefore, we develop an alternative and more efficient scheme for floating solar
panels, featured by the combination of Green function technique and MEE. In this scheme, by
modelling each floating solar panel as a thin elastic plate with identical and homogeneous properties,
the velocity potential beneath the entire floating solar panels can be constructed from the boundary
integral equation. Through using the Green function corresponding to fluid fully covered by a
homogeneous elastic plate, only line integrals along two interfaces of the free surface and elastic
covers, as well as the jumps at the edges of the plates need to be remained in the boundary integration
equation. In such a case, unknowns only need to be distributed on the velocity potential on two
interfaces and jumps at the edges of elastic plates. Compared with the conventional MEE

procedure’”, the total number of unknowns is significantly reduced. Moreover, the addition of one
4
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more plate to the system only leads to an increment in unknowns at the newly introduced edge,
which significantly improves the computational efficiency, especially for a floating solar farm with
a significant number of panels. Based on the present procedure, case studies are conducted for three
typical edge conditions, namely, pinned, hinged and free. The effects of edge conditions on the
reflected and transmitted waves, as well as the hydroelastic response of the floating solar panels are

investigated in detail.

The work is organized as below. The mathematical model or governing equation and boundary
conditions of the problem are formulated in Sec. II. In Sec. III, the solution procedure is presented.

Then the results and discussions are made in Sec. IV. Finally, conclusions are drawn in Sec. V.

Fig. 1. The sketch of an incident wave interaction with a floating elastic plate.

II. MATHEMATICAL MODEL

In this study, we examine a floating solar farm covering a large horizontal area of open water. Like
many water wave-related problems, we simplify the analysis by considering a two-dimensional
scenario, as illustrated in Fig. 1. In contrast, when the transverse dimension of the structure or fluid
environment is significant to the problem, the three-dimensional effect is important to be considered
(see Yang, et al.”', Ren, et al*). A Cartesian coordinate system 0-xz is introduced, with the x-axis
along the clam water surface and the z-axis pointing upwards. The seabed is located horizontally
along z = —H. The water surface region —d < x < d is covered by multiple floating elastic plates
with homogeneous properties. The density and thickness of the plate are p, and h,, respectively. In

addition to two side edges at x = td, there are also internal constraints between each two adjacent
5
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elastic panels. In particular, the internal pins are applied at x = a; (i = 1~N,) with a; < a;41, two
sides of the plate are hinged to each other at x = b; (i = 1~N,) with b; < b;, 1, as well as two sides
of the plate are free to each other at x = ¢; (i = 1~N,) with ¢; < ¢;44, as given in Table. 1. An
incoming wave comes from x = —oo to x = +oo and will interact with the entire floating solar
panels.

Table. 1. Positions of different types of internal constraints of the floating solar panels.

Edge type Position
Pinned X =4y, 0dy, ..., Ay,
Hinged X = by, by, ..., by,

Free X =€y, Cg, 05 Op,

The fluid with density p is assumed to be homogeneous, inviscid, incompressible, and its motion is
irrotational. Under the further assumption made on the small-amplitude motion of the wave, the
linearized velocity potential theory is used to describe the flow. Once the motion is sinusoidal in
time t with radian frequency w, the total velocity potential can be written as

@(x,z,t) = Re{¢p (x, 2)e'*t}, )
where the spatial velocity potential ¢(x,z) contains the incident component ¢;(x,z) and the
diffracted component ¢, (x, 2). ¢ (x, z) is governed by the Laplace equation in the fluid domain,
which can be written as

3¢ 3%
etz =0 @

The linearized boundary condition on the free surface region can be expressed as

¢ w? , _
5—7 =0, x| >d, z=0, 3)

where g denotes the acceleration due to gravity. The boundary condition on the floating elastic plate

gives
a* ¢
(Lw—meau2 +pg)g—pw2¢ =0, x| <d, z=0, €))
3
where L = 12()21)1_51,2) represents the effective flexural rigidity of the elastic plate, E and v denote

Young’s modulus and Poisson’s ratio respectively, m, = p,h, is the mass per unit area of the plate.
In Eq. (4), following the previous assumptions on elastic plates'® %, the structural damping of the

plate has not been considered. When doing so, an extra damping term may need to be involved in

6
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Eq. (4), and the Green function used in the current scheme may need to be re-derived.

On the flat seabed, the impermeable boundary condition should be enforced as

P _
2=o, z=-H. O)

At the side edges of the entire system of floating elastic plates, two different conditions are
considered, namely, the free edge and pinned edge conditions. The free edge conditions require zero
Kirchhoff’s shear force and bending moment. The pinned edge conditions require zero deflection
and bending moment, which can be used to model the edge of the plate is completely moored to the

seabed. Based on the above discussion, we have

B¢y a*p

=0, =0 Free edge
9x20z ox30z , x=-d*andx=d-, z=0. (6a, b)
% _ Pé 0 Pinned edge
az ox29z 8

In addition to the conditions at two side edges of the plates, edge conditions may also be applied to
the internal constraints. The internal pins are used to model extra moored points of the elastic plate
in addition to these at two sides, where the deflection is zero, the slope and bending moment are

continuous, or

(52) e =0
2 2
) e = )y« 1= 17N (72,5,

((22) . = (22
k 0x202) y=qy ~ \0x?0z)y—qf

At the location when two sides of the plate are hinged to each other, the bending moment here should

be zero, as well as the deflection and shear force are continuous, or

(), = ).
(aizﬁz)xzbizo s L=1~N,. (8a, b, c)

(52), oy = Groed)
0x302) yopy ~ \0x302) x=p}

For internal free edges, we have

(582),., =0

(58),cr, =0

The far-field radiation conditions should be imposed at infinity to ensure wave propagating

, i =1~N,. (9a,b)

outwards, which gives

lim (222 +ig0¢,) =0, (10)

x—too

7



Publishing

AIP

\

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

where £ is the wavenumber of the propagation wave, which will be discussed later.

III. SOLUTION PROCEDURE

The method of domain decomposition is used to derive the solution. As discussed in Sec. II, there
is a total of N, + Nj, + N, + 2 edges in the floating solar panels shown in Fig. 1. The entire fluid
domain here is only divided into three parts, where two subdomains with the free surface or ;
(moo<x<—-d,—H <z<0)and Q3 (d <x <+, —H <z<0), as well as the subdomain
below the entire elastic plates or Q, (—d < x < d, —H < z < 0). The velocity potential in each
subdomain Q; (i = 1, 2, 3) is denoted as ¢@. ¢ and ¢® can be expanded into a series of
eigenfunctions, while ¢ can be constructed by using the boundary integral equation.

Based on the above discussion, ¢(1 may be written as

$D(x,2) = ¢ (x,2) + ¢ (x, 2), (1n

where the incident velocity potential ¢;(x, z) can be expressed as
b1(x,2) = Ipo(2)e 0%, (12)
where [ = —i %‘q, A denotes the amplitude of the incident wave, £, denotes the wave number along

the x-direction and ¢, (z) is a mode function corresponding to 4. Based on the far-field radiation
condition Eq. (10), (b,()l) (x, z) can be expanded in the following series form as

650 (x,2) = Th20 AmPm (e, (13)
where 4,, (m = 0, 1, 2...) are unknown coefficients, as well as

cosh £y, (z+H)
cosh#mH

om(2) = m=0,1,2..., (14)

with £, satisfy the following dispersion equation of free surface wave

Ky (o, @) = £y tanh £, — % =0. (15)
Here, £, is the positive real root, and £,, (m = 1, 2, 3...) are an infinite number of purely negative
imaginary roots.
The velocity potential @ in Q5 can be also treated in this way, which provides

@ (x,2) = T2 By (z)e " HmX (16)
where B,,, (m = 0, 1, 2...) are unknown coefficients. Due to the internal constraints in the floating
elastic plates, the velocity potential ¢ in Q, cannot simply be written as a series of eigenfunctions.

Alternatively, we may use the Green function method to construct ¢@ here. To do that, the Green
8
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function G corresponding to the water surface fully covered by a homogeneous elastic plate is first

introduced”™

e~aH [P(a)z(a,z)z(a,zo) cos a(x—x,)

Gz, 20) = In (2) +1n (2) = 2 [ s +1]de. (7

a
where

P(a) = (La* + pg — mw?)a + pw?
K,(a,w) = (La* + pg — m,w?)a sinhaH — pw? cosh aH. (18a, b, ¢)
Z(a,z) = cosha(z + H)

r, is the distance between the field point (x, z) and source point (xg, Zy), and 1, is the distance
between the field point (x, z) and point (xq, —zo — 2H). G in Eq. (17) can be also converted into a
series form, we may first extend the integral range from (0, +00) to (—oo, 4+-00), and then apply the

theorem of residue, through some algebra, we have

G(x, 7 %9, 20) = T2, Ym(2)Pm(2o) e—ikmlx—xu|’ (19)
KmQm
where
_ 2KmH+sinhQrpH) | 2LKkh 2
Qm = v coshZ (e t) + ot tanh?(k,, H), (20)
_ coshky,(z+H) _
Yn(2) = 5T, m= —2,-1,0... @n

K, are the roots of the dispersion equation corresponding to the fluid fully covered by an elastic
plate, or K, (x,, w) = 0. k_, and k_; are two fully complex roots with negative imaginary parts
and satisfy K_; = —Kk_,, K¢ is the purely positive real root, k,,, (m =1, 2, 3...) are an infinite

number of purely negative imaginary roots.

As G is symmetrical about coordinates (x, z) and (xy, z,), we may exchange (x, z) with (xo, z)

below. Applying the Green’s second identity, ¢ @ (x, z) can be written as

9G(x,zx0,20) 99 (xo,20)
219 @ (x,2) = §, [P (0, 20) P — G(x, 7330, 20) L 2 dsp,  (22)
where £ is comprised of lines xy = —d, zy = 0, x, = d and z, = —H, d/dn, denotes the normal

derivative with respect to (xo, o) along L. Since both G and ¢® satisfy the boundary conditions

on the seabed, Eq. (22) can be further written as

( a [, 96 (x,2:%0.0) _ . 39 ® (x0,0) 1
| Ia [dJ (x0, 0) === = G(x, 2 %0, 0) = == ]dx0 I

— @
2np@(x,2) = { — f_"H [¢(2)(_d, ZO)M - G(x, 2z —d, 75) M] dzg b (23)
x, 9xo

0 96 (x,z:d, ICED)
+ f_H [¢(2)(d, Z) % - G(x,zd,z) ¢T(0ZD] dz,
9
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Applying the boundary condition on the elastic plate in Eq. (4) to the first integral on the right-hand

side of Eq. (23), as well as using integration by parts, as in Yang, ef al.>', we obtain

d 3G (x,2;x0,0) 3@ (x0,0)
Ja [¢(2)(x0, O)TDO —G(x,2;%0,0) Too] dxo =

ZN“ (64¢(2)0_G_ a4 a¢(z)_ 93¢@ 926 %G az¢(z)>xu=ai_
i=1\ox30z, 0z 0x30z, 9z, 0x30zy 0x00zy  0x38z 0x¢0zp xo=a
i
Z (34¢(2) G 96 99p®@ 3¢@ 926 3G az¢(z))xn:b{
+ i1 x30z0 0z axgazo 9z, _axgaz,, 0xg0z9 = 9x30zo 8x¢0z, xXo=b}
=i
+ZN” (a4¢(z)a_5_ 294G 64)(2)_ 23¢@ 926 336 324)(2))7‘0:51’_
i=1\0x30zy 02y 0x30zy 9z 9x30zy 0x00zy  0x38z 0x¢02 xo=c
i
(a4¢(2> a6 6 9@  a3¢@ 3% 236 02¢@\ =1
0x30z, 07y  0x30zp 0zo  0x20zo %00z = 0x202zo 6xuz’)zo) _

xXo=—d

Zp=0

24

To simplify Eq. (24), we may invoke the conditions at the internal constraints. Using Egs. (7), (8)

2
In Eq. (24), we may apply the Laplace equation, or % = -
0

Qm

i)

+d. Together with the above discussion, Eq. (24) becomes

(€]
f [¢(2)(x 0) 6G(XZX00) G(X,Z;XO,O)W] dXO
0

6@ a; 22¢@ xo=a; PEFYO) xo=a; . .
and (9), we have ( ) ( ) = ( 5 ) = 0, which means there is no
20 /xo=a; 0x002¢ xo=a; x50z xu=ai+
. . . . ERON 93p@\*0=bi
jump in the deflection, slope and bending moment. (a ) = (a r ) =
%0 /xo=bf" X09%0/ xo=bf
gt F0=br . . . . .
( 3on ) = 0, which alludes no jump in the deflection, bending moment and shear force.
ovso xa=bi+
. ,344,(2) Xo=¢; 334,(2) Xo=¢; .
Besides, = = 0. We may further define these jumps at a;, b; and c; as
Ax30z dx30z L t
09207 xo=cif 09207 xo=cif
the following unknows.
L 940 @ Xo=a; i
@ =3 Z(ag’az) s i=1~Ng
Tpw PEEN xo=aj
=b7
L 924@ Xo=b; .
fi= s (22 , i=1~N, (25a~c)
2mpw? \0x(0z, xo=bi"
l L 9@\ Fo=cl L (e
=t ()T = ()T =i,
2mpw? 9zg xo=ci 2mpw? \9xy0z¢ xo=c;t
as well as introduce
aG 0 . tanh (i, H)e ~*ml¥=xol
G(x,2,%,) = L’CO) =miyre. ¥m(z) tanh(kmH)e ) (26)

az
2,7 to the terms of G and @ atx, =
0
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22G(x,2,b;
[ ZHZl 3 lg(xza)+2n21 A L%

}
2y [Vi Pgtene) Hi Potene) }

3 2
dxp ax§

L ( 2*¢® a6 3'c_a¢p®@  #%9® 9% 3% az¢<2J
pw? %0023 9z %0028 9z 9z %0029 azo onazo _d

@7

Substituting Eq. (27) into (23) and using the following inner product for z,’

pw?

L (d3fd df d®
(.90 = L fada+ 55 (GEE+ 5D, 28)

We have

@)
(EEELE, 6@, 20)) ~ (G (x, 7 d, 20), 522

292 >( dzo)) (aa(xz d,zo)

$P(x,2) = -
+(G(x,z;—d, zp),
82G(x,2,b))

e, nga)+all 2

Ne *G(x.z,ci) Bzg(xzcl)
R e - B

+
L¢P (=d, 29))

|x| < d.

29
Based on the derivation in Yang, e al.”°, the terms at x, = +d in Eq. (29) are equivalent to be
written via a source distribution formula, which gives
dP(x,2) = (G(x, 2; d, 20), W4 (20)) — (G (%, 2 —d, 20), ¥_(20)) +
92G(x.2,b))

Z a;G(x,z,a;) +Zl 1Pi ox2

Ne 3G(x.z,c) azg(xzcl)
o e )

[x| <d,

(30)
where W, (z,) are the source strengths along the lines x, = +d respectively. We may expand
W, (2¢) as the following series of eigenfunctions

W, (z0) = %Z;‘n‘ﬁ,z Kme*mdC . (2) Glab)
W_(20) = = S5 Kne "M Dyt (2) '
where C,, and D,, are unknown coefficients. Substituting Eqs. (19) and (31) into Eq. (30), as well
as invoking the orthogonality of inner product (,,(2o), W4 (20)) = SmiQm, Where 8,5 denotes
the Kronecker delta function, which gives
¢(2)(x, z) = 342 o (Cpe™m¥ 4 D em® )y (2) +

92G(x,z,b;)
DINRATCHADED WA S

N¢ ) 3G(x,z,c;) ) 9%2G(x,z,c;) >
+2 [ Loaxg *H ox}

|x] < d.

(32)
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To solve the unknown coefficients A, By, Cin» D, @, Bi, vi and u;, we may use the continuous

conditions of the velocity potential and dynamic pressure at two interfaces x = +d, or

(6D (=d"2) = p@(-d*,2)

0¢W(=d~2) _ 9P (-d*2)

ox ax
33a~d
$@(d",2) = p(d*,2) (3
| 20ws s
ax - ax
To match the velocity potentials at x = +d, from Egs. (33a) and (33c), we have
0 0
L2y ¢ (~d Dom(2)dz = [, @ (=d, 2)pm (2)dz (34a.b)

0 0 :

I 0P, D)o (2)dz = [, @ (d, 2)pm (2)dz
Substituting Egs. (11), (12), (13), (16) and (32) into Eqs. (34a) and (34b), as well as using the
orthogonality of ¢,,(z), which gives the following system of linear equations

Pme_mmdA Z ,ZX(Km/, m)(elxmrdc ,+e—1x rdD )_

Np 02Fpm(=d,b))

Nn
 Fn(—d @) + 1 ETmE0 »
—_ 1 —_
Ne [03Fm(=d.c) 92 Fm(=d.c)) = —OmolPoe™¢, m=0,1,2...,
+ Zi:l [ axg vit x3 i]
(35a)
Pme—ikmdBm -3t :—ZX(Km’v m)(eflx rdC + emm;dD ) _
227, dbl
T Fnld, @ + Bi, T2
+ 3l [a Fm(de) | 9 Tm(d,CL) ] =0 m=012.,
i= ax3 Vi Ix} t
(35b)
where
x4 tanh x; H—x, tanh x, H
X( )= J-O cosh x,(z+H) coshxz(z+H)d x3-x3 X1 F Xz
X1, %2 —H coshx;H coshx,H sinh 2x,H+2x,H = x
4x, cosh? x,H 1 2 (36 b )
_ _ 2kmH+sinh(24&,,H) . a, b, C
m = X, #om) = 4f cOShZ (S H)
—ixm,\x—xul

X(Km,,hm) tanh(xm, H) e
Q!

(B x0) = [5, G2 x0)pm (2) =TT

To match the velocity at x = +d, we may apply

a¢<>(+dz) 0 a¢( )(+dz) _L_[22PEd0) dYm(©) | 3*¢P(Ed0) dym©)]
T ¥m(@) = Ym(2)dz + pw? [ x0z dz3 + xdz3 dz

(37

Eqgs. (33b) and (33d) gives
@)(-q, 0 apM(-d, L [02¢@(=d,0) 3P (0) | 8*pP(~d,0) dipp (0
(¢( Z)ll’m()>—f,.,¢( Z)lpm()dz+ [¢ (=d,0 wm()+ P ( )wm()]

pw? 9x0z dz3 dxdz3 dz
a0 >(d 2) 0 a¢< ><d 2) L 32¢@(d,0) d*Ppm(0) | 3*¢@(d,0) dipm (0)
( Ipm( )) o Ym ( )dZ + w? [ 0x0z dz3 + 9x9z3 dz ]

12
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(38a, b)

We may further define
92¢@(+d,0) =g
0x0z ot
2D (a0 L’ (39a, b)
axazd Ot

where {; and ¢, are introduced as additional unknowns to satisfy the edge conditions at x = +d
later. Substituting Eqgs. (11), (12), (13), (16) and (32) into Eqs. (38a) and (38b), as well as using the
orthogonality of ¥, (z), which provides

—ABH o X ey o e e ™ B! LAy + i Q (—e¥m @ Cy + e7H0mdD, ) +

ZNa 9gm(=d.a) +2Nb 33gm(=d,b;)

i=1 ox dx0x3 2 _
+ ZNE 3t gm(=d.ci) . 82 gm(=d,co) ] + K tanh (i, H) (ki {- + &) =
i x0x3 Vi 9x9x3 t

—iX (tep, #op) Role®d, m = —2,-1,0,1...,
(40a)

PN X (kg Ry Vo T Hm' @B 1 + ik Qp (—eHmd (4 elemd D, ) +

ZN“ 9gm(d.a;) @+ ZN), 33gm(d,b)
L

oo oxaxg 1 h(ipH) (k2 =0,m=-2,-1,0
+ZNC [a Im(dcD) +339m(d.5i) ] + kp tanh (i, H) (k704 +84) = 0,m = =2, -1,0...,
i dxdx3 Vi axaxz i
(40b)
where
I (X, %0) = (G(X, 2, %0), ¥ (2)) = i tanh (ic,,, H) e~ HemIx=%ol, (41)

The remaining equations can be established from the edge conditions at x = a;, bj, ¢; and x = +d.
In particular, applying Eq. (7a) to Eq. (32), the edge condition at x = a; (j = 1~N,) gives

Zl 1W(apat)az +2Nb 2 W(al ) Bi

+ j—
mie—alfin (@) Conr + (@) D] + Ne [0°W(a;c) azw(a;r i) =0, (42
i=1 [ ox3 vit ax i]
where
fE(x) = K, tanh(ie,, H) eikm*
W, %) = 2000  igen ket @a.0)
Applying Eq. (8b) to Eq. (32), the edge condition at x = b; (j = 1~N,) gives
No 9*W(bja;) Np 0*W(b;by)
+oo [a fm(b])c 44 fm(b,)D ]+ L e Gt Ll a0 bi Co
m/=-2 m' Ne 65W(bi,ci) 64W(bl, 1) = VU. ( )
+Zi=1 9x29x} Vit 0x20x} i]

Using Egs. (9a, b) to Eq. (32), the edge condition at x = ¢; (j = 1~Np) gives
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343
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348

349

Ny 9*W(cjai) Ny 9*W(ejbi)
ZizalTai-'—zl 17 9x20x2 Bi

a*fm(c azfi(c
:"t*z[ 2 ])C + M( ])Dm'] + 25W(cjci) *W(cj.c z) =0, (45a)
+Z [ 9x29x3 vit 0x209x}
Ng 0 MAGED) Np @ W(b] l)
+oo [daL(CJ)C +d3fvﬁ(cj)D ]+ Zi:l ax3 @i +Zl 17 9x30x2 —aa B —0 a5t
m'=—2 dx3 m' dx3 m’ Ne 66W(Cj,ci) GSW(CI, 1) =y ( )
+ Zi:l [ dx30x3 it 9x30x3 i]

If the edges at x = +d are free to move, substituting Eq. (32) into Eq. (6a), similar equations shown

in Eqgs. (45a, b) need to be satisfied, or

sza 32W(+d,a;) a + ZNh *W(+d,b;)
@ 0x20x}

oo [dPfa(Ed) dzfﬁ(id) ] =1 9x2 _
Zm"*z[ axz Cm' t g D ye S W(kde) , d*W(tde) ] =0, (46a)
l 1l ax2ox3 'Y ax2ax Tt
N,l P3W(+d,a) N,, 95SW(+d,b;)
+
foo [a fm(+d)C a3f,¢,(¢a)D ] i o X2 9x30x2 = 0. (46b)
m'==2|"" g3 dx3 m' e [a"w(c,-,ci) W (+d,c) ] :
i=1] gx39x3 /i ax30xz i

By contrast, if the edges at x = +d are pinned to the seabed, the zero-shear force condition in Eq.

(46b) should be replaced by the zero-deflection condition as

oV W(td, a)a; + 3, THEL) o L
0

Ne [a3w(¢d.ci) 92W(td,c)) ]
i=1 ax3 t x3 t

ol EADCor + [ (2d)Dyy] + =0.(47)

If the infinite series in Egs. (13), (16) and (31) are truncated at m = M, there will be M + 1
unknowns for A,,, M + 1 for B,,, M + 3 for Cp,, and M + 3 for D,,. Besides, the edge condition at
x = a; (i = 1~N,) provides N, unknowns for @;. The edge condition at x = b; (i = 1~N,,) gives
Ny, unknows for 5;. The edge condition at x = ¢; (i = 1~N,) gives 2N, unknows for y; and y;
respectively. The edge conditions at x = +d also provides 4 additional unknowns for {4 and &,
respectively. In such a case, we have 4M + 12 + N, + N, + 2N, unknowns. Egs. (35a, b) and (40a,
b) provide 4M + 8 equations, Egs. (42), (44) ~ (47) offers N, + N;, + 2N, + 4 equations. Hence,
the total number of unknowns is equal to the total number of equations, and all the unknowns can
be fully solved. By contrast, if we employ the procedure of MEE in Ren, ez a/.'? instead, there will
be a total of 2(M + 1) + 2(N, + Nj, + N, + 1)(M + 3) unknown coefficients to solve. It can be

found that the number of unknowns is significantly reduced by using the present method.

IV. RESULTS AND DISCUSSION
The typical values of physical parameters of an elastic plate are selected based on the data in Xia,
et al”,

L=196x10"*N-m, p, =1000kg/m3 h,=5m, d = 150 m. (48)
14
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Other parameters are chosen as p = 1025kg/m%, g =9.81m/s? and H =50m . Those
parameters outlined above will be applied in subsequent computations unless specified otherwise.
The infinite series in Eqgs. (13), (16) and (31) are truncated at m = M = 100, which has been

confirmed to be convergent.

A. Validation of the method
Let |x| = 400 in the velocity potential in Egs. (11). (12), (13) and (16), all the decay terms will be

zero, and we have

I(Reo¥ + e7HoX) g (2) x > —o0

. , 49
IT@o(z)e Ho* x > +00 “9)

¢(x,2) = {
where R = Ay /I and T = B /I denote the reflection and transmission coefficients respectively. The
approach applied here is validated by comparing with the results of |R| and |T| in Williams and
Squire'” for water wave diffracted by a single floating ice cover in deep water, which was solved
via the Wiener-Hopf technique”®. |R| & |T| versus the wave period are plotted in Fig. 2, and a very

good consistency can be observed.

1.0+ 1.0+
(a) (b)
Present
= %= William & Squire (2006) Present
0.8 0.8+ |- * William & Squire (2006)
0.6 0.6
= =
0.4 04-]
024 024
0.0 T T T T T T d 0.0 T T T T T T T 1
2 4 6 8 10 12 14 16 18 20 2 4 6 8 100 12 14 16 18 20
Wave period / s Wave period / s

Fig. 2. The reflection and transmission coefficients for an incident wave diffracted by a single

floating elastic plate: (a). reflection coefficients; (b). transmission coefficients.

In the following sections, all the numerical results will be presented in nondimensionalized forms,
based on the water density p, acceleration due to gravity g, and the mean water depth H. 7 =
T\/g/H is used to represent the dimensionless wave period ', where T = 21 /w. Similar with
Williams and Squire'’, we may display the results of T > 1 here, and much attention is paid to long

waves.
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B. Wave interaction with floating elastic plates with same type of internal constraints

In this section, all the internal edges of the plates are considered as a single type, namely pinned,
hinged or free. For each type of edge, we aim to understand how the number of edges affects the
reflected and transmitted waves at the far-field, as well as the deflection and strain in the elastic
plates. Notably, the waves at infinity can be used to assess the environmental impact of deploying
solar panels at sea. The deflection and strain provide insights into the hydroelastic response of solar

panels to ocean waves.

1.0+ 1.0

@ T (b)
0.8+ 0.8 4
0.6+ 0.6+

= =)
0.4+ 0.4
0.2+ 0244 K
0.0 0.0

Fig. 3. The reflection and transmission coefficients versus the wave period under different
numbers of internal pinned supports: (a). reflection coefficients; (b). transmission coefficients.

Here, two edges at x = *d are pinned, N, = N, = 0.

1. All internal constraints are pinned supports

The pinned supports are assumed to be distributed uniformly along the plate, which gives

a;=—d+-22i, i=1~N,, (50)

Ng+1
where a; is defined in Table 1. The results of reflection and transmission coefficients are shown in
Fig. 3. It should be noted that when 7 is small (corresponding to short waves), very highly rapid

changes on |T| and |R| are expected'” '©

, which is not included in the figures. On the curve of N, =
0, T first decreases to a very small value as T increases, and then quickly increases to a peak value
around 7 ~ 4.88. As T continues to increase, |R| decreases to a value close to 0, and then |R|

increases and varies much more slowly. When there is a pined support in the elastic plate (N, = 1),

16
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the result becomes quite different. Specifically, |R| (|T|) generally decreases (increases) as T
increases within the range considered in Fig. 3. Besides, at a fixed value of 7, if more pinned points
are imposed on the plate, there will first be a slight increase (decrease) in |R]| (|T|). However, as N,
increases, the curves of |R| (|T|) under N, = 4 and 8 are nearly identical, which means the effect
of N, on |R| (|T]) becomes quite weak after N, = 4. In fact, more pinned supports in the structure
means more 0-deflection points on the plate. When N, is sufficiently large, the floating elastic plate
will behave similarly to a rigid plate. Furthermore, from the aspect of wave energy, when pinned
supports are imposed on the plate. For long waves, compared with the panel without any pin, the

wave energy on reflected waves will increase and the on transmitted waves will decrease.

(a) 1.2 4 (b)4 &1;0;3

Fig. 4. The maximum deflection and principal strain in the elastic plate versus the wave period
under different numbers of internal pinned supports: (a). maximum deflection; (b) maximum

principal strain. Here, two edges at x = +d are pinned, N, = N, = 0.

The deflection n and principal strain € of the elastic plate are also considered, which can be

calculated from **

1 0@ (x0)

1= (51a,b)
he |[@*n()| ?
() = 2 | ax?

Substituting Eq. (32) into (51a), n(x) gives

Ng N, *W(x,b;)
1 wroo _ N 1 Zi=1 aiW(x, ai) +Zi=b1 i#
n(x) = EZm:—z[Cmfm (%) + D fi ()] + o N, BW(x,cp) 2W(x,c;) (52)
D
0 0

We may define 7,5, = max |n(x)]| as the maximum plate deflection and £,,4, = max &(x) as
—dsx=sd —dsx=d

17
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the maximum principal strain. 7,4, /A and €4, H/A versus the wave period 7 are given in Fig. 4.
In Fig. 4 (a), when N, = 0, 7,4, /A initially increases with 7, and reaching a peak N, /A =
1.085 at T = 18.4. Subsequently, it gradually declines and approaches 1. By contrast, when an
internal pin is added (N, = 1), in addition to the region near the peaks of 17,,4, /A4, it can be found
that 1,4, /A becomes much smaller in most range of 7. As N, becomes larger, 7;q,/A further
declines. When N, = 4, ;nax/A can even be close to zero. In Fig. 4(b), €0, H/A at Ny = 1 is
normally greater than that at N, = 0. However, when N, > 2, the strain level becomes smaller than

that without any pin. Besides, &,,,,H/A is further declined as N, further increases.

2. All internal constraints are hinged supports

We may also consider the scenario floating elastic panels connected by internal hinges (N, = N, =
0), where the positions b; (i = 1~N,) of the internal hinges are assumed to present in the same
distribution as the pins in Eq. (50), and two side edges at x = +d are set to be free. The results of
the reflection and transmission coefficients are given in Fig. 5. It can be observed that as N,
increases, the curves of |R| and |T| are significantly changed, which indicates that |R| and |T| are
quite sensitive to Np,. Typically, at N;, = 4, a local oscillation of |R| versus 7 is observed, and such
behaviour becomes much more evident at N, = 8, as shown in the local enlargement in Fig. 5(a).
The results of the maximum deflection and principal strain of the elastic plate are presented in Fig.
6. In Fig. 6(a), N;nqx/A at each N, generally shows a similar variation trend. In particular, 1,4, /A
first increases with 7, and peaks at 7 = 10.80, 6.50, 5.30, 4.26 and 3.46 with 1,,,4,,/A = 1.34,
1.99, 2.54, 3.28 and 4.28 for N, = 0, 1, 2, 4, 8 respectively. Subsequently, 1,,4,/A gradually
decreases and approaches 1 with the increase of T. Notably, there is a positive correlation between
the spike value and N,,. In Fig. 6(b), the introduction of additional hinged supports on the plate
generally leads to a decrease in &,,4,H /A. To clearly illustrate the behaviour of plate deflection at
the spikes depicted in Fig. 6(a), the corresponding |n(x)| versus x/d is plotted in Fig. 7. It can be
observed that 1,4, in all the cases are occurred at x = —d. The profiles of |n(x)|/A exhibit a
degree of similarity across different values of N, . In particular, |n(x)|/A shows alternating
variation with x/d with N, troughs and N, + 2 peaks. These peaks are located at the edges of each
panel, and the corresponding peak values decrease as x/d. Moreover, at N, = 1, obvious bending

is observed in both 2 panels. However, as N, increases, the bending in each plate is unobvious, and
18
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the entire structure performs like a series of rigid plates, which indicates that the elasticity of the

structure becomes less important.

1.0 q

@

0.8

0.2 -

0.0

15 20 25 30

Fig. 5. The reflection and transmission coefficients versus the wave period under different
numbers of internal hinges: (a). reflection coefficients; (b). transmission coefficients. Here, two
edges at x = *d are free, N, = N, = 0.

x107

(b)3

Fig. 6. The maximum deflection and principal strain in the elastic plates connected by one or
multiple internal hinges: (a) maximum deflection; (b). maximum principal strain. Here, two edges

at x = +d are free, N, = N, = 0.
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7/ A

Fig. 7. Deflection of the elastic plate. Here, two edges at x = +d are free, N, = N, = 0.

3. All internal constraints are free

Wave diffraction by multiple floating elastic panels without any connection is also considered (N, =
Ny, = 0). The reflection and transmission coefficients are presented in Fig. 8. Similar with the
phenomenon observed in Fig. 5, it can be found that |R| and |T| are also very sensitive to the
number of internal free edges N.. As N, increases, local oscillations on |R| and |T| versus 7 are
also observed, such phenomenon is consistent with the results for an elastic plate of infinite extent
with multiple cracks’’. Compared with Fig. 5 for plates connected with hinges, the local oscillation
here is much stronger. In fact, such local oscillatory behaviour is due to the multiple reflections of
the traveling waves between two edges of the plate. With less restriction on the edge conditions, the
energy conversion between waves and plate motion is much more flexible, and may be sensitive to
the properties of ocean waves. Such conversion results in rapid variations of the energy in the
corresponding radiated and diffracted waves, thereby leading to more pronounced oscillation
phenomena. Consequently, in scenarios of free edges, more evident oscillatory behaviour in terms
of reflection and transmission coefficients is expected. In Fig. 9(a), obvious spikes can be observed
in the curves of 7,4,/ A versus 7, and these peak values increase with N, which is similar with the
phenomenon in Fig. 6 (a). However, there is also a highly local oscillation near the peak, a feature
that markedly diverges from that in Fig. 6(a). €4, H /A in Fig. 9(b) generally decreases with N, at

a fixed 7. Besides, a weak local oscillation is also observed in &,4,H /A versus T as N, increases.
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Fig. 8. The reflection and transmission coefficients versus the wave period under different
numbers of internal free edges: (a). reflection coefficients; (b). transmission coefficients. Here,

two edges at x = *d are free, N, = N, = 0.

(ORN

Fig. 9. The maximum deflection and principal strain in the elastic plates with free edge conditions:
(a). maximum deflection; (b). maximum principal strain. Here, two edges at x = +d are free,

Ny=N, =0.

C. Wave interaction with floating elastic plates with different type of internal constraints

In actual engineering structures, each of the panel components can be designed to be connected by
certain edge conditions, and mooring lines are usually used to improve the stability of the entire
structure. Hence, considering the combined effects of various types of physical constraints on the
hydrodynamic properties of the structure is quite necessary. Here, we may consider a scenario that

three identical elastic plates are connected by two hinges (b; = —d/3, b, = d/3), and we try to
21
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arrange pinned supports on these plates to reduce the maximum deflection and principal strain in
the structure, which can be regarded as a theoretical study to optimize the mooring positions for a
series of hinged floating elastic plates. Here, four different configurations are considered, as shown
in Fig. 10. The corresponding results are given in Fig. 11. In Fig. 11(a), if only one pinned support
is imposed at x = 0 (Fig. 10 (a)), compared with the case without any pin, 7,,,4,/A becomes even
much larger over a wide range of 7, which is different from the result for a single plate in Fig. 4 (a).
By contrast, Fig. 11 (a) also indicated that the other three configurations in Fig. 10 can effectively
mitigate the magnitude of 1,,,4,/A. In particular, apart from some narrow peaks in 7,,,,/A when T
is small, the configuration in Fig. 10 (d) emerges as the most effective, followed by the configuration
in Fig. 10 (b), and subsequently Fig. 10 (c). For the maximum principal strain on the plate given in
Fig. 11 (b), it is observed that every configuration in Fig. 10 results in an increase of &,,4,,H /A,
across a wide range of 7, compared to the scenario without any pinned support. However, the
increase is relatively less under the configurations presented in Figs. 10(b) and (d). Furthermore,
Fig. 11(b) reveals a marked and rapid variation in &,,,,H/A within the range of 5.35 < 7 < 5.55
under the configuration in Fig. 10 (b), and it is associated with the spike on 1,,4,/A in Fig. 11(a).
Correspondingly, this phenomenon is also reflected in the deflection and principal strain
distributions in the plate, as illustrated in Fig. 12. Besides, we also observe that 1,4, /A is maximum
at x = +d and x = +d /2 with a close value, and &,,,,,H/A is maximum at the pinned positions at

x = +2d/3.

(a) (b)

(d)

Fig. 10. Four different schemes to arrange pinned supports. (a) a; = 0; (b) a; = —%, a, =0,
=2 ©@a=-da=00g=dda=-da=-20a0=00=>a5=d
22
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(a)397

—0pim
|- -+ -1 pin at vid=0
==~ 3 pins at x/d=-2/3, 0,273

—opim
-1 pin at x/d=0

beesese 3 pins at x/
|+=+-5 pins at x/d=-1, 273, 0, 2/3, 1

Fig. 11. The maximum deflection (a) and principal strain (b) in the elastic plates corresponding to

—
o
=

()| / 4

le(x)|H/A

the configurations in Fig. 10.

&
y

v
L

S}
!

x/ H

Fig. 12. Deflection (a) and distribution of the principal strain (b) of the elastic plate. Two edges at

x = td are free, N, = 3 witha, =

2d
3

2d . da da
,a2=0,a3 =?,Nb=2w1thb1=—§,b2 =§,Nc=

0.

V. CONCLUSION

The problem of wave interaction with multiple adjacent floating solar panels with three different

types of constraints is considered, namely pinned, hinged and free. The solution procedure is based

on a domain decomposition methodology, where the velocity potential of the fluid beneath the solar
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panels is constructed through the boundary integral equation by invoking the Green function for
fluid fully covered by an elastic plate. The velocity potential in the free surface domain is expanded
as a conventional infinite series by using vertical mode expansion. Such an approach makes the
computation much more effective, since the unknown coefficients only need to be distributed on

two interfaces, as well as the jumps of physical parameters of the plates.

Based on the developed scheme, the effects of three constraints on the elastic plates are extensively
investigated. It is found that pinned supports can increase (decrease) the reflection coefficient |R|
(transmission coefficient |T|) for long waves. With the number of pinned supports increases, the
magnitude of maximum deflection 1,,,, and principal strain &,,4, in the plates can be reduced. For
multiple adjacent floating elastic panels connected by hinges or free to each other, it is observed that
|R| and |T| are quite sensitive to the number of edges. Besides, a local oscillation will be apparent
in the curves of |R| and |T| versus wave period 7, and such a phenomenon is much more evident in
the case of free edges. This local oscillation can be attributed to the lesser restriction at the free
edges of the plates, resulting in a stronger energy conversion between transmitted and radiated
waves. Furthermore, with the increase of the number of edges, spikes in the curve of 1,4, versus T

become more pronounced, as well as &,y is generally decreased.

The combined influence of hinged and pinned supports on the hydrodynamic response of multiple
floating elastic plates is also evaluated. A case study is conducted for three identical elastic plates
connected by hinged plates. Four distinct configurations with varying pinned points are considered.
The analysis revealed that the placement of pinned supports has a considerable impact on both 7,4
and &,,4,- In some instances, additional pinned supports even result in an increase in 1,,,,. The
present investigation provides a theoretical attempt to the optimization of mooring positions on

floating solar panels.

Although only three typical edge conditions are considered in the present study, the solution
procedure can be easily extended to other types of constraints by changing the jump terms in the

boundary integral equation.
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