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This study addresses amulticlassmulti-object tracking problem in consideration of clutters in the environment. To

alleviate issues with clutters, we propose the appearance feature-aided joint probabilistic data association filter. We

also implemented simple adaptive gating logic for the computational efficiency and track maintenance logic, which

can save the lost track for re-association after occlusion or missed detection. The performance of the proposed

algorithmwas evaluated against a state-of-the-artmulti-object tracking algorithm using bothmulticlassmulti-object

simulation and real-world aerial images. The evaluation results indicate significant performance improvement of the

proposed method against the benchmark state-of-the-art algorithm, especially in terms of reduction in identity

switches and fragmentation.

I. Introduction

M ULTI-TARGET tracking (MTT) is a technique used to track
multiple targets using diverse sensors for a range of applica-

tions. Many approaches, such as the Kalman filter (KF), joint prob-
abilistic data association (JPDA) filter [1–4], multiple hypothesis
tracking (MHT) filter [5], and particle filter (PF) [6], have been
utilized for many MTT applications [7,8]. Multi-object tracking
(MOT) can be considered as a special case of MTT that is usually
using image sensors for pedestrian tracking, and it has been studied
actively in recent years [9–12]. Many MOT algorithms showed
significant improvements in the aspect of not only its tracking
performance, but also algorithm speed [13,14]. Some MOT
approaches adopted appearance features (named re-identity (re-ID)
feature in some articles) from the objects on the image. Adoption of
appearance features such as color intensity or histogram [15–17] or
convolutional features [18–20] helps to overcome the drawbacks of
image tracker that can happen owing to occlusions or missed detec-
tion [21,22]. Besides utilizing appearance features, Cao et al. [23]
proposed observation-centric strategies to tackle the problems after
occlusion inMOT. These generate virtual trajectories for re-updating
and consider the consistency of the observation to enhance
performance in nonlinear scenarios. However, the observation-
centric approach proposed in OC-SORT presumes that the observa-
tion is reliable, and this algorithm continues to rely on a hard
association based on the intersection over union (IoU) metric, imply-
ing that its performance could diminish in cluttered, multiclass sit-
uations. This is another issue to be addressed: multiclass multi-object
tracking (MCMOT) and the clutter generated by the sensor, specifi-
cally, the detection and classification algorithm in this instance.
Even though the real-life scenario has multiclass objects, most of

the existingMOTalgorithms are not directly applicable to multiclass
scenarios. This is because most of the previously proposed algo-
rithms are focused only on single class (pedestrian) tracking problem,
which is known as the MOT challenge [9,10]. In the early stage of
MCMOT algorithm development, detectors based on conventional
image processingwere introduced.Notably, Bose et al. [24] proposed
the blob-based detection and target-set tracking algorithm with hard

association, which associates one measurement to only one track,
capable of handling fragmentation and grouping problems. This
algorithm, however, is not suitable for tracking multiclass objects
with vastly different sizes due to the inherent limitation of the blob-
based detector. Another MCMOT algorithm proposed by Spinello
et al. [25] utilized an implicit shape model (ISM) detector and two-
step association tracker using the extension ofMunkres’method [26]
for rectangular assignment. This algorithmmade a use of both vision
and laser range sensors for the measurement update, and hence the
algorithm is not directly comparable with other MCMOTalgorithms.
In addition, Zhang et al. [27] proposed a multiclass tracking algo-
rithm based on the background subtraction with Gaussian mixture,
histogram of oriented gradient features, and KF with hard associa-
tion. However, this algorithm focused more on detection and classi-
fication rather than tracking, and assigning the track identity (ID) is
not considered in their algorithm. Most of the recent MCMOT
algorithms utilized convolutional neural network (CNN)-based
detectors, owing to the robustness of CNN-based detectors in various
image conditions and their ability to produce classification results
simultaneously. For example, Lee et al. [28] proposed a tracker based
on an ensemble of Faster R-CNN andKanade–Lucas–Tomasi feature
tracker, along with a Markov chain Monte Carlo–based Bayesian
filter.While this algorithmuses changing point detection based on the
observation likelihood to detect ID switches or fragmentation, it is
not capable to continuing the track; it can only merge fragmented
tracks later. For another example, Jo et al. [29] proposed a tracker
based onYOLOv2 andKFwithHungarian algorithm.More recently,
Micheal and Vani [20] proposed a tracker based on the tiny-deeply
supervised object detector, bidirectional-forward long short-term
memory, and Hungarian algorithm for the aerial image application.
Regardless of the type of detector, the majority of approaches rely on
hard association algorithms, such as the Hungarian algorithm [30].
The issue with this hard association is that the performance could be
significantly degraded when there exist clutters in the environment,
which is likely prevalent in real operational environments: the envi-
ronment with clutters could result in a large number of ID switches,
fragmentation, or both. Amulticlass extended version of the state-of-
the-art MOT algorithm, FairMOT [18], also exists [31], but the
limitation of this approach is that association is done only within
the same class by theHungarian algorithm. This implies that the ID of
the objects can be fragmented or switched if the classification result
changes.
To overcome the limitation of hard association in multiclass

tracking scenarios with clutter and missed detection/classification,
we proposed a MCMOT algorithm, called appearance feature-aided
joint probabilistic data association (AFJPDA) filter. The proposed
AFJPDA leverages the soft association concepts, which associate
multiple candidate measurements with its association probability
within a gating area to tracks, into the extended version of FairMOT
[31]. We have chosen the extended version of FairMOT as our
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foundational algorithm, given that it is the most up-to-date algorithm
that is directly applied toMCMOT. Considering the balance between
tracking performance and computational complexity, the JPDA filter
is chosen as the soft association filter over the other algorithms. Data
association is performed based on the distance between two data
points, and the distance utilized in JPDA is typically a probabilistic
distance such as Mahalanobis distance. Since the adoption of the
appearance feature can improve practical issues of image tracker,
which are caused by occlusions or missed detection, this study also
incorporates the appearance feature similarity distance into the JPDA
filter. By integrating the JPDA filter and appearance feature simulta-
neously, the proposed AFJPDA algorithm significantly reduces the
number of ID switches and fragmentation and improves other per-
formance metrics consequently in cluttered environments. Using
multiple measurements for association, however, can increase the
computation significantly, so we proposed a simple adaptive gating
logic to alter the size of the gating area. Furthermore, we proposed a
modified trackmaintenance logic to re-associate themissed detection
when the objects reappear after occlusion. The tracking performance
was evaluated against the extended version of FairMOT, using both
simulation (Carla [32]) and real-world (VisDrone [33]) images taken
from an unmanned aerial vehicle (UAV).
The main contributions of this paper are as follows:
1) We propose a tracking filter that is directly applicable for

multiclass multi-object tracking and significantly reduces fragmen-
tation and ID switch by using a JPDA filter and appearance feature.
2) A simple adaptive gating logic to reduce the computational

complexity and amodified trackmaintenance logic for re-association
are proposed.
3) The proposed filter with the adaptive gating logic and the track

maintenance logicwas tested in both simulation and real-world aerial
videos.
The rest of this paper is composed as follows: Sec. II recaps the

JPDA filter and Sec. III explains the AFJPDA implementation with
adaptive gating logic and modifiedM∕N logic. Section IV discusses
the simulation results of the MOT algorithms and compares the
performance. Finally, in Sec. V we conclude this paper.

II. Joint Probabilistic Data Association Filter

The JPDA filter is one of the most popular data association
techniques for MTT based on the KF, which can be divided into
two steps: prediction and update steps [34]. The key difference of the
JPDA filter as a soft association filter from the widely used hard
association such as global nearest neighbor (GNN) [35] is that the
JPDA utilizes association probabilities and innovations of all mea-
surements within the gating area to calculate weighted innovation
[3,36]. Here, the innovation is the difference between the measure-
ment and the predicted state, which will be defined in Eq. (8), and the
weighted innovation is the weighted sum of innovations based on
association probability, whichwill be defined inEq. (9). Compared to
hard association algorithms that may wrongly associate a track with
clutter, the JPDA filter offers an advantage in cluttered scenarios by
considering multiple measurements within a gating area and jointly
associating them based on their association probabilities. Therefore,
when the Euclidean distances between one track and multiple mea-
surements are similar, the JPDA filter ismore advantageous than hard
association approaches. Additionally, in scenarios where classifica-
tion results are ambiguous, detectors and classifiers can produce
clutter. For example, the detection algorithm can detect two objects
(a car and a bus) in an image when only one object (a bus) exists in
reality, as shown in Fig. 1.
For completeness, let us briefly recap the JPDA filter for the

following linear Gaussian Markov system:

xk � Fkxk−1 �wk (1)

zk � Hkxk � vk (2)

where xk;Fk, and wk ∼N �0;Qk� are state vector, transition matrix,
and process noise with covariance matrix Qk at time step k, respec-

tively. Also, zk;Hk, and vk ∼N �0;Rk� are measurement vector,

measurement matrix, and measurement noisewith covariance matrix

Rk at time step k, respectively. From the prediction step, the predicted

state and covariance of ith track can be derived as follows:

x̂ikjk−1 � Fkx̂
i
k−1jk−1 (3)

Pi
kjk−1 � FkP

i
k−1jk−1F

T
k �Qk (4)

where x̂ikjk−1 is the predicted state and P
i
kjk−1 is the predicted covari-

ance of ith track at time step k with measurement up to time step

k − 1. When measurements are received, the predicted state and

covariance can be updated as follows:

x̂ikjk � x̂ikjk−1 � Ki
ky

i
k (5)

Pi
kjk � Pi

kjk−1 − �1 − pi0
k �Ki

kHkP
i
kjk−1 � Pi

k (6)

where x̂ikjk and Pi
kjk are the updated state and updated covariance.

Here, pi0
k is the probability that no measurement is assigned to ith

track and Pi
k is the correction term, which can be calculated as

follows:

Pi
k � Ki

k

J

j�1

pij
k y

ij
k y

ijT
k − yiky

iT
k KiT

k (7)

Here, the association probability of jth measurement correspond-

ing to ith track,pij
k , will be derived inEq. (15). Refer to [36,37] for the

details. In Eqs. (5–7), the innovation yik and the Kalman gainKi
k can

be derived as follows:

yijk � zjk −Hkx̂
i
kjk−1 (8)

yik �
J

j�1

pij
k y

ij
k (9)

Si
k � HkP

i
kjk−1H

T
k � Rk (10)

Ki
k � Pi

kjk−1H
T
k �Si

k�−1 (11)

where yijk is the innovation of ith track corresponding to jth meas-

urement, zjk, p
ij
k is the association probability of jth measurement

corresponding to ith track, andSi
k is the innovation covariancematrix

of ith track. Note that there is no minimum number of measurements

for reliable calculation of yik since JPDAwill utilize only one inno-

vation if it has been associated with one measurement and will be

considered as lost track if no measurement associated to track based

on M∕N logic, which will be discussed in Sec. III.

Fig. 1 Clutter example with ambiguous classification result.
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The JPDA filter, unlike the classic linear KF, calculates the
weighted innovation in Eq. (9) using the innovation of the jth

measurement corresponding to the ith track, yijk , and the correspond-

ing association probability, pij
k , which serves as a weighting param-

eter. Joint computation of the association probability for all candidate
measurements within a gating area, γG, is performed by the JPDA
filter, and this gating is based on the Mahalanobis distance of the jth
measurement as follows:

dijM;k � �yijk �T�Si
k�−1yijk (12)

If the Mahalanobis distance between the jth measurement and the

predicted state of the ith track, dijM;k, is less than the gating threshold

γG, the measurement is considered a potential candidate for associ-
ation with the track.
With the gated measurements, the association can be divided into

three cases to calculate the association probability: The casewhen jth
measurement is assigned to ith track, gijPD; the case when no

measurement is assigned to ith track, 1 − PD; and the case when
none of the measurements assigned to any tracks (all measurements
are false alarm), β. Here, PD is the probability of detection, β is the
probability of false alarm, and gij is Gaussian likelihood of jth
measurement assigned to ith track which can be denoted as follows:

gijk � e−D
ij
M;k

∕2

�2π�dim ∕2 jSikj
(13)

whereDij
M;k is the squaredMahalanobis distance,Dij

M;k � �dijM;k�2 �
�yijk �T�Si

k�−1yijk , dim is dimension of measurement, and jSi
kj is the

determinant of Si
k. From the above equations, the probability of

assignment of all objects to all measurements, Pa, can be calculated
as follows:

Pa �
j to i

gijk PD

null to i

�1 − PD�
j to null

β (14)

Finally, the association probability of jth measurement corre-

sponding to ith track, pij
k , can be calculated by summing up all

probability, which includes the cases that assigning jth measurement
to ith track as follows:

pij
k �

A

a�1

fPajincludes cases assigning jthmeasurement to ith trackg

(15)

whereA is the number of all possible cases of assignment between all
tracks and all measurements. Refer to [1,2,36] for further details.

III. Appearance Feature-Aided JPDA Filter

A. Appearance Feature and Fused Distance

A number of studies have proposed using appearance features
(also known as re-ID features) to improve the association and
tracking performance for the MOT challenge [18,22,31]. These
approaches fuse the Mahalanobis distance and cosine distance to
represent the physical probabilistic distance and appearance similar-
ity of objects, respectively. TheMahalanobis distance is calculated in
the same manner as in Eq. (12), and the cosine distance between two
appearance feature vectors f i

k and f j
k can be calculated as follows:

Cosine similarity � f i
k ⋅ f

j
k

kf i
kk ⋅ kf j

kk
(16)

dijC;k � 1 − Cosine similarity (17)

The appearance features in Eq. (16) are 128-dimensional vectors
that are similar to vectors for classification. Since there are similar-
ities in color or shape of the ground vehicles, designing of feature

vector based on those features would be subject to our future study.
Nonetheless, as there is a certain tradeoff between performance and
computational cost, care should be taken in designing such feature
vectors. More detailed information on the appearance feature (or
re-ID feature) vector used in Eq. (16) can be found in [18]. We
propose a new approach, called appearance feature-aided JPDA
(AFJPDA), which uses a fusion of Mahalanobis distance and cosine
distance between objects in image coordinates to improve the per-
formance of association after occlusion or missed detection. The
fused distance is calculated as a linear combination of the two
distances, as defined in previous research [18,22,31] and used for
the base algorithm, FairMOT [18], as well:

dijfused;k � λdijC;k � �1 − λ�dijM;k (18)

where λ is the weighting parameter, and we selected λ � 0.6 empiri-
cally. The sensitivity analysis of this weighting parameter λ will be
discussed in Sec. IV. The fused distance in Eq. (18) is used not only in
gating but also for association probability calculation in Eq. (13),
then the new likelihood can be calculated as Eq. (13) but simply

substitute theDij
M;k into squared fused distance,D

ij
fused;k � �dijfused;k�2.

In this manner, the AFJPDA filter can utilize the appearance feature
of the objects for the association. It is worth mentioning that the
calculation ofMahalanobis distance and fused distance inEq. (18)will
not increase the computational complexity compared to the base
algorithm since the base algorithm also utilizes this fused distance
for its data associationwith theHungarianalgorithm.Refer toSec. IV.D
and the last column of Tables 3 and 4 for the computation comparison.

B. Adaptive Gating Logic

The computational complexity of the JPDA filter could dramati-
cally increase if too many measurements are considered as potential
assignments. To avoid this computational burden, it is important to
filter out the measurements not relevant to the object using gating
[35]. Choosing a proper gating size that can contain the possibly
assigned measurements but considering the computational complex-
ity is the point of the gating. In the case we are focusing on, using a
vision sensor from a UAV, applying the same gating area for all
objects may degrade the association performance for the objects
moving close to the camera. To address this issue, we propose an
adaptive gating logic that can change the gating size depending on the
size of the bounding box, which can represent the distance from
the camera implicitly while considering computational efficiency.
The proposed gating size γG is obtained as follows:

γG � Gscr � lbb (19)

where Gscr is the scaling parameter, which we set to 0.0265 empiri-
cally, and lbb is the diagonal length of the bounding box of the detected

object. In addition,we set the lower bound of the gating size to 9.488
p

based on the chi-square distribution table for a 0.95 probability of
detection with four degrees of freedom to prevent the gating area from
being too small. This approach allowed us to achieve computational
costs that are reasonably comparable to those of the GNN.

C. Track Maintenance Logic

The track maintenance logic is important for stable tracking in the
case where clutter or missed detection exists. For track maintenance,
theM∕N logic and the score-based maintenance methods are widely
utilized for tracking problems. In this study, we appliedM∕N logic,
which is widely appreciated thanks to its simplicity ([2] p. 104) since
score-based logic can increase the computation and M∕N can per-
form well in the low-clutter environment (e.g., image sensor). We
modified M∕N for track maintenance as missed measurements can
affect the stability of tracking. This logic confirms a track if mea-
surements are associatedM times withinN time steps (frames in this
case), and terminates the track if there are no associations for Mterm

time steps. Unlike standard M∕N logic, the modified version saves
lost tracks as tentative tracks if there are no associations for M time
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steps. Following an occlusion ormissed detection event, theAFJPDA

filter uses a track maintenance logic that attempts to re-establish the

association between lost objects and tentative tracks using newly

detected measurements. This re-association process is achieved by

considering the appearance feature in addition to the association

probability, thereby allowing more stable tracking performance and

enhancing the robustness of the tracker with occlusion and missed

detections. In this study, we set M � 2, N � 3, and Mterm � 30,
meaning that the logic confirms a track if measurements are associ-

ated two times within three frames, considers it a tentative track if

there are no associations for two frames, and terminates the track if

there are no associations for an additional 30 frames.

D. Algorithm of the AFJPDA Filter

The proposedAFJPDA filter with the adaptive gating logic and the

track maintenance logic can be formulated as Algorithm 1. The

flowchart of the entire algorithm, including the detection, classifica-

tion, and appearance feature extraction parts, is described in Fig. 2
in Sec. IV.
The AFJPDA filter operates in several steps. First, it predicts the

state and covariance of the objects being tracked based on the
state and covariance of the previous frame, using a given set of
dynamics. Next, the filter calculates the Kalman gain and innova-
tion between the track and the measurements received, and uses this
to calculate the Mahalanobis and cosine distances, which are fused
to obtain a final distance measure. Third, the filter calculates an
adaptive gating area based on the size of the bounding box and uses
this to derive the association probability of the jth measurement
corresponding to the ith track. The filter then updates the tentative
and terminates condition variables for unobserved tracks and asso-
ciates tracks with measurements. Finally, tracks are confirmed,
appended to tentative tracks, terminated, or initiated based on an
M∕N logic.

IV. Simulation Results and Discussion

A. AFJPDA Filter Implementation

The proposedAFJPDA filter was implemented forMCMOTusing
the image sensor in both simulation and real-world scenarios, with
multiple multiclass objects. The algorithm was based on the frame-
work of a one-shot multiclass multi-object tracker [31], which is an
extended version of FairMOT [18]. DLA-34 is used in both algo-
rithms to extract detection and re-ID features from the acquired
images, which is built on top of CenterNet [38]. The network of
the extended version of FairMOT was modified to allow for classi-
fication since the original FairMOT did not consider multiclass
tracking. The proposed algorithm takes the center points, size of
the bounding box, and appearance feature vectors of the objects from
the DLA-34 as input. The AFJPDA filter associates these measure-
ments with tracks for tracking. The flowchart of the proposed algo-
rithm is described in Fig. 2.
The proposed AFJPDA filter estimates the 2D image coordinates

of objects by including their center position and size of the bounding
box, and their velocity. Therefore, the state of the ith track at time step

k in Eq. (3) can be defined as xik � �xik; vix;k; yik; viy;k; wi
k; v

i
w;k; h

i
k;

vih;k�T . This state includes the object’s center position in the x and y
directions, the width and height of the bounding box, as well as
their velocity in those directions. Given that the objects in the
scenario are moving with nearly constant velocity, a constant-
velocity model is assumed for the transition matrix. The transition
matrix and process noise covariance matrix in Eqs. (3) and (4) can be
written as follows:

Algorithm1: AFJPDAfilterwith adaptive gating logic andmodified
M/N logic

Input: x̂k−1jk−1,Pk−1jk−1,zk,fk,F,H,Q,R, λ,Gscr,pD,β,N,M,Mterm

Output: x̂kjk, Pkjk, Listconf;k, Listtent;k, Listterm;k

1: for i, j in I, J do

2: x̂ikjk−1 � Fx̂ik−1jk−1
3: Pi

kjk−1 � FPi
k−1jk−1F

T �Q

4: Si
k � HPi

kjk−1H
T �R

5: Ki
k � Pi

kjk−1H
T�Si

k�−1
6: yijk � zjk −Hkx̂

i
kjk−1

7:
dijM;k � �yijk �T�Si

k�−1yijk
8: dijC;k � 1 − f i

k ⋅f
j
k

kf i
k
k⋅kf j

k
k

9: dijfused;k � λdijC;k � �1 − λ�dijM;k

10: γG � Gscr � lbb
11: if γG ≤ 9.488

p
then

12: γG ← 9.488
p

13: end if
14: if dijfused;k ≤ γG and Pa contains association of j to i then

15: pij
k � ΣA

a�1Pa

16: end if
17: if max�pij

k � �� �1 − pD�β then

18: Conitent ← Conitent � 1

19: Coniterm ← Coniterm � 1

20: end if
21: yik � J

j�1 p
ij
k y

ij
k

22: x̂ikjk � x̂ikjk−1 �Ki
ky

i
k

23: Pi
kjk � Pi

kjk−1 − �1 − pi0
k �Ki

kHkP
i
kjk−1 � Pi

k

24: if Number of association j to i>M within N frames then

25: Append ith track to Listconf;k

26: Conitent ← 0

27: Coniterm ← 0

28: end if
29: if Conitent ≥ M then

30: Append ith track to Listtent;k
31: end if
32: if Coniterm ≥ Mterm then

33: Append ith track to Listterm;k

34: end if
35: Zi

k � fzjkjdijfused;k < γGg
36: if zjk ∈= Zi

k then

37: Initiate zjk as a new track

38: end if
39: end for

Fig. 2 Flowchart of the proposed algorithm.
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F �

1 Δt 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 Δt 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 Δt 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 Δt
0 0 0 0 0 0 0 1

(20)

Q � σp

Δt4
4

Δt3
2

0 0 0 0 0 0

Δt3
2

Δt2 0 0 0 0 0 0

0 0 Δt4
4

Δt3
2

0 0 0 0

0 0 Δt3
2

Δt2 0 0 0 0

0 0 0 0 Δt4
4

Δt3
2

0 0

0 0 0 0 Δt3
2

Δt2 0 0

0 0 0 0 0 0 Δt4
4

Δt3
2

0 0 0 0 0 0 Δt3
2

Δt2

(21)

where Δt is the time step and σp is the standard deviation of the

process noise.
The AFJPDA filter takes the center, width, and height of the

bounding box as a measurement for the update step in the AFJPDA

filter, and the jth measurement at time step k in Eq. (8) can be defined

as zjk � �xjk;meas; y
j
k;meas; w

j
k;meas; h

j
k;meas�T . The measurement matrix

and measurement noise covariance matrix in Eqs. (8) and (10) can be

written as follows:

H �
1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

; R � σm

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

(22)

where σm is the standard deviation of the measurement noise.

B. Performance Evaluation Metrics

The performance of the proposed algorithm is evaluated with the

following evaluation metrics and compared with the multiclass

extended version of the FairMOT and the JPDA filter. Metrics can

be defined as follows [39–41]:
1) IDF1(↑): Identity-F1 score, defined in Eq. (23)

2) MOTA(↑): Multi-object tracking accuracy, defined in Eq. (24)
3) MT(↑): Mostly tracked objects, more than 80% of life span

tracked
4) FN(↓): False negative, number of missed detections
5) IDSW(↓): Identity switch, number of ID switches to another ID

that is already allocated to a different track
6) Frag(↓): Fragmentation, number of ID changes due to missed

detection
7) FPS(↑): Frame per second, number of frames processed in 1 s

IDF1 � 2 ⋅ IDTP
2 ⋅ IDTP� IDFP� IDFN

(23)

MOTA � 1 − t�FNt � FPt � IDSWt�
t GTt

(24)

where IDTP, IDFP, and IDFN are the number of true positive IDs,
false-positive IDs, and false-negative IDs, respectively [39,40]; t is
the frame of the image sequence; and GT is the number of ground
truth objects [40]. In the above metrics, (↑) indicates a higher score
showing better performance and (↓) indicates a lower score showing
better performance. Themetrics IDF1,MOTA, andMTwere selected
for this study as they are commonly used in evaluating MOT perfor-
mance. They offer a comprehensive view of the tracker’s overall
performance, giving readers valuable insights into its efficacy. Fur-
thermore, we also considered FN, IDSW, and fragmentation metrics
because they are especially sensitive to variations in performance in
the context of MCMOTwithin cluttered environments. Note that we
are focusing on IDF1 more thanMOTA since the proposed AFJPDA
algorithm uses the same detector with FairMOT, and theMOTA score
is highly dependent on detector performance. In other words, MOT
algorithmswith a good detector can achieve a highMOTA score even
if it has a big number of IDSWor fragmentation [42,43].

C. Simulation Scenarios

The simulations were designed to evaluate the MCMOT perfor-

mance. We assumed a scenario in which two classes of moving

ground objects (cars and buses/trucks) were tracked by a hovering

UAVwith a single image sensor. To generate the synthetic image, we

used the Carla simulator [32], where the ground vehicles in the

simulator were controlled using autopilot mode. The details of

the scenarios are described in Table 1, and sample pictures from

the scenarios are shown in Fig. 3.
In addition, AFJPDA is tested in real-world dataset and compared

with the extended version of the FairMOT. For the aerial images,

some scenarios from VisDrone [33] were tested. The real-world

scenarios have more number of objects and clutter in the images.

The details of the selected and tested scenarios are described in

Table 2, and sample pictures from the scenarios are shown in Fig. 4.

Table 1 Details of simulation scenarios: Carla simulator

Scenario FPS Resolution Length No. of objects

Carla-1 30 FPS 1920 × 1080 pixels 600 frames (00′20′′) 47
Carla-2 1200 frames (00′40′′) 29
Carla-3 1800 frames (01′00′′) 72
Total 3600 frames (02′00′′) 148

Fig. 3 Sample pictures from three scenarios of Carla simulator.
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D. Results and Discussion

The performance was evaluated using the scenarios in Tables 1

and 2, as well as the metrics described in Sec. IV. The evaluated

performance of the multiclass extended version of the FairMOT

(referred to as “Base” in the tables), JPDA filter, and AFJPDA filter

is presented in Tables 3 and 4. Note that we chose the extended

version of the FairMOT algorithm as the baseline because most

existing MCMOT algorithms with vision sensors rely on a track-

by-detection scheme that employs CNN detectors, e.g., YOLO, and

GNN algorithms such as the Hungarian algorithm. The extended

Table 2 Details of simulation scenarios: VisDrone dataset

Scenario FPS Resolution Length No. of objects

VisDrone-1 30 FPS 1920 × 1080 pixels 677 frames (00′22′′) 100
VisDrone-2 144 frames (00′5′′) 53
VisDrone-3 426 frames (00′14′′) 87
VisDrone-4 548 frames (00′18′′) 22
VisDrone-5 341 frames (00′11′′) 118
Total 2137 frames (01′14′′) 380

Fig. 4 Sample pictures from three scenarios of VisDrone dataset [33].

Table 3 Tracking result of the Carla simulation scenarios

Scenario Algorithm IDF1 ↑ MOTA ↑ MT ↑ FN ↓ IDSW ↓ Frag ↓ FPS ↑

Carla-1 a) Base 80.62% 80.55% 78.72% 2425 121 172 18.58
b) JPDA 82.63% 82.13% 80.85% 2110 20 104 18.58
c) AFJPDA 83.42% 82.12% 80.85% 2107 19 100 17.67

Carla-2 a) Base 77.63% 76.01% 86.21% 1068 100 127 20.22
b) JPDA 72.57% 75.91% 86.21% 950 36 77 20.23

c) AFJPDA 74.34% 76.52% 86.21% 888 31 74 19.77

Carla-3 a) Base 79.87% 74.35% 56.94% 6207 153 329 19.51
b) JPDA 80.28% 77.47% 62.50% 5755 69 192 18.93
c) AFJPDA 81.05% 77.84% 66.67% 5668 50 190 18.60

Total a) Base 79.68% 76.37% 69.60% 9700 374 628 19.58
b) JPDA 79.56% 78.51% 72.97% 8815 125 373 19.28
c) AFJPDA 80.52% 78.81% 75.00% 8663 100 364 18.81

The best score is shown as boldfaced value.

Table 4 Tracking result of the VisDrone real-world scenarios

Scenario Algorithm IDF1 ↑ MOTA ↑ MT ↑ FN ↓ IDSW ↓ Frag ↓ FPS ↑

VisDrone-1 a) Base 86.16% 85.83% 80.00% 2628 347 529 16.76
b) JPDA 92.35% 88.74% 85.00% 2113 30 160 16.00
c) AFJPDA 92.18% 89.08% 86.00% 1994 21 159 15.30

VisDrone-2 a) Base 66.03% 36.41% 58.49% 1746 22 91 17.12
b) JPDA 67.46% 34.40% 60.38% 1563 10 44 17.25
c) AFJPDA 66.80% 34.23% 60.38% 1559 6 41 16.37

VisDrone-3 a) Base 80.97% 67.93% 77.01% 3508 133 382 16.39
b) JPDA 78.47% 63.68% 67.82% 4032 58 166 11.48
c) AFJPDA 81.29% 66.80% 79.31% 3449 25 158 13.43

VisDrone-4 a) Base 62.83% 44.63% 27.27% 2076 12 46 19.70
b) JPDA 70.07% 53.16% 31.58% 1219 5 22 21.03

c) AFJPDA 71.74% 55.64% 31.58% 1154 6 23 19.96

VisDrone-5 a) Base 80.75% 62.56% 66.10% 1887 72 211 16.57

b) JPDA 78.51% 57.62% 62.71% 1846 30 83 14.93
c) AFJPDA 78.27% 57.00% 64.41% 1804 31 91 14.69

Total a) Base 82.26% 71.20% 68.95% 11,845 586 1269 17.35
b) JPDA 83.26% 70.99% 67.91% 10,773 133 475 15.64
c) AFJPDA 83.98% 72.05% 71.35% 9960 89 472 15.78

The best score is shown as boldfaced value.
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version of FairMOT is one of the most state-of-the-art MOT algo-

rithms employing those concepts, and it is the most up-to-date

algorithm that is directly applied to MCMOT. Furthermore, as the

majority of generic MOT algorithms are not suitable for multiclass

MOT, the proposed algorithm is exclusively compared with the

multiclass extended version of FairMOT.

The result was evaluated using an identically trained dataset for the

same detection and classification algorithm on the PC with Intel i7-

10700 CPU and NVIDIA RTX A5000 GPU. This shows that the

proposed algorithm, JPDA filter, and AFJPDA filter for multiclass

showed better performance than the extended version of FairMOT

in most of the metrics, including IDF1, MOTA, and MT and

significant improvement in reducing FN, IDSW, and fragmentation.

This improvement was able to be achieved because of the character-

istic of the JPDA filter that can handle clutters using association

probabilities of multiple measurements in the gating area, while the

extended version of FairMOT uses only one nearest measurement

(hard association). Furthermore, by combining appearance features

in the association probability calculation in the JPDA filter, we could

achieve further improvement in reducing FN, IDSW, and fragmenta-

tion for most of the scenarios. In terms of computational cost, the

proposed AFJPDA filter showed average speeds of 18.81 FPS and

Fig. 5 Tracking results of a) extended FairMOT, b) JPDA filter, and c) AFJPDA filter in the first scenario.
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15.78 FPS, while the base algorithm showed average speeds of 19.85

FPS and 17.35 FPS in the simulation environment and real-world

environment, respectively. This means that the proposed AFJPDA

filter exhibits comparable computational efficiency with better

tracking performance compared with the benchmark algorithm.

The main reason behind the slight degradation in computational

efficiency in the proposed algorithm compared with the benchmark

algorithm is a soft association, i.e., an association of multiple candi-

dates to a track, which results in additional calculations such as

calculation of weighted innovation, yik in Eq. (9). Tracking results

in the simulation environment are described in Figs. 5–7.

Most objects arewell tracked in the sequence of frames as shown in

Figs. 5–7. However, a fragmentation example can be observed in

a) extended FairMOT (first column). The object with track ID 12

(green box on the left top) was lost from frame 35 to 65 in the

extended FairMOT. After the object was detected again in frame

95, the track ID fragmented into 31 in the extended FairMOT, while

the JPDA filter and the AFJPDA filter tracked the object with the

same track ID. Another case of IDSWand fragmentation is shown in

Fig. 6. While the c) AFJPDA filter showed neither fragmentation nor

IDSW, the a) extended FairMOT showed both, and the b) JPDA filter

showed FN. When a new object enters from the bottom of the image

Fig. 6 Tracking results of a) extended FairMOT, b) JPDA filter, and c) AFJPDA filter in the second scenario.

8 Article in Advance / KIM, PETRUNIN, AND SHIN

D
ow

nl
oa

de
d 

by
 8

6.
18

0.
10

8.
12

1 
on

 M
ar

ch
 1

2,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
1.

I0
11

30
1 



in frame 110, it was initially assigned as track ID 18, but this track

fragmented into track ID 19 in frame 114 and ID 1012 in frame 118.

In frame 126, a new object entered the image, but this object was

assigned as track ID 19, which had already been assigned to another

track (IDSW). Although the b) JPDA filter did not show any frag-

mentation or IDSW, it showed FN in frames 110, 122, and 126. An

example of IDSW and fragmentation after occlusion is shown in

Fig. 7. In this example, objects assigned as track IDs 109 and 1041 in

frame 1020 in the a) extended FairMOT fragmented to track IDs 119

and 1046 in frames 1040 and 1100, respectively, after occlusion.

Also, the carwaiting on the left bottom side, which had been assigned

to track ID 83 in frame 1040, fragmented to track ID 1043 in frame

1060. In the case of the b) JPDA filter, the bus with track ID 101

(purple box on the right) fragmented to track ID 105 in frame 1100

after occlusion. However, in the case of the c) AFJPDA filter, no

fragmentation occurred for either the waiting car or the bus passing

behind the tree. The car with track ID 77 continued to be tracked with

track ID77, as shown in frames 1020 and 1040, and the buswith track

ID 81 in frame 1020was trackedwith the same ID in frame 1100 after

occlusion by the tree.

The proposed AFJPDA algorithm outperformed the extended

version of the FairMOT algorithm, with significant improvements

Fig. 7 Tracking results of a) extended FairMOT, b) JPDA filter, and c) AFJPDA filter in the third scenario.
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in reducing FN, IDSW, and fragmentation and slight improvements
in IDF1, MOTA, and MT. This supports our main motivation behind
the proposition of the AFJPDA filter and confirms its validity. It was
achieved by using the soft association in the JPDA filter and by
further incorporating appearance features into the JPDA filter. The
result showed that the proposed AFJPDA filter with the adaptive
gating logic and the track maintenance logic is beneficial in the case
of the multiclass multi-object tracking scenario in a cluttered envi-
ronment and can reduce the FN, IDSW, and fragmentation signifi-
cantly without much degradation of computation.

E. Sensitivity Analysis

The sensitivity analysis on parameter λ for weighting between the
physical distance (Mahalanobis distance) and appearance similarity
(cosine distance) in Eq. (18) is discussed here. A total of six λ values
are evaluated: λ � 0.0; 0.2; 0.4; 0.6; 0.8, and 0.98 for the Carla-2
scenario. The first case, λ � 0.0, is the case where the appearance
feature is not used in distance calculation, same as the JPDA filter in
Table 3, and λ � 0.6 is the valuewe used inAFJPDA filter in Table 3.
The last case, λ � 0.98, is the same value with a base algorithm,
FairMOT, and multiclass extended version of FairMOT in [18,31].
Note that λ � 1.0 is excluded for better readability of the graph since
it has a significantly huge error compared to other λ cases. The key
performance metrics IDF1, MOTA, IDSW, and fragmentation are
compared according to different λ values as shown in Fig. 8.
The four key performance metrics, IDF1, MOTA, IDSW, and

fragmentation, are shown as blue line with circle marker, yellow line
with square marker, orange line with diamond marker, and gray line
with trianglemarker, respectively. For all fourmetrics, the algorithms
showed the best performance with λ � 0.6. From λ � 0.2 to λ � 0.6
the performance improved as the λ increases, but after λ � 0.6, the
performance degraded as λ decreases. It can be observed that the
effect of the weighting parameter λ on MOTA and fragmentation is
comparatively less than that on IDF1 and IDSW. This phenomenon is
owing to the nature and characteristics of those metrics. MOTA,
derived from FN, FP, and IDSWas described in Eq. (24), is predomi-
nantly influenced by the detector’s performance. Also, the numerical
scale of IDSWis smaller than FN or FP in Eq. (24), making its impact
on MOTA less pronounced. Consequently, even with improvements
in IDSW or minor improvements in FN and FP, the MOTA remains
largely unaltered by the choice of weighting parameter. Fragmenta-
tion, which arises from missed detections or clutters, is similarly
affected primarily by the detector. While its performance can be
enhanced by adjusting the filtering approach, without detector
improvements, further enhancement in this metrics with the choice
of weighting parameter remains restricted as the missed detection is
unable to be solved with filtering. On the other hand, metrics like
IDSW and IDF1, which emphasize identity assignment consistency
and precision over time, are closely tied to the tracker’s filtering
mechanism and the association’s performance. As such, changes in
the weighting parameter can notably alter these metrics’ outcomes.

V. Conclusions

In this study, we proposed an appearance feature-aided JPDA
(AFJPDA) filter for multiclass multi-object tracking in scenarios
with clutter. The AFJPDA filter utilizes the appearance feature from
the classification algorithm in the association probability calculation
of the JPDA filter. Additionally, we introduced a simple adaptive
gating logic and modified track logic to improve the association
performance. The proposed algorithm was tested in both simulation
and real-world aerial images and demonstrated improved performance
compared to the extended version of FairMOT for multiclass tracking.
This performance improvement is shown in most metrics, including
IDF1, MOTA, and MTand notably significant improvement in reduc-
ingFN, IDswitch, and fragmentation.This improvementwas achieved
because of the characteristic of the JPDA filter, which uses multiple
candidates for association, unlike hard association, and the augmenta-
tion of the appearance feature in the algorithm. In futurework, we plan
to investigate the potential benefits of incorporating additional tech-
niques into our filter, such as adapting the noise covariance, in order to
further improve its performance.
Some of the open issues inmulticlassmulti-object tracking are still

remaining, however, such as ambiguity problems and tracking highly
nonlinear objects. Our future work would extend the proposed algo-
rithm to associate with multiple heterogeneous sensors such as radar
or light detection and ranging (LiDAR) sensors to show further
improvement. In addition to the strength of the vision sensor (appear-
ance feature), depth or dimension information from radar or LiDAR
could provide additional information about the object for the detec-
tion and distinction of ambiguous objects. This will improve the
general performance and overcome the ambiguity issue in MOT.
Furthermore, an extension of the proposed work in consideration
of targets with highly nonlinear dynamics is subject to future work.
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