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ABSTRACT: The catalytic activity of bimetallic catalysts for the steam methane
reforming (SMR) reaction was extensively studied previously. However, the
performance of these materials in the presence of sulfur-containing species is yet to
be investigated. In this study, we propose a novel process aided by machine learning
(ML) and microkinetic modeling for the rapid screening of sulfur-resistant bimetallic
catalysts. First, various ML models were developed to predict atomic adsorption
energies (C, H, O, and S) on bimetallic surfaces. Easily accessible physical and
chemical properties of the metals and adsorbates were used as input features. The
Ensemble learning, artificial neural network, and support vector regression models
achieved the best performance with R2 values of 0.74, 0.71, and 0.70, respectively. A
microkinetic model was then built based on the elementary steps of the SMR reaction.
Finally, the microkinetic model, together with the atomic adsorption energies
predicted by the Ensemble model, were used to screen over 500 bimetallic materials.
Four Ge-based alloys (Ge3Cu1, Ge3Ni1, Ge3Co1, and Ge3Fe1) and the Ni3Cu1 alloy
were identified as promising and cost-effective sulfur-resistant catalysts.

1. INTRODUCTION
Steam methane reforming (SMR) is the most widely used
process for syngas production. In this process, steam and
methane react in the presence of a catalyst to produce a
mixture of carbon monoxide, carbon dioxide, and hydrogen.
Although currently, most commercial SMR catalysts are
supported nickel-based materials, extensive research on bi/
polymetallic catalysts has been carried out with the aim of
enhancing the overall catalytic activity and material stability.1,2

The stability of the catalysts is usually evaluated based on their
long-term activity and resistance to metal oxidation, sintering,
or undesired impurities in the reaction system. Based on a
recent literature review on bi/polymetallic SMR catalysts,3

existing literature is mainly focused on the carbon resistance or
metal oxidation resistance of the materials. Various promoters,
including noble metals4−7 and non-noble metals,8−10 were
found to be carbon-resistant. Noble metals were also used as
promoters to improve resistance to metal oxidation11−14 and
sintering.15−17

In contrast, very little literature on the sulfur resistance of
SMR catalysts is available. The feed stream employed in most
experimental studies is a mixture of pure methane and steam,
and the effect of impurities on the performance of the catalysts
was often not considered. One of the most important sources
of methane�natural gas�usually contains sulfur in the form
of thiophenes, mercaptans, and sulfides.18 Sulfur components
are known to be poisonous to metallic catalysts, reducing the

life of commercial catalysts to only months or weeks when
ppm levels of sulfur impurities are present in the feed gas.19

Catalyst poisoning by sulfur usually takes place through the
following processes:20

1. Active site blockage: an adsorbed sulfur atom may
physically block a three- or four-fold adsorption site.

2. Adsorption energy modification: the chemical bond
between the sulfur atom and its neighboring atom(s)
can modify its ability to adsorb the reactant molecules
and dissociate the product molecules.

3. Restructure of the catalyst surface: strongly adsorbed
sulfur atoms can modify the surface structure and
properties of the catalyst.

Adding a second metal, either as a promoter or as the second
element to form an alloy with the base metal, is a commonly
used method to improve the overall sulfur resistance of the
catalyst. A novel Ni−Fe-based catalyst with a core−shell
structure was tested by Tsodikov et al.,21 and its catalytic
activity remained unaffected as the concentration of H2S in the
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system increased from 5 to 30 ppm. Wang et al.22 reported that
the bimetallic Ni−Re/Al2O3 catalyst achieved a high
methylcyclohexane conversion rate of 93% during the steam
reforming process in the presence of 20 ppm sulfur, whereas
the monometallic Ni/Al2O3 catalyst quickly deactivated.
Gaillard et al.23 tested the stability of Ni−Mo/Al2O3 under
long-term dry methane reforming conditions in the presence of
50 ppm of H2S and concluded that the bimetallic catalyst
showed a better performance compared with the Ni or Mo
counterparts. Similarly, Saha et al.24 reported that the addition
of Co enhanced the stability of Ni/Al2O3 for the dry reforming
of biogas containing 100 ppm of H2S. Capa et al.

25 tested a Pd-
doped bimetallic Ni−Co catalyst under sorption-enhanced
steam reforming conditions and found that the catalyst was
able to remain active for five cycles with an H2S concentration
of 350 ppm.
Apart from the experimental testing of the materials of

interest, microkinetic modeling (MKM) has gained increasing
attention as a rapid and reliable way to evaluate heterogeneous
catalysis processes.26 By providing the reaction mechanism and
energetics (which can be obtained by experimental testing or
first-principle-based calculations), the catalytic activity of any
given material can be predicted as a function of simple
descriptors, such as atomic adsorption energies.27 MKM has
been successfully applied to various reforming processes for the
evaluation of catalyst performance based on their composi-
tion,28,29 structure,30 and size.31

High-throughput screening aided by machine learning (ML)
has also been applied in the rapid scanning of large material
databases to find materials that may perform well based on
their physical and chemical characteristics.32,33 Liu et al.34

developed an ML model to predict the adsorption energies of
C and O atoms on bimetallic surfaces. With the help of a
microkinetic model of the SMR reaction, they used the
predicted adsorption energies to scan through over 5000
materials and identified 48 promising candidates with high
SMR activity. A similar approach was adopted by Saxena et
al.35 where the C and O adsorption energies on Cu-based
bimetallic surfaces were predicted by ML and used in an MKM
for ethanol decomposition. Liu et al.36 used ML-predicted C
and O adsorption energies and the MKM for methanol
synthesis, methanation, and SMR to scan over 1300 alloys in
search of highly active catalysts. All of these studies focused on
only the activity of the catalysts and the energetics of carbon-
and oxygen-containing species. However, as mentioned
previously, the stability of the materials is also an important
aspect to consider, in particular their resistance to sulfur. It is
therefore of interest to employ this integrated “ML + MKM”
method for the rapid screening of sulfur-resistant catalysts.
In this study, various ML algorithms were used to predict

the adsorption energies of C, O, H, and S atoms on
monometallic and bimetallic surfaces, using readily available
physical and chemical properties as input features and density
functional theory-calculated adsorption energies as the target
values. A microkinetic model of the SMR reaction was
developed, together with the ML-predicted energies. These
were used for the scanning of over 500 bimetallic alloys. To the
best of the authors’ knowledge, this is the first-ever attempt at
the systematic high throughput screening of sulfur-resistant
SMR catalysts.

2. METHODS
2.1. Density Functional Theory. All DFT-based calcu-

lations in this work were carried out using the Quantum
Espresso software.37 The core electrons were described by
using the Kresse-Joubert Projector Augmented Wave (PAW)
method. The exchange correlations were described using the
generalized gradient approximation with the Perdew−Burke−
Ernzerhof functional.38 The cutoff energies for the wave
function and charge were set to 25 and 250 Ry, respectively.
The convergence criteria for force and energy were set to be
0.025 eV/Å and 10−5 eV, respectively. All catalysts were
simulated by a four-layer p(2 × 2) slab model, with the top two
layers and the adsorbate relaxed and the bottom two layers
fixed. The k-point grid was set to be 3 × 3 × 1 for the sampling
of the Brillouin zone. A 10 Å vacuum was added to separate
the two neighboring layers in the z-direction. The adsorption
energy (Eads) is calculated as below:

= *E E E Eads ads slab ads slab (1)

where Eads*slab is the total energy of the slab with the adsorbate,
Eads is the total energy of the gas phase adsorbate, and Eslab is
the total energy of the clean slab.
Adsorption on the following close-packed surfaces was

considered: [111] for face-centered cubic (FCC) systems (e.g.,
Ni, Cu, Rh, all bimetallic systems, etc.), [110] for body-
centered cubic systems (e.g., Fe, Nb, Mo, etc.), and [0001] for
hexagonal close packing systems (e.g., Co, Zn, Ru, etc.). All
bimetallic alloys were considered to be FCC systems. For the
monometallic FCC surfaces, four adsorption sites were
considered, namely, top, bridge, FCC, and hexagonal close-
packed sites. For the bimetallic surfaces, eight high-symmetry
adsorption sites were considered. The precise locations of the
adsorption sites are illustrated in the Supporting Information.
In the case where multiple adsorption sites are available, the

site with the lowest adsorption energy was chosen, as it
indicates the most stable geometry.
All gas phase species were modeled by placing the molecule

in a cube with the lattice parameters of a = 20 Å, b = 20.5 Å, c
= 21 Å. The k-point grid was set to be 1 × 1 × 1 for all gas
phase calculations.

2.2. Machine Learning. 2.2.1. Database Construction.
The database used for the ML model training consists of DFT-
calculated adsorption energies of C, H, O, and S on 23
monometallic and 12 bimetallic surfaces (a total of 140 data
points). Each pure metal is represented by a set of 12 features,
including fundamental properties (e.g., group, atomic number,
covalent radius, etc.) and surface-related properties (e.g.,
surface free energy, work function, etc.). Each alloy (M1xM2y)
is represented by the features of its components (12 features of
M1 plus 12 features of M2) and the ratio of x:y to account for
the concentration of each component within the binary system.
For monometallic inputs, the ratio was considered as 1. The
adsorbates (C, H, O, and S) are represented by a set of nine
properties, including group, atomic number, first ionization
potential, etc. The complete input database, including
numerical values of the features and the adsorption energies,
can be found in the Supporting Information.

2.2.2. ML Algorithms. Different ML algorithms were used
for the prediction of C, H, O, and S adsorption energies
including linear regression (LR), ridge regression (RR), K-
nearest neighbors (KNN) regression, random forest regression
(RFR), extra trees regression (ETR), gradient boosting
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regression (GBR), support vector regression (SVR), light
gradient boosting machine (light GBM), artificial neural
network (ANN), and Ensemble learning.
The ANN model was implemented using Keras with a

TensorFlow backend.39 All other algorithms were imple-
mented using the open-source ML library Scikit-Learn.40 The
data set was randomly split into training (80%) and testing
(20%) subsets. The accuracy of the models was evaluated
based on the mean-squared error (MSE), mean absolute error
(MAE), and coefficient of determination (R2). The evaluation
metrics were calculated using the following equations:

=
=n
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where n is the number of samples, yi the DFT-calculated value
of sample i, yi the predicted value of sample i, and the y̅ the
average of the DFT-calculated values.
Tuning of the hyperparameters was conducted using the

five-fold cross-validation (CV) method via GridSearchCV. The
range of hyperparameters tested for each model during the
tuning process is summarized in Table 1. Feature importance
study was carried out using recursive feature elimination. The
features were ranked based on their importance, and the ones
that did not contribute significantly to the model performance
were eliminated from the model.
2.3. Microkinetic Modeling. The MKM was implemented

with the descriptor-based analysis tool CatMAP,41 which
provides a flexible and automated framework for constructing
descriptor-based microkinetic analyses, and the production rate
of a defined system is calculated as the turnover frequency
(TOF). The model of the SMR reaction was developed based
on seven pure transition metals that have been widely used as
catalysts or catalyst promoters for the SMR reaction: Rh, Ni,
Cu, Fe, Pd, Pt, and Au. DFT-calculated energies were used as
the model input together with energetics calculated and
estimated using the unity bond index-quadratic exponential
potential (UBI-QEP) method and the Bro̷nsted−Evans−
Polanyi (BEP) relationship. These methods have been widely
used in the field of surface adsorption and are capable of
yielding accurate results without the need for time-consuming
first-principle-based calculations.42−44 Detailed information on
the input data is available in the Supporting Information. A
total of 12 elementary steps were considered in the MKM,

including CH4 and H2O dehydrogenation, CO formation
through multiple routes (COH* and HCO* dehydrogenation
and CO* desorption), and interaction between various
intermediate species. A full list of the elementary reaction
steps can be found in Supporting Information. It should be
noted that although the actual reaction mechanism of SMR is
more complicated with other intermediate species involved,
the simplified mechanism used in this work is accurate enough
to describe the overall trend of the reaction without overly high
computational demand.29 The reaction conditions were set to
be 1073 K and 1 bar, with a H2O:CH4 ratio of 3, which are the
typical conditions used for the SMR process. The Shomate
equation and frozen adsorption were used to model the gas-
phase species and adsorbates, respectively. The Shomate
parameters for the gases were obtained from the NIST Web
site.45

To conclude the methodology used in this work, a combined
“ML + DFT + MKM” approach was employed, including the
following steps:

1. DFT calculations of C, O, H, and S adsorption energies
were carried out for 35 metallic surfaces.

2. Part of the DFT-calculated energies were used for the
construction of the microkinetic model.

3. All DFT-calculated energies were used as the input data
set for the ML models.

4. The best-performing ML model was used to predict the
C, O, H, and S adsorption energies on over 500
bimetallic surfaces.

5. The 500+ bimetallic materials were screened based on
results from the microkinetic model.

A schematic diagram of the methodological approach
employed is provided in Figure 1.

Table 1. Range of Hyperparameters Tested for ML Models

ML algorithm hyperparameters

RR alpha = [0.5, 0.75, 1, 1.25, 1.5]
KNN N neighbors = [1, 3, 5, 7, 9]; weights = [uniform, distance]
RFR max depth = [25, 50, 75, 100]; N estimators = [500, 1000, 1500, 2000]
ETR max depth = [25, 50, 75, 100]; N estimators = [500, 1000, 1500, 2000]
GBR max depth = [25, 50, 75, 100]; N estimators = [500, 1000, 1500, 2000]; learning rate = [0.01, 0.03, 0.05, 0.07]
SVR kernel = [“linear”, “rbf”]; C = [0.1, 1, 10]
light GBM max depth = [25, 50, 75, 100]; N estimators = [500, 1000, 1500, 2000]; learning rate = [0.01, 0.03, 0.05, 0.07]
ANN number of layers = [2, 3, 4, 5]; dropout rate = [0.1, 0.2, 0.3, 0.4, 0.5]; learning rate = [0.01, 0.001, 0.005]; epochs = [100, 200, 300, 400, 500]

Figure 1. Schematic diagram of the “ML + DFT + MKM” approach.
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3. RESULTS AND DISCUSSION
3.1. ML Models. 3.1.1. Hyperparameter Tuning. Hyper-

parameter tuning is an essential step in the ML model
development process; it ensures that the model developed is
complex enough to capture the characteristics of the input
features but at the same time not too complex to cause
overfitting. The types of hyperparameters tuned and the range
of values before and after the tuning process are summarized in
Tables 1 and 2, respectively.

3.1.2. Feature Selection and Engineering. Feature
selection is an important step in the development of the ML
model development process. The features selected should be
unique in representing the geometric and electronic structures
of a specific adsorption site. Commonly used features can be
divided into three main categories:

1. Elemental properties include atomic number, mass and
radius; ionic potential; electronegativity, etc. These
properties only depend on the host−metal atom and
can be easily obtained from literature or the periodic
table.

2. Electronic properties include d-band features such as
center, filling, width, skewness, kurtosis, etc.46−48 These
features are more complex than basic elemental

properties and usually require single-point DFT
calculations to obtain.

3. Geometric properties include local electronegativity and
effective coordination number.49,50 These features are
usually used when the adsorption energies on different
adsorption sites are compared. This is not the case for
this study, as the most stable adsorption sites have been
preselected during the DFT calculation process.

In this work, only the elemental properties were considered
as input features, as they are readily available and have been
shown to produce sufficiently accurate results.51−54 As
mentioned in Section 2.2.1, 12 features for each metal, 9
features for each adsorbate, and the ratio between the two
metals were selected as the initial input features. This means
that 21 features were used to represent one atomic adsorption
energy on a monometallic surface and 34 features on a
bimetallic surface. However, as we were dealing with a
relatively small database (less than 200 data points in the
input database), a large number of input features may lead to
overfitting. It is therefore necessary to identify and eliminate
features with diminished importance that may contribute to
inaccuracies during the prediction process.
Feature importance was evaluated using the Ensemble

model with tuned hyperparameters, and the relative
importance of each feature is presented in Figure 2. The
Gini importance parameter was used to evaluate the
importance of each feature (eq 5):

i
k
jjjjjj

y
{
zzzzzz= × [ | ]

=
p t p i tGiniimportance ( ) 1 ( )

t T i

C

1

2

(5)

where t is the set of all nodes that use the given feature, p(t) is
the proportion of samples reaching the node t, and p(i|t) is the
proportion of class samples i at node t.
The result shows that the properties of the adsorbate

contribute most significantly to the prediction, with four out of
the top five features being the enthalpy of fusion, density, first
ionization potential, and covalent radius of the adsorbate.
Properties of the metals, including enthalpy of fusion, surface
free energy, atomic mass, atomic number, and first ionization
potential, were also found to have relatively high importance.

Table 2. Optimized Hyperparameters for Each ML
Algorithm

ML
algorithm hyperparameters

RR alpha = [1.25]
KNN N neighbors = [5]; weights = [distance]
RFR max depth = [75]; N estimators = [2000]
ETR max depth = [100]; N estimators = [1500]
GBR max depth = [100]; N estimators = [1000]; learning rate =

[0.07]
SVR kernel = [“rbf”]; C = [10]
light
GBM

max depth = [25]; N estimators = [500]; learning rate = [0.01]

ANN number of layers = [3]; dropout rate = [0.2]; learning rate =
[0.001]; epochs = [500]

Figure 2. Relative feature importance for the Ensemble model.
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This is consistent with the trend observed by Nayak et al.,55

where the most important features are first ionization potential
and enthalpy of fusion for the absorbate, and group, surface
free energy, and enthalpy of fusion for the surface. In order to
enhance the overall accuracy of the ML prediction, only the
top 12 features were included for the models. This ensures that
the predictions are made based on the most informative and
pertinent features and therefore deliver the most precise
predictions of the adsorption energies.
The linear relationship between each of the 11 features (top

12 most important features, excluding “ratio”) and the target
value, adsorption energy, was quantified by the Pearson
correlation coefficient. The result is presented in the form of a
heatmap in Figure 3. The first ionization potential of the
adsorbate exhibits the highest positive correlation with a
correlation coefficient of 0.42, which again confirms the
significance of the adsorbate’s electronic properties. This is
consistent with the previous observations that higher charge
transfer leads to lower adsorption energy.56 A higher ionization
potential represents a lower probability for charge transfer and
therefore a higher adsorption energy. The density of the
adsorbate exhibits the most substantial negative correlation
with a correlation coefficient of −0.5. This is in line with the
general trend that heavier atoms tend to have lower adsorption
energies. For instance, the adsorption energies of carbon on
transition metal surfaces are usually in the range of −5.0 to
−10.0 eV, whereas the adsorption energies of hydrogen are in
general between −2.0 and −5.0 eV.
3.1.3. Model Performance Evaluation. Following the

model optimization process, all ML models were reprog-
rammed by using the top 12 features and the tuned
hyperparameters. The evaluation metrics obtained for each
model, including train and test MSE, MAE, and R2, are
summarized in Table 3. The regression plots of the three best-
performing models (Ensemble, ANN, and SVR) and the low-

performing KNN model are presented in Figure 4. The
ensemble model exhibited the best overall performance with
the highest test R2 of 0.74, a test MSE of 1.45, and a test MAE
of 0.76. This was followed by the ANN and SVR models with
test R2 values of 0.71 and 0.70, respectively. On the other hand,
the KNN model produced the least satisfying results, with the
lowest test R2 of 0.48 and the highest MSE of 3.42. It can be
observed from the regression plot (Figure 4d) that the KNN
model presented a random pattern of predictions with
dispersed training and testing results. This is possibly due to
the localized focus of the KNN model, which does not suit the
complexity of the data set.
The ensemble, ANN, and SVR models demonstrated their

ability to capture the underlying patterns of the data set
effectively. The models are able to produce accurate
predictions for adsorption energies in the range of −4.0 to
−8.0 eV. However, the models faced challenges when
encountering extreme values (i.e., adsorption energies higher
than −4.0 eV and lower than −8.0 eV), leading to an increase
in the MSE values. This is not uncommon, as the performance

Figure 3. Correlation heatmap for the adsorption energy with the top 11 features.

Table 3. Performance Evaluation Metrics of the ML Models

model

train test

MSE MAE R2 MSE MAE R2

Ensemble 0.37 0.38 0.92 1.45 0.76 0.74
ANN 0.42 0.43 0.91 1.93 0.79 0.71
SVR 0.44 0.40 0.91 1.19 0.80 0.70
RFR 0.32 0.39 0.93 1.96 0.81 0.69
light GBM 0.92 0.68 0.78 2.68 1.23 0.59
ETR 0.93 0.72 0.76 2.72 1.27 0.58
GBR 0.98 0.72 0.75 2.78 1.31 0.57
RR 1.79 0.92 0.63 2.90 1.34 0.56
LR 1.44 0.79 0.70 1.74 1.41 0.52
KNN 1.84 0.93 0.61 3.42 1.56 0.48
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of ML models is sometimes limited when the values deviate
significantly from the data set’s central tendencies. As the
adsorption energies of the C, H, O, and S atoms on most
transition metal surfaces usually reside in the range −4.0 to
−8.0 eV, it is physically unlikely to further increase the amount
of input data outside this range.
Another possible reason for the models’ inability to achieve a

significantly higher R2 value (R2 > 0.9) is the high
dimensionality of the relatively small data set and potential
feature redundancy, which usually leads to overfitting.57 In this
work, more than 20 features were initially used, and the top 12
features were retained after the feature importance study.
Although no direct linear relationship exists between each of
the 12 features, some may exhibit a correlation. For example,
elements with stronger intermolecular forces (higher enthalpy
of fusion) may tend to have higher densities due to tighter
packing in the solid state.58 Redundant features increase the
complexity of the model without adding significant new
information. Further optimization of the input features
selection process can be carried out using techniques such as
genetic algorithms59 to determine both the optimal features
and optimal number of features.

It should also be noted that the accuracy of ML models
relies heavily on the size of the input database. The
performance of the models developed in this work can be
further optimized by conducting additional DFT calculations
to increase the number of input data points. This is further
addressed in Section 3.3, where the limitations of the models
are analyzed and suggestions for future improvement are given.

3.1.4. Predicted Adsorption Energies. The best-performing
ML model was then applied to a list of bimetallic alloys, of
which the adsorption energies were not all readily available. A
total of 24 metal elements were considered and permuted with
one another, which generated a set of over 500 (24 × 23 =
552) bimetallic alloys. As mentioned in Section 2.2, one of the
input features used for the ML model is the ratio of the two
individual components within the binary system. By changing
the numerical value of the “ratio” feature, the ML model is able
to deal with a given binary alloy with any M1 or M2
concentration. In this work, we focused on bimetallic materials
with a M1:M2 ratio of 3 (i.e., 75 mol % of M1 and 25 mol % of
M2).
The predicted C, O, and S adsorption energies are visualized

in a scatter plot (Figure 5). The complete list of predicted

Figure 4. Regression plots for the three best-performing models: (a) ER, (b) ANN, (c) SVR, and (d) the low-performing KNN model.
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energies is available in the Supporting Information. The X and
Y axes of the plot represent the C and O adsorption energies,
respectively. The S adsorption energies are displayed using
color coding, where a darker blue color represents a lower
value (therefore more prone to S adsorption) and a lighter
green represents a higher value (less prone to S adsorption).
Based on previous research on the interaction between sulfur
and transition metal-based catalysts,60,61 sulfur poisoning takes
place through two main routes: the reversible adsorption of
sulfur-containing species (at lower concentrations) and the
irreversible chemisorption of sulfur due to the formation of
metal sulfides. Therefore, having a higher value of S adsorption
energy is in general favorable for the catalyst, as it allows for a
more difficult adsorption and easier desorption of sulfur
species. A trend that can be observed from the scatter plot is
that materials with higher S adsorption energies tend to have
higher C and O adsorption energies, as well. However, unlike
the S adsorption energy, having higher C and O adsorption
energies is not necessarily beneficial for the SMR reaction to
take place. A material’s catalytic activity for the SMR reaction
is highly dependent on the C and O adsorption energies.28,29,34

Based on the Sabatier principle,62 the binding abilities of the
catalyst should be neither too strong for the products to
desorb, nor too weak for the reactants to adsorb. It is therefore
crucial to identify the materials that have high sulfur resistance
and, at the same time, appropriate C and O adsorption abilities
for good catalytic activity.
3.2. MKM and Catalyst Screening. In order to identify

the optimal C and O adsorption energies, an MKM of the
SMR reaction was developed, and the results obtained are
presented in the form of a “volcano plot” (Figure 6). The X
and Y axes indicate the C and O adsorption energies,
respectively. The color of the contours indicates the TOF of
the production of hydrogen, which is directly linked to the
catalytic activity of the catalysts. The C and O adsorption
energies of the seven pure metals are in the range of [−8.9,
−5.5] and [−6.2, −2.9] eV. The activity trend of the materials
is in the order of Rh > Ni > Pd ≈ Pt > Fe > Au, which is

consistent with the general trend observed for these
metals.63,64 The boxed area in Figure 6 represents the region
for the highest catalytic activity; the optimal C and O
adsorption energies were therefore identified to be C [−8.5,
−7.0] eV and O [−6.5, −5.0] eV. The database containing
ML-predicted adsorption energies of the bimetallic alloys was
then scanned through, and the materials that were located in
the optimal range were considered to be highly active catalysts
for SMR.
A total of 49 bimetallic alloys were identified as having

optimal C and O adsorption energies for the SMR reaction
(Table S4). These candidates were then sorted based on their
S adsorption energies, and the top 10 materials with the
highest S adsorption energy were considered the most
promising sulfur-resistant SMR catalysts. Among the 10
catalysts, we have identified one Tc-based alloy (Tc3Ni1),
three noble metal-based alloys (Rh3Co1, Rh3Fe1, and Ru3Cu1),
one Ni-based alloy (Ni3Cu1), and five Ge-based alloys

Figure 5. Scatter plot of C, O, and S adsorption energies of 500+ bimetallic catalysts. (Smaller circles with darker blue color represent lower S
adsorption energies, and bigger circles with light yellow color represent higher S adsorption energies.)

Figure 6. Volcano plot of the SMR model (boxed area: highest
catalytic activity).
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(Ge3Cu1, Ge3Ni1, Ge3Co1, Ge3Pd1, and Ge3Fe1). Due to the
carcinogenicity and radioactivity of Pd and Tc, Ge3Pd1 and
Tc3Ni1 are not considered as suitable candidates. Rh- and Ru-
based materials have been proven to have excellent catalytic
activity and coke resistance for SMR.12−14 The long-term
stability of noble metal-based catalysts has also been
investigated. A series of supported noble metal-based catalysts
(including Ru and Rh) were tested with daily start-up and
shut-down cycles under SMR conditions12,65,66 and the
catalysts remained stable without suffering from deactivation
due to sintering or metal oxidation. However, not as many
studies have been carried out to investigate the sulfur
resistance of these noble metal-based materials. A CeO2−
Al2O3-supported Rh−Ni catalyst was reported to maintain a
high conversion of 95% for 72 h during the reforming process
of a jet fuel containing 22 ppm sulfur.67,68 This was attributed
to the migration of S in RhSx species to Ni in the close vicinity
of Rh, due to the sulfur spillover effect. Ni−Cu-based
bimetallic catalysts have been tested for various reforming
processes69−71 and have been proven to achieve enhanced
activity compared to their individual Ni and Cu counterparts.
The stability of bimetallic Ni−Cu catalysts was evaluated in
terms of their carbon resistance and long-term stability.
Khzouz et al.69,72 carried out a 20-h SMR test with bimetallic
Ni−Cu/Al2O3 catalysts, and no significant decrease in
hydrogen yield was observed. This was attributed to the
stabilizing effect from NiCu alloy formation, where the large Ni
particles prone to sintering and carbon deposition were diluted
by the Cu atoms. However, no experimental evaluation of their
sulfur resistance is currently available. Compared to transition
metal-based catalysts, the use of Ge-based materials as catalysts
is less common, and their performance under SMR conditions
is less well understood. Ge-based bimetallic catalysts have been
tested for hydrogen production from ammonia borane73 and
hydrogenation of acetylene74 and have shown enhanced
activity and selectivity. Although no experimental validation
is available, the sulfur-resistant ability of germanium may be
attributed to its electronic structure. The electronic structure
of sulfur is very similar to tetra-valent metals, including
germanium, which has spare p-electrons in its outer shell next
to a stable s-orbital. The interaction between the spare 4p
electrons from sulfur and the metal atoms leads to the
formation of metal sulfides.75 It is therefore possible that the p-
electrons from Ge act as a “placeholder” on the bimetallic
surface and block the route for potential bond formation
between sulfur and the other metallic elements.
3.3. Limitations and Future Outlook. In this section, we

aim to provide an analysis of the proposed “ML + MKM”
screening method and suggestions for further improvement.
First of all, it is crucial to acknowledge the limitations of using
a relatively small database in the context of ML. The quantity
and quality of the input data have always been one of the
greatest challenges when dealing with adsorption energy
prediction, particularly due to the following reasons:

1. Lack of data for a specific atom/molecule: C and O are
two of the most studied atoms in the field of
heterogeneous catalysis and information on their
adsorption abilities is readily available from commonly
used databases (e.g., Catalysis Hub,76 CatApp,77 etc.).
However, data on sulfur adsorption energy are less
accessible, and DFT-based calculations are therefore
usually inevitable.

2. Lack of adsorption data on uncommon surfaces: Data
available from the previously mentioned databases is
usually focused on group VIII−XI metal elements only.
DFT calculations are required to obtain information on
metalloid surfaces or other uncommon transition/post-
transition metal surfaces.

3. Heavy computational burden: First-principle-based DFT
calculations demand very high computational capacity
and can be time-consuming. For instance, the computa-
tional time needed for a single adsorption energy
calculation is approximately 100 min on eight high-
performance CPUs.35

By an increase in the size of the input database, it is possible
to further improve the accuracy of the ML predictions. It is
also recommended that more bimetallic alloys are added to the
training base so that the models can better capture the full
complexity and variability of the adsorption process on
bimetallic surfaces. The MKM can also be improved by
refining the reaction mechanism described in the model. For
instance, the water−gas shift reaction (CO + H2O ↔ CO2 +
H2) can be added as it takes place simultaneously with the
SMR reaction under realistic experimental conditions.
Reactions involving sulfur-containing species can also be
added to the MKM. Taking H2S as an example, the interaction
between the sulfur-containing species, the catalyst surface, and
other reaction intermediates can be summarized by the
following reaction steps:78

+ * * + *H S 2 HS H2

* + * * + *HS H S

* + * * + *H S O HS OH2

* + * * + *HS O SO H

* + * * + *HS OH S H O2

* + * * + *HS CO S HCO

* + * * + *SO CH SH CO

However, it should be noted that by increasing the number
of reactions and intermediate species, more DFT calculations
are consequently needed. It would also be of interest to utilize
ML for other energy-related predictions. In this work, we used
sulfur adsorption energy as a simple indicator of the material’s
sulfur-resistant ability. However, other parameters such as the
activation barrier of the H2S decomposition can also serve as
accurate indicators. Similarly, the use of ML to predict these
activation barriers instead of first-principles-based calculations
will significantly reduce the resources and time required.
On the other hand, although the 500+ predicted H

adsorption energies were not directly employed in the material
scanning process, they provide valuable information on the
adsorptive ability of bimetallic alloys and can potentially
facilitate other studies on H-containing species. As mentioned
in the beginning of this section, most data sets that are
currently available mainly focus on C- and O-containing
species, and there is a lack of relevant information on the
adsorptive ability of binary alloys toward H-containing species.
The DFT-calculated and ML-predicted values obtained from
this work can therefore be beneficial for future research in this
field.
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4. CONCLUSIONS
In this work, a combined “Machine Learning + Density
Functional Theory + Microkinetic Modelling” method was
employed for the rapid scanning of bimetallic sulfur-resistant
catalysts. Different ML algorithms were used to predict the
atomic adsorption energy of C, H, O, and S using basic
physical and chemical properties of the metallic elements and
the adsorbates. Among all the ML models studied, the
Ensemble learning, ANN, and SVR models achieved the best
results (MAE < 1 and R2 ≥ 0.7). Results from the feature
importance study demonstrated that elemental properties of
the adsorbates contribute most significantly to the prediction,
with the enthalpy of fusion, density, first ionization potential,
and covalent radius of the adsorbate being the most important
features. Over 500 bimetallic alloys were considered as
candidates, obtained by the permutation between 24 elements
(including transition/post-transition metals and metalloids).
The adsorption energies on these bimetallic surfaces were then
predicted by using the best-performing Ensemble learning
model.
On the other hand, a microkinetic model was developed

based on a simplified reaction mechanism of the SMR reaction,
using both DFT-calculated energies and energetics obtained
using the UBI-QEP method and BEP relationships. It is
observed that having a carbon adsorption energy between −8.5
and −7.0 eV and an oxygen adsorption energy between −6.5
and −5.0 eV results in the highest catalytic activity for the
SMR reaction. Using this range of optimal adsorption energies,
the 500+ candidates were scanned, and 49 were identified to
be highly active catalysts. After excluding carcinogenic and
radioactive elements, the following materials were concluded
to be active SMR catalysts with the best sulfur-resistant ability:
Ge3Cu1, Ge3Ni1, Ge3Co1, Ge3Fe1, Rh3Co1, Rh3Fe1, Ru3Cu1,
and Ni3Cu1.
In conclusion, this paper presents the first attempt to

systematically scan bimetallic catalysts with high sulfur-
resistant abilities. Although further improvements are possible,
the ML models provided satisfying results, and the MKM
greatly facilitated the scanning process. The combined “ML +
DFT + MKM” method described in this work is also applicable
to other chemical or pharmaceutical processes, where the rapid
scanning of large material databases is required. The prediction
of the sulfur-resistant materials also paves the way for future
experimental studies of novel bimetallic catalysts under sulfur-
containing SMR conditions.

■ ASSOCIATED CONTENT
Data Availability Statement
All data underlying the results are available as part of the article
and in the Supporting Information file.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.4c00119.

Input data set for the ML models and the MKM,
predicted energies from the ML models (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

Siqi Wang − Energy and Sustainability Theme, Cranfield
University, Bedfordshire MK43 0AL, U.K.; orcid.org/
0000-0002-7050-1041; Email: Siqi.Wang2019@
cranfield.ac.uk

Peter T. Clough − Energy and Sustainability Theme,
Cranfield University, Bedfordshire MK43 0AL, U.K.;
orcid.org/0000-0003-1820-0484; Email: P.T.Clough@

cranfield.ac.uk

Author
Satya Saravan Kumar Kasarapu − Energy and Sustainability
Theme, Cranfield University, Bedfordshire MK43 0AL, U.K.

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.4c00119

Author Contributions
S.W.: Conceptualization, investigation, and writing�original
draft. S.S.K.K.: Investigation and writing�original draft.
P.T.C.: Conceptualization, writing�review and editing, and
supervision.
Funding
This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors acknowledge the assistance received from Ziqi
Shen for processing the figures presented in this work.

■ ABBREVIATIONS
ANN artificial neural network
CV cross-validation
DFT density functional theory
ETR extra trees regression
FCC face-centered cubic
GBR gradient boosting regression
HCP hexagonal close-packed
KNN K-nearest neighbors regression
Light GBM light gradient boosting machine
MAE mean absolute error
MKM microkinetic model
ML machine learning
Mol % molar percentage
MSE mean squared error
PAW projector augmented wave
RFE recursive feature elimination
RFR random forest regression
RR ridge regression
SMR steam methane reforming
SVR support vector regression
TOF turnover frequency

■ REFERENCES
(1) De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-based bimetallic
heterogeneous catalysts for energy and environmental applications.
Energy Environ. Sci. 2016, 9, 3314−3347.
(2) Meloni, E.; Martino, M.; Palma, V. A Short Review on Ni Based
Catalysts and Related Engineering Issues for Methane Steam
Reforming. Catalysts 2020, 10, 352.
(3) Wang, S.; Nabavi, S. A.; Clough, P. T. A review on bi/
polymetallic catalysts for steam methane reforming. Int. J. Hydrogen
Energy 2023, 48, 15879−15893.
(4) Jeong, J. H.; et al. Ru-doped Ni catalysts effective for the steam
reforming of methane without the pre-reduction treatment with H2.
Appl. Catal. A Gen 2006, 302, 151−156.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c00119
ACS Omega 2024, 9, 12184−12194

12192

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c00119/suppl_file/ao4c00119_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00119?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c00119/suppl_file/ao4c00119_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Siqi+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7050-1041
https://orcid.org/0000-0002-7050-1041
mailto:Siqi.Wang2019@cranfield.ac.uk
mailto:Siqi.Wang2019@cranfield.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peter+T.+Clough"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1820-0484
https://orcid.org/0000-0003-1820-0484
mailto:P.T.Clough@cranfield.ac.uk
mailto:P.T.Clough@cranfield.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Satya+Saravan+Kumar+Kasarapu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00119?ref=pdf
https://doi.org/10.1039/C6EE02002J
https://doi.org/10.1039/C6EE02002J
https://doi.org/10.3390/catal10030352
https://doi.org/10.3390/catal10030352
https://doi.org/10.3390/catal10030352
https://doi.org/10.1016/j.ijhydene.2023.01.034
https://doi.org/10.1016/j.ijhydene.2023.01.034
https://doi.org/10.1016/j.apcata.2005.12.007
https://doi.org/10.1016/j.apcata.2005.12.007
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00119?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(5) Ligthart, D. A. J. M.; Pieterse, J. A. Z.; Hensen, E. J. M. The role
of promoters for Ni catalysts in low temperature (membrane) steam
methane reforming. Appl. Catal. A Gen 2011, 405, 108−119.
(6) Xu, Y.; et al. Effect of Ag on the control of Ni-catalyzed carbon
formation: A density functional theory study. Catal. Today 2012, 186,
54−62.
(7) Wang, H.; et al. Steam methane reforming on a Ni-based
bimetallic catalyst: Density functional theory and experimental studies
of the catalytic consequence of surface alloying of Ni with Ag. Catal.
Sci. Technol. 2017, 7, 1713−1725.
(8) Hu, Z.; Miao, Z.; Wu, J.; Jiang, E. Nickel-iron modified natural
ore oxygen carriers for chemical looping steam methane reforming to
produce hydrogen. Int. J. Hydrogen Energy 2021, 46, 39700−39718.
(9) Djaidja, A.; Messaoudi, H.; Kaddeche, D.; Barama, A. Study of
Ni−M/MgO and Ni−M−Mg/Al (M = Fe or Cu) catalysts in the
CH4−CO2 and CH4−H2O reforming. Int. J. Hydrogen Energy 2015,
40, 4989−4995.
(10) Harshini, D.; et al. Suppression of carbon formation in steam
reforming of methane by addition of Co into Ni/ZrO2 catalysts.
Korean Journal of Chemical Engineering 2010, 27, 480−486.
(11) Miyata, T.; et al. Promoting effect of Rh, Pd and Pt noble
metals to the Ni/Mg(Al)O catalysts for the DSS-like operation in
CH4 steam reforming. Appl. Catal., A 2006, 310, 97−104.
(12) Miyata, T.; et al. Promoting effect of Ru on Ni/Mg(Al)O
catalysts in DSS-like operation of CH4 steam reforming. Catal.
Commun. 2007, 8, 447−451.
(13) Li, D.; Nakagawa, Y.; Tomishige, K. Methane reforming to
synthesis gas over Ni catalysts modified with noble metals. Appl.
Catal. A Gen 2011, 408, 1−24.
(14) Li, D.; Shishido, T.; Oumi, Y.; Sano, T.; Takehira, K. Self-
activation and self-regenerative activity of trace Rh-doped Ni/Mg(Al)
O catalysts in steam reforming of methane. Appl. Catal. A Gen 2007,
332, 98−109.
(15) Morales-Cano, F.; Lundegaard, L. F.; Tiruvalam, R. R.; Falsig,
H.; Skjo̷th-Rasmussen, M. S. Improving the sintering resistance of Ni/
Al2O3 steam-reforming catalysts by promotion with noble metals.
Appl. Catal., A 2015, 498, 117−125.
(16) Liu, Z.; et al. Bi-reforming of methane with steam and
CO2under pressurized conditions on a durable Ir-Ni/MgAl2O4cata-
lyst. Chem. Commun. 2020, 56, 13536−13539.
(17) Boudjeloud, M.; Boulahouache, A.; Rabia, C.; Salhi, N. La-
doped supported Ni catalysts for steam reforming of methane. Int. J.
Hydrogen Energy 2019, 44, 9906−9913.
(18) Cui, H.; Turn, S. Q.; Reese, M. A. Removal of sulfur
compounds from utility pipelined synthetic natural gas using modified
activated carbons. Catal. Today 2009, 139, 274−279.
(19) Bartholomew, C. H.; Agrawal, P. K.; Katzer, J. R. Sulfur
Poisoning of Metals. Adv. Catal. 1982, 31, 135−242.
(20) Bartholomew, C. H. Mechanisms of catalyst deactivation. Appl.
Catal. A Gen 2001, 212, 17−60.
(21) Tsodikov, M. V.; et al. Core-shell bifunctional catalyst for steam
methane reforming resistant to H2S: Activity and structure evolution.
Int. J. Hydrogen Energy 2015, 40, 2963−2970.
(22) Wang, L.; Murata, K.; Inaba, M. Development of novel highly
active and sulphur-tolerant catalysts for steam reforming of liquid
hydrocarbons to produce hydrogen. Appl. Catal. A Gen 2004, 257,
43−47.
(23) Gaillard, M.; Virginie, M.; Khodakov, A. Y. New molybdenum-
based catalysts for dry reforming of methane in presence of sulfur: A
promising way for biogas valorization. Catal. Today 2017, 289, 143−
150.
(24) Saha, B.; Khan, A.; Ibrahim, H.; Idem, R. Evaluating the
performance of non-precious metal based catalysts for sulfur-tolerance
during the dry reforming of biogas. Fuel 2014, 120, 202−217.
(25) Capa, A.; et al. Effect of H2S on biogas sorption enhanced
steam reforming using a Pd/Ni-Co catalyst and dolomite as a sorbent.
Chemical Engineering Journal 2023, 476, No. 146803.
(26) Motagamwala, A. H.; Dumesic, J. A. Microkinetic Modeling: A
Tool for Rational Catalyst Design. Chem. Rev. 2021, 121, 1049−1076.

(27) Tian, H.; Rangarajan, S. Microkinetic modeling for
heterogeneous catalysis: methods and illustrative applications. In
Catalysis; Royal Society of Chemistry, 2022; pp 56−83.
(28) Wang, Y.; et al. Towards rational catalyst design: Boosting the
rapid prediction of transition-metal activity by improved scaling
relations. Phys. Chem. Chem. Phys. 2019, 21, 19269−19280.
(29) Xu, Y.; et al. In silico search for novel methane steam reforming
catalysts. New J. Phys. 2013, 15, No. 125021.
(30) Wu, H.; Yang, B. Structure sensitivity of ethanol steam
reforming over the Rh catalyst: Reaction kinetics and deactivation
mechanisms. Appl. Surf. Sci. 2023, 614, No. 156116.
(31) Zhou, M.; Le, T. N.-M.; Huynh, L. K.; Liu, B. Effects of
structure and size of Ni nanocatalysts on hydrogen selectivity via
water-gas-shift reaction�A first-principles-based kinetic study. Catal.
Today 2017, 280, 210−219.
(32) Chen, B. W. J.; Xu, L.; Mavrikakis, M. Computational Methods
in Heterogeneous Catalysis. Chem. Rev. 2021, 121, 1007−1048.
(33) Mou, T.; et al. Bridging the complexity gap in computational
heterogeneous catalysis with machine learning. Nat. Catal 2023, 6,
122−136.
(34) Liu, Z.; Tian, W.; Cui, Z.; Liu, B. A universal microkinetic-
machine learning bimetallic catalyst screening method for steam
methane reforming. Sep. Purif. Technol. 2023, 311, No. 123270.
(35) Saxena, S.; Khan, T. S.; Jalid, F.; Ramteke, M.; Haider, M. A. In
silico high throughput screening of bimetallic and single atom alloys
using machine learning and ab initio microkinetic modelling. J. Mater.
Chem. A Mater. 2020, 8, 107−123.
(36) Liu, X.; Cai, C.; Zhao, W.; Peng, H.-J.; Wang, T. Machine
Learning-Assisted Screening of Stepped Alloy Surfaces for C 1
Catalysis. ACS Catal. 2022, 12, 4252−4260.
(37) Giannozzi, P.; et al. QUANTUM ESPRESSO: a modular and
open-source software project for quantum simulations of materials. J.
Phys.: Condens. Matter 2009, 21, No. 395502.
(38) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
(39) Chollet, F. Keras 2015, https://github.com/keras-team/keras.
(40) Pedregosa, F.; et al. Scikit-learn: Machine Learning in Python. J.
Mach. Learn. Res. 2011, 12, 2825−2830.
(41) Medford, A. J.; et al. CatMAP: A Software Package for
Descriptor-Based Microkinetic Mapping of Catalytic Trends. Catal.
Lett. 2015, 145, 794−807.
(42) Shustorovich, E. The UBI-QEP method: A practical theoretical
approach to understanding chemistry on transition metal surfaces.
Surf. Sci. Rep 1998, 31, 1−119.
(43) Sellers, H. The generalized UBI-QEP method for modeling the
energetics of reactions on transition metal surfaces. Surf. Sci. 2003,
524, 29−39.
(44) Bligaard, T.; et al. The Bro̷nsted-Evans-Polanyi relation and the
volcano curve in heterogeneous catalysis. J. Catal. 2004, 224, 206−
217.
(45) Linstrom, P. J.; Mallard, W. G. NIST Chemistry WebBook; NIST
Standard Reference Database Number 69; National Institute of
Standards and Technology: Gaithersburg, MD, 2021.
(46) Xin, H.; Vojvodic, A.; Voss, J.; No̷rskov, J. K.; Abild-Pedersen,
F. Effects of d-band shape on the surface reactivity of transition-metal
alloys. Phys. Rev. B 2014, 89, No. 115114.
(47) Kitchin, J. R.; No̷rskov, J. K.; Barteau, M. A.; Chen, J. G. Role
of Strain and Ligand Effects in the Modification of the Electronic and
Chemical Properties of Bimetallic Surfaces. Phys. Rev. Lett. 2004, 93,
No. 156801.
(48) Hammer, B.; No̷rskov, J. K. Electronic factors determining the
reactivity of metal surfaces. Surf. Sci. 1995, 343, 211−220.
(49) Xin, H.; Holewinski, A.; Linic, S. Predictive Structure−
Reactivity Models for Rapid Screening of Pt-Based Multimetallic
Electrocatalysts for the Oxygen Reduction Reaction. ACS Catal. 2012,
2, 12−16.
(50) Li, Z.; Ma, X.; Xin, H. Feature engineering of machine-learning
chemisorption models for catalyst design. Catal. Today 2017, 280,
232−238.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c00119
ACS Omega 2024, 9, 12184−12194

12193

https://doi.org/10.1016/j.apcata.2011.07.035
https://doi.org/10.1016/j.apcata.2011.07.035
https://doi.org/10.1016/j.apcata.2011.07.035
https://doi.org/10.1016/j.cattod.2011.08.041
https://doi.org/10.1016/j.cattod.2011.08.041
https://doi.org/10.1039/C7CY00101K
https://doi.org/10.1039/C7CY00101K
https://doi.org/10.1039/C7CY00101K
https://doi.org/10.1016/j.ijhydene.2021.09.242
https://doi.org/10.1016/j.ijhydene.2021.09.242
https://doi.org/10.1016/j.ijhydene.2021.09.242
https://doi.org/10.1016/j.ijhydene.2014.12.106
https://doi.org/10.1016/j.ijhydene.2014.12.106
https://doi.org/10.1016/j.ijhydene.2014.12.106
https://doi.org/10.1007/s11814-010-0095-9
https://doi.org/10.1007/s11814-010-0095-9
https://doi.org/10.1016/j.apcata.2006.05.022
https://doi.org/10.1016/j.apcata.2006.05.022
https://doi.org/10.1016/j.apcata.2006.05.022
https://doi.org/10.1016/j.catcom.2006.07.018
https://doi.org/10.1016/j.catcom.2006.07.018
https://doi.org/10.1016/j.apcata.2011.09.018
https://doi.org/10.1016/j.apcata.2011.09.018
https://doi.org/10.1016/j.apcata.2007.08.008
https://doi.org/10.1016/j.apcata.2007.08.008
https://doi.org/10.1016/j.apcata.2007.08.008
https://doi.org/10.1016/j.apcata.2015.03.016
https://doi.org/10.1016/j.apcata.2015.03.016
https://doi.org/10.1039/D0CC05874B
https://doi.org/10.1039/D0CC05874B
https://doi.org/10.1039/D0CC05874B
https://doi.org/10.1016/j.ijhydene.2019.01.140
https://doi.org/10.1016/j.ijhydene.2019.01.140
https://doi.org/10.1016/j.cattod.2008.03.024
https://doi.org/10.1016/j.cattod.2008.03.024
https://doi.org/10.1016/j.cattod.2008.03.024
https://doi.org/10.1016/S0360-0564(08)60454-X
https://doi.org/10.1016/S0360-0564(08)60454-X
https://doi.org/10.1016/S0926-860X(00)00843-7
https://doi.org/10.1016/j.ijhydene.2015.01.016
https://doi.org/10.1016/j.ijhydene.2015.01.016
https://doi.org/10.1016/S0926-860X(03)00590-8
https://doi.org/10.1016/S0926-860X(03)00590-8
https://doi.org/10.1016/S0926-860X(03)00590-8
https://doi.org/10.1016/j.cattod.2016.10.005
https://doi.org/10.1016/j.cattod.2016.10.005
https://doi.org/10.1016/j.cattod.2016.10.005
https://doi.org/10.1016/j.fuel.2013.12.016
https://doi.org/10.1016/j.fuel.2013.12.016
https://doi.org/10.1016/j.fuel.2013.12.016
https://doi.org/10.1016/j.cej.2023.146803
https://doi.org/10.1016/j.cej.2023.146803
https://doi.org/10.1021/acs.chemrev.0c00394?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c00394?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C9CP04286E
https://doi.org/10.1039/C9CP04286E
https://doi.org/10.1039/C9CP04286E
https://doi.org/10.1088/1367-2630/15/12/125021
https://doi.org/10.1088/1367-2630/15/12/125021
https://doi.org/10.1016/j.apsusc.2022.156116
https://doi.org/10.1016/j.apsusc.2022.156116
https://doi.org/10.1016/j.apsusc.2022.156116
https://doi.org/10.1016/j.cattod.2016.07.018
https://doi.org/10.1016/j.cattod.2016.07.018
https://doi.org/10.1016/j.cattod.2016.07.018
https://doi.org/10.1021/acs.chemrev.0c01060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c01060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41929-023-00911-w
https://doi.org/10.1038/s41929-023-00911-w
https://doi.org/10.1016/j.seppur.2023.123270
https://doi.org/10.1016/j.seppur.2023.123270
https://doi.org/10.1016/j.seppur.2023.123270
https://doi.org/10.1039/C9TA07651D
https://doi.org/10.1039/C9TA07651D
https://doi.org/10.1039/C9TA07651D
https://doi.org/10.1021/acscatal.2c00648?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.2c00648?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.2c00648?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://github.com/keras-team/keras
https://doi.org/10.1007/s10562-015-1495-6
https://doi.org/10.1007/s10562-015-1495-6
https://doi.org/10.1016/S0167-5729(97)00016-2
https://doi.org/10.1016/S0167-5729(97)00016-2
https://doi.org/10.1016/S0039-6028(02)02542-6
https://doi.org/10.1016/S0039-6028(02)02542-6
https://doi.org/10.1016/j.jcat.2004.02.034
https://doi.org/10.1016/j.jcat.2004.02.034
https://doi.org/10.1103/PhysRevB.89.115114
https://doi.org/10.1103/PhysRevB.89.115114
https://doi.org/10.1103/PhysRevLett.93.156801
https://doi.org/10.1103/PhysRevLett.93.156801
https://doi.org/10.1103/PhysRevLett.93.156801
https://doi.org/10.1016/0039-6028(96)80007-0
https://doi.org/10.1016/0039-6028(96)80007-0
https://doi.org/10.1021/cs200462f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cs200462f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cs200462f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cattod.2016.04.013
https://doi.org/10.1016/j.cattod.2016.04.013
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00119?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(51) Toyao, T.; et al. Toward Effective Utilization of Methane:
Machine Learning Prediction of Adsorption Energies on Metal Alloys.
J. Phys. Chem. C 2018, 122, 8315−8326.
(52) Zhang, Y.; Xu, X. Predictions of adsorption energies of
methane-related species on Cu-based alloys through machine
learning. Machine Learning with Applications 2021, 3, No. 100010.
(53) Ras, E.-J.; Louwerse, M. J.; Mittelmeijer-Hazeleger, M. C.;
Rothenberg, G. Predicting adsorption on metals: simple yet effective
descriptors for surface catalysis. Phys. Chem. Chem. Phys. 2013, 15,
4436.
(54) Liu, Z.-H.; Shi, T.-T.; Chen, Z.-X. Machine learning prediction
of monatomic adsorption energies with non-first-principles calculated
quantities. Chem. Phys. Lett. 2020, 755, No. 137772.
(55) Nayak, S.; Bhattacharjee, S.; Choi, J. H.; Lee, S. C. Machine
Learning and Scaling Laws for Prediction of Accurate Adsorption
Energy. J. Phys. Chem. A 2020, 124, 247−254.
(56) Cai, Y.; Zhang, G.; Zhang, Y.-W. Charge Transfer and
Functionalization of Monolayer InSe by Physisorption of Small
Molecules for Gas Sensing. J. Phys. Chem. C 2017, 121, 10182−
10193.
(57) Chowdhury, A. J.; et al. Prediction of Adsorption Energies for
Chemical Species on Metal Catalyst Surfaces Using Machine
Learning. J. Phys. Chem. C 2018, 122, 28142−28150.
(58) Westwell, M. S.; Searle, M. S.; Wales, D. J.; Williams, D. H.
Empirical Correlations between Thermodynamic Properties and
Intermolecular Forces. J. Am. Chem. Soc. 1995, 117, 5013−5015.
(59) Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and
feature extraction techniques in machine learning. In 2014 Science and
Information Conference; IEEE, 2014; pp 372−378.
(60) Nirmal Kumar, S.; Appari, S.; Kuncharam, B. V. R. Techniques
for Overcoming Sulfur Poisoning of Catalyst Employed in Hydro-
carbon Reforming. Catalysis Surveys from Asia 2021, 25, 362−388.
(61) Dou, X.; et al. Poisoning effects of H2S and HCl on the
naphthalene steam reforming and water-gas shift activities of Ni and
Fe catalysts. Fuel 2019, 241, 1008−1018.
(62) Medford, A. J.; et al. From the Sabatier principle to a predictive
theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328,
36−42.
(63) Zhang, H.; Sun, Z.; Hu, Y. H. Steam reforming of methane:
Current states of catalyst design and process upgrading. Renewable
Sustainable Energy Rev. 2021, 149, No. 111330.
(64) Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorjai, G. A. Catalytic
Hydrogen Production from Methane: A Review on Recent Progress
and Prospect. Catalysts 2020, 10, 858.
(65) Li, D.; et al. Green” preparation of “intelligent” Pt-doped Ni/
Mg(Al)O catalysts for daily start-up and shut-down CH4 steam
reforming. Appl. Catal. A Gen 2009, 363, 169−179.
(66) Miyata, T.; et al. Promoting effect of Rh, Pd and Pt noble
metals to the Ni/Mg(Al)O catalysts for the DSS-like operation in
CH4 steam reforming. Appl. Catal. A Gen 2006, 310, 97−104.
(67) Xie, C.; Chen, Y.; Li, Y.; Wang, X.; Song, C. Influence of sulfur
on the carbon deposition in steam reforming of liquid hydrocarbons
over CeO2−Al2O3 supported Ni and Rh catalysts. Appl. Catal. A Gen
2011, 394, 32−40.
(68) Strohm, J.; Zheng, J.; Song, C. Low-temperature steam
reforming of jet fuel in the absence and presence of sulfur over Rh
and Rh−Ni catalysts for fuel cells. J. Catal. 2006, 238, 309−320.
(69) Khzouz, M. The development and characterization of Ni-Cu/
Al2O3 catalyst for hydrogen production via multi-fuel reforming.
Ph.D. Thesis, University of Birmingham, 2014.
(70) Djaidja, A.; Messaoudi, H.; Kaddeche, D.; Barama, A. Study of
Ni-M/MgO and Ni-M-Mg/Al (M = Fe or Cu) catalysts in The CH4-
CO2 and CH4-H2O reforming. Int. J. Hydrogen Energy 2015, 40,
4989−4995. Elsevier Ltd.
(71) Huang, T. J.; Jhao, S. Y. Ni-Cu/samaria-doped ceria catalysts
for steam reforming of methane in the presence of carbon dioxide.
Appl. Catal. A Gen 2006, 302, 325−332.

(72) Khzouz, M.; Wood, J.; Kendall, K.; Bujalski, W. Character-
ization of Ni-Cu-based catalysts for multi-fuel steam reformer.
International Journal of Low-Carbon Technologies 2012, 7, 55−59.
(73) Furukawa, S.; Nishimura, G.; Takayama, T.; Komatsu, T.
Highly active Ni- and Co-based bimetallic catalysts for hydrogen
production from ammonia-borane. Front. Chem. 2019, 7, 138.
(74) Komatsu, T.; Kishi, T.; Gorai, T. Preparation and catalytic
properties of uniform particles of Ni3Ge intermetallic compound
formed inside the mesopores of MCM-41. J. Catal. 2008, 259, 174−
182.
(75) Frontera, P.; Antonucci, P. L.; Macario, A. Focus on Materials
for Sulfur-Resistant Catalysts in the Reforming of Biofuels. Catalysts
2021, 11, 1029.
(76) Winther, K. T.; Hoffmann, M. J.; Boes, J. R.; Mamun, O.;
Bajdich, M.; Bligaard, T. Catalysis-Hub.org, an open electronic
structure database for surface reactions. Sci. Data 2019, 6, 75.
(77) Hummelsho̷j, J. S.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.;
No̷rskov, J. K. CatApp: A Web Application for Surface Chemistry and
Heterogeneous Catalysis. Angew. Chem., Int. Ed. 2012, 51, 272−274.
(78) Appari, S.; Janardhanan, V. M.; Bauri, R.; Jayanti, S.;
Deutschmann, O. A detailed kinetic model for biogas steam reforming
on Ni and catalyst deactivation due to sulfur poisoning. Appl. Catal. A
Gen 2014, 471, 118−125.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c00119
ACS Omega 2024, 9, 12184−12194

12194

https://doi.org/10.1021/acs.jpcc.7b12670?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.7b12670?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.mlwa.2020.100010
https://doi.org/10.1016/j.mlwa.2020.100010
https://doi.org/10.1016/j.mlwa.2020.100010
https://doi.org/10.1039/c3cp42965b
https://doi.org/10.1039/c3cp42965b
https://doi.org/10.1016/j.cplett.2020.137772
https://doi.org/10.1016/j.cplett.2020.137772
https://doi.org/10.1016/j.cplett.2020.137772
https://doi.org/10.1021/acs.jpca.9b07569?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.9b07569?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.9b07569?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.7b02286?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.7b02286?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.7b02286?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.8b09284?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.8b09284?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.8b09284?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00123a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00123a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10563-021-09340-w
https://doi.org/10.1007/s10563-021-09340-w
https://doi.org/10.1007/s10563-021-09340-w
https://doi.org/10.1016/j.fuel.2018.12.119
https://doi.org/10.1016/j.fuel.2018.12.119
https://doi.org/10.1016/j.fuel.2018.12.119
https://doi.org/10.1016/j.jcat.2014.12.033
https://doi.org/10.1016/j.jcat.2014.12.033
https://doi.org/10.1016/j.rser.2021.111330
https://doi.org/10.1016/j.rser.2021.111330
https://doi.org/10.3390/catal10080858
https://doi.org/10.3390/catal10080858
https://doi.org/10.3390/catal10080858
https://doi.org/10.1016/j.apcata.2009.05.015
https://doi.org/10.1016/j.apcata.2009.05.015
https://doi.org/10.1016/j.apcata.2009.05.015
https://doi.org/10.1016/j.apcata.2006.05.022
https://doi.org/10.1016/j.apcata.2006.05.022
https://doi.org/10.1016/j.apcata.2006.05.022
https://doi.org/10.1016/j.apcata.2010.12.019
https://doi.org/10.1016/j.apcata.2010.12.019
https://doi.org/10.1016/j.apcata.2010.12.019
https://doi.org/10.1016/j.jcat.2005.12.010
https://doi.org/10.1016/j.jcat.2005.12.010
https://doi.org/10.1016/j.jcat.2005.12.010
https://doi.org/10.1016/j.ijhydene.2014.12.106
https://doi.org/10.1016/j.ijhydene.2014.12.106
https://doi.org/10.1016/j.ijhydene.2014.12.106
https://doi.org/10.1016/j.apcata.2006.02.027
https://doi.org/10.1016/j.apcata.2006.02.027
https://doi.org/10.1093/ijlct/ctr019
https://doi.org/10.1093/ijlct/ctr019
https://doi.org/10.3389/fchem.2019.00138
https://doi.org/10.3389/fchem.2019.00138
https://doi.org/10.1016/j.jcat.2008.08.001
https://doi.org/10.1016/j.jcat.2008.08.001
https://doi.org/10.1016/j.jcat.2008.08.001
https://doi.org/10.3390/catal11091029
https://doi.org/10.3390/catal11091029
https://doi.org/10.1038/s41597-019-0081-y
https://doi.org/10.1038/s41597-019-0081-y
https://doi.org/10.1002/anie.201107947
https://doi.org/10.1002/anie.201107947
https://doi.org/10.1016/j.apcata.2013.12.002
https://doi.org/10.1016/j.apcata.2013.12.002
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00119?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

