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ABSTRACT 

The rapidly growing number of applications for small Unmanned Aerial Systems (sUAS) 

in last-mile applications within metropolitan environments creates a complex airspace and 

ground safety scenario, where numerous risks must be considered to accomplish safe 

operations. The built-up and heterogeneously shaped geometry, together with the densely 

populated and transited nature of urban scenes, define a challenging scene for piloted and 

autonomous missions, where operators need to consider performance-based and third-party 

risks. In response to the increasing requirements inherent from urban scenarios, this paper 

proposes an integrated and comprehensive risk model for urban sUAS operations, composed 

by different risk layers designed for real-world scenarios, and validated through simulated 

drone flights and 3D risk-based navigation. By identifying the different risk requirements for 

sUAS operations, first party risks – including navigation performance, data link monitoring 

and collision avoidance – are computed within a photorealistic simulation environment for a 

discretized airspace representation. On top of this, trajectory based third party risks are 

modelled to identify potential routes subject to drone failure and consequent fatality and third 

party damage, as well as societal impact in terms of noise and privacy. Risk-based navigation 

techniques are implemented to validate the resulting model, including classical path planning 

and reinforcement learning. The results enable the perception of urban scenes associated risks 

through the lenses of risk modelling, providing a valuable methodology for sUAS urban 

operations and contributing to safer drone flights.  

I. Introduction 

The urban deployment of Unmanned Aerial Vehicles (UAVs) for applications like traffic monitoring, aerial 

photography, and delivery has observed an exponential growth, a trend anticipated to persist in metropolitan areas [1], 

[2]. The rapid adaptation of these technologies to society necessities defines a scenario in which the regulatory 

agencies are defining new frameworks for safe operations, especially in crowded urban environments. Inherent risks 

to sUAS operations within congested and complex layouts pose significant concerns in metropolitan UAV operations, 

including societal impact and accidents, leading to potential fatalities and property damages [3]. Operators must 

consider how the operations can be conducted in a safe manner, ensuring the drone will not be exposed to risks that 

could lead to aircraft failure and bystander impact or cause a major disruption [4], while at the same time think of the 

effect the flights might have on the population [5], [6]. On the one hand, these situations imply major costs for first 

parties – especially for costly professional aircrafts –, while on the other hand life-threatening conditions can take 

place involving third parties and result into serious injury or fatality. The understanding of the mission surroundings 
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needs to be considered an imperative condition for flight feasibility, quantifying the risks accurately rather than 

assessing qualitatively. Existing research has explored the challenges involved in sUAS operations in urban 

environments, covering from novel technology solutions for risk mitigation to risk assessment integrating population 

models in it. In urban settings, drone performance is challenged by RF and GNSS interference from buildings, 

affecting control and communication [7]. Furthermore, collisions with buildings or other aircraft pose property 

damage, injuries, and fatalities, particularly in densely populated regions [8]. Identifying these challenges, de-risking 

the urban airspace and operating accordingly are the baseline for a safer integration of sUAS within our cities. In terms 

of third party risk, studies have different risk integration models and navigation solutions. One study [9] suggested a 

model for a scene the size of Manhattan, where urban polygonal, GPS and census data where used as the base layer 

for A* and BIT* path planning algorithms. Another work [10] introduced a gravity model for population and traffic 

density for a 3D grid navigation problem, while similar approaches are seen for aerial vehicle delivery [11] and risk 

assessment for cost effective path planning [12]. While a wide range of metrics have been developed, there is a gap in 

accurate urban representation when applying the risks for sUAS operations. 

Supporting the development of these risk assessment technologies a widespread practice is the implementation of 

urban 3D models, encompassing detailed representations of buildings, infrastructure, terrain, and other elements 

crucial for simulating drone flights. These models leverage Geographic Information Systems (GIS), Light Detection 

and Ranging (LiDAR), photogrammetry, and other mapping technologies to generate precise and high-fidelity virtual 

environments [13]. Advancements in gaming engines and simulation software have facilitated the development of 

interactive and customizable urban 3D models, allowing for the creation of diverse scenarios, as well as the training 

of deep learning models [14]. Furthermore, traditional simplified geometries are now challenged by the capabilities 

of drone urban mapping [15], data used to then populate urban models that enable further operations as some 

companies are already implementing [16].  The geometry digitalized data is translated into a set of associated risks, a 

conflicted airspace for which autonomous solutions enable scaling multiple platform operations to larger urban scenes. 

Methods for path planning and decision making in urban environments have been largely explored for terrestrial [17] 

[18] and threat-aware solutions [19], to airborne for multi UAV [20] and  several path planning applications [12], [21]. 

Studies as the later provide cost-effective solutions for navigating the conflicted urban environments, modelling the 

risks involved with drone failure. Methods including genetic algorithms and Djikstra approaches are widely used to 

solve this kind of problem, together with classical A* path planning. Similar approaches use reinforcement learning 

[22], [23] to achieve risk aware navigation for complex resolution problem.  

Throughout the numerous works in urban risks assessment for sUAS, the existing research provides a wide 

spectrum of detailed solutions for specific challenges, and while some authors explore multiple risks and present 

integrated risk assessment models, these rarely are scalable to the level of last-mile scenarios for a specific location in 

contrast to simplified or statistical buildings data. As a result, the operator – who needs to understand the risks involved 

with their operation – usually relies on qualitative assessment based on experience. In this paper the authors propose 

a comprehensive and integrated approach, where different techniques are explored and adapted to real-world 3D 

scenarios, validated through navigation algorithms and sample flight paths in order to shed light onto the feasibility 

of the results. The contributions of this article are summarized as follows. 

1) This paper presents a complete tailored to 3D complex scenarios integrated risk assessment model, where the 

main mission-critical performance metrics provide an insight on how the urban geometry is perceived by the 

sUAS, on top of which third party trajectory-based risks are applied, providing a complete solution that 

accounts for mission performance concerns, fatality, damage and public disturbance scenarios.  

2) This paper implements a photorealistic simulation environment, where the urban geometry mesh is loaded 

together with the relevant location specific urban data and serves as foundation for the drone flights 

modelling. 

3) This paper validates the risk assessment through navigation techniques defining a risk-based navigation 

problem, solved using path planning and reinforcement learning; and a set of risk-representative flight paths 

to fully illustrate the risk model applicability. The performance geometry-based risk layers define the urban 

canyon navigation problem, while the third party trajectory dependent risk layers offer a more elaborate scope 

of the urban risks spectrum.  

The remainder of the paper is structured in 5 sections. Section II identifies and characterizes the risks inherent to 

urban scenes for sUAS operations and introduces the model architecture. Section III presents in detail the proposed 

risk assessment methodology, reviewing and modelling the urban risks. Navigation algorithms for the model 

validation are explained in Section IV, followed by the results in Section V. Section VI concludes the paper.  



3 

 

II. Problem statement 

Across the literature, different kinds of risk sources in urban environments have been identified and studied, 

ranging from GNSS resilience to property damage due to drone failure. Within the context of civil aviation, three 

different classes of risks are defined [11]: first party, referring to the air service provider; second party, concerning 

the part receiving the air transport service; and third party, involving the people exposed to the scope of the activities 

without any implication. Due to the unmanned nature of the sUAS operations, second party risks would refer to 

customer receiving the sUAS services rather than passengers and are therefore considered out of the scope for this 

risk model formulation.  

First party risks comprise the set of circumstances and events the operator might face during the operation 

concerning the completion the mission successfully. Three main categories are identified as the fundamental factors 

to successfully deliver a flight for a sUAS:  

1) data link robustness: communications robustness enables the aircraft’s command and control, in addition to 

mission relevant data transmission, 

2) navigation systems resilience, ensuring positional awareness in built up scenes, 

3) and obstacle collision avoidance, found as the final layer of the platform’s detect and avoid capabilities 

(DAA), crucial for the aircraft’s integrity. 
On the other hand, third party risks are characterized by how any event related to the mission might affect 

noninvolved parties. Previous works across the literature highlight the relevance of not only considering the impact 

of the sUAS failure, leading to property damage and life-threatening conditions, but also the impact of the flight and 

mission nature. The following risk layers are considered for the model accordingly:  

1) fatality risks: people and vehicles on the ground are exposed to a drone impact in case of malfunction, 

2) 3rd party damage: while some regions might be more congested than others in terms of obstacles, other might 

imply a higher damage risk due to the value or the incident impact might have, 

3) and the societal impact, originated from the aircraft noise pollution and potential privacy concerns from 

camera recording. 

Fig 1 shows a representative distribution of the risks sources is presented, including complex geometry impacting 

navigation and performance, in addition to ground traffic and population density. 

 

Fig 1. First and third party risks for sUAS operations in urban environments 

The combined risk model is distributed across the scenario by means of a 3D division of the airspace into a voxel 

grid, defined by cubes with centroid cxyz which are considered as the drone position when travelling through that voxel. 

The risk model is applied for each centroid defined across the airspace, integrating the first and third party risks for 

that coordinate and state. According the Joint Authorities for Rulemaking on Unmanned Systems (JARUS) [24], in 

relation to the Intrinsic UAS ground risk class classification, the shortest listed maximum UAS characteristic 

dimension is one meter, encompassing the vast majority of commercial drones. Therefore, the voxel cube dimension 

is established to one meter accordingly, effectively representing the risk-based urban environment.  

Drone movement through the grid is modelled to travel from a given centroid to any of the 8 surrounding voxels 

in the same altitude level, applied to different flight levels rather than modelling a complete 3D movement (Fig 2). 

This motion model approximates UAVs actual operations motion between two consecutive waypoints, where the 
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aircraft can be oriented to any heading within the 360⁰ and does not continuously altering altitude level simultaneously. 

Nevertheless, the model allows different flight level enabling a multi-altitude waypoint mission. During the pre-flight 

assessment, to travel from point A to point B where the latter point be is placed at a greater altitude, a waypoint 

following solution should first increase the altitude and then travel to B at zB flight level, a safer option to avoid 

potential obstacles considering the B coordinates have been properly assessed in terms of collision avoidance.   

 
 (a) Horizontal grid motion    (b) 3D representation of the voxel grid around a node    

Fig 2. Drone risk map representation 

The simulation environment is designed importing photorealistic urban scenes into the Unreal Engine 5 [25] game 

editor, together with the drone modelling library AirSim [26] for the drone’s model and programmatic control. GNSS 

data is accessed from CelesTrak ephemeris data [27], while the ground risks related data is curated for each scene. In 

Fig 3 the first party risk are represented for a given drone location, in addition to the crash zone estimation trajectory 

for the calculation of the third party ground risks. 

 

Fig 3. Risk model layers active in a 3D photorealistic environment 

The simulations are set below the 400 feet ceiling, defined by the main aviation agencies [28]–[30], and the flight 

paths results are adapted to the maximum building ceiling. The data is processed within the airspace individual units 

and the integrated risk model provides a cost to travel through the given voxel, resulting into a risk-based navigation 

problem solved with reinforcement learning, previously validated through classical path planning, and applied to a set 

of trajectories.  

III. Risk Model 

This section presents the mathematical formulation for each risk layer and suggests an integrated cost function for 

the voxel grid centroids. As described in the previous section, two main categories of risks are identified and three 

different subcategories for each category are considered for the comprehensive risk model.  

A. First party risks 

Mission integrity related risks are subject to the urban geometry the mission takes place at, obstacles ranging from 

buildings to vegetation or lamp posts, among others. The mission critical nature of these risks implies that the cost 
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function not only needs to quantify the performance degradation suffered at a given coordinate, but also must provide 

no-go voxels that would result into a flight failure, including collision with an obstacle or completely losing navigation 

capabilities. 

A.1. Navigation system layer 

While there is considerable research on urban navigation systems that enable sUAS flights in GNSS-denied 

environments [31], in practical conditions most of the commercial options available for drone operators are strongly 

relying on satellite navigation together with technologies as IMU fusion, being dead reckoning the most widespread 

practice [32]. This paper proposes a geometrical calculation of navigation uncertainty cost, implementing satellite line 

of sight and computing the error of propagation form satellite geometry, known as Geometric Dilution of Precision 

(GDOP). Due to the complexity of accurately capturing GNSS phenomena in urban areas – as multipath and 

interference –, especially using 3D meshes, this paper considers out of scope the implementation of a complete 

navigation model, suggesting a navigation correction for the collision avoidance layer.  

Satellite coordinates for a given time and date are extracted from CelesTrack and filtered for those located over 

the horizon at the simulation location coordinates. The resulting list of satellites is filtered by constellations, and 

assuming a multi-constellation capable sUAS, the calculations are performed using GPS, Galileo and GLONASS 

satellites. The final filtering stage performs LOS calculation within the simulation engine from each resulting satellite 

coordinates to each voxel centroid. The cost associated to crossing a given voxel centroid is calculated from the 

navigation uncertainty based on the GDOP value. For a given set of satellites position (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and a receiver position (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟), the range can be obtained as: 

 

 𝑟𝑖 =  √(𝑥𝑖 − 𝑥𝑟)2 + (𝑦𝑖 −  𝑦𝑟)2 +  (𝑧𝑖 −  𝑧𝑟)2 (1) 

 

The design matrix A for each satellite is constructed from the partial derivatives of the range equations with respect 

to the receiver's position, used to obtain the covariance matrix Q: 

 

 𝐴 =  [[(𝑥𝑖− 𝑥𝑟)𝑟𝑖 , (𝑦𝑖− 𝑦𝑟)𝑟𝑖 , (𝑧𝑖− 𝑧𝑟)𝑟𝑖 , −1]]  𝑄 =  (𝐴𝑇 ⋅  𝐴)−1 (2) 

 

From the covariance matrix Q, the diagonal elements can be extracted,  

 

 𝐻𝐷𝑂𝑃 =  √𝑄[1,1] + 𝑄[2,2]  𝑉𝐷𝑂𝑃 =  √𝑄[3,3] (3) 

 

  𝑃𝐷𝑂𝑃 =  √𝑄[1,1] + 𝑄[2,2] +  𝑄[3,3] 𝑇𝐷𝑂𝑃 =  √𝑄[4,4] (4) 

 

and the final value of GDOP obtained as  

 

 𝐺𝐷𝑂𝑃 =  √ 𝑃𝐷𝑂𝑃2 +  𝑇𝐷𝑂𝑃2  (5) 

 

The cost associated to crossing the voxel due to GNSS uncertainty is: 

 

 𝑐𝐺𝑁𝑆𝑆 = 1 − 𝐺𝐷𝑂𝑃𝑖−𝐺𝐷𝑂𝑃𝑚𝑖𝑛𝐺𝐷𝑂𝐷𝑚𝑎𝑥−𝐺𝐷𝑂𝑃𝑚𝑖𝑛  𝑐𝐺𝑁𝑆𝑆  𝜖 [0,1] (6) 

 

The classification of DOP values are presented in Table 1 [33], which for close-to-obstacles operations as in urban 

scenes a standard convention for UAVs is aiming for a value of GDOP lower than 6, resulting in GDOPmax of 6 for 

the cost calculation, and a GDOPmin of 1. This risk is considered as a no-flight condition for cost scores of 1, as 

navigation resilience cannot be ensured. Furthermore, in conditions of not enough satellites, 5 for the case of multi-

constellation GNSS receivers, the cost score is set to maximal as well.  
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Class number GDOP value Ratings 

Class 1 1 Ideal 

Class 2 2-3 Excellent 

Class 3 4-6 Good 

Class 4 7-8 Moderate 

Class 5 9-20 Fair 

Class 6 21-50 Poor 

Table 1. GDOP values classification [ref]  

A.2. Data link layer 

A continuous data link between the sUAS and the operator is required for safe operations conduction, as while the 

technologies move forward autonomy the regulations require from the operator surveys for frequency coverage 

throughout the potential operating area [34]. Several studies have been performed to model the RF coverage for drone 

operations through metropolitan scenes [35], however, most of the models consider simplified urban geometry in 

order to incorporate the complex phenomena RF experiments due to the urban geometry, including reflection or 

diffraction, among others. 

This study does not consider the development of a complete drone data link coverage model, and rather suggests 

an applicable tool for complex and real urban geometry. Based on an average drone operation, where either the pilot 

or the ground station usually stands next to the drone take off site, the antenna is modelled at an advantageous elevated 

location – selected during the site assessment – and the associated risk assessment cost is conducted checking for the 

line of sight between the antenna and each voxel location. Given the complexity of modelling propagation in complex 

3D meshes without dedicated software and hardware, rather than defining a more exhaustive risk map as the navigation 

layer, this simplified data link layer provides potential coverage loss regions. As a result, the cost is modelled as 

follows: 

 𝑐𝑑𝑎𝑡𝑎 = {1, 𝑖𝑓 ∃ 𝐿𝑂𝑆0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (7) 

A.3. Collision avoidance layer 

The final first party risk considers the urban geometry to, on the one hand, define no-flight regions due to obstacle 

presence in the voxel, and on the other hand provide a risk profile close to all the obstacles, descending the cost when 

increasing the distance to an obstacle. In order to achieve that, the model takes advantage of Unreal Engine’s 

capabilities to determine the voxel occupation, creating a coarse point cloud from any given 3D mesh map which turns 

into the base layer for the collision avoidance cost.  

From the occupied voxel coordinates, a breath first search algorithm is applied to identify those voxels found 

within a distance 𝑅𝑚𝑖𝑛 from the occupied voxels, creating a database updated whenever for a common close-to-

obstacle empty voxel a smaller distance to an obstacle than the initial is found. As a result, all empty voxels are 

assigned a distance to the closest obstacle, except for those found at a greater distance than 𝑅𝑚𝑖𝑛 to any obstacle on 

the map. 

The cost for the collision avoidance layer is modelled as an inverse exponential function, where the maximum cost 

value is given at the obstacle and the cost decreases with the distance according to the following expression: 

 

 

  𝑐𝐶𝐴 = { 1, 𝑑𝑜𝑏𝑠 = 0𝑒−𝑚𝐺𝑁𝑆𝑆 𝑑𝑜𝑏𝑠𝑅𝑚𝑖𝑛 , 0 ≤ 𝑑𝑜𝑏𝑠 ≤ 𝑅𝑚𝑖𝑛0, 𝑑𝑜𝑏𝑠 > 𝑅𝑚𝑖𝑛  ,  𝑚𝐺𝑁𝑆𝑆 = 𝑚0(1 − 𝑐𝐺𝑁𝑆𝑆) (8) 

 

where 𝑑𝑜𝑏𝑠 is the distance to the closest obstacle and 𝑚𝐺𝑁𝑆𝑆 is the slope of the cost function dependent of the value 

of the GNSS layer, based on a minimal slope for no GNSS cost 𝑚0 = 𝑒 – meaning the greatest risk reduction rate 

possible. Collision avoidance is strongly relying on the navigation system performance, and therefore this risk layer 

considers a higher risk of crashing into an obstacle for a given distance when the GNSS receiver performance is 

degraded.  

In the same way as the GNSS layer, 𝑐𝐶𝐴 also define no-flight zones, overriding the integrated risk model cost 

function for a given voxel when maximal risk takes place, meaning an obstacle is present.  
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B. Third party risks 

In contrast to the first party risk layers, third party risks are highly conditioned by the drone dynamic states. While 

some studies model the ground risks considering the cost for as given voxel is determined by the ground data right 

below it, as population density, this paper suggests an alternative approach and integrates the speed vector to predict 

a crash location. Due to the reduced dimensions of the airspace units within the voxel grid earlier introduced, in 

contrast to larger grid unit studies, the drone descent trajectory cannot be assumed to fall within the same Z coordinate 

the drone suffers the failure at. Therefore, a drag conditioned drop is modelled from the failure voxel using the initial 

velocity. The first occupied voxel the trajectory crosses, either horizontal – the ground, a rooftop – or vertical, as a 

building wall, determines the drone impact energy. As a result, third party risks are modelled as trajectory-based risks, 

being applied to each attempted drone velocity vector - for the navigation algorithm – set of crossed voxels from start 

to goal during flight. Failure based risk layers are a function of the drone impact energy, given by the drone descent 

velocity. The acceleration the drone suffers while descending, affected by the aerodynamic drag with no wind 

conditions, can be modelled as  

 

 𝑎𝑎𝑒𝑟𝑜 = 𝐹𝑎𝑒𝑟𝑜𝑚 = 𝑐𝑑𝜌𝑎𝑖𝑟𝑆𝑑𝑣𝑎𝑖𝑟22𝑚𝑑  ,       𝑎𝑦 = 𝐹𝑔𝑟𝑎𝑣−𝐹𝑎𝑒𝑟𝑜𝑦𝑚 = 𝑔 − 𝑎𝑎𝑒𝑟𝑜𝑦 ,       𝑎𝑥 = − 𝐹𝑎𝑒𝑟𝑜𝑥𝑚 = −𝑎𝑎𝑒𝑟𝑜𝑥 (9) 

 

where 𝑔 is the gravitational acceleration 9.81m/s2, 𝑐𝑑 is the drone drag coefficient, 𝑆𝑑 and md are the drone’s cross-

sectional surface and mass, 𝜌𝑎𝑖𝑟  is the air density, and 𝑣𝑎𝑖𝑟  is the air speed of the drone. Assuming the drone reaches 

a stable, constant velocity after falling a certain distance, the drone vertical terminal velocity can be expressed as  

 

 𝑣𝑦(𝑧𝑑) = √ 2𝑚𝑑𝑔𝑐𝑑𝑆𝑑𝜌𝑎𝑖𝑟 (1 − 𝑒−𝑐𝑑𝑆𝑑𝜌𝑎𝑖𝑟𝑧𝑑𝑚𝑑 )  (10) 

 

where 𝑧𝑑 is the vertical coordinate the drone is at from the ground.  

Given the wide range of sUAS configurations and geometries, a representative drone is modelled at 𝑐𝑑 of 1.0 [36] 

according to a Parrot Anafi USA. A vertical terminal speed of 8.14 m/s is obtained, which for a drone mass of 0.5kg 

results into an impact energy of 16.75J, less than half of the equivalent to being hit by a tennis ball serving, for 

example. Kinetic energy greatly increases with the drone weight, as it also increasing the terminal speed value, 

obtaining four time as much energy for double the mass.  

In Fig 4 (a) the graph shows how for different drop altitudes the drone impact vertical velocity tends to a vertical 

terminal speed – taken at 99% of the curve – with the increase of the altitude for a representative drone. On the other 

hand, graph (b) displays for the same set of parameters, both velocity components throughout the trajectory. Note that 

while the horizontal speed continuously decreases from an initial 10m/s value, the vertical component achieves a 

steady value of 8.17m/s, and therefore a constant rate of altitude value decrease. The horizontal speed considerably 

for a drop altitude of 30m, while for earlier altitude crashes, as a 10m descent before finding an obstacle, the total 

speed has a larger influence from the horizontal component. While the speed might remain a similar value without 

considering the effect of the drag in the horizontal velocity component, the resulting crash location considerably varies 

– reaching nearly a third of the distance for an ideal parabolic trajectory, visible in (c), for a cruise speed of 10m/s.  

 

 
    (a) Terminal vy vs the drop height          (b) Drone Altitude vs Velocity with drag        (c) Drone distance with and without drag  

Fig 4. Drone speed against drop altitude and terminal speed (left), velocity components (right) and trajectory 

(bottom) 
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B.1. Fatality risk layer 

The fatality risk layer aims to model the effect of a potential drone crash over a person or vehicle which could lead 

to a fatality. Regarding the risk related to bystanders, a gravity model is implemented to distribute the population 

density around key more frequented locations, as a train station, a coffee shop or a museum, for an average density of 

0.011/m2 found in Central London [37]. The resulting population distribution has an averaged density equal to the 

total map density, decreasing the density from further point to the key locations and adding it to those closer. 

Road traffic is modelled according to the size of the roads as a scaling factor, assuming for a given average 

representative road with a set width and traffic, a larger road would not only provide more cells of road traffic, but 

also the density of these cells is greater as it would attract a higher affluence of cars, especially considering how 

modern cities aim to reroute inter-city traffic to larger roads; and vice versa for smaller roads. Regarding the cost 

functions, the model adapts recent third party modelling research [10] to the trajectory based risk modelling, defining 

the bystanders fatality risk as 

 

 𝑐𝑓𝑎𝑡𝑝 = 𝑝𝑓𝑎𝑖𝑙𝑛ℎ𝑖𝑡𝑝 𝑟𝑓𝑝
  𝑛ℎ𝑖𝑡𝑝 = 𝑆ℎ𝑖𝑡𝜌𝑝        𝜌𝑝 = 𝑓(𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 , 𝜌𝑝𝑎𝑣𝑔) (11) 

 

where 𝑝𝑓𝑎𝑖𝑙 describes the probability of aircraft failure, 𝑛ℎ𝑖𝑡𝑝
 is the number of people hit, defined by the drone 

surface and the voxel corresponding population density 𝜌𝑝, and 𝑟𝑓𝑝
 is the fatality rate associated with a drone impact. 

The value for 𝑟𝑓𝑝
 is estimated based on drone human crash testing research [38], for which the probability of a serious 

injury in terms of skull fracture is of 5.09% for a drone of mass of 680g at a speed of 13m/s – greater values compared 

to the used drone mass and terminal velocity, and therefore providing a safety margin in obtaining a higher impact 

risk.  

Similarly, for a vehicle impact the cost can be described as 

 

 𝑐𝑓𝑎𝑡𝑣 = 𝑝𝑓𝑎𝑖𝑙𝑛ℎ𝑖𝑡𝑣 𝑟𝑓𝑣  𝑛ℎ𝑖𝑡𝑣 = 𝑆ℎ𝑖𝑡𝜌𝑣        𝜌𝑣 = 𝑓(𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 , 𝜌𝑣𝑎𝑣𝑔) (12) 

 

where 𝑟𝑓𝑣  in this case refers to the fatality rate associated to a traffic accident happening and resulting into fatality 

and 𝜌𝑣 is the calculated density of vehicles for that map region based on the city averaged cars density 𝜌𝑣𝑎𝑣𝑔
. A drone 

impact into a windshield at terminal speed is not likely to result into the glass shattering, and therefore the source of 

accident would be more related the distraction the impact would generate. Therefore, 𝑟𝑓𝑣  is computed as the product 

of the fatality probability for a crash incident and the probability of the car incident occurring due to the drone impact.  

 

 𝑟𝑓𝑣 = 𝑟𝑓𝑎𝑐𝑐𝑣 𝑝𝑎𝑐𝑐𝑣  (13) 

   

The values for the cost expression are presented in Table 2, and the resultant risk cost value associated with the 

fatality risk is modelled as the addition of both risks. 

 

 𝑐𝑓𝑎𝑡 = 𝑐𝑓𝑎𝑡𝑝 + 𝑐𝑓𝑎𝑡𝑣 (14) 

   

 

 
Risk factor 𝑝𝑓𝑎𝑖𝑙 𝑆ℎ𝑖𝑡 𝑟𝑓𝑝

 𝑟𝑓𝑎𝑐𝑐𝑣
 𝑝𝑎𝑐𝑐𝑣

 𝜌𝑝𝑎𝑣𝑔
 𝜌𝑣𝑎𝑣𝑔

 

Value 6.04∙10-5 0.12 m2 0.0509 0.27 0.3 0.011/m2 0.008/m2 

Table 2. Fatality risk cost function factors 

 

B.2. Property damage layer 

To accurately measure the property damage risk for each different real-world scene, considering the actual 

buildings and other property, the collided obstacle would need to be identified. However, rather than suggesting an 

obstacle recognition layer, this paper implements an approximation based on the following assumption: the drone is 

very likely hit a building or urban element if the crash coordinates are greater than a minimum height over the ground, 

under which it is considered to have crashed into the ground. The complexity of the drone dynamics after the first 

crash are considered out of scope, exclusively considering the first drone collision location.  

The consequence of an impact on third party property is modelled according to a prone-to-be-damaged factor, 

according to the obstacle hit. Three main categories are defined, being the first those regions with little to no risk – as 

a green area or park with trees – identified and encapsuled within a polygon in the map; other flat open ground level 
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surfaces, as roads or parking sites – identified as obstacles with altitude level under 2 meters; and other than trees 

vertical elements, mainly representing buildings, corresponding to crashes occurred over 2 meters above the ground. 

The impact energy is also considered from the velocity model earlier presented, using the drag-influenced velocity 

and normalized by the maximal kinetic energy, taken at the maximal speed point throughout the trajectory – terminal 

speed or initial speed if greater.  

 

 𝑐𝑝𝑟𝑜𝑝 = 𝑝𝑓𝑎𝑖𝑙𝑟𝐾𝐸𝑘𝑜𝑏𝑠 , 𝑟𝐾𝐸 = 𝐸𝑘𝑖𝑚𝑝𝑎𝑐𝑡𝐸𝑘𝑚𝑎𝑥 = 𝑣𝑖𝑚𝑝𝑎𝑐𝑡2𝑣𝑚𝑎𝑥2   , 𝑘𝑜𝑏𝑠 = {0.2, 𝑖𝑓 𝑔𝑟𝑒𝑒𝑛 𝑎𝑟𝑒𝑎0.6, 𝑖𝑓 𝑜𝑝𝑒𝑛 𝑢𝑟𝑏𝑎𝑛 𝑎𝑟𝑒𝑎1, 𝑖𝑓 𝑢𝑟𝑏𝑎𝑛 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒    (15) 

   

where 𝑟𝐾𝐸  is the ration with the maximal possible kinetic energy and 𝑘𝑜𝑏𝑠 is the obstacle damage factor.  

B.3. Societal impact layer 

The final third party layer considers the impact a drone operation might have over the population when operations 

take place with no incidents. In this category, the main challenges are noise pollution and privacy concerns from video 

cameras.  

Noise pollution is modelled using a spherical sound propagation model from the drone center (reference), corrected 

for a given drone speed against a given observer speed using Doppler effect correction. 

 

 𝐿𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑(𝑟) = 𝐿𝑒𝑚𝑖𝑡𝑡𝑒𝑑 − 20𝑙𝑜𝑔 ( 𝑟𝑟𝑟𝑒𝑓)  𝑓′ = 𝑓 (1 + (𝑣𝑜−𝑣𝑑)𝑣𝑠  ) (16) 

 

 𝐿𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑(𝑟, 𝑣𝑠 , 𝑣𝑜) = 𝐿𝑒𝑚𝑖𝑡𝑡𝑒𝑑 − 20𝑙𝑜𝑔 ( 𝑟𝑟𝑟𝑒𝑓) + 𝛥𝐿𝐷𝑜𝑝𝑝𝑙𝑒𝑟    𝛥𝐿𝐷𝑜𝑝𝑝𝑙𝑒𝑟  =  20 𝑙𝑜𝑔 (𝑓′𝑓 ) (17) 

 

where 𝐿𝑒𝑚𝑖𝑡𝑡𝑒𝑑  and 𝑟𝑟𝑒𝑓  are 40dB and 40m respectively [10], r is the distance to the closest population density 

positive voxel, f’ corresponds to the Doppler effect frequency adjustment, f the drone emitting frequency set at 500Hz 

according to research frequencies under this threshold are strongly affected by background noise [39]; 𝑣𝑠, 𝑣𝑜 and 𝑣𝑑the 

speed of sound, observer and drone respectively; and 𝐿𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑  is the sound level perceived by an observer for a given 

observer and drone speeds. The cost function for the sound pollution impact results as follows, visible in Fig 5: 

 

 𝑐𝑠𝑜𝑢𝑛𝑑 = 𝐿𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 − 𝐿𝑒𝑚𝑖𝑡𝑡𝑒𝑑𝐿𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑  (18) 

 

 
   (a) Perceived sound level vs distance to the source         (b) Sound pollution cost evolution with distance  

Fig 5. Noise level and cost change with distance for a drone and observer speeds of 5 and 2 m/s respectively 

In terms of privacy, modelling the impact of a video camera recording is a complex task. The model from [40] is 

adapted, where the authors approximate a regression formula based on distance with and obtained 0.765 accuracy over 

experimental results: 

 

 𝑧 = 33.65 − 1.28𝑥 − 0.63𝑦 + 0.02𝑥2 + 0.007𝑦2 (19) 
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where z is the number of pixels, and x and y are the horizontal and vertical distance to the object respectively. 

Another study [11] suggests the baseline for recognition is established at 10 horizontal pixels implying a 70% rate of 

recognition. For example, for a x and y values of 10 meters, the number of pixels obtained is ≈17, making the potential 

person in the video recognizable. As a result, the privacy cost is defined as: 

 

 𝑐𝑝𝑟𝑖𝑣 = {1, 𝑖𝑓 𝑧 > 100, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (20) 

 

Sound pollution and privacy costs are integrated within the societal impact layer using weighting factors 𝑘𝑠𝑜𝑢𝑛𝑑 

and 𝑘𝑝𝑟𝑖𝑣 set to 0.5 each, considering both factors equally relevant in terms of public impact. 

  

 𝑐𝑠𝑜𝑐 = 𝑘𝑠𝑜𝑢𝑛𝑑𝑐𝑠𝑜𝑢𝑛𝑑 + 𝑘𝑝𝑟𝑖𝑣𝑐𝑝𝑟𝑖𝑣 (21) 

B.4. Third party risks cost function 

The three different layers are combined as a weighted function where each individual cost has already been 

normalized, being the corresponding weights 𝑘𝑓𝑎𝑡 = 0.6, 𝑘𝑝𝑟𝑜𝑝 = 0.2, 𝑘𝑠𝑜𝑐 = 0.2. 

 

 𝑐3𝑟𝑑𝑝𝑎𝑟𝑡𝑦 = 𝑘𝑓𝑎𝑡𝑐𝑓𝑎𝑡 + 𝑘𝑝𝑟𝑜𝑝𝑐𝑝𝑟𝑜𝑝 + 𝑘𝑠𝑜𝑐𝑐𝑠𝑜𝑐 (22) 

C. Integrated risk cost function 

The static voxel grid cost values, defined by the first party risks, define high risk and no-flight regions unlike the 

third party risks. As a result, the voxel grid’s first party associated cost is defined as follows: 
 

 𝑐1𝑠𝑡𝑝𝑎𝑟𝑡𝑦(𝑥, 𝑦, 𝑧) = { 1, 𝑖𝑓 𝑐𝐺𝑁𝑆𝑆 = 1 𝑜𝑟 𝑐𝐶𝐴 = 1Σ13𝑘𝑖𝑐𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (23) 

 

where the individual weighting factors are set as 

 

 𝑘𝐺𝑁𝑆𝑆 = 0.4   𝑘𝑑𝑎𝑡𝑎 = 0.2   𝑘𝐶𝐴 = 0.4 (24) 

 

A stronger weight is assigned to the metrics mostly responsible for the aircraft’s integrity loss. The reason for this 

weights distribution is since modern sUAS are equipped safety features including return to home for data link loss 

scenarios, during which the navigation systems is required to be fully functional.  

Third party risks, modelled as trajectory risks, are applied to each potential voxel the aircraft would need cross 

with the corresponding speed vector. The weight for the fatality risk is considered to be the most important factor in 

determining third party risks as it has the largest impact. Property damage and societal impact are given lower weights 

and considered at the same level of impact, as while property damage might imply a higher cost for the operation, the 

societal impact is perceived more frequently by the concerning third parties. Furthermore, given the different order of 

dimensions from the different risk layers, a scaling factor 𝜔𝑖 is introduced, normalizing the risks against the maximum 

possible value for each risk layer.  

 

 𝑐3𝑠𝑡𝑝𝑎𝑟𝑡𝑦(𝑥, 𝑦, 𝑧, 𝑣) = Σ13𝑘𝑖𝜔𝑖𝑐𝑖 ,   𝑘𝑓𝑎𝑡 = 0.6   𝑘𝑝𝑟𝑜𝑝 = 0.2   𝑘𝑠𝑜𝑐 = 0.2 (25) 

 

The integrated risk cost for a given voxel centroid cxyz is therefore defined as: 

 

 𝑐𝑖(𝑥, 𝑦, 𝑧, 𝑣) = { 1, 𝑖𝑓 𝑐1𝑠𝑡𝑝𝑎𝑟𝑡𝑦(𝑥, 𝑦, 𝑧) = 1𝑘1𝑠𝑡𝑝𝑎𝑟𝑡𝑦𝑐1𝑠𝑡𝑝𝑎𝑟𝑡𝑦 + 𝑘3𝑟𝑑𝑝𝑎𝑟𝑡𝑦𝑐3𝑠𝑡𝑝𝑎𝑟𝑡𝑦, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (26) 

 

In order to define the weights for each main risk category, the scenario where the operations take place need to be 

considered. A very complex urban layout requires a thorough obstacles assessment as well as considering third party 

risks whenever there are elevated population and traffic densities. This scenario would require a tradeoff between first 

and third party risk, properly defining the operation requirements and how the modelled risk would affect it, assuming 

a level of acceptable risk level. On the other hand, for operations in segregated air and ground airspace, including 

complex geometry – for example, a power plant inspection –, first party risks would take a greater weight, while for 

a very crowded event operation – as an open-air concert –, third party risk are considerably more relevant as drone 
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performance is not expected to be considerably degraded, while population density greatly increases. For this study, 

both risks are set at an equal weight of 0.5 each for a representative scene where both risks are considered equally 

relevant.  

IV. 3D risk-based navigation validation 

The navigation solution is formulated as minimum cost navigation problem. This section presents firstly a 

validation of the first party risks – static grid risks – using A* path planning and Double Q-learning Reinforcement 

Learning (DQN-RL), for which the aim is to compare both solutions with a set of metrics in order validate the 

effectiveness of the first party risks by two different approaches. The second part of this section extends the solution 

for the dynamic trajectory model, for which the DQN-RL is used to handle the complex solution for the resulting large 

dataset and the dynamic trajectory associated risks navigation. The integrated dynamic trajectory risk model is tested 

for a set of missions and the feasibility of these is analyzed. 

A. First party risks navigation validation 

The three defined first party risks provide a voxel grid where each voxel centroid has an associated 𝑐1𝑠𝑡𝑝𝑎𝑟𝑡𝑦 cost 

value for a (𝑁𝑥𝑥𝑁𝑦𝑥𝑁𝑧) grid where each risk ranges from 0 to 1. The actions are defined as the 8 potential voxel 

movements introduced earlier, enabling all 8-direction possibilities on the horizontal plane. 

The A* risk-based path planning algorithm cost represents the cost 𝑐(𝑖, 𝑗, 𝑘) associated with moving from centroid (𝑖, 𝑗, 𝑘) to its neighboring centroids. First the start node, open list and close list are initialized. The heuristic ℎ(𝑛) 

function estimates the cost from a node (i, j, k) to the goal using Manhattan distance calculation, corresponding to the 

accumulated risk achieving the goal would imply, while the cost 𝑐(𝑛) function represents the actual cost to reach each 

node from the start node, also corresponding to the accumulated cost.   

For each iteration, the start node is added to the open list with estimated overall cost  𝐶(𝑖, 𝑗, 𝑘) = 𝑔(𝑖, 𝑗, 𝑘) + 𝑗(𝑖, 𝑗, 𝑘), and the algorithm iterates selecting the node with lowest 𝐶(𝑖, 𝑗, 𝑘), which becomes 

the current node and it is passed onto the closed list. While the goal is not achieved, nodes are expanded, either adding 

or updating values for each node found in the open list. If the successor is in the open list with higher 𝐶(𝑖, 𝑗, 𝑘).Once 

the goal is achieved, the path is reconstructed tracing back from the goal node thorough parent nodes stored in the 

closed list. As a result, the algorithm combines Djkstra’s uniform cost search accuracy with heuristics to find the 

optimal path, enabling minimizing both cost and risk exposure.  

While providing the optimal solution, graph-based methods can be computational expensive, especially for large 

and complex scenarios as the one this paper defines. Within this gap reinforcement learning techniques offer a cost-

effective solution, which while it might provide an approximate result, the applicability to repetitive flight assessments 

and numerous flights defines a set of requirements more suitable for these techniques.  

Double Q-Learning is used for this problem, and algorithm is as follows: 

1) Initialization 

a. Q-value initialization: initialize Q-value functions 𝑄1, 𝑄2 for all state-action pairs in the grid. 

 

 𝑄1(𝑠, 𝑎), 𝑄2(𝑠, 𝑎)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆𝑡𝑎𝑡𝑒𝑠, 𝑎 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 (27) 

 

b. Parameters initialization: set the exploration rate 𝜖 and discount factor 𝛾 for learning. 

2) Reward function 

a. The reward function encourages the agent to reduce the distance to the goal while being penalized 

for crossing high risk voxels: 

 

 𝑟 = 𝑓(𝑠, 𝑎, 𝑠′) = 𝑟𝑑𝑖𝑠𝑡(𝑥, 𝑦, 𝑧) − 𝑘𝑐𝑐𝑟𝑖𝑠𝑘(𝑥, 𝑦, 𝑧) (28) 

 

where 𝑟𝑑𝑖𝑠𝑡 is the reward based on the Euclidian distance to the goal, 𝑘𝑐 is a scaling factor for the 

risk and 𝑐𝑟𝑖𝑠𝑘(𝑥, 𝑦, 𝑧) is the cost associated with travelling to the next voxel.  

 

3) Training Phase 

a. Action selection and exploration: 

 

 𝑎𝑐𝑡𝑖𝑜𝑛 = { 𝑟𝑎𝑛𝑑𝑜𝑚_𝑎𝑐𝑡𝑖𝑜𝑛(), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖arg max𝑎(𝑄1(𝑠, 𝑎) + 𝑄2(𝑠, 𝑎) , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖 (29) 
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b. Perform action and update Q-values: 

 

 𝑄1(𝑠, 𝑎) ← 𝑄1(𝑠, 𝑎) + 𝛼 ∙ [𝑟 + 𝛾 ∙ 𝑄2(𝑠′, arg max𝑎 (𝑄1(𝑠′, 𝑎))) − 𝑄1(𝑠, 𝑎)]  𝑄2(𝑠, 𝑎) ← 𝑄1(𝑠, 𝑎) + 𝛼 ∙ [𝑟 + 𝛾 ∙ 𝑄1(𝑠′, arg max𝑎 (𝑄1(𝑠′, 𝑎))) − 𝑄2 (𝑠, 𝑎)]  (30) 

 

where 𝛼 is the learning rate, s and s’ represent states, and argmaxa selects the action maximizing the 

Q-value.  

c. Exploration decay: reduce the exploration rate 𝜖 over iterations to shift from exploration to 

exploitation. 

d. Training is performed for Nt training steps set according to map size requirements. 

 

4) Navigation 

a. The obtained Q-values are applied to find the optimal path from point A to point B while avoiding 

states above an established risk threshold.  

b. Select movement based on highest Q-values minimizing path risk exposure.  

B. Integrated first and third party risks navigation 

The algorithm for the integrated first and third party risk model uses the same structure, extending the reward 

function to the velocity dependent third party risks, obtained as follows: 

1) Descent trajectory: For a given current voxel (x, y, z) and velocity vector (v) the drop trajectory is modelled 

and the first collision voxel identified, obtaining (xc, yc, zc). 

2) Accident-based risk layers calculations 

a. Fatality risk is obtained as 𝑐𝑓𝑎𝑡 = 𝑐𝑓𝑎𝑡𝑝 + 𝑐𝑓𝑎𝑡𝑣  from the ground data for the xc, yc 

b. Property damage risk applies the drone speed to obtain the kinetic energy ration, applied to the 

ground data at xc, yc.  

3) Societal risk calculations: for each (x, y, z) travelled voxel the noise and privacy impact is calculated.  

4) Final third party risk: the resultant third party risk cost is computed from the layers and weighting factors.  

5) Integrated cost: the final cost to travel to the next state is computed using (26).  

V. Simulation results 

The simulation environment for the study is set in London in the centric area of Marylebone, incorporating a wide 

range of urban elements (Fig 6), for which the drone transmitter antenna is placed onto a rooftop strategically chosen 

for operating in the area, centered at the coordinates (51.515995, -0.156999). The resulting 3D first party risk map can 

be seen in Fig 7 for two different risk levels representation. Note how the urban canyons are clearly defined for an 

assumed risk over the 50%, where the red voxels indicate a very high or maximal level of risk, defined by the collision 

and GNSS layers; however, when considering all voxels with an associated risk, the safest option is flight over 

buildings level, as expected.  

 

  

Fig 6. Simulation region within the simulation engine 

TX Antenna 



13 

 

    
         (a) Voxel risk over 0.5         (b) Voxel risks over 0.0 

 

Fig 7. First party risk map for different risk thresholds in NED coordinates 

A. First party risks navigation validation 

To properly assess the first party risks model, rather than modelling flights over the buildings level, the trajectories 

are modelled for highly conflicted scenarios. While altitude considerably increases the impact energy for third party 

risks, it adds little value to the performance-based risks as these are predominant in low altitude flights, especially 

through urban canyons. The start (A) and end (B) points are placed at two different locations at different flight levels 

above street level, and a perimeter following problem is modelled introducing a middle (AB) waypoint as visible in 

Fig 8. The results illustrate how the airspace becomes less conflicted when increasing the altitude – note how the 

buildings outline is define but not filled, due to the mesh nature of the 3D map rather than solid geometry, being the 

inner nodes never reached due to the maximal risk boundary defined around them – and are therefore ignored. The 

A* path planning algorithm strongly performs the Manhattan distance reduction while avoiding high risk voxels, while 

the DQL-RL algorithm appears to be more risk sensitive resulting into more immediate risk reduction.  

 

 

Fig 8. A* path planning and DQL-RL navigation results for different altitudes 
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First party risks can be used for operations where few urban non-controlled elements are involved, for instance a 

facility roof inspection in a segregated region from the population and traffic, as an industrial area. Drone performance 

can be accurately estimated, and no-flight zones are effectively identified and contrasted to the initially planned 

waypoints and trajectory.  

B. Integrated first and third party risks navigation 

 Third party layers distributions are shown in Fig 9. Expected population density (a) is modelled according to 

relevant key locations found in the regions, where major hotels can be found, as well as restaurants, bus stops and 

other high affluence establishments. Note how for the central junction several nodes are concentrated and therefore 

the distribution is affected. Road traffic (b) concentrates the city traffic onto the roads, where 2 major and 2 secondary 

streets are found, resulting into higher expected traffic at the junction as well. The third map used for third party risks 

identifies the vegetation coordinates, corresponding to the park visible in Fig 6, bottom right for the 2D maps. Crash 

locations outside green areas are classified by crash location altitude, differentiating urban ground areas and vertical 

elements based on whether the crash coordinates are found under or over 2 meters, respectively.  

  
    (a) Population density distribution         (b) Traffic density distribution 

Fig 9. Population and vehicles density results for the simulation region over projected geometry 

The integrated model is tested for a corner-to-corner flight, simulating the fastest path between two points along a 

planned mission destination, including as many urban elements as possible. The start point is taken in a region highly 

conflicted in terms of obstacles with several tall buildings, crossing over the main roads junction and ends at the park, 

from where it would continue to the next waypoint. In Fig 10 four different scenarios are shown, from a more 

geometrically conflicted – at 25 meters – to an obstacle-clear scene, at 40 meters. For the two lower altitude scenarios 

the navigation algorithm is unable to get past the obstacles when approaching the target, mainly due to the decreased 

exploration rate found farther from the start node due to the exploration decay. Risk values show how on some regions 

first party risks take over and by the junction the opposite happens. The region over the park presents a notable contrast 

given the low third party cost once the obstacles level is cleared. Table 3. Integrated model DQN-RL paths costs 

analysisTable 3 includes the metrics for the paths assessment, showing how, as expected, the higher altitude flights 

present lower costs than lower altitudes, especially once crossed the terminal velocity barrier for which the horizontal 

velocity component will decrease all the way to zero with higher drop heights. This risk model can also be applied to 

mission planning for a required set of waypoints, establishing an admissible level of risk and assessing the drone 

operation feasibility.  

 
Altitude 𝑐𝑎𝑣𝑔 𝑐𝑚𝑖𝑛 𝑐𝑚𝑎𝑥 𝑐𝑡𝑜𝑡𝑎𝑙 Distance [m] 

25 0.485 0.301 0.955 - - 

30 0.475 0.278 0.947 - - 

35 0.456 0.232 0.944 238.291 238.29 

40 0.382 0.225 0.857 231.463 231.46 

Table 3. Integrated model DQN-RL paths costs analysis 
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Fig 10. Path trajectories and costs for the integrated risk model at different altitudes 

Lastly, different drone paths are modelled to fly across the region and assess the feasibility, setting the main 

directions parallel to the main roads, as visible Fig 11, for an altitude level of 40 meters. This altitude level implies a 

reduction of first party risks, while third party risk values are notably influenced by the region the drone flies over. 

The roads and congested population areas will lead to greater risks that flying over green open areas, for instance. 

This is also visible for the cost values in Table 4, where for similar path lengths the overall cost almost doubles when 

travelling along a congested road versus over rooftops and green areas.  

 
Path ID 𝑐𝑎𝑣𝑔 𝑐𝑚𝑖𝑛 𝑐𝑚𝑎𝑥 𝑐𝑡𝑜𝑡𝑎𝑙 

1 0.415 0.322 0.661 79.348 

2 0.649 0.600 0.856 123.91 

3 0.349 0.245 0.595 66.703 

4 0.438 0.326 0.708 83.733 

5 0.499 0.356 0.756 95.473 

6 0.336 0.223 0.712 64.206 

Table 4. Flight paths costs assessment 

 

Fig 11. Different flights paths assessment for the integrated risk model at 40m 
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VI. Conclusions 

The modelling of urban environments and the associated operational risks for sUAS is a complex task which 

requires of accurate geometry modelling as well as a realistic representation of the urban elements. This paper has 

presented a simulation methodology for realistic urban environments that enables the identification and assessment of 

sUAS risks in urban environments. Drone motion has been established as a constant level flight in accordance with 

regular sUAS operations procedures between waypoints, enabling faster flight planning rather than performing 

continuous ascents and descents from a discrete airspace representation. World geometry meshes are loaded into the 

simulation engine and serve as the base layer for the risk modelling, incorporating complex urban elements in contrast 

to statistical and simplified urban models.  

A review of the different techniques in risk modelling for sUAS in metropolitan scenes has concluded into a 

multilayer risk model, accounting for first party drone performance related risks and population, property and societal 

impact third party risks. Different metrics across the state-of-the-art studies have been integrated to the developed 

simulation engine, and the resultant risk engine has proven to be an effective tool for urban risks identification, 

enabling safer sUAS operations planning. Furthermore, the model has been applied to a chosen urban scene, and the 

obtained results have been validated through A* path planning, DQL-RL and representative waypoints flights mission 

examples. The modelling of urban population and road traffic provides a clear image of the cost of performing 

operations over congested areas, while, when possible, the flight over green open spaces will provide safer risk level. 

First party risk, on the other hand, define no-flight regions for the aircraft, and for a given risk threshold selected by 

the operator, dangerous regions are visually identifiable and can be easily spotted and avoided. Finally, the model can 

be tuned to the mission requirements by means of the integrated risk function weights, selecting the most relevant 

aspects for the mission safety in a given location.  

Future work includes the scaling of the model dimensions, which due to the detail precision it might be challenging 

to process a large urban area within a reasonable time. Additionally, the drone failure descent trajectory can be 

improved to implement fail modes and add additional motions to the fall. Finally, the path planning and reinforcement 

learning implemented in this paper aim to provide a use case of how this model can be applied, which could greatly 

be benefited from increased robustness techniques from smoother trajectories and better awareness of the surrounding 

risks to avoid unsuccessful trajectories.   
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