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ABSTRACT

Urban areas worldwide are affected by the urban heat island (UHI) effect whereby
towns and cities are warmer than their rural backgrounds, having a negative
impact on human health and well-being, energy use, and ecology. Appropriately
distributed and spatially configured urban greenspaces can be used to mitigate
the UHI, however, their efficacy so far has been investigated from either sparse
air temperature measurements, micro-scale model simulations or coarse-
resolution remotely sensed land surface temperature (LST), resulting in
outcomes specific to particular urban fragments or averaged over areas relevant
to masterplan and not urban design level. Additionally, the effect of the non-
vegetated portion of land cover (LC) on the capacity of urban greenspaces to
alleviate excess heat has largely been ignored. In this work, these gaps are
addressed by using fine spatial resolution LST and LC data over the entire
extents of three British towns to elucidate the relationship between LST and
spatial configuration of urban form, taking into account both the spatial properties
of greenspaces and their built-up neighbours. Spatial configuration of urban form
was defined by aggregation of individual LC patches, size, elevation, and
distance to LC patches of other types. Elucidation of the urban form-LST
relationships required downscaling of available coarse resolution imagery with
the use of high resolution ancillary data, and sub-division of main LC types into
classes with distinct spatial aggregation and thermal properties. Random Forest
regression allowed for determination of specific spatial configuration conditions
leading to the formation of the hottest and coldest LC patches of a given type and
highlighted the importance of neighbouring LC in their formation. Subsequently,
the requirement for sophisticated spatial analyses for UHI-mitigating urban
design was verified through assessment of the heat mitigation index generated
by the InVEST 3.8.7 Urban Cooling model, which performed better at scales

relevant to masterplans.
Keywords:

Land surface temperature, downscaling, Landsat 8, Fragstats, LSI, COHESION,
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1 CHAPTER ONE

Introduction

1.1 Background

1.1.1 Overview of the implications and causes of urban heat islands

Urban areas often suffer from the urban heat island (UHI) effect which
manifests in air temperature within towns and cities being higher than in their rural
surroundings (Oke, 1976). The UHI effect is associated with various negative
implications that include human mortality and morbidity (Heaviside, Macintyre
and Vardoulakis, 2017; Heaviside, Vardoulakis and Cai, 2016), changes to
ecological cycles (Shochat et al., 2006; Yow, 2007), and increased energy
demand (Santamouris et al. 2015). Consideration of these impacts is becoming
increasingly important due to the progressing urbanisation, with over 68% of
global population being forecast to inhabit cities by year 2050 (United Nations,
Department of Economic and Social Affairs, 2019), as well as concerns over the
climate change-driven increased incidence of heatwaves (Perkins, Alexander
and Nairn, 2012; Wouters et al., 2017) that pose particular threats to human
survival. There is therefore an urgent need for actions aiming at the mitigation of

excess heat within urban areas.

Before mitigation measures of the UHIs are discussed, it is necessary to
describe the factors contributing to the warmer thermal responses of towns and
cities. The UHIs are phenomena originally conceived as occurring at night when
longwave heat fluxes from urban fabric materials, characterised with a high
capacity to store heat absorbed from short-wave solar radiation during the day,
are released into the atmosphere (Oke, 1988) causing warming of air. In this
context, the UHI can be separated into warming of air within the urban canopy
layer, i.e. the most immediate layer of air between ground surface and rooftops
and the urban boundary layer extending beyond the canopy layer into the
atmosphere until urban surface influences are no longer perceptible (Oke, 1976).
The urban heat island effect, termed the surface urban heat island (SUHI), relates

to the temperature of urban land surface and is associated with the UHI through



modulation of air temperature at the lowest layers of the atmosphere (Voogt and
Oke, 2003), however, with differences induced through air advection (Wang, Yao
and Shu, 2020), and being more prominent during the day (Roth, Oke and Emery,
1989). Whilst warming of the urban surface and canopy layers is directly
concerned with human thermal comfort, increased air temperatures in the
boundary layer have broader implications on wind systems and air pollution

dispersion, amongst others (Oke, 1995).

The UHI is created due to the radiative fluxes of sensible and latent heat, the
former characteristic of the urban built environment and associated with
increased air temperatures and the latter — of vegetated surfaces, associated with
cooling properties (Lin et al., 2017). The formation and intensity of the UHI effect
Is governed by complex interactions between multiple factors (Oke et al., 1991)
that include decreased long-wave radiation loss from and multiple reflections of
short-wave radiation between buildings, increased storage of sensible heat in
urban fabric materials, decreased evapotranspiration due to the reduction of
vegetation coverage as compared to rural areas, anthropogenic heat sources,
and air pollution, with aerosols trapping reflected and re-emitting long-wave
radiation towards the surface (Li et al., 2018). The occurrence and intensity of the
UHI (Mohajerani et al. 2017; Manoli et al. 2019) are determined by the
geographical location that drives specific climatic conditions governing air
temperatures, precipitation as well as dominant wind patterns to which a city is

exposed to.

1.1.2 UHI quantification

The UHI can be quantified through air temperature measurements, collected
either at point locations in cities or over transects (Lin et al., 2019; Schwarz et al.,
2012), street- or site-scale computer simulations (Tsoka et al., 2020) or through
analysis of remotely captured aerial or satellite land surface temperature (LST)
imagery (Voogt and Oke, 2003, 1998), directly related to the SUHI. Air
temperature measurements taken at fixed locations within a city allow for long-
term, high temporal resolution monitoring within the canopy layer, however, they

do not allow for concurrent assessments of all locations within an entire city,



typically due to the sparsity of sampling sites. Transects are helpful in
assessments of changes in air temperature across gradients of different urban
forms, however, are affected by low spatial coverage and lack of concurrence of
measurements (Romero Rodriguez et al.,, 2020). Model simulations utilise
principles of computational fluid dynamics to accurately represent diurnal
changes in temperature with considerations of all factors, including air flow,
contributing to the formation of specific thermal effects in cities, however, due to
substantial computational requirements, their use is limited to micro-scales. LST
imagery, on the other hand, offers city-wide coverage, with observations, due to
varied spatial resolutions of raster datasets, applicable to a variety of spatial
scales explored in urban temperature studies. Despite LST being only indirectly
related to air temperature, its use has been widespread in investigations of the
SUHI at spatial scales ranging from local to global (Zhou et al., 2018), with a
possibility for multi-temporal coverage as well, subject to cloud cover.

1.1.3 UHI mitigation

In the urban planning community, UHI mitigation is largely concerned with
regulation of microclimates at the pedestrian or building scales (Erell, 2008;
Norton et al., 2015). Whilst pedestrian scales are mostly related to the creation
of outdoor spaces providing thermal comfort to humans, building scales focus on
measures leading to both thermal comfort and energy conservation in buildings.
Multiple typologies of UHI mitigation strategies exist (Gago et al., 2013;
Kleerekoper, van Esch and Salcedo, 2012; Nuruzzaman, 2015). For example the
typology developed by Aleksandrowicz et al. (2017) distinguishes between
measures than can be implemented towards specific features of urban
environment, i.e. building envelope, urban landscaping, pavement, and street
geometry. Building envelope approaches are intended at reducing the exposure
to solar irradiation of buildings through covering them with green roofs or facades
as well as use of high-albedo construction materials, reflecting a high proportion
of incoming solar radiation to prevent heat absorption. Approaches related to
urban landscaping involve introduction of strategically placed trees, green
vegetation and water bodies into the landscape, which reduce surface and



ambient temperature through shading, evapotranspiration and evaporation.
Interventions related to pavements involve the use of high-albedo or water
retentive materials to reduce heat absorption at street level. Street geometry
modifications include appropriate street orientation with relation to direction of
sunlight to ensure shading, prevailing wind direction for adequate ventilation as
well as optimisation of the street canyons’ geometry to balance trade-offs
between shading, air flow and heat trapping (Oke, 1988). Measures for mitigation
of SUHI are largely similar and involve the use of vegetation, irrigation, and
albedo reduction (Meng, 2017; Sung, 2013).

1.1.4 Links between urban form and urban thermal environment

UHI mitigation measures point to strong links between urban thermal
environment and the way urban space is designed. Appropriate urban design,
however, requires that these links are described and quantified. There is a large
body of research investigating these relationships (Wu and Ren, 2019), which are
often explored from LST imagery and spatial configuration descriptors of urban
form derived from land cover (LC) maps. Spatial configuration descriptors used
in urban thermal studies often include landscape metrics — indicators of two-
dimensional landscape structure describing area, shape, proximity of individual
land cover patches, as well as spatial aggregation of land cover classes enclosed
within a variously defined space or entire landscapes viewed as composites of all
land cover classes pertinent to a given area (McGarigal, 2015; McGarigal and
Marks, 1995). Some authors also include the third dimension through
specification of feature heights, buildings and trees in particular (Berger et al.,
2017).

Given relatively coarse spatial resolution of widely available satellite thermal
imagery, ranging from 30-100m for Landsat, 90m for ASTER and 250m for
MODIS sensors, studies relating spatial configuration of urban form to LST were
carried out over larger and variously defined sub-divisions of land, such as
artificially superimposed grids (e.g. Berger et al. 2017; Chen et al. 2014), city
districts (e.g. Li et al. 2012), or city functional zones (e.g. Li et al. 2020).

Consequently, findings of such studies can only identify trends in thermal effects



of spatial configuration of urban form enclosed within them, relying on its
homogeneity to enable recommendations relevant to urban design operating at
micro-scales rather than overviews applicable to masterplans. Whilst the broader
scale studies have contributed to the wider understanding of the role of urban
form, and the size and spatial distribution of urban greenspaces in particular, to
(S)UHI mitigation, studies carried out with computer simulations highlighted the
importance of the interactions between built-up and greenspaces in excess heat
mitigation at scales pertaining to fine-tuning of urban design (Chen and Wong,
2006; Perini et al., 2017; Sodoudi et al., 2018).

There are, however, other methods for assessment of UHI mitigation
measures that do not involve sophisticated analyses requiring academic
expertise that may not be available to all urban planners (Bherwani, Singh and
Kumar, 2020; Norton et al., 2015). Such methods, an example of which is given
by the assessment framework developed by Zardo et al. (2017) and recently
operationalised in the form of the INVEST Urban Cooling Model (Sharp et al.
2020), use simplified assumptions regarding factors contributing the formation
and mitigation of the UHI to arrive at conclusions regarding the cooling capacity
of cities, towns or districts characterised with specific spatial arrangement of land
cover (Ronchi, Salata and Arcidiacono, 2020). Such approaches, despite being
well-grounded in theory, need to be validated, both in terms of accuracy of
representation of urban thermal environment as well as operational spatial scale,
determining their applicability at various stages of urban planning. Specifically,
two stages in urban planning are considered in this project — fine-tuning of urban
design, when the size, shape and spatial arrangement of built-up and green
features are determined at a site scale, referred to as the micro-scale, or master-
planning when decisions regarding strategic locations of various urban structures

and functions are made.

1.2 Research question

The overarching research question of this thesis was to determine the
feasibility of elucidation of specific conditions of spatial configuration of urban

form conducive to the formation of cooler or hotter spaces in towns at micro-



scales, and at the same time, to verify the need for sophisticated spatial analyses
of urban thermal environment requiring expertise that is rarely present in the
urban planning community. The novelty of the approach taken in this thesis was
substantiated in investigation of the relationships between land surface
temperature, serving as a proxy for air temperature, and spatial configuration
urban form with special focus on thermal response of individual land cover
patches rather than larger tracts of land, enabled by the availability of very fine
spatial resolution land surface temperature and land cover data. This allowed for
the expectation of this project to provide recommendations as to the spatial
arrangement of land cover patches contributing to the formation of thermal cold
and hot spots within urban areas. Given the large complexity of analyses required
to arrive at specific conclusions, the utility of a recent simplified urban cooling
model in the context of urban design relevant to thermal comfort at micro-scales
was verified, providing the first formal validation of its outputs and insights into

the model applicability towards fine-tuning or master planning of urban design.

1.3 Aims and Objectives

The specific hypotheses (HS) and objectives (O) in the context of this thesis

were as follows:

HS1: Urban form, through the existence of specific spatial configuration
conditions contributing to the formation of cool- and hot spots within urban
areas, has the capacity to regulate land surface temperature of individual
land cover patches and that capacity is dependent on properties of target
and neighbouring land cover patches.

O1-1: Evaluate the performance of multiple adaptive regression spline method
and ancillary data in downscaling of coarse resolution land surface temperature
imagery to a very fine spatial resolution suitable for microscale temperature

studies.

01-2: Develop a fine-resolution urban land cover typology and evaluate its

relevance to urban temperature studies at microscales.



0O1-3: Determine and evaluate the zone of influence of urban form on land

surface temperature of individual land cover patches.

O1-4: Evaluate the impact of spatial configuration properties of urban form on the
formation of the coldest and hottest land cover patches of different types.

O1-5: Evaluate the impact of spatial resolution of land surface temperature

imagery on the outcome of temperature regulation studies at microscales.

HS2: Urban form’s capacity to regulate land surface temperature of

individual LC patches is resilient throughout a warming summer.

02-1: Evaluate the capacity of spatial configuration of urban form to continuously
deliver a regulatory function for land surface temperature of individual land cover

patches.

HS3: Simplified urban cooling models can substitute sophisticated spatial
analyses in assessment of the land surface temperature regulation capacity

of urban form at microscales.

03-1: Validate the performance of the heat mitigation index generated by the
INVEST 3.8.7 Urban Cooling model in estimation of land surface temperature at

microscales

03-2: Evaluate the capacity of the heat mitigation index, generated by the
INVEST 3.8.7 Urban Cooling model, to accurately represent land surface

temperature of different land cover types at microscales.

Figure 1-1 shows a conceptual diagram representing the hypotheses to be

verified as part of this research project.



Figure 1-1 Conceptual diagram of the hypotheses posed in this project.

1.4 Thesis structure

The main body of this thesis is formed by a series of four chapters formatted as
journal papers, all of which were written by the primary author Joanna E.
Zawadzka and edited by thesis supervisors: Professor Ron Corstanje and
Professor Jim A. Harris. All technical work was carried out by Joanna Zawadzka
with help from lan Truckell, a geospatial analyst at Cranfield University, whose
contributions are acknowledged through a co-authorship on the first journal paper
(Chapter 2) presented here. Additional acknowledgments go to Dr Darren Grafius
(Cranfield University) and Dr Steven Hancock (University of Exeter), who, through
their contributions to the NERC-funded Biodiversity and Ecosystem Service
Sustainability programme (Grant Number NE/J015067/1) developed high-
resolution land cover and elevation maps, respectively, for the study area, without
which research presented in this thesis would not be possible.

The thesis opens with a literature review highlighting key concepts and research
gaps needed to be addressed in studies related to urban heat mitigation. Work
described in Chapter 2 (published, refer to Table 1-1 for details) of this thesis
focused on the development of a new methodology for downscaling coarse-
resolution satellite thermal imagery to a very fine resolution relevant to micro-

scales presumed in this study. The resultant summertime LST temperature maps



for two time steps a month apart were instrumental to findings presented in the
following three chapters of this thesis. This Chapter 3 (published, with comments
from three anonymous reviewers incorporated into the text) was dedicated to the
sub-division of urban land cover classes into subtypes based on spatial
aggregation level and surface temperature of individual land cover patches,
resulting in the generation of a new urban land cover typology suitable to urban
temperature studies at micro-scales. Its applicability in this context was confirmed
in Chapter 4 (paper in preparation) whereby spatial configuration of all land cover
types and subtypes were proven to have a an impact on LST of different land
covers, with formation of the coldest and hottest patches of each type being
associated with different spatial configuration properties of neighbouring patches.
Research presented in Chapter 4 offers a city-wide bottom-up perspective on the
role of spatial configuration of urban form in excess heat mitigation, appropriate
to urban form design at scales relevant to the thermal comfort of individuals
indoors and outdoors. Chapter 5 (paper in preparation), on the other hand,
presented a top-down view on the matter of urban heat island mitigation through
an appropriate urban form design, and highlighted the need for incorporation of
non-spatial properties of land cover in studies of urban thermal environment.
Here, a user-friendly tool for the quantification of the role of greenspaces in urban
heat mitigation was validated through a comparison between the main output of
the tool and the available fine and coarse resolution LST data with conclusions
pointing to the need for detailed assessments to yield urban design
recommendations at scales finer than masterplans. Chapter 6 provides a
discussion and implications of the findings presented in Chapters 2 to 5.
Chapter 7 summarises the key conclusions and provides recommendations for

future research.



Table 1-1 Thesis structure and status of paper submissions with links to specific

hypotheses (H) and objectives (O).

Chapter | Paper | Link Title Journal Status
toH
and O
1 - Introduction - -
2 1 HS1: Downscaling Landsat-8 land International International
O1-1 | surface temperature maps in | Journal of Journal of
diverse urban landscapes Digital Earth digital
using multivariate adaptive
regression splines and very Earth 2020,
high resolution auxiliary data Vol. 13, no.
8, 899914
Received
28 Aug 2018
Accepted
6 Mar 2019
3 2 HS1: A simple method for Landscape Landscape
01-2 determination of fine Ecology Ecology
resolution urban form patterns Received
W|t_h distinct thermal properties 28 May 2020
using class-level landscape
metrics Accepted
7 November
2020
4 3 HS1: Unravelling the relationship Landscape In
01-3, | between land surface Ecology preparation
01-4, | temperature of individual land
01-5 cover patches and spatial
HS2: configuration of urban form
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Abstract

We propose a method for spatial downscaling of Landsat-8 derived LST maps
from 100(30)m resolution down to 2-4m with the use of the Multiple Adaptive
Regression Splines (MARS) models coupled with very high resolution auxiliary
data derived from hyperspectral aerial imagery and large-scale topographic
maps. We applied the method to four Landsat 8 scenes, two collected in summer
and two in winter, for three British towns collectively representing a variety of
urban form. We used several spectral indices as well as fractional coverage of
water and paved surfaces as LST predictors, and applied a novel method for the
correction of temporal mismatch between spectral indices derived from aerial and
satellite imagery captured at different dates, allowing for the application of the
downscaling method for multiple dates without the need for repeating the aerial
survey. Our results suggest that the method performed well for the summer dates,
achieving RMSE of 1.40-1.83K prior to and 0.76-1.21K after correction for
residuals. We conclude that the MARS models, by addressing the non-linear

relationship of LST at coarse and fine spatial resolutions, can be successfully
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applied to produce high resolution LST maps suitable for studies of urban thermal

environment at local scales.

Keywords: land surface temperature, downscaling, urban, multivariate adaptive

regression splines, remote sensing

2.1 Introduction

Urban environments are becoming an increasingly important habitat for humans,
with over 68% of global population being forecast to inhabit cities by year 2050
(United Nations, 2019). Urbanisation and associated changes to land cover and
urban structure (Oke, 2004) has been linked to significant thermal changes to the
environment, termed the urban heat island effect, where the air and surface
temperatures of cities are typically much higher than surrounding landscapes
(Bornstein, 1968; Pitman et al., 2015), with implications to both ecological status
of populations (Shochat et al., 2006) as well as human health and well-being
(Kalkstein and Smoyer, 1993; Lee et al., 2003). There is therefore a need for
regulation of air temperatures in the cities, and this role can be fulfilled by urban
greenspaces, which have been shown to reduce the intensity of urban heat
islands subject to appropriate size and configuration in studies relying on coarser-
resolution satellite-derived land surface temperature (LST) observations
(Asgarian et al., 2015; Kong et al., 2014; Zhou et al., 2017) and studies utilising
on-the-ground-measurements of air temperature associated with paved-
vegetated area gradient (Schwarz et al., 2012; Takebayashi and Hideki, 2017,
Yu and Hien, 2006).

Although the air-temperature studies provide an accurate picture of thermal
gradients over the boundary between contrasting urban land covers, these are
often limited to a relatively small study area for which air temperatures can be
measured simultaneously across its full extent. Remotely sensed LST data offer
an alternative to capture data for relatively large areas, however, the spatial
resolution of such datasets, typically ranging from 60m to 1km, is insufficient to
capture local interactions of LST in relation to the heterogeneous character of
land cover in the cities (Lo, Quattrochi and Luvall, 1997). Very high spatial

resolution thermal imagery (5-10m or higher) can be acquired from aerial or UAV
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surveys, however, these are typically costly, especially for large areas or
monitoring purposes, requiring repeated data acquisition.

We propose that the study of interactions between LST and urban form could be
enhanced by the implementation of very high spatial resolution LST maps
obtained in the process of LST downscaling whereby high resolution LST maps
are derived from lower resolution thermal data based on the existing statistical
relationship between LST and spectral indices or land cover information (Zhan et
al., 2013). As so far, LST downscaling studies carried out for urban areas have
targeted relatively coarse spatial resolutions, with final downscaled spatial
resolutions comprising 1 km (Weng and Fu, 2014), 480-120m (Bonafoni, 2016),
90m (Yang et al., 2010; Zhan et al., 2012; Yang et al., 2017), 60m (Zhan et al.,
2012), 50m (Feng et al., 2015), and 30m (Bonafoni et al., 2016), with downscaling
factors, defined as the ratio between the observed and downscaled spatial
resolution (Zhou et al., 2016; Bonafoni and Tosi, 2017), rarely exceeding 10m.
Only one recent study, Bonafoni and Tosi (2017), attempted the downscaling
process to 2m spatial resolution.

In this work, we set out to generate very high resolution LST images (2 to 4m) for
urban areas based on the relationship between Landsat 8 coarse resolution LST
data and auxiliary data comprising very high resolution spectral indices derived
from an aerial survey at 2 and 4m spatial resolution as well as 2m resolution
fractional cover of paved and water-covered areas derived from topographic
maps, for both summer and winter conditions. Given the complex relationship
between LSTs and the auxiliary datasets, and the possibility that simple
regression models (e.g. ordinary least squares linear regression) may not be able
to reveal the causes of the spatial variation in LST (Weng and Fu, 2014), we
decided to test our methodology with the use of the Multiple Adaptive Regression
Splines (MARS) capable of fitting different regression functions into different
regions of n-dimensional data (Friedman, 1991). As so far, very few
environmental studies have used the MARS method to predict spatial distribution
of environmental phenomena, limited mostly to the fields of digital soil mapping
(Piikki et al. 2015; Piikki and Soderstrom 2019) and landslide detection (Wang et
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al., 2015), and this is the first study known to the authors that uses MARS in LST
downscaling. Further novelty of our approach consists in adjustments of spectral
indices derived from very high resolution aerial imagery for the values of
equivalent spectral indices derived from coarser resolution satellite imagery
acquired together with the thermal data — a method aiming at mitigation of the
temporal mismatch between acquisition dates of aerial and satellite imagery.
Such adjustments can potentially allow for multi-temporal assessments of LST at
very high spatial resolution without the need of repeated acquisition of very high
resolution multispectral data, limited only by the availability of cloud-free satellite
data.

The specific objectives of this study are therefore to (1) present an LST
downscaling method at rarely explored spatial resolutions for both summer and
winter conditions, (2) suggest a method for enhancing the accuracy of the
downscaled maps when there is a temporal mismatch between the acquisition
dates of coarse resolution LST data and the fine resolution auxiliary imagery from
which scaling factors are derived, facilitating multi-temporal downscaling of the
LST maps without the need of re-occurring aerial surveys, and (3) evaluate the
potential of Multivariate Adaptive Regression Splines method to accurately

downscale LST in urban environments.

We envisage that the resulting very fine resolution LST images could provide
much-needed evidence for the relationship between the structure of urban fabric
and thermal environment at microscales (Jenerette et al., 2016; Norton et al.,
2015; Sanusi et al., 2016), essential for an improved design of urban areas that
is set to address challenges imposed by urban expansion, potentially

exacerbated by the effects of climate change.
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2.2 Materials and methods

2.2.1 Study area

The study area (Figure 2-1) comprises the extents of the hyperspectral aerial
imagery available for three English towns: Milton Keynes (MK) (52°0'N, 0°47'W,
appr. 122 km?), Bedford (BD) (52°8'N, 0°27'W, appr. 60 km?), and
Luton/Dunstable (LT) (51°52'N, 0°25'W, appr. 86 km?), characterised with
contrasting histories that influenced collective diversity of urban form within the
three towns, making them representative of small- to medium sized British towns’
structure. Milton Keynes is a recently designed garden city abundant in parks and
greenspaces, characterised by a grid of dual-carriageways dissecting the town
into clearly defined neighbourhoods. Bedford is a medieval market town
characterised with densely built-up city centre with several parks and residential
areas located at the outskirts. Luton, on the other hand, is an industrial-era town
characterised with a modern densely built-up city centre and residential areas
composed of terraced housing. Further information on land cover in the three
towns is available in Grafius et al. (2017, 2016). From climatic perspective, the
three towns are located within temperate oceanic climate (Koppen—Geiger
climate classification system) with the highest monthly average air temperatures
of approximately 22 °C in July and lowest temperatures of approximately 1 °C
observed in February, and the average annual precipitation of 597.6, 657.4 , and
712.3 mm for BD, MK and LT respectively.
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Figure 2-1 Location of the study area displayed over a backdrop of the NIR-
Red-Green band composite image of the Landsat 8 dataset acquired on 8
Jul 2013. The outlines shown correspond to the extent of the high-
resolution hyperspectral aerial imagery available for the three towns
limiting the area to which the downscaling procedure could be applied.

Bedford, Luton and Milton Keynes close-ups are shown to scale.

2.2.2 Data used in LST mapping and downscaling

LST maps at medium spatial resolution were derived from TIR bands of Landsat
8 scenes (WRS path 202 row 24) comprising Milton Keynes, Bedford and Luton,
acquired from USGS Earth Explorer for two winter and two summer dates (Table
2-1), which allowed for testing of the downscaling methodology under various
thermal and phenological conditions. Selection of the dates was restricted by the
availability of cloudless images for all three towns captured in a single scene.
Total atmospheric water content required for the conversion of the thermal bands
of satellite imagery to land surface temperature was estimated from the Near
Infrared Total Precipitable Water Vapour Test Result (MODO0O5 L2) dataset
derived from Terra MODIS satellite at 1km spatial resolution (Table Apx A-1).
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Emissivity values required for the conversion of thermal radiances to land surface
temperature were estimated from the MODIS UCSB Emissivity Library that stores
emissivity values of common land cover materials for a high range of spectral
bands. LST downscaling was carried out based on high resolution auxiliary
datasets, referred here to as LST predictors, acquired from two different sources.
Firstly, hyperspectral aerial imagery covering the visible (VIS), near infrared (NIR)
and short wave (SWIR) infrared spectra was acquired in July and September
2012 with the Eagle (253 bands in the range of 0.4—1 um) and Hawk (233 bands
in the range of 1-2.5 um) sensors mounted on the NERC Airborne Research and
Survey Facility (ARSF) Data Analysis Node airplane. Spatial resolutions of the
data ranged from 2m for the Eagle (4m in Luton) and 4m for the Hawk sensors.
Secondly, the Ordnance Survey MasterMap topographic map was used to map
the locations of paved urban surfaces and buildings as well as surface water

within the three towns at 2m spatial resolution.

Table 2-1 Spatial datasets used in land surface temperature mapping and

downscaling for Milton Keynes, Bedford and Luton.

Dataset Spatial coverage Date of acquisition  Time of acquisition  Spatial resolution
Hyperspectral aerial Milton Keynes 24 Jul 2012 14:00-16:03 2m VIS and NIR
imagery 26 Jul 2012 09:39-11:52 (BD and MK)
Luton 05 Sep 2012 10:47-12:19 ?L”;)V'S and NIR
Bedford 06 Sep 2012 13:18-15:43 4 m SWIR
06 Jun 2013 11:00
Milton Keynes, 08 Jul 2013 11:00 30m VIS-NIR-SWIR
Landsat 8
Bedford and Luton 02 Feb 2014 10:59 30 (100) m TIR
19 Jan 2015 10:58
06 Jun 2013 12:00
MODIS NIR water Milton Keynes, 08 Jul 2013 12:00 1 km
vapour (MODO05_L2)  Bedford, Luton 02 Feb 2014 12:00
19 Jan 2015 12:05
OS MasterMap Milton Keynes, 2006 Not applicable 1:1,250- 1:10,000

Bedford, Luton scale

2.2.3 Methodology for land surface temperature mapping at medium
spatial resolution

Availability of two TIR bands in Landsat-8 imagery allowed for the implementation
of the split window algorithm as described in Jimenez-Munoz et al. (2014) to this

case study (Figure 2-2). Emissivity for bands 10 and 11 of Landsat 8 sensor was
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estimated with the simplified NDVI thresholds method, as presented in Sobrino
et al. (2008), with a modification to allow for the assignment of emissivity values
for pixels occupied by water as well as built-up areas rather than soil (refer to

Section 1 in Appendix A for the detailed description of the undertaken approach).

Landsat8
TIR
30(100)m

MODIS

Water Vapour > mean i) WaterVapour
1km i i per town

Split
window >
algorithm  §

LST
30(100)m

Emissivity
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)
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MODIS UCSE |
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Figure 2-2 Schematic of LST mapping from satellite imagery implemented in this

study for each town and date of Landsat 8 images.

2.2.4 Methodology for land surface temperature downscaling

2.2.4.1 Preparation of LST predictors
2.2.4.1.1 Spectral indices

We selected several spectral indices describing the distribution of paved vs
vegetated areas (NDVI, NDBI, BUAEI) as well as type of surface materials (CMR,
FMR, IOR) potentially distinguishing between built-up areas and bare soil (Table
Apx A-2) as proxies for the distribution of LST values across our three towns, and
derived them both from satellite and the hyperspectral aerial imagery available
for the three towns. For consistency with the satellite data, pixel values of the
multiple hyperspectral bands of the aerial imagery equivalent to the spectral
ranges of individual bands in the Landsat 8 data were summed prior to the

calculations of spectral indices.

As a result of different acquisition dates, there was a temporal mismatch, both in
terms of months and years, between the Landsat 8-derived LST maps and

spectral indices derived from the very high resolution aerial imagery, which we
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considered as a potential limiting factor for the accuracy of our downscaled maps,
especially important for the winter scenes, due to different ground conditions in
terms of vegetation development stages and paved area extent. We therefore
devised a procedure whereby the spectral indices derived from aerial imagery
were adjusted to the values of equivalent Landsat-8 indices for each date and
town, addressing the differences in spectral indices due to the different
phenological stages of vegetation in different seasons of the year represented by

the satellite imagery.

The adjusting procedure for the very high resolution spectral indices was similar
to the regression kriging method (model B in Odeh et al. (1995)) whereby (1) the
aerial-based spectral indices were aggregated to the spatial resolution of
corresponding Landsat 8-based indices (30m) with the use of a mean function
within corresponding 30x30m blocks of pixels, (2) differences, i.e. residuals,
between the Landsat 8-based indices and aggregated aerial-based indices were
calculated, (3) the residuals were kriged with the ordinary kriging method
(Cressie, 1988) and saved as raster layers at a spatial resolution of the aerial
imagery-based indices (2m), and (4) the kriged residuals were added to the aerial
imagery-based indices at their native very high resolution. Kriging of the residuals
ensured the distribution of the differences in spectral indices values was based
on their spatial dependency, avoiding the introduction of box-shaped artefacts
sourced from the Landsat 8-derived spectral indices (Mukherjee, Joshi and Garg,
2015a), whilst retaining the expected “crisp” character of the indices at the higher
resolution, provided that the variogram parameters (nugget, sill and range) were
set to minimise the error of the fitted model. The adjusting procedure was applied
individually for each index, town and date, yielding 24 (6 indices x 4 dates) raster
maps for each town. Since the kriged residual layer was saved at 2m resolution,
any indices that included SWIR wavebands captured at 4m resolution by the
Hawk sensor, acquired an intermediary resolution of 2 to 4m. The performance
of the adjusting procedure was evaluated based on the comparison of correlation
coefficients derived between pairs of Landsat 8-derived spectral indices and the

upscaled to 30m resolution (mean of very high resolution pixels within
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corresponding 30m pixels) adjusted or original (unadjusted) spectral indices

sourced from the aerial imagery.

2.2.4.1.2 Maps of water and manmade surfaces

Manmade and water percent cover raster maps at a 2m spatial resolution were
derived from the OS MasterMap topographic maps available in a vector format
for the three towns. The generation of these maps involved a series of GIS
operations whereby the percentage coverage of land cover classes generally
perceived as impervious (buildings, roads, paths, railways and structures) or as
water (inland water) were calculated within 2x2m polygons corresponding to pixel
locations in the aerial hyperspectral imagery, and subsequently converted to
raster maps representing the percentages at the scale of 0 to 1. This method of
map production, as opposed to a simpler method of vector to raster conversion,
ensured accountability for mixed pixels as well as continuity of narrow linear

features such as paths, narrow roads and streams.

2.2.4.2 Land surface temperature downscaling using regression methods

In our downscaling methodology, we assessed the performance of multivariate
regression adaptive splines (MARS), to produce LST maps at high spatial
resolution (2-4m) from LST maps at medium (30(100)m) spatial resolution. We
refer to the medium resolution as 30(100)m due to the fact that the Landsat 8 TIR
bands used to map LST in this study are captured at 100m resolution and are
subsequently resampled to 30m by data supplier with the bilinear convolution
method to match the resolution of the remaining spectral bands. The downscaling
procedure comprised three stages: (1) model development (Figure 2-3), (2)
model deployment and downscaled map generation, and (3) post-processing of

the downscaled maps.
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Figure 2-3 Schematic of the LST downscaling model.

In the first stage, model development, the relationship f()mars between LST30(100)m
and LST scaling factors were established MARS regression methods (Equation
2-1). Models for the two summer and two winter dates were implemented in the
Statistica 64 software separately for each town. It has to be noted that we used
all data pixels to develop the models, which increased the processing time to up
to several days per town on a 64GB RAM 12 Core-processor PC. The processing
time was increased due to the fact that very high resolution, rather than upscaled
to the LST data resolution, ancillary datasets were used in model development,
which constitutes a marked methodological difference to numerous published
methods (Kustas et al. (2003); Agam et al. (2007); Mukherjee et al. (2014);
Bonafoni et al. (2016)).

Equation 2-1

LST30(100)m =
fmars (BUAEIZ/4ma, CMR2/4ma, FMR2/4ma, IORZma, MNMD,,,, NDBIZ/4ma, NDVIZma, WTR,,,)

, where:

LSTso0000m — Landsat 8-derived land surface temperature at its native coarse

spatial resolution,

BUAEI24ma — built-up area extraction spectral index at 2/4m spatial resolution,
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CMR24ma — clay minerals ratio spectral index at 2-4m spatial resolution,
FMR2ama — ferrous minerals spectral ratio index at 2-4m spatial resolution,
IOR2/4ma — iron oxide ratio spectral index at 2-4m spatial resolution,

MNMD:2m — percentage of impervious “manmade” surfaces within a 2m resolution

pixel,

NDBl2iama — normalised difference built-up spectral index at 2-4m spatial

resolution,

NDVIzma — normalised difference vegetation spectral index at 2m spatial

resolution,
WTR2m — percentage of water within a 2m resolution pixel.

All the above spectral indices at 2 or 2 to 4 m spatial resolution were extracted
from hyperspectral aerial imagery and adjusted for on-the-ground conditions at
dates of interest adding the kriged difference between these and equivalent

Landsat8-derived indices.

In the second stage, model deployment and map generation, the
downscaled LSTyarsz/ama Values were predicted in Statistica Software using

equations listed in Appendix A Tables A-4 — Apx A-6 and mapped as 2m

resolution raster maps, using the ‘raster’ and ‘sp’ packages in R software.

In the post-processing stage, the core L?TMARSZMM downscaled maps were
adjusted for residuals ALST3¢(100)m Calculated between the Landsat 8 derived
maps LST30(100)m @nd upscaled predicted maps L?Tgo(loo)m to match the spatial

resolution of the Landsat 8 — derived LST maps, to generate the LST'yarsz/4m

map (Equation 2-2 and 2-3).

Equation 2-2

ALST30(100ym = LST30(1000m — LST30(100)m
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Equation 2-3
L/S\TI(/IARSZ/A}m = LTS\TMARSZ/A%m + ALST30(100)ym

The predicted LSTyagrs2 /4m Maps were upscaled to L’S\Tgo(loo)m by first resampling
to 100m spatial resolution at which the Landsat 8 TIR data are captured, and
subsequently resampling to 30m resolution to generate L?Tg,o(loo)m using the
bilinear convolution method, consistent with the resampling method of the TIR
bands carried out by the Landsat 8 data provider. These L?T30(100)mmaps were
then resampled to 2m spatial resolution with the nearest neighbour method,
which maintained the pixel values at 30m spatial resolution, to enable the

calculation presented in Equation 2-3.

For method comparison purposes, we also developed MARS models using
scaling factors at 30m spatial resolution, and multiple regression (MR) models
developed with very high resolution scaling factors that were or were not adjusted
for the temporal mismatch between acquisition dates of aerial and satellite

imagery.

2.2.5 Verification of the results

Due to the unavailability of alternative land surface temperature datasets, other
than the Landsat 8-derived LST maps, that could have been used to
independently validate the downscaled LST maps, the performance of the MARS
models was verified by the adjusted R squared metric returned at the stage of
model development as well as the calculation of the root mean square error
(RMSE) between the Landsat 8-derived and downscaled maps. RMSE was
calculated in two modes. Firstly, RMSE24m was calculated from differences
between the observed LST30(100)m » rfeSampled to 2m spatial resolution with the
nearest neighbour method to enable the calculations presented in equations 2-

4 and 2-5, and downscaled maps LSTuagsz/4m (EQuation 2-4).
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Equation 2-4

1 —
RMSEyjam = (221 (S Tsoca00m — ESThannsejom)?

Secondly, RMSE; ,,,, was calculated as a comparison between the Landsat 8-
derived maps and downscaled and adjusted for residuals (ALST30(100)m)

maps LST'yars2/sm (EQuation 2-5).

Equation 2-5

’ 1 T ol
RMSE2/4m = J;Z?’:l(LSTso(mo)m — LST MARSZ/4m)2

2.3 Results and analysis

2.3.1 LST predictors

Prior to inclusion in the LST downscaling models, spectral indices derived from
hyperspectral imagery at 2 to 4 m spatial resolution were adjusted for the values
of equivalent spectral indices derived from available satellite images to correct
for temporal mismatch caused by different years and seasons of data acquisition.
We analysed correlation coefficients calculated between pairs of the satellite-
derived indices and the aggregated adjusted or original spectral indices derived
from the very high resolution hyperspectral data to find that the adjusting
procedure was highly successful achieving correlation coefficients as high as
0.80-0.99 for multiple spectral indices, especially in the summer (Table Apx A-3),
with some improvement observed in winter. Scatterplots constructed between
pairs of equivalent Landsat 8 and aerial imagery-derived spectral indices, both
before and after application of the adjustment procedure (Figures Apx Al-4),
confirm that in many cases, and especially for the summer dates, the ranges of
values of the latter set of indices were satisfactorily matched to the ranges of the
satellite-derived indices, achieving a nearly one-to-one relationship in the case of
IOR, FMR and NDBI, with NDVI achieving strong, albeit slightly weaker,
agreement. The improved predictive power of the adjusted spectral indices was
confirmed by adjusted R? values obtained by multiple regression models
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constructed with both adjusted and non-adjusted spectral indices, which doubled
from circa 0.35 to 0.6-0.8 for summer conditions (Figure Apx A-5).

The importance of all predictors in the MARS LST downscaling models was
indicated by the frequency of use of each predictor in the basic functions forming
model equations (Table Apx A-4) in MARS2/ama models. All input predictors were
consistently used 0 to 5 times in each model developed for each town and each
date considered, which highlighted the importance of consideration of multiple
predictors in LST downscaling models as each factor may carry useful

information in different areas of the data feature space.

2.3.2 Performance of LST downscaling models

The performance of MARS24ma models used to downscale LST from a medium
spatial resolution (100(30)m) to very high spatial resolution (2 to 4m) was
assessed by the adjusted R? metric returned by the models at the model
development stage as well as root mean square errors calculated between the
downscaled and observed values. Adjusted R? values (Figure Apx A-5) reveal
that models developed for summer months had a stronger predictive power than
models developed for winter months, with the adjusted R? ranging between 0.64
to 0.84 for summer and 0.06 to 0.21 for winter, depending on town and date. In
the summer, the highest model performance was obtained for Luton, for which
the effective spatial resolution of all high resolution spectral indices was 4m,
which decreased the scale effect between the observed and target resolutions
(Zhou et al., 2016) from 50 to 25. Otherwise, it could be assumed that the
MARS24ma models can explain 65 to 70% of the variance in LST when the
majority of predictors is derived at 2m resolution. Poor model performance in
winter, however, could be explained by lower dependence of LST on the
differences in land cover due to reduced development of foliage as well as
potential importance of anthropogenic sources of heat, such as heating of
buildings, that were not captured by spectral response of imagery in visible to
shortwave infrared regions of the light spectra, from which the spectral indices
used in this study were derived. The satellite-derived LST images for the winter

dates were also affected by striping, caused by the stray light error of the Landsat
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8 thermal bands (Montanaro et al., 2014), and these artefacts likely weakened
the relationship between LST and LST predictors used in this study, making the

model performance results obtained for winter inconclusive.

Root mean square errors (RMSE) calculated for the unprocessed downscaled
maps (Table 2-2) confirmed the observations based on the adjusted R? values
that, in the summer, MARS24ma models had the highest performance, and that
adjusting procedure of the high-resolution spectral indices for the values of
equivalent satellite-derived indices to correct for the temporal mismatch between
collection dates of the aerial and satellite imagery was highly effective in
enhancing the accuracy of the downscaled LST maps, yielding an improvement
in the range of 0.62 to 1.27K depending on town and date. In winter, the RMSE
ranged between 0.44-0.63K across all three towns and did not vary with the

modelling approach, confirming poor predictive power of these models.

Table 2-2 RMSE calculated for the pairs of observed and downscaled LST values:
A) unprocessed downscaled maps obtained with the MARS,uma models and B)
downscaled maps obtained with the MARS,4ma models with added residuals. The
Ratio columns specify the value of the ratio calculated between the RMSE and

standard deviation of the observed LST values for each town and date.

A Unprocessed downscaled maps

Town Bedford Luton Milton Keynes

Method MARSadj Ratio MARSadj Ratio MARSadj Ratio
FEB 0.44 0.88 0.52 1.04 0.57 0.95
JAN 0.45 0.90 0.61 1.02 0.62 1.03
JUN 1.83 0.52 1.44 0.42 1.78 0.59
JUL 1.72 0.59 1.40 0.39 1.54 0.59
B Downscaled maps adjusted for residuals

Town Bedford Luton Milton Keynes

Method MARSadj Ratio MARSadj Ratio MARSadj Ratio
FEB 0.13 0.26 0.08 0.16 0.13 0.22
JAN 0.07 0.14 0.17 0.28 0.09 0.15
JUN 1.21 0.35 0.76 0.22 1.08 0.36
JUL 1.18 0.41 0.84 0.23 0.96 0.37

Interpretation of the RMSE values can be facilitated by comparison of ratios

between RMSE and standard derivation of reference LST data (in our case the
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satellite-derived LST), for which values close to 1 indicate low model performance
(Bonafoni and Tosi, 2017). These confirmed low model performance for winter
images, and indicated that models derived for summer had fair performance.
After correction for the residuals, both the RMSE and the RMSE to LST standard
deviation ratios dropped considerably, especially for winter images. In the
summer, a degree of error persisted somewhat even after the correction,
indicating that the downscaling approach did not capture all of the underlying

variability of LST at the very high resolution.

Further insight into the performance of the downscaling models is offered by LST
density plots (Figure Apx A-6) that allow for comparisons of the distributions of
the observed and modelled LST values across the entire range of possible
values. These plots indicated that the RMSE values in the unprocessed
MARS24ma maps derived for summer are largely driven by misrepresentation of
the extreme observed LST values and that this method vyielded good
resemblance of the distributions of the most frequent values in the observed LST
images. These plots also confirmed the superiority of the MARS2/4mamethod over
multiple regression models, derived with the same set of LST predictors, which
misrepresented the distribution of both the mid-range and extreme LST values,
as well as the importance of the correction of temporal mismatch between the
capture dates of the aerial and satellite imagery affecting the fine resolution
spectral indices used in LST downscaling. The plots also confirmed that all
models derived for winter predicted values close to the mean of observed LST

values and did not capture the range of variation in the observed LST.

2.3.3 LST mapping at medium and very high spatial resolution

Visual assessment of the downscaled maps (Figure 2-4Figure 2-5) reveals that
the main LST patterns as seen in the satellite-derived images were well reflected
in the downscaled images, especially in the summer, and that these
corresponded well with the locations of the main types of land cover, with
vegetated areas being typically cooler than paved. In winter, the LST variation of
the downscaled maps did not match the observed patterns just as well and only

major differences due to the occurrence of water bodies or built-up areas were
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marked in the modelled maps. Another difference between the observed and
downscaled LST images is that the latter appear not to have represented the
warmest and coolest areas of the satellite-derived maps correctly. These findings
are reflected in standard deviations of the downscaled LST maps (Tables Apx A-
8 and 9), which are lower than in the observed images, especially for winter (0.1-
0.2K as opposed to 0.5-0.6K), whereas for the summer are closer in magnitude
to the observed values (2.1 — 3.3K as compared to 2.6 — 3.6K). The downscaled
maps, however, have an advantage over the satellite-derived images in that they
do pick out the detail of urban fabric, including the outlines of individual buildings,
paved and green spaces (refer to Figure Apx A-7)), making them suitable for

urban thermal environment studies at much needed local scales
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Figure 2-4 Comparison of satellite-derived (observed) and downscaled LST
images derived with the MARS.uma models constructed with adjusted spectral
indices at 2to 4m spatial resolution for Bedford, Luton and Milton Keynes derived

for summer dates. Land cover maps are shown for comparison of LST with the

patterns of urban fabric.
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Figure 2-5 Comparison of satellite-derived (observed) and downscaled LST
images derived with the MARS.uma models constructed with adjusted spectral
indices at 2to 4m spatial resolution for Bedford, Luton and Milton Keynes derived

for winter dates. Land cover maps are shown for comparison of LST with the

patterns of urban fabric.
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2.4 Discussion

2.4.1 Downscaling factor

The primary goal of this study was to generate very high spatial resolution LST
maps for urban areas based on medium spatial resolution satellite observations
and very high resolution auxiliary data. Our target spatial resolution of 2 to 4m
was driven by the spatial resolution of the available ancillary hyperspectral aerial
imagery, which was 2m for the visible and near infrared, and 4m for the short
wave infrared spectra. Given that our LST downscaling approach was based on
observed LST at 100m resolution, the downscaling factor, defined as the ratio
between the observed and downscaled spatial resolution (Zhou et al., 2016;
Bonafoni and Tosi, 2017), was at an unprecedented 25/50. The downscaling
factor has its implications on the accuracy of the downscaled maps, measured
by RMSE, with larger differences between the source and target resolutions
resulting in lower accuracies of the downscaled images. This could be partially
explained by the scale effect and the assumption of conditionality of the scale-
invariant relationship between LST and its descriptors (Zhou et al., 2016).
Temperatures over the land surface can vary strongly and abruptly over space
(Prata, Casellescoll, Sobrino, & Ottle, 1995), and this variation can be lost at
spatial resolution of satellite TIR sensors. Indeed, Agam et al. (2007) attributed
the increasing RMSE of downscaled LST maps with the increasing downscaling
factor due to the increased variability of LST values at higher as compared to
lower spatial resolutions. This poses a practical difficulty for the development of
downscaling models in the extreme LST ranges of fine resolution LST values due
to the lack or low availability of data pixels characterised with such values at
coarser resolutions (Liu and Pu, 2008; Mukherjee et al., 2015b; Hutengs and

Vohland, 2016) regardless of the implemented downscaling method.

2.4.2 Accuracy of the downscaling approach

Despite the high downscaling factor, the RMSE resulting from our approach for
the summer dates was comparable or lower than RMSEs found in the other
published urban studies, although it has to be noted that all studies listed below

either used independent LST maps to validate their downscaling results or
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developed their downscaling models on upscaled LST data and verified the result
with the original dataset, which limits comparability of our assessments. For
example, spectral unmixing method applied by Deng and Wu (2013) to
downscale a Landsat TM image down to 4m spatial resolution yielded with RMSE
of 2K, and Bonafoni and Tosi (2017), achieved RMSE of 2.96, 2.85, and 2.71K
when using the same principle to downscale LST at 40m, 30m, and 20m to 2m in
an urban environment. Other urban LST studies, pertaining to coarser resolutions
of output LST maps and scaling factors ranging from 2 to 12 as well as application
of various LST downscaling methods, achieved RMSE ranging between 1.28 and
3.9K (Yang et al., 2010; Zhan et al., 2012; Keramitsoglou and Kiranoudis, 2013;
Weng and Fu, 2014; Bonafoni, 2016; Yang et al., 2017). In winter, however, the
low effectiveness of the downscaling method could have resulted from poor
correlation between spectral indices and the reduced ranges of observed LST as
compared to summer. This is consistent with lower correlations between the
Urban Impervious Surface index in winter than summer LST observed in a
selection of Chinese urban areas (Ma et al., 2016) as well as lower performance
of LST downscaling procedure observed by Yang et al. (2017) explained by
worse performance of such methods when LST magnitudes are lower or when
the values of LST are altered by ice and snow cover. Another explanation for poor
performance of our downscaling approach in winter could be the previously
mentioned stray light error affecting the Landsat 8 thermal sensors and resulting
with discernible ghosting within LST maps generated from the TIR bands. In our
data this problem was especially visible in the winter-time LST maps, which in
turn would have introduced noise into MARS models constructed for the winter

scenes, lowering their overall accuracy.

The accuracy of the downscaled LST maps can also depend on the downscaling
process (Zhou et al., 2016) which includes the type and number of selected LST
descriptors and the applied regression method (Zhan et al., 2013). We chose to
use a combination of previously utilised spectral indices, such as NDVI and NDBI
as well as land cover fraction within pixels coupled with indices not utilised in
previous studies (CMR, FMR and IOR). Our results suggested that in urban areas

dominated by a mosaic of vegetated, paved and built-up spaces, NDBI and FMR
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next to NDVI can be important as LST predictors in downscaling studies,
especially in the summer. This finding is consistent with other studies that used
NDBI alongside NDVI and other spectral indices as a downscaling factor and
obtained reduced RMSE as compared to methods using solely NDVI (Bonafoni
et al., 2016). Good performance of FMR can be explained by the fact that,
similarly to NDBI, it is composed of a ratio between short-wave and near-infrared
bands, that have been shown to contribute to higher performance of LST
downscaling procedure using random forests presented in Hutengs and Vohland
(2016). Combination of multiple LST predictors contributed to lowering of RMSE,
which is consistent with many other LST downscaling studies (Yang et al., 2010;
Hutengs and Vohland, 2016; Bonafoni and Tosi, 2017) where the use of several
LST predictors showed an improvement over the standard methods of DisTrad
(Kustas et al., 2003) or TsSHARP (Agam et al., 2007) utilising NDVI as the sole
input. In our case study, the MARS method confirmed findings of other LST
downscaling studies that using non-linear regression methods such as artificial
neural networks (Kolios, Georgoulas and Stylios, 2013) or random forests
(Hutengs and Vohland, 2016) can reduce the RMSE of the downscaled map as
compared to multiple regression methods, when coupled with multiple LST
predictors.

2.4.3 Adjustment for temporal mismatch between satellite and
ancillary data

We also implemented a novel method for making adjustments for the temporal
mismatch between available LST data at a coarse spatial resolution and very high
resolution LST downscaling factors by adjusting the values of very high spatial
resolution spectral indices for the values of equivalent coarse resolution spectral
indices derived for the target dates by means of spatial interpolation of differences
between images in question. Typically, in LST downscaling studies, spectral
indices used as downscaling factors and LST data are derived from temporally
matching datasets (Kustas et al., 2003; Agam et al., 2007; Yang et al., 2010;
Mukherjee et al., 2014). As so far, Bonafoni et al. (2016) addressed the temporal
mismatch between Landsat-derived and airborne LST maps by averaging the

Landsat-derived LST captured on the closest possible dates before and after the
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acquisition date of the airborne LST image. This, however, was carried out for
validation rather than LST-downscaling purposes and was only possible due to
seasonal similarity of all the images. Using spectral information captured at
various dates to fill in missing spectral information at a date of interest is not
uncommon in remote sensing and can be, for instance, implemented for the
purpose of cloud cover and cloud shadow correction. This can be done by
replacing the missing information within one image with spectral information of
another with the application of image fusion within transition zones to account for
differences in image colour (Tseng, Tseng and Chien, 2008), information cloning
whereby temporal correlation of multitemporal images is utilised to fill in the gaps
(Lin, Tsai, Lai, & Chen, 2013), or by contextual reconstruction of cloud-
contaminated multitemporal images by reproduction of local spectro-temporal
relationships between the considered image and a opportunely selected subset
of remaining temporal images (Melgani, 2006). Our method of spectral indices
adjustment allows for application of LST downscaling for multiple dates without
the necessity of repeated acquisition of very high resolution multispectral

imagery, at least for seasons with developed green vegetation.

2.5 Conclusions

The main objective of this study was to generate very high resolution land surface
temperature maps for three English towns, Milton Keynes, Bedford and Luton,
suitable for determination of the local temperature regulation ecosystem service
of urban greenspaces. We applied the multivariate adaptive regression splines
method to downscale LST derived from 100m resolution satellite thermal images
down to 2 to 4m spatial resolution, with the use of spectral indices derived from
high resolution aerial imagery as well as fractional cover of paved and water
surfaces, achieving satisfactory results for images captured in the summer and
poor performance for winter-time images. The proposed novel technique for
addressing non-matching dates of satellite and aerial imagery used in LST
downscaling, consisting of adjusting the spectral indices derived from aerial
imagery for kriged residuals calculated from the comparison to equivalent

spectral indices derived from the reference satellite imagery, performed
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satisfactorily and contributed to increased model performance statistics for
months with developed vegetation cover. We confirmed that inclusion of multiple
spectral indices, and especially ones that are composed of the NIR and SWIR
wavebands, can improve the accuracy of the downscaled LST maps. Further
improvements to the proposed methodology could involve enhancements to the
adjusting procedure of very high resolution spectral indices for the values of
equivalent coarse resolution indices derived for the dates of interest as well as
incorporation of additional land surface temperature indicators capable of
explaining portions of the spatial variation of LST that cannot be represented by
spectral indices, such as maps of anthropogenic sources of high or low heat

areas.
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