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A B S T R A C T   

Hydrogen energy technologies are forecasted to play a critical supporting role in global decarbonisation efforts, 
as reflected by the growth of national hydrogen energy strategies in recent years. Notably, the UK government 
published its Hydrogen Strategy in August 2021 to support decarbonisation targets and energy security ambi-
tions. While establishing techno-economic feasibility for hydrogen energy systems is a prerequisite of the pro-
spective transition, social acceptability is also needed to support visions for the ‘hydrogen economy’. However, to 
date, societal factors are yet to be embedded into policy prescriptions. Securing social acceptance is especially 
critical in the context of ‘hydrogen homes’, which entails replacing natural gas boilers and hobs with low-carbon 
hydrogen appliances. Reflecting the nascency of hydrogen heating and cooking technologies, the dynamics of 
social acceptance are yet to be explored in a comprehensive way. Similarly, public perceptions of the hydrogen 
economy and emerging national strategies remain poorly understood. Given the paucity of conceptual and 
empirical insights, this study develops an integrated acceptance framework and tests its predictive power using 
partial least squares structural equation modelling. Results highlight the importance of risk perceptions, trust 
dynamics, and emotions in shaping consumer perceptions. Foremost, prospects for deploying hydrogen homes at 
scale may rest with coupling renewable-based hydrogen production to local environmental and socio-economic 
benefits. Policy prescriptions should embed societal factors into the technological pursuit of large-scale, sus-
tainable energy solutions to support socially acceptable transition pathways.   

1. Introduction 

Researchers have examined the feasibility of hydrogen-based energy 
systems since the 1970s [1,2], with industrial and academic interest in 
applications such as long-term storage of electricity in power systems 
[3,4] and low-carbon steel production [5,6] increasing within recent 

years. Foreseeably, harnessing the potential of hydrogen for decarbon-
isation purposes [7–9] may help confront the ‘super wicked problem’ of 
climate change [10]. Notably, Levin et al. [11] specify four parameters 
to the climate challenge: (1) time is running out; (2) those who create 
the problem are intertwined in solving it; (3) a lack of central authority 
and weak global commitment; and (4), a tendency towards irrational 
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discounting that inhibits more immediate action.1 

The emergence of hydrogen energy technologies (HETs) in the global 
policy arena follows several decades of scientific interest towards pro-
moting a transformative and sustainable ‘hydrogen economy’ 
[2,12–14]. As described by the International Energy Agency (IEA), 
seizing this opportunity is now widely recognised as imperative to the 
low-carbon transition [15], with prospects for supporting a more secure, 
resilient, and cost-effective energy system [16,17], through multi- 
sectoral developments across the global hydrogen economy [7,18,19]. 

The potential role of hydrogen in combatting climate change is best 
reflected by the recent uptake of national (hydrogen) strategies [19–21], 
as described in Supplementary Note 1 (SN1). Of foremost relevance to 
this study, the UK government set an initial hydrogen production target 
of 5GW for 2030, following the release of its national Hydrogen Strategy 
in August 2021 [22]. However, following Russia’s invasion of Ukraine, 
which has dramatically altered the global energy landscape,2 the target 
has been doubled to 10GW3 [23]. Specifically, the UK government 
suggests hydrogen could account for 20–35 % of UK final energy con-
sumption (~250–460TWh) by 2050, in support of reaching the coun-
try’s net-zero target [24]. Relatedly, Chapman et al. [25] suggest 
hydrogen could account for 2 % of global energy consumption under a 
scenario where 30 % hydrogen is blended into city gas. 

The UK also has growing ambitions to leverage the potential of cross- 
border trade opportunities with Europe [26]; reflected by plans to 
develop a 2000 km hydrogen network to link major UK industrial 
clusters with the European hydrogen backbone (EHB) [27,28].4 These 
developments could help realise the UK government’s vision to increase 
low-carbon hydrogen demand to 38TWh by 2030, with the industrial 
sector accounting for up to 21TWh, before growing overall demand to 
55–165TWh by 2035. 

Embedded in its Energy Security Bill, the UK government is sup-
porting a portfolio of low-carbon technologies, through legislation 
committed to enacting “a secure, clean and affordable” long-term energy 
future [29]. Critically, the landmark Bill includes legislative measures to 
support a village-scale trial for hydrogen homes in the North of England 
[30], ahead of a strategic decision on the role of domestic hydrogen in 
2026 [22]. However, several socio-technical barriers to the transition 
persist [19,31] including the need to secure social acceptance, which is 
configured by interactions across socio-political, market, community, 
attitudinal, and behavioural dimensions [32,33]. 

Energy transition scholars posit that social acceptance [34,35] in-
volves “multi-dimensional, dynamic processes” [36] which are “com-
plex, multi-level, and polycentric” in nature [[37]:287]. Accordingly, 
social acceptance can be characterised as a multi-actor process [38] 
operating across the macro-, meso- and micro-levels [36]. Synthesising 
recent contributions to the literature [33,39–41], this study contends 
that consumer attitudes towards domestic hydrogen will involve a spe-
cific interplay between different acceptance dimensions and factors. On 
the one hand, deploying hydrogen homes will involve the ‘human factor’ 
in technology adoption [42],5 which links strongly to attitudinal and 

behavioural acceptance at the household level [32,33]. At the same 
time, broader factors such as social trust and community benefits will 
influence public perceptions [41], as witnessed in the case of onshore 
wind siting [43].6 

Although conceptual understanding of domestic hydrogen accep-
tance has emerged [33,44], empirical studies are yet to examine which 
constructs may prove the most salient predictors of consumer attitudes 
[39]. Bridging the gap between social acceptance theories [33,45,46] 
and recent contributions to the hydrogen futures literature [39,47], this 
research sets out to advance theoretical and empirical understanding of 
domestic hydrogen acceptance. The study employs partial least squares 
structural equation modelling (PLS-SEM) [48,49] to develop and test the 
predictive power of a conceptual framework, hereafter referred to as the 
Domestic Hydrogen Acceptance Model (DHAM). 

The DHAM is employed to determine the extent to which cognitive 
processes, social capital, environmental attitude, risk perception, cost- 
benefit appraisal, and affective response influence domestic hydrogen 
acceptance. The main motivation is to establish which constructs best 
predict support for hydrogen homes. Accordingly, the study develops a 
“theory-driven, data-grounded model” to advance understanding on 
sustainable energy acceptance [50]. In addition to advancing conceptual 
understanding, this analysis presents policy makers and key stake-
holders with critical insights for realising national hydrogen economies 
and the wider energy transition. 

Following this introduction, Section 2 provides an overview of 
theoretical and methodological developments in hydrogen acceptance 
studies, while Section 3 develops a series of hypotheses based on liter-
ature review findings. Next, Section 4 presents the conceptual frame-
work, while Section 5 describes the methodology. Section 6 reports and 
discusses the results of the DHAM, while Section 7 concludes by high-
lighting the theoretical, empirical, and practical implications of the 
study. 

2. Theoretical and methodological developments in hydrogen 
acceptance studies 

Reviewing the early hydrogen futures literature [51,52], Ricci et al. 
[[53]:5878] concluded that conceptualisations of hydrogen energy 
technology (HET) acceptance overlook several “key aspects and di-
mensions by which people make sense of new technologies and consume 
them.” Furthermore, survey studies on HET acceptance have been 
critiqued for lacking a whole-systems perspective, whereby focus on a 
specific end-use technology (i.e. hydrogen fuel cell vehicles and fuelling 
stations) neglects wider interactions across the hydrogen economy and 
energy system [53]. Subsequently, Roche et al. [54] called for accep-
tance studies to integrate a whole-systems perspective of HETs, while 
also advocating for expansion beyond frameworks rooted in social 
psychology,7 risk perceptions, and economics. 

More recently, through a narrative review of 27 quantitative studies 
conducted since 2005, Scovell [39] reinforced the need to expand HET 
acceptance beyond narrow analyses on transport applications. Empha-
sising this point, Emodi et al. [47] carried out a systematic literature 
review, wherein only five studies (N = 43) concentrated on residential 
hydrogen. Such contributions highlight the limitations of prior survey 
studies, advocating for deeper exploration into the salient constructs of 
HET acceptance and interactions between acceptance dimensions. 

Crucially, Scovell [39] laid the groundwork for systematically 
examining the relationship between socio-psychological factors and 
HET acceptance. Foremost, each of the 27 studies included in his review 
[39] operationalised the conceptual tenets presented in the 

1 Jakimowicz [351] also discusses the energy transition as super wicked 
problem, when considered as part of a prosumer capitalism paradigm.  

2 In the aftermath of COVID-19 [168] and following the macro-economic 
shock of the ongoing Russia-Ukraine conflict [169,386], the geo- 
technological, economic, and political stakes of the global hydrogen economy 
are especially high for European nations [387], as further detailed in Supple-
mentary Note 2.  

3 Of which at least 5GW should be sourced from electrolytic (i.e. ‘green’) 
hydrogen. Additionally, the Scottish Hydrogen Action Plan (December 2022) 
[130] aims for at least 25GW of installed renewable and low-carbon hydrogen 
production by 2045.  

4 The EHB envisions close to 40,000 km of hydrogen pipeline infrastructure 
across 21 countries by 2040 to support the decarbonisation agenda [26,27].  

5 Specifically, Lutzenhiser [42] discuss residential energy consumption as 
operating through macro-social and micro-behavioural processes. 

6 For example, Fournis and Fortin [43] describe cross-scalar interactions for 
deploying onshore wind farms, which span macro-economic, meso-political, 
and micro-social levels.  

7 i.e. models for attitude formation and behavioural intention. 
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Comprehensive Technology Acceptance Framework (CTAF)8 and its 
predecessors [44] such as the Technology Acceptance Model (TAM) 
[55]9 and the Unified theory of Acceptance and Use of Technology 
(UTAUT) [56].10 Notably, Venkatesh and colleagues [57] advanced a 
second iteration of the UTAUT (i.e. UTAUT2), before proposing a multi- 
level framework for analysing technology acceptance in the consumer 
context [58]. In parallel, researchers in the field of energy acceptance 
have adopted and adapted the TAM and UTAUT to examine a range of 
technologies [59–62], including smart meters and associated technolo-
gies for smart homes [63,64]. 

As summarised by Scovell [39], the CTAF synthesises well- 
established theories of human behaviour, namely the Theory of Plan-
ned Behaviour (TPB) [65], the Norm Activation Model (NAM) [66], and 
theories focused on risk perceptions [67] and related emotional re-
sponses to technology [68]. Through the lens of the CTAF, the following 
constructs were identified as salient factors of hydrogen acceptance: 
knowledge (objective and subjective); awareness; experience and 
engagement; perceived effects (risks, costs, and benefits); public trust; 
fairness; affect (i.e. emotional response); problem perception; personal 
norm; and socio-demographic factors [39]. 

In the Australian context, Lozano et al. [69] drew on the CTAF to 
develop a conceptual approach based on three dimensions of social 
acceptance (socio-political, market, and community); combining a range 
of variables including household characteristics and energy use, inno-
vator category, stakeholder trust, climate change beliefs, and environ-
mental identity. While seemingly comprehensive, the adapted version of 
the CTAF, as described above, failed to define constructs such as climate 
change beliefs and environmental identity to a specific acceptance 
dimension, while conflating risk and safety under market variables [69]. 
This lack of demarcation undermines theoretical rigour and weakens the 
validity of empirical results, since no specific hypotheses were formu-
lated, while variables were miscategorised [69]. 

While Lozano et al. [69] developed important comparative insights 
regarding public perceptions of domestic hydrogen and hydrogen for 
export in Australia, the analysis was limited to first generation multi-
variate regression analysis, which has significant limitations compared 
to SEM [70] (see Section 5.2). Despite the availability of advanced sta-
tistical methods for overcoming prior research limitations in quantita-
tive studies, as specified by Scovell [39] and evidenced in Lozano et al. 
[69], recent contributions to the hydrogen acceptance literature have 
largely failed to leverage the benefits of second-generation techniques 
such as SEM [70,71]. 

Specifically, in 2022 Yap and McLellan [72] evaluated attitudes of 
Japanese society towards the hydrogen economy using an online sur-
vey.11 The conceptual framework [72] drew on the earlier qualitative 
model of Schulte et al. [73] – albeit with a wider sense of coverage on 
knowledge, values, and related perceptions towards a future hydrogen- 
based economy12 – but the analysis was limited to descriptive statistics. 
While this research decision may be partially attributed to the 
comparative focus, the analysis also reflects a persistent failure to 
operationalise acceptance constructs within hydrogen survey studies 
[39]. 

Researchers such as Emmerich et al. [74] and Scovell [39] 
acknowledge how individual, local, and general acceptance levels will 
shape prospects for developing national hydrogen economies [70]. More 
concretely, Gordon et al. [33] identified a range of social, political, 
economic, financial, contextual, ethical, socio-psychological, and socio- 
cultural factors [33]. This inherent multi-dimensionality reflects find-
ings from other energy acceptance studies wherein a range of latent 
variables explain consumer attitudes [50,75,76]. This research in-
ternalises these dynamics by integrating a range of acceptance con-
structs to reflect the interplay between socio-political, community, 
market, and household acceptance dimensions [33,41], which are re-
flected in the hypotheses developed in Section 3 and subsequent con-
ceptual framework (see Section 4). 

Overall, this assessment of recent contributions to the literature 
supports the recommendation of Scovell [[39]:10455] to extend theo-
retical and empirical outputs on hydrogen perceptions, wherein a viable 
starting point is to examine how “different methods of production, 
storage and transport may interact to influence acceptance at different 
levels.” In response, analytical studies should reflect hydrogen’s unique 
status, as a technology with cross-cutting upstream and downstream 
impacts [39], which hold significant implications for shaping public 
perceptions and individual attitudes [32]. Critically, researchers should 
leverage the advantages of more rigorous quantitative methods such as 
PLS-SEM to advance comprehensive insights on domestic hydrogen 
acceptance (see Section 5.2). 

3. Hypotheses development 

This section reviews a range of literature materials to develop hy-
potheses for each of the exogenous constructs which compose the pro-
posed model. Semantically, ‘exploratory’ research may suggest an 
explicit focus on hypothesis generation using qualitative methods 
[70,77]. Additionally, hypothesis testing may infer the need for an 
exclusively explanatory focus [78]. However, an exploratory approach 
also entails conducting quantitative research to test emerging hypoth-
eses [70,77] under conditions of limited conceptual knowledge and 
scarce empirical [49]. In response, PLS-SEM provides a flexible (i.e. non- 
parametric) approach to support hypothesis testing and statistical con-
clusions via an exploratory, ‘causal-predictive’ research paradigm [49]. 
This research paradigm complements the ‘causal-explanatory’, retro-
spective focus of CB-SEM [79], as further discussed in Section 5.2. As a 
result, PLS-SEM has proved the method of choice for social scientists 
when conducting exploratory modelling and hypothesis testing across a 
range of disciplines [80–82] including sustainable energy transitions 
research [83–87]. In total, ten hypotheses are proposed to test the an-
tecedents of domestic hydrogen acceptance and determine the predic-
tive capabilities of the DHAM (see Section 6.5). 

3.1. Awareness and knowledge 

Following Roger’s Diffusion of Innovation (DoI) Theory [88], 
knowledge initiates the grounds for persuasion, decision-making, 
implementation and finally, confirmation, which together reflect a 
five-stage process of technology adoption and evaluation. Knowledge 
can be conceptualised as a heterogeneous concept made up of at least 
three components: ‘awareness-knowledge’, ‘how-to knowledge’, and 
‘principles knowledge’ [88].13 

Currently, hydrogen appliances for domestic heating and cooking 
[89] remain at the formative phase [90] or pre-deployment stage of 
technology diffusion [91,92]. Consequently, few consumers are yet to 

8 Also referred to in the literature as the Sustainable Energy Acceptance 
Technology (SETA) model.  

9 The TAM was developed by Fred Davis in the mid-1980s [388], integrating 
constructs from the Theory of Reasoned Action (TRA) [389], as well as Rogers’ 
Diffusion of Innovation (DoI) theory [390], to evaluate user acceptance of 
computer technologies in the organisational setting [391].  
10 In 2001, Venkatesh et al. [56] subsumed a range of critical acceptance 

constructs from eight established models to develop the UTAUT framework.  
11 The authors conducted a nationally representative online survey (N = 2880) 

in March 2022 [72], which was compared to results from 2015 (N = 3133) 
[97]. 
12 i.e. self-reported and objective knowledge and values towards the envi-

ronment, energy security, safety, economic efficiency and energy justice. 

13 Awareness-knowledge is a proxy for familiarity with a given technology, 
which is a prerequisite for subsequent knowledge types and technology adop-
tion [392,393]. Thus, awareness influences the scope for socio-psychological 
and attitudinal responses towards a given technology [209]. 
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trial hydrogen home appliances [93,94]. Thus, little information is 
known about consumer attitudes towards potential adoption [32], as 
well as underlying social acceptance [33,69]. Given the nascency of the 
low-carbon hydrogen industry, this study reports survey responses 
regarding awareness and subjective (i.e. self-rated) knowledge [95].14 

Foremost, hydrogen awareness and knowledge levels remain low 
across most countries [96–98] including the UK [99]. Notably, aware-
ness of hydrogen boilers is significantly lower than other low-carbon 
heating technologies such as solar thermal panels and heat pumps 
[100], underscoring the peripheral status of domestic hydrogen 
[101,102]. Nevertheless, consumer attitudes towards HETs often side 
towards the positive end of the acceptance spectrum [33,103], while 
knowledge and awareness of renewable energy typically increases sup-
port for hydrogen [104]. This positive association is particularly prev-
alent among educated males [105–107]. 

Given the current evidence base, this study tests the following hy-
potheses wherein a positive association15 is posited between cognitive 
processes and domestic hydrogen acceptance in relation to awareness 
and subjective knowledge16 (see SN3): 

H1. Awareness (AWR) of low-carbon energy technologies including 
hydrogen home appliances will positively influence the social accep-
tance of domestic hydrogen. 

H2. Knowledge (KNW) about hydrogen fuel will positively influence 
the social acceptance of domestic hydrogen. 

3.2. Public trust 

Public trust is a multi-dimensional construct, which reflects how 
society perceives the competence and integrity levels of given stake-
holders [108–110]. Public trust has important implications for com-
munity acceptance [34], with evidence from China (Jiangsu Province) 
highlighting how community backing for industrial agglomeration (i.e. 
synergies between local industries and manufacturers) can promote 
support for the hydrogen economy [111].17 Trust dynamics have been 
shown to heavily shape hydrogen acceptance at the individual, com-
munity, and national level [112], reinforcing the multi-dimensional 
focus embedded in the ‘five dimensions of domestic hydrogen accep-
tance framework’ [33]. 

Following such projects, extant evidence supports the notion that 
public trust is a key dimension of domestic hydrogen acceptance 
[32,93,113], especially given the community and individual impacts of 
converting the gas grid [39,114]. Crucially, a deficit in public trust [41] 
may undermine socio-political acceptance [34], thereby aggravating the 
potential for social friction towards the hydrogen economy [115]. 

UK consumers have comparatively high levels of trust in evidence on 
hydrogen provided by the Health and Safety Executive (HSE), whereas 
the media are regarded as untrustworthy [113]. Interestingly, another 
study reported neutral levels of trust in the national regulator, the Office 
of Gas and Electricity Markets (Ofgem) [116]. Furthermore, the public 
may have relatively high confidence regarding the ability of government 

and industry to carry out requisite safety and environmental checks 
[113,117], but question the commitment of the same entities towards 
enacting procedural and distributional justice [41,118]. 

The public may also look towards renewable energy producers to 
steer the hydrogen transition in the right direction [69,119] by ensuring 
the green credentials of national hydrogen strategies come to fruition 
[120]. Relatedly, financial institutions are actively involved in sup-
porting the transition to a low-carbon economy [121], although signif-
icant financial and policy de-risking is needed to dimmish green 
investment risks [122]. Accounting for these dynamics, this study 
measures public trust in the following actors and stakeholders: the 
media, Ofgem, Gas Distributions Network Operators (GDNOs), renew-
able energy producers, and financial institutions (see SN3). 

In summary, public trust can drive support for residential decar-
bonisation [123], positively shape attitudes towards climate change and 
environmental policies [124,125], and act as a mechanism for raising 
social capital and improving economic efficiency [126]. In response, the 
following hypothesis is formulated to test the effect of public trust on 
domestic hydrogen acceptance (see SN4): 

H3. Public Trust (PT) in key actors and stakeholders will positively 
influence the social acceptance of domestic hydrogen. 

3.3. Production perceptions 

The relative merits of different hydrogen production technologies 
have been discussed in view of techno-economic factors [31,127] 
including the levelised cost of CO2 mitigation [128]. In parallel, pros-
pects for respective hydrogen production pathways will hinge on public 
perceptions [119,129]. For example, Parkison et al. [128] and Griffiths 
et al. [7] note the likely challenge associated with nuclear-based 
hydrogen production in view of negative safety perceptions and lack 
of public support. 

The UK Hydrogen Strategy envisions a ‘twin-track’ production 
approach reliant on steam methane reformation (SMR) and carbon 
capture and storage (CCS), alongside “electrolytic hydrogen predomi-
nantly powered by renewables” [[22]:30]. More ambitious targets for 
hydrogen production since the outbreak of the Russia-Ukraine conflict 
[23,130] (see SN2) signal the importance of hydrogen production 
pathways as a key pillar of national energy policy, with key implications 
for social acceptance [129]. 

The ‘hydrogen futures’ literature [51,131] demonstrates a stronger 
degree of public support for renewable energy-based production 
[99,119,132], compared to a blue hydrogen production (i.e. SMR with 
CCS18) [106,117]. The Welsh public expressed a preference for 
hydrogen production generated by wind farms as opposed to fossil fuel 
feedstocks [107]. Similarly, Norwegian citizens showed support for 
coupling onshore wind and hydrogen production [133], alongside a 
clear preference for green hydrogen over alternative options [119]. 

However, data collected by Yap and McLellan [72] highlighted two 
divergent perspectives among Japanese respondents: 55 % preferred 
cheaper ‘grey’ hydrogen production (i.e. fossil-fuel based without CCS), 
whereas 45 % were in favour of green hydrogen, given its environmental 
benefits and despite its higher costs. Interestingly, findings from online 
focus groups conducted in the UK suggest a lack of clarity regarding the 
premise of the government’s twin-track approach, with environmentally 
engaged respondents expressing higher degrees of scepticism [129]. 

It follows that the ‘colour labels’ [134,135] of hydrogen production 
methods communicate environmental cues to citizens, thereby shaping 
social acceptance [119]. Accounting for the foreseeable influence of 
hydrogen production pathways, and by proxy environmental attitudes 
towards these decisions, the following hypothesis is proposed in view of 

14 The rationale applied is that subjective knowledge (hereafter ‘knowledge’) 
can also be considered as a close proxy for awareness-knowledge [88] or 
perceived familiarity [393], and may ultimately reflect one’s potential interest 
and engagement level [263,392].  
15 While simplified within this research model and examined as a direct 

antecedent of acceptance, knowledge is nonetheless recognised as a multi- 
dimensional construct [394], which has scope to influence one’s behavioural 
response in several ways [209] through multiple mechanisms [395].  
16 Specifically, respondents were asked: “How much do you know about 

hydrogen fuel?” 
17 By no coincidence, the German Government’s National Innovation Pro-

gramme for Hydrogen and Fuel Cell Technology [396] was supported by aca-
demic projects resonating with the notion of public trust, namely, HyTrust 
(2009–2013) and HyTrustPlus (2014–2016). 

18 Notably, CCS presents its own set of unique challenges related to social 
acceptance [180,397,398]. 
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the twin-track approach (see SN3), wherein the effect may prove posi-
tive or negative according to the sample composition: 

H4. Production Perceptions (PP) will significantly influence the social 
acceptance of domestic hydrogen. 

3.4. Safety perceptions 

Blending hydrogen into the natural gas grid [136,137] may present a 
tangible measure towards realising national hydrogen economies 
[138,139]. However, this pathway and related infrastructure in-
vestments such as hydrogen-dedicated pipelines [26] will incur new 
safety challenges [140,141]. Potential safety risks will be heightened 
when considering hydrogen for domestic use [31] as opposed to in-
dustrial applications [7]. 

Notably, examining acceptance for HFSs in Japan, Ono and Tsunemi 
[142] found that risk perception factors related to safety incidents were 
stronger predictors of consumer acceptance than psychological and 
socio-demographic variables. Prior research has also shown that hy-
drogen’s distinct physical and chemical characteristics may elicit con-
sumer concerns [89], and moreover, feelings of fear and dread 
[142,143]. 

Both UK [93,144] and Australian survey respondents [69,145] 
expressed concerns over hydrogen’s colourless flame and lack of smell, 
as well as its combustibility and flammability [32]. Interestingly, female 
respondents in Australia reported higher concerns than males in view of 
hydrogen’s potentially disruptive impacts to the lived experience of 
cooking and associated risk factors [106]. By contrast, an earlier study in 
the Netherlands observed stronger perceptions of explosiveness among 
males [105]. Similarly, in the case of green hydrogen production, Welsh 
respondents raised concerns over explosive risks [144]. 

It follows that safety perceptions may play an important role in 
shaping hydrogen acceptance, especially during the early stage of the 
transition where risks are likely to be most elevated and uncertain. 
Nevertheless, online survey (N = 700) and paper-based survey re-
spondents (N = 102) from the North of England perceived potential 
safety benefits from a switch to domestic hydrogen [102].19 Focus group 
results also suggest that citizens feel relatively reassured about 
hydrogen, provided adequate safety tests are carried out [93]. However, 
the safety risks of hydrogen cooking are perceived to be higher than for 
hydrogen heating [89,146]. 

In view of the notion that risk perceptions may stem largely from 
media coverage [147,148], and given the current lack of consensus on 
safety perceptions within the literature, this study focuses on a 
comparative assessment between hydrogen and natural gas (see SN3), 
without specifying the nature of this relationship [149]. Accordingly, 
the following hypothesis is developed to advance the evidence base, 
while seeking to mitigate perception bias: 

H5. Safety Perceptions (SP) will significantly influence the social 
acceptance of domestic hydrogen. 

3.5. Perceived disruptive impacts 

It is widely accepted that converting the gas grid to hydrogen will 
engender a certain level of safety challenges [150,151], which may 
translate to perceived risks in the eyes of the public [89,94]. To date, 
most of the literature has concentrated on risk perceptions concerning 
safety aspects [73,152,153]. Safety-related concerns can be classified as 
‘hard’ risks concerning technical hazards related to pipelines [154] and 
appliances [155], wherein the dangers are severe and carry direct im-
plications for human wellbeing [156]. 

By contrast, ‘soft’ risks are less harmful and easier to mitigate 
[44,156]; revolving around potential short-term disruption risks which 
households may incur during the hydrogen switchover [93]. These non- 
hazardous risks [156] can be measured according to levels of consumer 
concern or worry [157]. For example, one nationally representative 
online study conducted in the UK (N = 1027) found that 20 % of re-
spondents were cautious about adopting domestic hydrogen and con-
cerned about disruptive impacts [158]. 

Risk perceptions in this sense will revolve around potential disrup-
tive impacts, which may include “infrastructural changes and opera-
tional activities at street level, as well as temporary disconnection from 
the gas grid and engineering activities within properties” [[33]:18]. 
Focus group participants from one UK study specified a general toler-
ance for disconnection from the gas grid for a maximum of four days 
[93], which has been corroborated by subsequent findings [41]. How-
ever, thresholds for the duration of disconnection may prove context 
specific and depend on energy vulnerabilities [41,93]. 

Elsewhere, focus group participants have described disruptive risks 
in terms of higher levels of traffic and noise [41], which links to the 
perceived burden of appliance installation (i.e. hydrogen boilers and 
hobs) [93]. Critically, to enable conditions for a large-scale conversion 
program [159], consumers must perceive disruption-related risks to be 
tolerable [33]. Accordingly, the following hypothesis is explored to ac-
count for prospective short-term disruptions (see SN3), which if not 
adequately mitigated could impede the prospective transition to 
hydrogen homes: 

H6. The Perceived Disruptive Impacts (PDI) of the hydrogen switch-
over will negatively influence the social acceptance of domestic 
hydrogen. 

3.6. Perceived socio-economic costs 

The perceived socio-economic costs of domestic hydrogen can be 
measured at different scales [33] including the macro- or national level 
[36]. However, this construct remains underexplored by researchers 
[39,160], with limited theoretical or empirical investigation beyond the 
boundaries of safety and environmental impacts [39], which is also re-
flected in the wider technology acceptance literature [161]. In most 
instances, discussions on cost-related aspects of hydrogen are restricted 
to the individual unit of analysis regarding financial impacts to con-
sumers [102,162,163], and sometimes extended to the community level 
by considering negative effects to host communities [164]. 

While the existing evidence base in sparse, some notable results have 
been reported in the literature. Foremost, Scott and Powells [102] found 
that most survey respondents in the North of England anticipated 
neutral or positive macro-economic impacts from the domestic 
hydrogen transition. However, it should be noted that the distribution of 
responses was skewed towards neutral perceptions (i.e. ‘no impact on 
the economy’) [102]. Furthermore, it should be borne in mind that the 
survey in question [102] was conducted before a string of unpredictable 
and destabilising economic events [165,166], following the COVID-19 
pandemic [167,168] and Russo-Ukrainian War [169,170], as 
described in SN2. Consequently, the current political and economic 
landscape remains volatile [171,172], with concurrent events exacer-
bating fuel poverty pressures in the UK [173,174]. 

Drawing from previous research [32,44], this study focuses on the 
macro-economic risks of the domestic hydrogen transition, which will 
influence both socio-political and market acceptance. Two related areas 
of interest receive attention, namely, the perceived impacts of the 
hydrogen switchover on energy insecurity and fuel poverty (see SN3). 
These areas also serve as proxies to inform consumer perceptions 
regarding the cost-competitiveness and affordability of domestic 
hydrogen. Reflecting these measurements items, the following hypoth-
esis is tested: 

H7. The Perceived Socio-economic Costs (PSC) of transitioning to 

19 17.3 % and 34.7 % answered positively while 13.9 % and 7.9 % answered 
negatively, although neutral (i.e. no impact) was the prevailing response (i.e. 
68.9 % and 57.4 %). 
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hydrogen homes will negatively influence the social acceptance of do-
mestic hydrogen. 

3.7. Perceived community benefits 

Perceived risks and social costs are often critical to energy accep-
tance, especially when concerning a hazardous technology such as nu-
clear power [175,176], as well as emerging energy technologies [177]. 
Nevertheless, recent evidence suggests that perceived benefits is the 
most influential predictor of social acceptance; not only for renewable 
electricity generation [178] and low-carbon heating technologies [179], 
but also CCS [180] and even nuclear power [181,182]. 

As with perceived risks and social costs, perceived benefits can be 
evaluated across different dimensions [183,184]. For example, Damette 
et al. [185] investigated consumer perceptions in relation to hydrogen’s 
benefits for French households, the electricity grid, and environment. 
Notably, survey respondents in both Australia [106] and the UK [117] 
express support for implementing a local green hydrogen economy 
aligned to community benefits; identified as job security, energy secu-
rity, and environmental improvements [186], which may help rein-
vigorate industrial communities [41,117]. Furthermore, support for 
hydrogen in the North of England also increased when participants were 
briefed about the fuel’s potential environmental benefits [113], while 
Bentsen et al. [119] reported perceived environmental benefits as a key 
predictor of hydrogen acceptance in Norway. 

Given the importance of local economic, social, and environmental 
benefits to energy technology acceptance [187], these parameters are 
likely to shape public opinion and consumer attitudes towards domestic 
hydrogen [32]. While awareness regarding the benefits of hydrogen 
remains relatively low [39,188], unpacking this tripartite dimension 
(see SN3) may reveal key inferences regarding hydrogen’s perceived 
contribution towards tackling the energy trilemma [189] and safe-
guarding against energy injustice [190]. Consequently, the following 
hypothesis is examined to account for the remaining dimension of 
‘perceived effects’ [39,191]: 

H8. The Perceived Community Benefits (PCB) of transitioning to 
hydrogen homes will positively influence the social acceptance of do-
mestic hydrogen. 

3.8. Positive and negative emotions 

Socio-psychological and attitudinal drivers find further expression in 
the form of emotional responses [192,193], which is reflected in the 
academic literature via the application of various psychological evalu-
ation metrics [161,194,195] such as the Technology Affect Scale (TAS) 
[196]. Mirroring findings in the information technology acceptance 
literature [197,198], emotions play an instrumental role in shaping 
energy acceptance [199,200]. The affective (i.e. emotional) dimension 
of renewable energy acceptance has attracted increasing attention from 
researchers [200–203] when examining the broader potential for a 
sustainable energy transition [193,204]. 

Qualitative findings from this dataset cite a wide range of emotional 
responses, with optimism, hopefulness, happiness, excitement, and 
eagerness among the most prevalent responses, while concern, confu-
sion, fear, nervousness, and scepticism dominated negative reactions 
[103,118]. Negative emotions may prove particularly relevant for risk 
perceptions related to safety aspects [205,206]; foremost when con-
sumers associate hydrogen with explosiveness, danger, and catastrophe 
vis-à-vis past incidents [107,147,205,207]. Emotions such as fear and 
dread [142,143,208] could shape the emerging contours of hydrogen 
acceptance, as witnessed historically with controversial energy tech-
nologies such as nuclear power [209]. Additionally, feelings of unfa-
miliarity concerning hydrogen may evoke anxiety, concern, and 
scepticism [54,102]. 

Conversely, positive emotions such as pride, joy, and gratitude may 

prove emergent among local hydrogen communities [208,210], rein-
forcing the imperative to examine the emotional dimensions of energy 
acceptance through a holistic lens [208]. It follows that positive and 
negative emotions should be evaluated as interacting, yet distinct di-
mensions of hydrogen acceptance [44]. As a result, this study in-
vestigates the following hypotheses in parallel (see SN3): 

H9. Positive Emotions (PE) towards hydrogen homes will positively 
influence the social acceptance of domestic hydrogen. 

H10. Negative Emotions (NE) towards hydrogen homes will nega-
tively influence the social acceptance of domestic hydrogen. 

4. Conceptual framework 

The hypotheses generated in Section 3 and associated constructs 
provide the foundations for advancing an integrated theory of domestic 
hydrogen acceptance,20 which incorporates six specific dimensions as 
illustrated in Fig. 1: cognitive processes, social capital, environmental 
attitude, risk perceptions, cost-benefit appraisal, and affective response. 
Through this approach, the study engages with multiple acceptance 
dimensions, as opposed to a more limited set of psychological parame-
ters [39,69] and attitudinal factors [89,102]. While each exogenous 
construct can be classified as a socio-psychological factor under a 
traditional technology acceptance framework lens [46,69], each unique 
aspect characterises the multi-dimensional nature of the DHAM. 

As foundational drivers of attitudes and behaviours [211], awareness 
and knowledge represent key cognitive processes which shape do-
mestic hydrogen acceptance [74], corresponding to H1 and H2 in the 
proposed model [74]. By contrast, public trust develops via social and 
cognitive processes [212,213], which enable individuals to form ex-
pectations about scenarios and relationships [214] to better evaluate 
new social settings and choices [212]. Moreover, trust is a critical aspect 
of social capital, which may encourage community acceptance and 
cohesion, alongside local economic development [215], in support of 
deploying and scaling up hydrogen homes [31], as explored via H3. 

As described, production perceptions can be conceptualised as a 
proxy for environmental attitudes, since UK households may distin-
guish between support levels for renewable-based and non-renewable 
based hydrogen production pathways [129], which motivates H4. 
Although hydrogen production pathways entail important consequences 
for energy security and other macro-economic factors such as job crea-
tion [31,164], the environmental focus typically pervades the public 
discourse. Specifically, the climate change credentials of blue hydrogen 
remain highly contested by the scientific community [216,217], while 
national hydrogen strategies have also been criticised for lacking green 
commitments, characterised by a “scale first and clean later” ethos 
[120]. 

At the level of risk perceptions, safety-related impacts and disrup-
tive impacts can be linked to ‘hard’ and ‘soft’ risks, respectively [44]. 
Hard risks correspond to hazards involving damage to infrastructure (i. 
e. pipeline-related incidents and gas leakage) or end-user accidents (e.g. 
fire event triggered by a hydrogen cooker), which pose a threat to the 
environment and compromise human safety [154,156], as explored in 
H5. By contrast, soft risks are associated with concerns and worries over 
non-hazardous events [156], such as street-level disruption and other 
short-term impacts incurred during the hydrogen conversion process 
[41,93], which are focused on in H6. 

Researchers typically focus on the perceived benefits of domestic 
energy technologies when conducting quantitative studies, while 
perceived costs are often overlooked [44]. This pattern holds true in the 
hydrogen acceptance literature [39], although the disparity between 

20 Notably, Brosch et al. [192] demonstrated the increased explanatory power 
of behavioural models which integrate appraisal-emotion constructs to predict 
energy-related decision-making at the micro-scale. 
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assessing these two constructs is somewhat less pronounced [44]. In 
response, this study subsumes perceived socio-economic costs and 
perceived community benefits [218,219] under the dimension of cost- 
benefit appraisal [220].21 

As a result, this framing integrates measures of both socio-political 
and community acceptance [33] vis-à-vis negative (i.e. perceived 
socio-economic costs) and positive implications (i.e. perceived com-
munity benefits) of hydrogen homes, which are tested in H7 and H8 
respectively. In doing so, this analysis also provides a means for directly 
comparing public perceptions across the macro- and meso-level.22 

Lastly, socio-psychological and attitudinal drivers find further 
expression in the form of affective response [192,193], which moti-
vates H9 and H10. Critically, intuitive feelings will influence social 
acceptance when information remains relatively limited or without a 
clear consensus, and risk-benefit judgments cannot be arrived to easily 
[38], which is the case for an emerging technology such as domestic 
hydrogen. Accordingly, emotional responses to the domestic hydrogen 
transition may reflect underlying cognitive processes, social and 
cognitive interactions, environmental attitudes, risk perceptions, and 
related cost-benefit appraisals, leading to the conceptual framework 
illustrated in Fig. 1. 

5. Material and methods 

5.1. Survey design and data collection 

This quantitative study employed a web-based survey to collect data 
on consumer attitudes towards domestic hydrogen in the UK. The survey 
design was derived through literature review [31–33] and qualitative 
results from online focus groups [41,129,146]. Questionnaire items 
were further developed following inputs from hydrogen experts and 

social scientists working in the energy transitions field. 
After programming the survey in Qualtrics [221], content and face 

validity were established through a series of internal piloting rounds. 
Following an iterative process of survey development which spanned 
several months, the final questionnaire was deployed by a market 
research company.23 Supplementary Note 3 (see SN3) provides details of 
the questionnaire items, answer scales, and literature which informed 
the survey design. 

The sample is composed of four specific consumer segments (see 
SN5) which serves three key functions: (1) enabling opportunities for 
multigroup analysis (MGA) which has been leveraged in follow-up work 
[222]; (2) ensuring a spectrum of consumer profiles are represented in 
the sample through inclusion of participants with different levels of 
technology knowledge and interest, environmental engagement, and 
socio-economic status (i.e. fuel stressed and non-fuel stressed re-
spondents); and (3) increasing national representativeness through this 
design, for example, by directly accounting for the increasing prevalence 
of fuel poverty pressures in the UK [173,223]. 

The study was strengthened by implementing a series of measures (i. 
e. filters and quotas) to approximate a broadly nationally representative 
sample (see SN5). As demonstrated in other research fields such as 
psychology [224], epidemiology [225], and health services research 
[226], national representativeness enables clearer estimation of country 
wide patterns to support generalisable conclusions. Importantly, do-
mestic hydrogen acceptance studies conducted in the UK [113] and 
Australia [69] have adhered to representing the national population, 
which is also the aim of this research.24 

Importantly, this study engages exclusively with existing users of gas 
boilers and hobs. Furthermore, two additional filters were employed to 
support the objective of engaging with respondents more likely to be 
actively involved with a prospective transition to hydrogen homes, or 
other low-carbon domestic energy technologies: (1) at least moderate 
involvement in decision-making around the purchase of their heating 
and cooking appliances; and (2) at least moderate importance attributed 

Fig. 1. Conceptual framework for examining the social acceptance of domestic hydrogen.  

21 The underlying logic is that consumer attitudes towards perceived socio- 
economic costs at the macro-level (i.e. fuel poverty and energy security im-
pacts) and perceived community benefits (i.e. economic, social, and environ-
mental) will contribute towards a cost-benefit analysis of domestic hydrogen.  
22 A more robust representation would be afforded by including a third 

measure of perceived costs, namely, (perceived) negative environmental im-
pacts. The survey instrument employed for this measure (PC3) failed to load on 
the construct, as further discussed in Section 7.2. 

23 The survey ran from October 6th to December 23rd, 2022, and was moni-
tored daily by the lead author. 
24 Specifically, quotas were applied for the following socio-demographic var-

iables: age, gender, housing tenure, housing type and location. 
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to being able to choose these appliances.25 Notably, the research design 
supported a valuable opportunity to compare safety perceptions of 
natural gas and hydrogen for deeper contextual understanding (see 
Section 3.4). Overall, a broadly national representative survey sample 
was secured (N = 1845), albeit with room for improvement around 
variables such as age and housing tenure in subsequent studies (see 
Table A1). 

5.2. Structural equation modelling: a second-generation statistical 
technique 

Structural equation modelling (SEM) has a rich and well- 
documented history [227–229], characterised as a second-generation 
(2G) statistical technique which is superior to first-generation (1G) 
techniques for modelling complex causal relationships between latent 
and observed variables [70,230]. Larsson et al. [231] describe regres-
sion as engaged with predictive analysis irrespective of causal mecha-
nisms, whereas SEM, through its path modelling approach, is rooted in 
hypotheses about causal processes: 

“Path modelling is the application of statistical modelling to datasets 
with the objective of testing and explaining causal hypotheses about 
theoretical measurement models and structural paths” [77]. 

In a standard regression model, each equation implies “a statistical 
relationship based on a conditional expected value.”26 By contrast, SEM 
implies a ‘functional relationship’ which is expressed through a corre-
sponding conceptual model, path diagram, and mathematical equations 
[232]. Put differently, within a SEM, each equation represents a causal 
link as opposed to an empirical association [233], enabling researchers 
to examine the causal networks underlying real-world relationships in a 
more comprehensive way compared to correlation-based models [234]. 

Accordingly, SEM offers several advantages compared to multivar-
iate regression analysis: supporting theory development through 
simultaneous testing of complex relationships (i.e. measurement and 
structural models);27; incorporating measurement error and unex-
plained variance in the modelling parameters; and ability to link micro- 
and macro-perspectives of complex phenomenon [234,235]. Compared 
to 1G techniques, SEM supports greater statistical power [236],28 higher 
levels of flexibility (i.e. methodological versatility) [231], ability to test 
a priori hypotheses about causal relationships [231,237], alongside 
“big-picture, model-based reasoning,” whereby relationships between 
variables are conceptualised as part of an overarching explanatory sys-
tem processes [231]. 

5.2.1. Approaches to structural equation modelling: CB-SEM and PLS-SEM 
CB-SEM and PLS-SEM present complementary, yet distinctive, sta-

tistical approaches for estimating parameters of theoretical models 
[238,239]; diverging in terms of measurement philosophies, estimation 
procedures, and statistical outcomes [240], as summarised in Table A4. 
Notably, the application of PLS-SEM in the social sciences has grown 
exponentially within the last two decades [77], with scholars increas-
ingly disseminating the predictive benefits of the method to the research 
community [79,241,242]. Nevertheless, selecting the most suitable SEM 
approach remains of a focal point of academic debate [80,243], 

emphasising the need for clear research justification. 
As a confirmatory technique, CB-SEM determines whether the 

hypothesised model fits the observed sample data [77,238,244]. With a 
focus on model fit and stronger data requirements, CB-SEM is the 
optimal approach for testing an established and concise theoretical 
model such as the Theory of Planned Behaviour (TPB) [245,246]. Thus, 
researchers may adopt CB-SEM for purposes of theory confirmation 
[80,247], as applied by Gölz & Wedderhoff [212] when examining 
onshore wind acceptance in Germany. 

CB-SEM follows a maximum likelihood (ML) estimation procedure 
[248], treating constructs as common factors to explain the covariation 
between associated indicators [247]. The common factor approach 
splits total variance into common, unique, and error variance but only 
uses common variance for estimating the model [249,250]. Thus, re-
sidual variance is excluded as measurement error and the focus is on 
estimating the proportion of common variance explained [250]. As a 
result, the CB-SEM approach is more prone to metrological uncer-
tainty,29 which may compromise the validity of the measurement model 
[249]. 

In response, the CB-SEM approach may motivate researchers to 
reduce the number of indicators per construct to increase model fit 
[239], which has adverse consequences on metrological uncertainty and 
associated validity [249]. CB-SEM is also subject to factor (score) in-
determinacy, since there are infinite sets of latent variable scores that 
can fit the model to the same extent [70,249]. Therefore, correlations 
between a common factor and variables external to the factor model 
become indeterminate, which renders CB-SEM ill-suited for purposes of 
prediction [70,249]. 

Overcoming this limitation and bridging the gap between explana-
tion and prediction [251],30 PLS-SEM produces a unique (i.e. determi-
nate) score for each composite per observation following calculation of 
indicator weights and loadings, which serve as proxies for the latent 
constructs [249]. These proxies serve as inputs for executing ordinary 
least squares (OLS) regression31 to minimise the error terms (i.e. residual 
variance) of each endogenous construct in the model [249]. Conse-
quently, PLS-SEM employs a composite-based measurement philosophy; 
reflecting the notion that latent constructs can be estimated by linearly 
combining indicators for each construct [249,252].32 Notably, the 
composite-based approach supports handling of more complex data 
compared to CB-SEM [252]. 

Thus, as a variance-based approach [238], PLS-SEM estimates path 
coefficients to maximise the explained variance (R2) of a target construct 
[249] within a conceptually-grounded path model [253], whereas CB- 
SEM is limited to explaining the covariation between indicators in the 
measurement and structural models. Unlike CB-SEM, PLS adopts the 
logic the entirety of an indicators’ variance is relevant for estimating 
path models [249]. Guenther and colleagues [250] emphasise this 
distinction as a motivating reason to utilise PLS-SEM, since residual 
variance may contribute towards theoretical or empirical meaning due 
to interaction effects between indicators and constructs. 

When extending frameworks such as the TPB [254–256] or model-
ling complexity via an integrated technology acceptance model (TAM) 
[257–259], researchers can employ PLS-SEM for purposes of theory 
development [255]. Accordingly, PLS-SEM is recommended in situa-
tions of high complexity where limited theory formation has been 

25 Both questions were measured using a five-point Likert scale where the 
moderate response represented the mid-point.  
26 i.e. each equation within a regression model represents “the conditional 

mean of a dependent variable as a function of explanatory variables” [230]. 
Alternatively, Larsson et al. [231]describe regression “as specifying a condi-
tional mean of the outcome based on the predictors.”  
27 By contrast, 1G statistical techniques require separate analyses to perform 

validity and reliability tests, which lack a direct relationship to formal hy-
pothesis testing and as a result cannot provide overall fit indices [399].  
28 i.e. Probability of rejecting a false null hypothesis [236] 

29 i.e. the dispersion of measurement values that can be explained by the 
object or concept under examination [249].  
30 PLS-SEM can test a model’s predictive capabilities by drawing on out-of- 

sample tests, but is also suitable for explanatory modelling as supported by 
in-sample predictive tests [251,400].  
31 OLS minimises the sum of the squared differences between the observed and 

predicted values of the dependent variable [77].  
32 i.e. PLS-SEM obtains parameter estimates via repeated least squares 

regression with a single dependent variable [252]. 
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established [80,260], as reflected in the case of emerging hydrogen 
energy technologies [163,261–263]. Nevertheless, it should also be 
noted that PLS-SEM is suitable for conducting confirmatory research 
[49,264]. 

In summary, SEM practitioners such as Henseler [238] and Hair et al. 
[249] characterise PLS-SEM as a ‘causal-predictive’ paradigm with the 
goal of testing a model’s predictive power based on theory and logic, 
whereas CB-SEM follows a ‘causal-explanatory’ paradigm predicated on 
theory confirmation and model fit. As a result, PLS-SEM bridges the gap 
between CB-SEM and exclusively predictive methods [251] such as 
machine learning and artificial neural networks [265–268]. 

5.2.2. Application of PLS-SEM in SmartPLS 4.0 
Using SmartPLS 4.0 software [269], the two-stage approach was 

applied to analyse and interpret the survey data, firstly assessing the 
measurement model and secondly, evaluating the structural model. 
Beforehand, several measures were required to justify the use of PLS- 
SEM [270], such as a valid research design and sufficient sample size 
[236], which were checked using model model-specific estimates [271]. 
Employing G*Power software (see SN6), the proposed model can 
demonstrate small effect sizes of 0.02 at a 95 % significance level (ρ 
≤0.05) for the specified sample (N = 1845). Secondly, skewness and 
kurtosis tests were conducted to assess normality [49,272], which 
confirmed all values were within the preferred threshold of ±1 (see 
SN7). Thirdly, common method bias (CMB) was ruled out, since Har-
man’s single factor test [273] returned an overall variance of 29.5 %, 
well below the threshold of 50 % (see SN7). Overall, the preliminary 
assessment confirmed the integrity of the data and the suitability of 
using PLS-SEM. 

6. Results and discussion 

This section reports and discusses the results in four stages. Firstly, 
Section 6.1 reports descriptive findings for the constructs operational-
ised in the DHAM, as measured using two respective Likert scales in the 
online survey (see SN3). In doing so, the first sub-section frames the PLS- 
SEM analysis and hypotheses results against observations at the indi-
cator level. Next, 6.2 proceeds by assessing the measurement model. 
Thereafter, Section 6.3 assesses the structural model; as supported by 
including an IMPA in Section 6.4. Section 6.5.1 reports the in-sample 
and out-of-sample predictive power of the DHAM. Finally, Section 6.6 
concludes by discussing the links between acceptance dimensions and 
constructs. 

6.1. Descriptive statistics 

The analysis of descriptive statistics highlights several findings, 
which hold important implications for the configuration of domestic 
hydrogen acceptance. Firstly, in relation to the cognitive dimension, this 
study finds that awareness and subjective knowledge of hydrogen 
remain low (see Table 1), which is consistent with recent findings in the 
literature [96,119]. For example, based on data collected in the Spring 
of 2022 (N = 4372), the UK government found awareness of hydrogen 
fuel (M = 2.44, SD = 1.11), and of its potential future uses to reduce 
emissions (M = 2.34; SD = 1.09) to be relatively low when measured on 
a five-point Likert scale [274]. 

Secondly, in respect to social capital, it emerges that trust in the 
media is lowest while trust in financial institutions also falls below the 
mean (see Table 1). This result reflects a pronounced trust deficit in the 
media [106,113], signalling a growing perception that some areas of 
journalism are increasingly entrenched in perpetuating a cycle of 
distrust and misinformation [275]. Although financial institutions have 
a critical role to play in securing a low-carbon economy [122,276], re-
spondents doubt their capabilities and commitments towards steering 
the hydrogen transition. Supporting this observation, globally retrieved 
survey data such as the Edelman Trust Barometer has highlighted a 

Table 1 
Summary of results from online survey questions on domestic hydrogen 
acceptance.  

Acceptance 
dimension and 
construct(s) 

Results at the construct 
level 

Key findings and implications 

Cognitive processes 
Awareness 

(AWR)  
• AWR returned a mean 

score of 2.00 (SD = 0.99) 
as measured on a 5-point 
scale (1–5)  

• The descriptive results 
also indicated a 
pronounced lack of 
awareness regarding the 
UK Hydrogen Strategy 
(M = 1.69; SD = 1.00)a  

• Minimal difference 
between the two 
measures of AWR (SD =
0.07)  

• Consistent with previous 
studies [69,99], awareness 
(and knowledge) is 
considerably low, confirming 
that the notion of ‘hydrogen 
homes’ is yet to penetrate the 
public consciousness 

Knowledge 
(KNW)  

• KNW returned a mean 
score of 1.96 (SD = 2.16) 
as measured on a 5-point 
scale  

• Subjective knowledge of 
hydrogen exhibits a 
considerably higher level of 
variance than hydrogen 
awareness, inferring that 
exposure to information is 
comparatively more similar 
than perceived levels of 
understanding 

Social Capital   
Public Trust (PT)  • PT returned a mean score 

of 5.10 (SD = 2.41) as 
measured on an 11-point 
scale (0−10)  

• Moderate difference 
between the five 
measures of PT (SD =
0.68)  

• Variability among public trust 
indicators suggests more 
public confidence in the 
actions of the renewable 
energy sector for supporting a 
cost-effective, efficient, and 
fair transition to hydrogen 
homes  

• Trust levels in Ofgem and 
GDNOs is relatively 
comparable, implying similar 
attitudes towards the energy 
regulator and companies 
managing the UK gas 
distribution network  

Environmental attitude 
Production 

Perceptions  
• PP returned a mean score 

of 6.35 (SD = 1.93) as 
measured on an 11-point 
scale  

• Moderate difference 
between the five 
measures of PP (SD =
0.72)  

• The strongest preference 
is for an immediate focus 
on supporting green 
hydrogen production 
(PP3, i.e. before 2030)  

• Blue hydrogen 
production is more 
strongly supported as a 
long-term pathway (PP2) 
compared to a solution 
for the current decade 
(PP1)  

• To a degree, the survey results 
imply the potential 
undermining of the twin-track 
approach in terms of socio- 
political acceptance [33,129], 
as reflected in the overall 
measure (PP5: M = 5.68) 
which fell below the average 
for this construct  

Risk perceptions 
Safety 

Perceptions 
(SP)  

• SP returned a mean score 
of 5.86 (SD = 2.03) as 
measured on an 11-point 
scale  

• Safety perceptions are highly 
consistent across the 
measured items, suggesting 
hydrogen is viewed to be 
marginally safer than natural 
gas for heating and cooking 

(continued on next page) 
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sustained lack of public trust in financial institutions [275]. 
Such perspectives relay the underperformance of financial in-

stitutions in the eyes of the public, whereas renewable energy producers, 
and to a lesser extent GDNOs and Ofgem, are regarded as more trust-
worthy entities for fulfilling the net-zero mandate, although the overall 
prognosis remains mostly neutral. The apparent status quo resonates 
with findings reported by the Decarbonised Gas Alliance (DGA), wherein 
36 % of survey respondents (N = 2000) expressed a neutral attitude 
regarding whether regulators such as Ofgem could be trusted to deliver a 
safe transition to hydrogen [116]. 

Thirdly, there is significant variation regarding perceptions of the 
respective components of the twin-track approach (see Section 3.3). A 
stronger preference is reported for green hydrogen (M = 6.86; SD =

0.59) compared to blue hydrogen (M = 6.17; SD = 0.85), which mirrors 
findings in other country contexts [119,132]. Interestingly, survey re-
spondents expressed more support for green hydrogen in the short-term 
compared to the long-term (i.e. after 2030), while the reverse held true 
in the case of blue hydrogen. Following the logic of the twin-track 
approach [22], these trends are counterintuitive since blue hydrogen 
is anticipated to play an enabling role for facilitating the long-term move 
towards hydrogen production sourced from renewables [277]. Conse-
quently, an inverse phenomenon is observed regarding public percep-
tions of the temporal dynamics of the twin-track approach. 

Openness to blue hydrogen as a long-term production pathway (see 
Table 1 and Fig. A1) may reflect moderate levels of acceptance for CCS. 
Notably, 31 % of UK survey respondents (N = 4145) expressed support 
for CCS, while 89 % believed the technology would help combat climate 
change and reduce carbon emissions [274].33 Based on available data, it 
can be inferred that perceptions of CCS could imply a somewhat positive 
outlook towards blue hydrogen, if better comprehended within the 
broader discussion of the hydrogen economy [129] and twin-track 
approach [22]. 

Fourthly, risk perceptions related to safety suggest that hydrogen 
may be viewed marginally safer than natural gas for cooking and heating 
applications, as well as pipeline transportation and underground storage 
(M = 5.83; SD = 0.12). Furthermore, the inclusion of a fifth measure-
ment item regarding the overall safety level of hydrogen production, 
storage, transportation, and domestic appliances reiterates this finding 
(M = 5.68; SD = 1.86). By contrast, prior research has flagged sensi-
tivities to the risks associated with hydrogen fuel in the context of 
transport applications [54], with moderate safety concerns expressed 
among German [207], South Korean [278], and Japanese respondents 
[142]. 

Contrary to prior research [89,146], this study observes no 
discrepancy regarding safety perceptions for hydrogen boilers (M =

5.93; SD = 2.01) and hydrogen hobs (M = 5.92; SD = 2.04). Overall, the 
results align somewhat closely to studies conducted in the UK [102] and 
Australia [106], which suggest a mix of neutral and positive safety 
perceptions regarding the overall impact of blending hydrogen into the 
gas grid for domestic use. 

Regarding perceived disruptive impacts, the results concur with 
findings in the literature, which cite moderate levels of preoccupation 
associated with the prospect of being temporarily disconnected from the 
gas grid [41,93]. However, impacts related to street-level disruption and 
visits from gas engineers appear to be more tolerable (see Fig. A2), 
which is also consistent with qualitative findings on this topic [41]. 

At the level of cost-benefit appraisal, the results align with recent 
data from the UK government’s Public Attitudes Tracker (PAT) [100], 

Table 1 (continued ) 

Acceptance 
dimension and 
construct(s) 

Results at the construct 
level 

Key findings and implications  

• Small difference between 
the five measures of SP 
(SD = 0.12) 

purposes (SP1 and SP2), 
pipeline transportation (SP3), 
and underground storage 
(SP4) 

Perceived 
Disruptive 
Impacts  

• PDI returned a mean 
score of 2.54 (SD = 0.97) 
as measured on a 5-point 
scale  

• Small difference between 
the three measures of 
PDI (SD = 0.15)  

• Respondents are more 
concerned with the prospect 
of being temporarily 
disconnected from the gas grid 
(PDI2; M = 2.64, SD = 0.98), 
whereas concerns are slightly 
lower regarding disruption 
from engineers and 
technicians (PDI3), and least 
for noise, traffic, and potential 
inconvenience from changes 
to infrastructure (PDI1)  

Cost-benefit appraisal 
Perceived Socio- 

economic 
Costs (PSC)  

• PSC returned a mean 
score of 2.87 (SD = 1.09) 
as measured on a 5-point 
scale  

• Small difference between 
the two measures of PSC 
(SD = 0.15)  

• The perceived socio-economic 
costs related to fuel poverty 
impacts (PSC2) measured 
higher than energy security 
concerns (PSC1), however, 
these two items are especially 
interrelated and display a 
relatively small difference 

Perceived 
Community 
Benefits  

• PCB returned a mean 
score of 6.51 (SD = 2.08) 
as measured on an 11- 
point scale  

• Moderate difference 
between the five 
measures of PCB (SD =
0.44)  

• Foremost, perceptions of 
environmental benefits 
(PCB3) are markedly higher 
than perceived economic 
(PCB1) and social benefits 
(PCB2), which explains the 
observed variance and 
suggests an underlying 
acknowledgement of the need 
for low-carbon energy 
technologies  

Affective response 
Positive 

Emotions (PE)  
• PE returned a mean score 

of 3.05 (SD = 0.99) as 
measured on a 5-point 
scale  

• Minimal difference 
between the four 
measures of PE (SD =
0.06)  

• ‘Optimism’ (PE4) registered as 
the strongest positive emotion 
(M = 3.15, SD = 1.00), 
whereas ‘satisfaction’ levels 
(PE1) were marginally lower, 
followed by ‘calm’ (PE2) and 
‘confidence’ (PE3) which were 
equivalent, suggesting that 
feelings of hope for a domestic 
hydrogen future may 
outweigh other positive 
emotions 

Negative 
Emotions (NE)  

• NE returned a mean 
score of 2.44 (SD = 1.08) 
as measured on a 5-point 
scale  

• Minimal difference 
between the four 
measures of NE (SD =
0.07)  

• ‘Worry’ (NE2) registered as 
the strongest negative 
emotion (M = 2.55, SD =
1.06), followed by ‘pessimism’ 
(NE4), ‘discontent’ (NE1) and 
‘fear’ (NE3), which had 
comparable mean scores, 
inferring that concern over 
hydrogen homes may 
outweigh other negative 
emotions  

Social acceptance 
Domestic 

hydrogen 
acceptance 
(DHA)  

• DHA returned a mean 
score of 6.39 (SD = 2.21) 
as measured on a 11- 
point scale  

• Minimal difference 
between the four 
measures of DHA (SD =
0.04)  

• Socio-political (DHA1: M =
6.43); community (DHA2: M 
= 6.34); and individual 
acceptance (DHA3: M = 6.38) 
are comparable, indicating a 
relative equilibrium when 
accounting for the macro-, 
meso-, and micro-scales [33]  

a Although this item was dropped from the Awareness (AWR) construct as 
reliability and validity could not be established, the data provides valuable 
insights. 

33 Additionally, 19 % of respondents were unable to give an answer (i.e. don’t 
know), 28 % held a neutral attitude [274], and 13 % expressed strong support. 
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which indicates concerns over energy price hikes and fuel poverty are 
stronger than worries regarding reliability of energy supply. This 
discrepancy most likely reflects the current economic climate and 
ongoing energy crisis, which have exacerbated fuel poverty pressures in 
the UK [173]. Moreover, results from the PAT show that consumers have 
significantly stronger expectations for environmental benefits (see 
SN11), which also proved the case in this study (see Table 1 and Fig. A1). 

In respect to affective response, positive emotions approximate a 
moderately strong response (i.e. >3), while negative emotions equate to 
a neutral response (i.e. ~2.5). To an extent, domestic hydrogen may 
induce a sense of hope and confidence among parts of the public, which 
outweighs alternative feelings of fear, worry, and pessimism [103]. 
Crucially, optimism (PE4) registered as the strongest positive emotion, 
while worry (NE2) proved the principal negative emotion. This result 
could correspond directly to a sense of optimism for a cleaner energy 
future, coupled to concerns over the financial costs and broader socio- 
economic impacts of the transition. At the same time, it may be the 
case that the fear factor historically associated with hydrogen [279,280] 
is diminishing over time [145]. 

Additionally, the descriptive results for the endogenous construct, 
Domestic Hydrogen Acceptance (DHA), suggest strong convergence 
when considering consumer perceptions across macro-, meso-, and 
micro-levels [33], as demonstrated in Fig. A1. However, it is anticipated 
that these dimensions may fluctuate by different magnitudes and 
possibly in alternative directions following the development of local 
hydrogen activities. Ruptures in public opinion and diverging consumer 
attitudes have already been witnessed in a short timeframe vis-à-vis the 
emergence of social resistance [281], which culminated in cancellation 
of the Whitby village trial (Ellesmere Port) in July 2023 [282] and has 
cast doubt over the viability of future trials [283]. 

6.2. Measurement model assessment 

This study operationalises ten exogenous constructs and one 
endogenous construct, which are measured reflectively. Whereas a 
formative construct is caused by its indicators – with arrows pointing 
towards the construct – in a reflective model the latent construct exists 
(in an absolute sense) independent of its indicators [284]. Thus, varia-
tion in the construct causes variation in the measurement items, but the 
items do not cause variation in the construct [284,285]. Therefore, in a 
reflective model, arrows point from the construct to the indicators, since 
items are highly correlated and interchangeable [286], as is the case in 
this study. 

For example, indicators such as economic, social, and environmental 
benefits are assumed to be influenced by an underlying latent construct 
[287,288], namely, perceived community benefits. More technically, 
the set of indicators represents a “measurement error-prone manifesta-
tion” of the underlying latent construct [[248]:3]. When measuring 
reflective constructs, four criteria should be met: item reliability, in-
ternal consistency reliability, convergent validity, and discriminant 
validity [288]. Critically, an instrument cannot be considered valid 
unless reliability is first established [290]. 

6.2.1. Item reliability and internal consistency reliability 
Item reliability is concerned with whether a measurement instru-

ment performs consistently (i.e. scale reliability), which can be assessed 
using Cronbach’s Alpha (CA).34 Reliability is best supported when an 
indicator loading measures above 0.708 [291], which implies that the 
construct accounts for >50 % of the indicator’s variance [48]. Two in-
dicators fell marginally below the preferred threshold value, namely, 
ST1 (0.698) and DI1 (0.687), which is unproblematic for exploratory 

social science research involving new measurement items [286,292]. 
Although PP1 (0.550) had a relatively low CA, this indicator also war-
ranted retention since related reliability and validity requirements were 
fulfilled [286,292].35 

Composite Reliability (CR) provides a better measure of internal 
consistency than CA, since items are weighted according to the indi-
vidual indictor loadings per construct [48].36 Homogeneity is supported 
when CR values exceed 0.70 [286], while ≥0.60 is acceptable for 
exploratory research [293] such as this study. As reported in Table 2 (see 
SN8), both measures of CR exceeded 0.70 [48,294] (i.e. Dillon-Goldstein 
rho_c (ρ C) and Henseler and Dijkstra rho_a (ρ A)). 

6.2.2. Convergent validity and discriminant validity 
Convergent validity is concerned with whether each construct con-

verges to explain the variance of its indicators [48], which was met since 
the average variance extracted (AVE) exceeded 0.5 for all constructs 
[286,293], as reported in Table 2. Relatedly, discriminant validity as-
sesses whether a construct can be considered empirically distinct within 
the model [48]. Thresholds for establishing discriminant validity were 
met, as reported in Table 3 and described in Appendix C (see Table A2 
and SN8). Finally, no instances of multicollinearity were observed, 
variance inflation factor (VIF) scores were below the more stringent 
threshold of 3.0 in all cases [291]. 

6.3. Structural model assessment 

The bootstrap method with 5000 sub-samples was applied to test the 
direction, strength, and significance of proposed hypotheses [269], as 
reported in Table 4. Firstly, cognitive processes – awareness (AWR) and 
knowledge (KNW) – had a non-significant effect on social acceptance, 
although awareness exerted a stronger influence between the two con-
structs. This result suggests a consistent dynamic between awareness 
and knowledge, whereby these interrelated constructs mirror one 
another as poor predictors of domestic hydrogen acceptance at this stage 
of the transition. 

Public trust (PT) had a positive and significant influence on domestic 
hydrogen acceptance, implying that the transition will be influenced by 
public perceptions related to the capabilities and credibility of different 
actors and stakeholders. Regarding the environmental dimension linked 
specifically to production perceptions (PP), a significant positive effect is 
observed, which can be traced foremost to consumer preferences for a 
green hydrogen pathway, as described in Section 3.3. 

Table 2 
Assessment of reliability, convergent validity, and multicollinearity.  

Construct CA CR (ρ A) CR (ρ C) AVE VIF 

Awareness  0.797  0.836  0.906  0.829a 1.346 
Public trust  0.864  0.890  0.900  0.644 1.504 
Production Perceptions  0.816  0.845  0.870  0.578 1.599 
Safety Perceptions  0.918  0.920  0.939  0.754 1.575 
Perceived Disruptive Impacts  0.758  0.813  0.859  0.673 1.259 
Perceived Socio-economic 

Costs  
0.730  0.736  0.881  0.787a 1.427 

Perceived Community Benefits  0.808  0.813  0.886  0.721 2.066 
Positive Emotions  0.881  0.885  0.918  0.737 1.468 
Negative Emotions  0.869  0.900  0.909  0.715 1.409 
Domestic Hydrogen 

Acceptance  
0.922  0.922  0.951  0.865 n/a  

a Since Awareness (AWR) and Perceived Socio-economic Costs (PSC) have two 
indicators, the AVE is by default larger than 0.50. The result is reported for 
consistency. 

34 Calculated according to the average covariance divided by the average total 
variance (i.e. the average correlation shared between indicators and a given 
latent construct [294]). 

35 Importantly, it is more conceptually sound to retain an indicator for content 
validity than to remove it purely on grounds of a low CA value [292].  
36 Since items are unweighted, CA tends to underestimate internal consistency 

reliability [49]. 
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In terms of perceived risks, safety perceptions (SP) of hydrogen and 
the perceived disruptive impacts (PDI) of the switchover process are 
seen to largely neutralise one another. Nevertheless, the negative effect 
stemming from perceived disruptive impacts (β = −0.092, t = 5.450, ρ 
≤0.001) exceeds the positive association between safety perceptions and 
social acceptance (β = 0.058, t = 2.883, ρ = 0.004), which suggests risk 
perceptions are somewhat prominent. 

At the level of cost-benefit appraisal, perceived community benefits 
is the strongest predictor of domestic hydrogen acceptance (β = 0.276, t 
= 12.118, ρ ≤0.001), whereas perceived socio-economic costs is a 
comparatively weak predictor (β = 0.058, t = 3.432, ρ = 0.001) but still 
significant as the 1 % level. While consumers anticipate socio-economic 
advantages through the acquisition of domestic hydrogen, there is 
stronger expectancy for environmental benefits. Lastly, both affective 
constructs (PE and NE) shape consumer attitudes towards hydrogen, 
with positive emotions exerting more influence than its negative 
counterpart. 

Among the ten exogenous constructs incorporated in this study, eight 
proved significant predictors of domestic hydrogen acceptance at the 1 
% level (ρ < 0.01), with awareness and knowledge proving non- 
significant at this early stage of the technology life cycle (see Fig. 2 
and SN9) [295]. Accordingly, constructs belonging to the cognitive 
dimension returned insignificant effects, whereas other dimensions 
proved significant at the 1 % level. 

In summary, the following constructs have a small effect on social 
acceptance (i.e. f2 ≥ 0.02): public trust; production preferences; 
perceived community benefits; positive emotions; and negative emo-
tions. However, safety perceptions, perceived disruptive impacts, and 
perceived socio-economic costs fall below the cut-off value suggested by 
Cohen [296]. Foremost, the dimensions of environmental attitude (i.e. 
production perceptions), affective response (i.e. positive and negative 
emotions), and social capital (i.e. public trust) predict social acceptance 
to a similar extent, followed by cost-benefit appraisal (i.e. perceived 
socio-economic costs and perceived community benefits), and risk per-
ceptions (i.e. safety perceptions and perceived disruptive impacts), as 
reported in Table A3. 

6.4. Importance-performance map analysis 

As a decision-making tool [297,298], importance-performance map 
analysis (IMPA) [299] provides a means for deriving additional insights 
at both the construct and indicator level, thereby enabling triangulation 
with descriptive findings (see Section 6.1) and PLS-SEM results (see 
Section 6.3). The IMPA plots unstandardised total effects (i.e. impor-
tance on the x–axis) against the average value of latent variable and 
their indicators on a scale of 0–100 (i.e. performance on the y–axis) to 
identify areas of strategic relevance [258]. Foremost, constructs located 
at the bottom far quadrant of the IMPA – corresponding to high 
importance but low performance for domestic hydrogen acceptance – 
signify opportunities for leveraging interventions [258]. Thus, IMPA 
aids in identifying constructs of strategic value [299–301], which may 
be targeted through subsequent policy making efforts, communication 
campaigns, and managerial action [302,303]. 

Increasingly, sustainability scholars have adopted IMPA [304], as a 
tool to support optimal resource allocation strategy [303] and strategic 
decision-making in a range of contexts (see SN10). Moreover, internal-
ising results from an IMPA is especially critical during times of economic 
instability [305] such as the current energy crisis [173,306]. To carry 
out an IMPA, the guidelines provided by Ringle and Sarstedt [299] are 
applied to better understand the influence of endogenous constructs (see 
Section 6.4.1) and specific indicators (see Section 6.4.2). 

6.4.1. IMPA for endogenous constructs 
Firstly, an IMPA is carried out for the direct predecessors of domestic 

hydrogen acceptance, as visualised in Fig. 3 (see SN10). Among the ten 
exogenous constructs analysed, negative emotions and perceived 
disruptive impacts rank in the middle in terms of importance: PCB, PE, 
PP, ST, NE, PDI, SP/PSC, AWR, KNW. There is clear overlap and 
interacting effects between the positive side of the hydrogen acceptance 
matrix [103] focused on perceived community benefits, production 
preferences, and public trust. These areas transmit to higher levels of 
optimism, confidence, and satisfaction with the promise of socio- 
economic and environmental benefits through the deployment of 

Table 3 
Heterotrait-monotrait results for assessment of discriminant validity.   

AWR PCB PDI KNW NE PSC PE PP SP DHA ST 

AWR            
PCB  0.111           
PDI  0.064  0.197          
KNW  0.537  0.086  0.094         
NE  0.080  0.256  0.511  0.113        
PSC  0.073  0.437  0.392  0.161  0.530       
PE  0.294  0.527  0.153  0.297  0.115  0.249      
PP  0.247  0.638  0.193  0.244  0.237  0.329  0.404     
SP  0.088  0.640  0.036  0.135  0.125  0.159  0.403  0.413    
DHA  0.190  0.779  0.346  0.159  0.376  0.438  0.610  0.673  0.518   
ST  0.235  0.520  0.144  0.250  0.118  0.122  0.428  0.473  0.488 0.588   

Table 4 
Results of path analysis and hypothesis testing.  

Hypothesis β coefficient (SD) t-statistic ρ-value f2 Result 

H1: AWR ➔ (+) DHA 0.019 (0.015)  1.236  0.217  0.001 Rejected 
H2: KNW ➔ (+) DHA −0.008 (0.016)  0.513  0.608  0.000 Rejected 
H3: PT ➔ (+) DHA 0.198 (0.02)  10.207  <0.001  0.079* Accepted 
H4: PP ➔ (+/−) DHA 0.214 (0.02)  10.897  <0.001  0.086* Accepted 
H5: SP ➔ (+/−) DHA 0.058 (0.02)  2.883  0.004  0.006 Accepted 
H6: PDI ➔ (−) DHA −0.092 (0.017)  5.450  <0.001  0.020 Accepted 
H7: PSC ➔ (−) DHA −0.058 (0.017)  3.432  0.001  0.007 Accepted 
H8: PCB ➔ (+) DHA 0.276 (0.023)  12.118  <0.001  0.111* Accepted 
H9: PE ➔ (+) DHA 0.217 (0.017)  12.599  <0.001  0.097* Accepted 
H10: NE ➔ (−) DHA −0.138 (0.017)  8.325  <0.001  0.041* Accepted  

* Small effect (i.e. >0.02). 
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hydrogen homes. 
Interestingly, safety perceptions and perceived socio-economic costs 

have equal total effects, but are separated on the IMPA due to their 
respective positive and negative influence on social acceptance. The two 
constructs are further distinguished in terms of their performance met-
rics, with safety perceptions outperforming perceived socio-economic 
costs by 12 units. As a result, there is more strategic value in targeting 
improvements in perceived socio-economic costs when choosing be-
tween these two constructs in isolation (see SN10). However, as illus-
trated by the rank order, neither construct falls within the priority 
cluster for bolstering social acceptance more directly. The IMPA further 
corroborates the weak impact of awareness and knowledge at this stage 
of the transition, while underscoring the importance of perceived com-
munity benefits. 

6.4.2. IMPA for construct indicators 
To complete the assessment, the analysis is extended to the indicator 

level (see SN10). Fig. 4 displays indicators with an effect size of 0.05 and 
higher,37 which account for the following constructs: perceived com-
munity benefits (all indicators); positive emotions (all indicators); pro-
duction perceptions (excluding PP1); and public trust (excluding PT3 

Fig. 2. Structural model path coefficients.  

Fig. 3. Importance-performance map analysis for endogenous constructs. 
Blue = Awareness (AWR); Lilac = Knowledge (KNW); Turquoise = Public Trust 
(PT); Lavender = Production Preferences (PP); Brown = Safety Perceptions 
(SP); Orange = Perceived Disruptive Impacts (PDI); Dark red = Perceived Socio- 
economic Costs (PSC); Bright green = Perceived Community Benefits (PCB); 
Dark green = Positive Emotions (PE); Red = Negative Emotions (NE). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

37 The x-axis is reduced to 0.04 to account for this cut-off value and increase 
readability. 
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and PT5). 
The following conclusions can be drawn which support observations 

from the descriptive statistics reported in Section 6.1. Firstly, indicators 
related to perceived community benefits represent the foremost target 
area for elevating social acceptance, with environmental benefits 
(PCB3) carrying the most potential impact and outperforming economic 
(PCB1) and social benefits (PCB2), as well as all other indicators. 

Interestingly, this result contradicts one study conducted in the 
North of England (N = 578), wherein survey respondents perceived 
significantly higher socio-economic benefits from hydrogen, as opposed 
to environmental benefits [117]. However, the study in question [117] 
had an inherently industrial and place-specific framing around efforts to 
establish a ‘UK hydrogen corridor’ between Leeds and Teesside, which 
likely explains why respondents envisioned substantial socio-economic 
benefits around job creation and industrial reinvigoration. 

Overall, the IMPA aligns to results from the PAT [100], which 
showed that self-rated happiness (i.e. consumer acceptance) in relation 
to local energy infrastructure (i.e. onshore wind farms and solar panel 
farms) stems primarily from the perception of environmental benefits, 
whereas socio-economic benefits are of secondary importance [100] 
(see SN10). Furthermore, support for more traditional renewables such 
as onshore wind and solar farms is strongly linked to perceptions 
regarding emissions reduction [274], underlining the importance of 
perceived environmental impacts. 

Secondly, there is little to distinguish between the four positive 
emotions measured in this survey, although optimism presents addi-
tional importance for garnering social acceptance. Notably, positive 
emotions stem from reactions towards other factors such as costs, ben-
efits, and risks, which may explain why this construct has a mid-level 
performance. Accordingly, the IMPA suggests more resources should 
be allocated towards promoting a green hydrogen production pathway 
(PP3 and PP4) in line with the promise of environmental benefits, which 
may reinforce positive perceptions and emotions. To this end, evidence 
suggests that renewable energy producers (PT2) are the most trusted 
entity for supporting the hydrogen transition. 

It follows that renewable energy producers have a primary role in 
supporting the social acceptability of the hydrogen homes, while GDNOs 
(PT1) and Ofgem (PT4) have a complementary responsibility, which is 
somewhat more secondary in the eyes of the public at the present time. 
However, it should be stressed that the collapse of the Whitby village 
trial may have cast significant public doubt over the capabilities and 
intentions of GDNOs [307,308], which would need to be rapidly 
reversed if domestic hydrogen is to be given a green light by the gov-
ernment after 2026 [22]. 

6.5. Assessment of predictive power 

Traditionally, PLS-SEM practitioners have relied on assessing the 
path model’s in-sample explanatory power [250,309], which is typically 
assessed using the coefficient of determination (R2) [79]. R2 reports the 
proportion of variance in the endogenous construct (i.e. domestic 
hydrogen acceptance) that can be explained by other constructs in the 
model. However, R2 offers no specific guidance as to the out-of-sample 
predictive power of the model, which requires “estimating the model 
on a training (analysis) sample and evaluating its predictive perfor-
mance on data other than the training sample” [[270]:2324]. 

Thus, as a causal-predictive modelling approach [310], it is impor-
tant to evaluate results from PLS-SEM in terms of both explanatory and 
predictive power [251,309,311]. Foremost, adherence to assessing out- 
of-sample predictive power is critical for theory development and vali-
dation, in addition to determining whether the modelling results can 
reliably inform policy making and strategic planning for a prospective 
transition to hydrogen homes. 

6.5.1. In-sample predictive power 
As a rule of thumb, Henseler et al. [238] suggest that R2 values of 

0.25, 050, and 0.75 correspond to weak, moderate, and strong effect 
sizes. However, lower R2 values are anticipated and acceptable when 
examining emerging phenomena, such as low-carbon energy acceptance 
[261] or social media-related behaviour [289]. Therefore, R2 should be 
considered as relative measure, whereby lower values typically reflect 
the exploratory nature of emerging social science research [312]. In this 
study, R2 measured 0.669, suggesting a moderate to strong level of in- 
sample predictive accuracy, reflecting the model’s explanatory power. 

6.5.2. Out-of-sample predictive power 
Predictive benchmarking provides researchers with insights as to 

whether the proposed model outperforms a naïve baseline [242,313]. 
The quality of the structural model and its predictive relevance can be 
assessed through the blindfolding procedure [260], which returns the 
Stone-Geisser’s Q2 value [314,315].38 To better examine a model’s out- 
of-sample predictive power [316], Shmueli et al. [[270]:2322] devel-
oped the PLSpredict tool: “a holdout-sample-based procedure that gen-
erates case-level predictions on an item or a construct level to reap the 
benefits of predictive model assessment in PLS-SEM.” 

More recently, Liengaard et al. [79] introduced the cross-validated 
predictive ability test (CVPAT) to further compare the predictive capa-
bilities of different models. The CVPAT functions by performing “a 
pairwise comparison between theoretically derived competing models,” 
and then “selecting the model with the highest predictive power based 
on a prespecified statistical significance level” [79]. 

According to the PLSpredict results, only one indicator (DHA2) 
outperformed the naïve linear model (LM), which suggests low out-of- 
sample predictive power for the model. However, based on results 
from the CVPAT, the proposed model demonstrated high predictive 
power, since the average loss difference between the PLS-SEM model 
and the indicator average (IA) was negative (−2.795) [79]. Conse-
quently, the PLS-SEM model outperformed the LM benchmark in rela-
tion to the endogenous construct, social acceptance, as reflected by a 
statistically significant result (t = 20.971, ρ ≤0.001). In view of both 
assessments, it may be concluded that the proposed model demonstrates 
a moderate level of out-of-sample predictive power (see Table 5), which 
is supported by Q2 values >0.50. 

Fig. 4. Importance performance map analysis for top 14 indicators. 
Turquoise = Public trust (PT); Lavender = Production Preferences (PP); Bright 
green = Perceived Community Benefits (PCB); Dark green = Positive Emotions 
(PE). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

38 Shmueli et al. [251] further explain that since the Q2 draws on single 
omitted and imputed data points, as opposed to holdout samples, the metric is 
essentially “a combination of in-sample and out-of-sample prediction,” but 
doesn’t explicit indicate the level of explanatory power (i.e. R2 value) or pre-
dictive power of the model. 
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6.6. Links between acceptance dimensions and constructs 

6.6.1. Cognitive processes 
Supporting findings in the literature [129,318], this study suggests 

cognitive processes linked to awareness and knowledge of hydrogen are 
currently non-significant factors of domestic hydrogen acceptance. It 
follows that subjective knowledge may prove a less influential accep-
tance factor during the early stage of technology transitions when in-
formation is somewhat scarce, and plans remain more dynamic or 
tentative [22,23]. 

When confronted with a knowledge deficit or faced with highly 
complex or technical information, consumers may bypass deep cognitive 
evaluations in favour of emotional responses which can act as decision- 
making heuristic [319]. In accordance with findings in the literature 
[32,39], it follows that domestic hydrogen remains at the periphery of 
public thinking [101,102], which may constrain the influence of 
awareness and knowledge on social acceptance during the formative 
phase of the transition. 

6.6.2. Social capital 
The results suggest public trust is a positive and significant predictor 

of domestic hydrogen acceptance, thereby establishing the importance 
of social and cognitive processes, whereas cognitive aspects in isolation 
are less impactful. This finding supports a rich literature documenting 
the role of public trust in shaping the acceptance of emerging energy 
technologies [38,74,320]. It is apparent that developing public trust in 
hydrogen production pathways, energy markets, and management of 
pipeline infrastructure is critical to the transition. By the same token, 
trust dynamics concerning the investment landscape and publicising of 
domestic hydrogen will shape prospects for the transition. Foremost, 
public trust may prove a prerequisite to enabling consumer confidence 
in the environmental, economic, and social benefits of hydrogen homes 
[117,321]. Public trust in the domestic hydrogen transition will be 
strengthened if stakeholders enshrine maximum commitments towards 
ensuring environmental health and human safety. 

6.6.3. Environmental attitude 
This study explored perceptions of hydrogen production pathways 

vis-à-vis the government’s twin track approach, thereby gauging po-
tential (environmental) preferences for blue and green hydrogen pro-
duction [129]. At one level, Table 1 and Fig. A1 support qualitative 
results highlighting an implicit misunderstanding about the rationale of 
the twin-track approach [129]. Nevertheless, the prognosis for social 
acceptance appears to lie with scaling up green hydrogen production, 
which aligns to most international findings [69,119,322]. Addressing 
misconceptions in the public sphere, which entails an important role for 
energy representatives, politicians, and media outlets, is crucial to 
legitimising the UK Hydrogen Strategy [22]. 

At present, evidence suggests the inferred equivalence or balancing 
of the twin-track approach is unrecognised by the public, which ob-
scures the apparent commitment towards ensuring complementarity 

over competition in realising the hydrogen economy [31]. While blue 
hydrogen is likely a necessity for achieving industrial decarbonisation 
[7], and may underpin the foundations of developing a national 
hydrogen economy in the UK [22],39 a clear and direct public commu-
nication campaign on hydrogen production pathways is yet to be 
invested in. 

6.6.4. Risk perceptions 
As reported via descriptive analysis, both safety and disruptive im-

pacts are perceived to be somewhat moderate. The former construct (SP) 
has a positive influence on social acceptance, owing to a general 
perception that hydrogen may be slightly safer than natural gas, whereas 
the latter (PDI) exhibits a negative association. Given the reported 
awareness and knowledge deficit, it is conceivable that the risk char-
acteristics of hydrogen remain poorly understood by most consumers. 

The results suggest consumers consider hydrogen fuel to incur 
similar risks to natural gas [323,324], which is partially consistent with 
findings in the literature [93,102,106]. At the same time, it is apparent 
that safety perceptions may vary according to different HETs, while 
cross-cultural differences could explain discrepancies in the recent 
literature. Additionally, it has been shown that support for HETs is 
positively associated to public trust in the provision of adequate safety 
precautions [69,93], which may be the presumption among respondents 
in this survey. 

On the softer side of hydrogen-related risks, it is logical that con-
sumers would wish to minimise the extent of disruptive impacts during 
the switchover process. However, whereas a recent literature review 
suggested the disruptive impacts of the switchover may rank as a ‘major’ 
barrier to domestic hydrogen acceptance [32], this study identifies this 
construct to be a somewhat less critical barrier. 

Overall, it can be asserted that taken together, safety perceptions and 
perceived disruptive impacts have a largely neutralising effect on risk 
perceptions. Nevertheless, the perceived risks of hydrogen may be prone 
to sudden changes when activities are taken from the hypothetical to the 
real [325–327] and moreover, in the event of inevitable safety incidents 
[328,329]. 

6.6.5. Cost-benefit appraisal 
The wider energy acceptance and emerging hydrogen acceptance 

literatures suggest perceived benefits may be the foremost predictor of 
social acceptance and technology adoption [39,178,187], which was 
corroborated in this study. Beyond the UK context (see Section 3.3), the 
modelling results echo findings from Norway, wherein perceived envi-
ronmental benefits proved an important predictor of hydrogen accep-
tance [119]. Notably, the Norwegian study flagged the need to consider 
other acceptance factors such as “perceived cost, safety and economic 
benefits” [[106]:10], which has been addressed in this study but like-
wise requires further comparative assessment. 

Perceptions of socio-economic costs are set to fluctuate according to 
the macro-economic environment, which currently dictates greater 
levels of concern over fuel stress implications than national energy se-
curity issues (see Table 1, Fig. A2). However, these two areas are highly 
intertwined, with the former capturing the more personal dimension 
against the socio-political dimension of the energy crisis. Given the 
premise that industrial reinvigoration and levelling up [41,330] should 
be embedded into the hydrogen transition [22], failure to create an 
acceptable safety net for households in fuel poverty and socio- 
economically deprived regions could lead to widespread social 
resistance. 

6.6.6. Affective response 
In addition to perceived benefits, emotional responses may be among 

Table 5 
Results of predictive power using PLSpredict.  

Items Q2predict Root mean square 
error (RMSE)a 

Mean absolute error (MAE)b   

PLS-SEM Linear 
model 

PL- 
SEM 

Linear 
model 

DHA1  0.583  1.359  1.342  1.047  1.021 
DHA2  0.583  1.442  1.448  1.112  1.114 
DHA3  0.556  1.520  1.514  1.167  1.163  

a The square root of the average of the squared differences between the pre-
dictions and the actual observations [236,317]. 

b The square root of the average of the squared differences between the pre-
dictions and the actual observations [317]. 

39 Alongside other countries such as Germany [277], Australia [401], and 
Japan [72]. 
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the most critical predictors of HET acceptance [39], which proved the 
case in this study. Emotional responses may exhibit a comparatively 
stronger influence in the domestic energy context [192,331], wherein the 
lived experience of heating and cooking impacts consumer expectations 
and preferences [89,102]. Foremost, this study finds that positive emo-
tions have a stronger influence on social acceptance than negative emo-
tions, although the latter construct is also significant at the 1 % level. 

Ambitions for accelerating industrial decarbonisation are a driver of 
large-scale (hydrogen) production [7], which strongly underlies the 
techno-economic feasibility of hydrogen homes [31]. In parallel, policy 
and market decisions around the role of heat pumps [332,333], smart 
hybrid heat pumps [334], and other low-carbon technologies such as 
district heat networks [335] will shape emotional responses to hydrogen 
home appliances. 

Given the interdependencies between energy resources and different 
hydrogen production pathways [336,337], ‘perception spillover’ effects 
may influence the acceptance dynamics of the broader hydrogen econ-
omy [338]. Notably, Westlake et al. [338] highlight the extent to which 
perception spillover from one energy technology such as fracking may 
influence public attitudes towards emerging low-carbon solutions. 
Specifically, the moratorium on fracking appears to have undermined 
the social acceptance of deep ‘enhanced’ geothermal systems compared 
to green hydrogen [338], which could present a cautionary tale for CCS 
and blue hydrogen [339]. 

7. Conclusions 

As remarked by Parkison et al. [128], highly technical data on costs 
and emissions is often leveraged and misrepresented by groups with 
vested interests to sway policy makers and influence public opinion, 
especially in respect to the polarising debate around fossil-based and 
renewable-based hydrogen production technologies. Accounting for 
these dynamics, this study presents key findings on domestic hydrogen 
acceptance, as transmitted by the public and made accessible to a wide 
range of stakeholders through data visualisation techniques. 

This research bridges a critical knowledge gap in the energy acceptance 
literature by comprehensively examining public perceptions of domestic 
hydrogen. In parallel, this study motivates the wider dissemination of PLS- 
SEM in energy acceptance research to support a deeper understanding of 
the conditions for accelerating low-carbon energy adoption. The following 
sub-sections complete the analysis by outlining key theoretical and 
empirical contributions, future research avenues, and practical implica-
tions which can be leveraged by policy makers and key stakeholders to 
support a ‘hot transformation’ for the residential sector [340]. 

7.1. Theoretical and empirical contributions 

This research contributes to theory by developing and empirically 
validating a novel model of domestic hydrogen acceptance, which is 
conceptualised in Fig. 1. While prior work has explored the foundations 
for conceptualising a definitive framework [33,39,69], this study is the 
first to formalise a multi-dimensional model, while validating its 
explanatory and predictive capabilities using PLS-SEM. The DHAM is 
composed of ten exogenous constructs which underpin six socio- 
psychological dimensions, wherein five proved significant at the 1 % 
level (Table A3). 

It can be concluded that these dimensions and their corresponding 
constructs are significant predictors, together explaining nearly 67 % of 
domestic hydrogen acceptance. Consequently, the model validates the 
efficacy of eight constructs (PT, PP, SP, PDI, PC, PCB, PE, and NE), 
although two constructs at the cognitive dimension (AWR and KNW) 
proved insignificant. Accordingly, this study makes an important 
empirical contribution, which may stimulate subsequent engagement 
with PLS-SEM by hydrogen acceptance scholars. Notably, the need for 
this trajectory has been recognised by Harichandan and colleagues 
[261,262,341] when validating hypotheses in the context of HFCV 

adoption in India. 
The DHAM provides the research community with a baseline model 

for examining consumer attitudes towards hydrogen homes. Findings 
from this research can be benchmarked against statistical results from 
other country contexts such as Australia [69] to help bridge conceptual 
and empirical understanding on hydrogen acceptance. Critically, this 
analysis reinforces the call for more robust quantitative assessments 
[39] to advance understanding on developing national hydrogen econ-
omies. Developing models with stronger explanatory and predictive 
power is a critical mechanism for embedding societal factors in the 
technological pursuit of large-scale, sustainable energy solutions, which 
may include establishing a global hydrogen economy. 

7.2. Scope for developing the DHAM and future research agenda 

This study focused exclusively on modelling direct relationships 
between latent constructs. However, prior research highlights the value 
of considering the mediating role of constructs such as public trust 
[320], and perceived risks, costs, and benefits [74,261,342]. For 
example, Montjin-Dorgelo [206] modelled trust and emotions as medi-
ators when examining acceptance for hydrogen buses in the 
Netherlands, while Yang et al. [206,320] proposed a mediating role for 
public trust in the context of CCS technologies in China. 

In addition to testing for mediation and moderation effects, further 
conclusions can be drawn by expanding the multi-dimensionality of 
certain constructs through new measurement items. For example, survey 
items corresponding specifically to perceived economic, social, and 
environmental benefits would facilitate opportunities for developing a 
reflective-formative construct to increase theoretical parsimony and 
reduce model complexity [343], as illustrated in Supplementary Note 12 
(SN12). 

Researchers may also adapt and extend the DHAM by developing a 
higher-order construct for public trust. Given the importance of public 
trust to facilitating energy acceptance and technology adoption, further 
modelling work is needed to evaluate consumer perspectives towards 
the government, energy industry, and other key stakeholders, as po-
tential enablers of a socially acceptable transition to hydrogen homes. 
To this end, researchers can leverage opportunities to integrate addi-
tional constructs into the DHAM to unpack the trust dynamics of the 
domestic hydrogen transition. 

Higher-order constructs could also be a viable technique for 
modelling production perceptions (i.e. operationalising blue and green 
hydrogen as lower-order constructs). Notably, a recent UK study asked 
respondents about their level of agreement regarding government in-
vestment in hydrogen production funded by a levy on people’s energy 
bills [344], which could be used as a construct indicator in future 
studies. It follows that distilling socio-economic and environmental 
perceptions of hydrogen production pathways presents a fruitful area for 
further research. In sum, the baseline version of the DHAM can motivate 
more nuanced studies which employ techniques such as mediation and 
moderation analysis to model hydrogen acceptance [345,346]. 

At the construct level, follow-up studies should further evaluate the 
cognitive dimension and explore additional measurement items to 
validate and extend findings from this case study. A recommended 
approach is to examine potential differences between consumer seg-
ments via a multigroup analysis (MGA) [82,347]. The efficacy of MGA 
has been demonstrated across a range of technology acceptance studies 
[348–350], leading to recent uptake among energy scholars [318,351]. 
MGA can help expand the evidence base, while supporting longitudinal, 
cross-cultural hydrogen acceptance studies. Future studies can also 
crystallise insights on perceived disruptive impacts by validating 
whether current assessments suggesting a tolerance period of around 
three days are accurate [41], while further clarifying the scope of ex-
pectations among different consumer segments [146,222]. 

Although the critical findings on cost-benefit appraisal are strongly 
supported by government data (see SN11), cross-comparative analysis of 

J.A. Gordon et al.                                                                                                                                                                                                                               



Energy Research & Social Science 110 (2024) 103437

17

large datasets should be carried out to further validate the findings. 
Importantly, the selected survey instruments encountered a notable 
constraint for achieving a more robust comparison between perceived 
costs and benefits. Specifically, an intended third measure (i.e. negative 
environmental impacts) of the original construct, perceived costs, could 
not be validated. This discrepancy may partially explain why the cost- 
benefit appraisal dimension is somewhat less significant than other di-
mensions (i.e. social trust, cognitive processes, environmental attitude, 
and affective response), as reported in Table A3. 

In follow-up research, the selected statement, “Switching from nat-
ural gas to hydrogen will have an insignificant impact towards reaching 
‘net-zero’ (i.e. a reduction of the UK’s net emissions of greenhouse gases 
by 100% relative to 1990 levels by 2050),” can be simplified to 
“Switching from natural gas to hydrogen will have negative environmental 
impacts” to establish construct validity. Despite this limitation, the 
modelling results provide critical insights regarding the pivotal dimen-
sion of cost-benefit evaluations, as highlighted in Section 6.6.6. 

There is also scope for better capturing the affective dimension through 
a wider range of emotional responses. Notably, the seminal study of 
Beaudry et al. [352] provides a robust framework for evaluating affective 
appraisals in relation to emotions concerning achievement (e.g. satisfac-
tion), challenge (e.g. hope), loss (e.g. anger), and deterrence (e.g. fear). If 
follows that additional survey instruments are required to better account 
for the wide spectrum of emotional responses to domestic hydrogen [103]. 

Furthermore, multiple evidence streams are needed to ascertain 
whether positive emotions towards domestic hydrogen prevail, and 
moreover, how the dynamics of emotional response may change over 
time in accordance with different policy prescriptions [353], party 
preferences [354], and media representations [355,356]. Additionally, 
important insights could be extracted by comparing social acceptance 
across different measures in relation to hydrogen, CCS, nuclear and wind 
energy (onshore and offshore), thereby elucidating statistical relation-
ships between these interrelated technologies, which would advance the 
contribution of Roddis et al. [357]. 

7.3. Practical contributions and policy implications 

Beyond the theoretical dimension, there are several practical impli-
cations of this research. The study provides policy makers and key 
stakeholders such as GDNOs and boiler manufacturers with strategic 
insights for improving consumer engagement, information campaigns, 
and management decisions. Fig. 4 clearly translates the implications of 
the model, communicating the underlying need to couple green 
hydrogen production to community benefits, as a mechanism for 
increasing optimism and confidence in hydrogen homes. 

At the same time, stakeholders should not overlook the importance 
of managing the disruptive impacts of the transition ahead of time, while 
pre-empting the risks of negative socio-economic effects. Such measures 
would help simmer negative emotions towards hydrogen at a time when 
energy vulnerabilities are high [173,358], as geopolitical stakes 
continue to increase around resources [169,170,359] and ideologies 
[166,360]. 

As the stakes for deploying low-carbon technologies continue to rise, 
this analysis can help steer critical discussion around potential synergies 
between hydrogen production pathways and community benefits to 
support a socially acceptable energy transition. In response, UK policy 
makers and key stakeholders should seek to leverage prospects for better 
packaging the synergistic effects of scaling up different hydrogen pro-
duction methods. 

This measure could help support a more positive environmental 
attitude towards hydrogen across society, which may involve reconsi-
dering the ‘twin-track’ framing, in view of its propensity for raising 
confusion, doubts, and scepticism among the public. Recasting the twin 
track production approach and justifying the role of blue hydrogen to 
the public are important starting points for facilitating social accep-
tance. In doing so, the government can take strides towards building 

knowledge and awareness of hydrogen across society and supporting 
public trust in the hydrogen economy. 

Government policies should aim to ensure ‘price promises’ [361] on 
hydrogen boilers are delivered by manufacturers to counteract 
perceived socio-economic risks. Furthermore, the government should 
dedicate adequate resources towards alleviating fuel poverty pressures, 
as part of its residential decarbonisation strategy and wider net-zero 
agenda [41,173]. Such measures would help improve public expecta-
tions for economic and social benefits trickling down to the community 
level [117]. 

Emotional responses to hydrogen may underlie social acceptance, 
especially at the individual and community level [39], with implications 
for attitudes towards safety, production, risks, costs, and benefits 
[44,191]. Strengthening positive emotions will weaken the impact of 
potential negative feelings towards hydrogen, which can be addressed 
more directly by minimising concerns over perceived socio-economic 
costs and disruptive impacts, while ensuring safety perceptions are 
decoupled from fears and negative imagery. 

7.4. Supporting a hot transformation via hydrogen homes? 

History has shown that a large-scale conversion to a new gas supply 
is plausible, both in the UK [159] and internationally [362,363], how-
ever, this era calls for a ‘hot transformation’ [340] which is clean, 
equitable, and timely. Agents of the energy transition including policy 
makers, GDNOs, and boiler manufacturers may leverage insights from 
this study to devise more holistic and reflexive solutions to instilling 
social acceptance into the fabric of the hydrogen transition. As noted by 
Papachristos [ [364]:57] governance approaches for mitigating climate 
change call for “an iterative process of problem definition, intervention 
and response” to bridge the gap between different actor groups in pur-
suit of productive dialogues and constructive actions [365]. 

A hybrid, collaborative approach is needed to realise the potential 
economic, social, and environmental benefits of the hydrogen economy 
[16,366]; bearing in mind that the techno-economic feasibility of 
hydrogen homes and other HETs [31] must be established to facilitate 
social acceptance. Foremost, the implementation of HETs will be driven 
by cost factors and scalability [19,128], wherein techno-economic 
constraints must be tackled to support national hydrogen economies 
[19]. This calls for a whole-systems approach geared towards leveraging 
the synergistic benefits of hydrogen production pathways, thereby 
advocating for complementarity over competition in delivering the 
twin-track approach [31]. 

A more unified vision between stakeholders supporting respective 
green gas [367–369] and electrification pathways [370,371] is desir-
able. Ideally, rifts between incumbents and new entrants should be 
narrowed by the vision (or re-envisioning) of the twin-track approach, 
and moreover, the pressing need to accelerate ‘deep’ decarbonisation 
[372]. Stronger levels of collaboration and unity could bolster public 
trust in the transition, while promoting the underlying tenets of the 
twin-track approach, which is needed to consolidate community and 
socio-political acceptance. 

Ahead of a critical decision on the future of residential decarbon-
isation in the UK towards the mid-2020s [22,335], energy scholars should 
respond in kind by accelerating the adoption of state-of-the-art predictive 
modelling approaches. In conjunction with PLS-SEM, emerging methods 
such as machine learning [373,374] and artificial neural networking 
[375,376] should be harnessed as complementary techniques to enhance 
critical insights on domestic hydrogen acceptance. 

CRediT authorship contribution statement 

Joel A. Gordon: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Visualization, Writing – original draft, 
Writing – review & editing. Nazmiye Balta-Ozkan: Conceptualization, 
Funding acquisition, Methodology, Project administration, Supervision. 

J.A. Gordon et al.                                                                                                                                                                                                                               



Energy Research & Social Science 110 (2024) 103437

18

Anwar Haq: Conceptualization, Methodology, Writing – original draft. 
Seyed Ali Nabavi: Conceptualization, Funding acquisition, Project 
administration, Supervision. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interest or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be accessible publicly on our institutional data repository 
https://doi.org/10.17862/cranfield.rd.24517966.v1. 

Acknowledgments 

This research was supported by the UK Research and Innovation 
Engineering and Physical Sciences ResearchCouncil (EPSRC) Grant EP/ 
T518104/1, and sponsored by Cadent Gas Ltd.  

Appendix A. Sample characteristics  

Table A1 
Sample characteristics and comparison to UK population.  

Socio-demographic variable Sample  
(%) 

UK population (%) Difference  
(%) 

Age    
18–34 35.5 32.6 +2.9 
35–54 39.2 30.6 +8.6 
55+ 25.3 36.8 −11.5  

Gender    
Male 43.9 48.8 −4.9 
Female 56.1 51.2 +4.9  

Housing tenure    
Property owned outright 37.2 57.1 −19.9 
Property owned with mortgage 62.8 42.9 +19.9  

Housing type    
Flat, apartment or bungalow 12.3 29.6 −17.3 
Detached house 29.1 17.9 +11.2 
Semi-detached house 38.5 24.9 +13.6 
Terrace house 20.2 27.6 −7.4  

Number of occupants per property    
1 10.0 n/aa  

2 30.2 n/a  
3+ 59.8 n/a   

Highest education level    
GCSE/O-Level or lower 21.7 n/a  
Vocational/NVQ 24.2 n/a  
Postgraduate qualification 21.4 n/a  
Degree or equivalent 32.7 n/a   

Annual income bracket (before tax)    
Less than £23,500 26.6 n/a  
More than £23,500 but less than £31,500 20.8 n/a  
More than £31,500 but less than £41,500 18.9 n/a  
More than £41,500 but less than £62,500 21.7 n/a  
More than £62,500 12.1 n/a   

Location    
South West and Wales 12.5 13.4 −0.9 
Midlands and East of England 25.7 26.2 −0.5 
South east and London 27.5 27.2 +0.3 
North of England and Scotland 34.2 33.0 +1.2  

Area type    
Inner City or industrial 8.9 n/a  
Suburban 52.1 n/a  
Urban 21.6 n/a  
Rural 17.4 n/a   
a n/a denotes the decision to exclude these variables when setting quotas, therefore population data is not reported here. 

Source: Authors’ compilation based on 
[377–379]. 
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Appendix B. Descriptive statistics
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Fig. A1. Constructs measured on an eleven-point Likert scale.  
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Fig. A2. Constructs measured on a five-point Likert scale.  

Appendix C. Results for establishing discriminant validity 

Traditionally, the Fornell Larcker criterion [380] has been used to assess discriminant validity, wherein each construct’s AVE is compared to the 
squared inter-construct correlation of its own construct and all other (reflectively) measured constructs [48]. Indicators should load more strongly on 
their intended constructs than on other constructs to support discriminant validity [264], as illustrated in Table A2. 

Following the critique of Henseler et al. [381], the heterotrait-monotrait (HTMT) ratio of correlations has been widely adopted as a more robust 
measure of discriminant validity [382], given its additional levels of sensitivity and specificity [383]. Discriminant validity is established when values 
fall below 0.85 for each construct, or below 0.90 when constructs share conceptually similarity [381]. HTMT values fell below the more conservative 
value of 0.85, thereby establishing discriminant validity for each construct (see Table 3).  

Table A2 
Fornell Larcker results for assessment of discriminant validity.   

AWR PCB PDI KNW NE PSC PE PP SP DHA ST 

AWR 0.910           
PCB 0.091 0.849          
PDI 0.031 −0.164 0.821         
KNW 0.479 0.076 0.065 1.000        
NE 0.066 −0.233 0.412 0.102 0.846       
PSC 0.054 −0.341 0.284 0.138 0.427 0.887      
PE 0.248 0.449 −0.134 0.277 −0.088 −0.203 0.859     
PP 0.208 0.536 −0.154 0.216 −0.212 −0.280 0.353 0.760    
SP 0.075 0.549 −0.027 0.129 −0.123 −0.130 0.363 0.351 0.868   
DHA 0.166 0.677 −0.299 0.152 −0.351 −0.360 0.552 0.601 0.477 0.930  
ST 0.193 0.452 −0.122 0.225 −0.075 −0.061 0.383 0.407 0.436 0.545 0.803  
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Appendix D  

Table A3 
Assessment of constructs at the dimensional level.  

Construct dimension β coefficient t-statistic ρ-value f2 Result 

Cognitivea 0.014 0.875 0.413 0.001 Rejected 
Social capitalb 0.198 10.207 <0.001 0.079* Accepted 
Environmental attitudec 0.214 10.897 <0.001 0.086* Accepted 
Risk perceptiond 0.075 4.167 0.002 0.013 Accepted 
Cost-benefit appraisale 0.167 7.775 0.001 0.059* Accepted 
Affective responsef 0.178 10.462 <0.001 0.069* Accepted  
* Small effect (i.e. >0.02). 
a Calculated as the mean value of β coefficients for AWR and KNW. 
b Reflected by the β coefficient of ST. 
c Reflected by the β coefficient of PP. 
d Calculated as the mean value of β coefficients for SP and PDI. 
e Calculated as the mean value of β coefficients for PSC and PCB. 
f Calculated as the mean value of β coefficients for PE and NE. 

Appendix E  

Table A4 
Comparison of PLS-SEM and CB-SEM.  

Criteria PLS-SEM CB-SEM 

Method focus  • Prediction-oriented  • Parameter-oriented 
Method approach  • Variance-based  • Covariance-based 
Method paradigm  • Causal-predictive: employs the coefficient of determination (R2) 

to estimate the proportion of total variance explained  
• Causal-explanatory: employs the coefficient of determination (R2) to 

estimate the proportion of common variance explained 
Method assumptions  • Soft-modelling approach with flexibility: predictor specification 

(non-parametric)  
• Rigorous assumptions: multivariate normal distribution (parametric) 

Statistical objective  • Maximising the variance explained in a target construct by 
incorporating common, specific, and error variance into the 
modelling parameters  

• Estimates model parameters that minimise the differences between the 
observed sample covariance matrix (calculated before the analysis) and 
the covariance matrix estimated after the revised theoretical model is 
confirmed 

Parameter estimates  • Consistent as indicators and sample size increase (i.e. 
consistency at large)  

• Consistent 

Latent variable scores  • Explicit since a single latent variable score is always produced 
for each composite per observation  

• Indeterminate since an infinite number of different sets of latent 
variable scores can potentially fit the model equally well 

Epistemic relationship between a 
latent variable and its measures  

• Supports formative or reflective mode  • Supports reflective indicators typically 

Implications  • Optimised for predictive accuracy  • Optimised for parameter accuracy 
Model complexity  • Large complexity, e.g. up to 100 constructs and 1000 indicators  • Small to moderate complexity (e.g. less 30-40 indicators) 
Sample size recommendation  • Power analysis based on the portion of the model with the 

largest number of predictors. Typically, the minimum number 
of cases range from 30 to 100 cases  

• Power analysis on specified model. Typically, a minimum number of 
observations range from 200 to 800. 

Source: Authors’ design based on [70,264,384,385]. 

Appendix F. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.erss.2024.103437. 
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