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Abstract: This paper proposes a novel perimeter intrusion prediction algorithm that can be applied to generic perimeter 
security systems. The proposed algorithm uses multiple probability mass functions that are computed using trajectory 
frequency information for different behaviour models: non-intrusive intention and intrusive intention. A Naive Bayes 
classifier i s u sed t o c ompute t he i ntention p robability f or i ntegrating m ultiple p robabilities f rom d ifferent probability 
mass functions. The performance of the proposed algorithm is validated by numerical simulations and the classification 
characteristics are also discussed.
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1. INTRODUCTION

In areas where access is controlled for safety or se-
curity purposes, a surveillance system is used to keep
the area and its surroundings under constant surveillance.
The purpose of a target surveillance system is to proac-
tively identify and alert to targets attempting to infiltrate a
controlled area. If the surveillance system needs to mon-
itor a large number of targets simultaneously, it is essen-
tial to introduce automated intrusion identification tech-
niques to reduce the workload of human operators. This
paper proposes a novel intrusion prediction method that
can be used in perimeter intrusion monitoring and alert-
ing systems.

Research topics related to perimeter intrusion detec-
tion include intent inference, anomaly detection, and
threat assessment. The concepts of each topic and the
problem settings vary across studies. Reference [1] pro-
poses techniques for estimating non-cooperative drones’
specific missions, such as image acquisition, smuggling,
and kamikaze attack. Meanwhile, [2] defines intent as
whether a drone target intends to stay in or leave a partic-
ular airspace. In [3], the authors suggested ground target
knowledge-based anomaly detection using airborne radar
data. Various types of anomalies were modelled using
relative geometry information between the target and the
road, or between the target and the asset. In [4], a fuzzy
inference system using radar data was proposed to esti-
mate the degree of threat of the target. Threat scores are
calculated based on relative distance to the defending as-
set, speed, altitude, and target type.

In this paper, we consider all targets that could be
detected by a surveillance system. These targets in-
clude cars, humans, birds, drones, and manned aircraft.
The measurements considered are kinematic information,
such as position, velocity, and acceleration. Radar is the
primary instrument that can provide these measurements
with precision.

This research is being conducted as part of the Knowl-
edge Transfer Partnerships (KTP) project between Cran-

field University and Operational Solutions Ltd (OSL).
OSL’s advanced Perimeter Intrusion Detection Systems
(PIDs) is designed to provide security teams across any
site with the situational intelligence needed to rapidly re-
spond to potential perimeter intrusions. The objective of
the KTP project is to investigate various threat assess-
ment, target identification, and classification techniques
to improve the performance of PIDs.

2. PROBLEM STATEMENT

2.1 Perimeter Surveillance
The schematic plan of the surveillance system con-

sidered in this study is shown in Figure 1. A polygo-
nal perimeter is defined around the protected asset, and
traffic inside the perimeter is controlled. The surveil-
lance system constantly monitors the area under surveil-
lance, which consists of accessible and controlled access
areas. The perimeter we consider in this study is one that
does not require significant physical force to penetrate,
which we refer to as a virtual perimeter. Examples of
virtual perimeter for ground targets include traffic cones,
retractable belt barriers, and lanes. On the other hand, for
airborne targets, a fence with some height can be included
in the virtual perimeter.

Fig. 1. Schematic plan of area under surveillance
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2.2 Intrusion Prediction and Alarm
Figure 2 illustrates the input/output relationship for an

intrusion prediction method within a perimeter surveil-
lance system. The sensor system provides the prediction
method with the kinematic information of all targets in-
side and outside the perimeter, which includes targets’
position, velocity, and acceleration. Based on the kine-
matic information of a given target, the intrusion predic-
tion method determines whether the target has intruded
the perimeter or not, and calculates the perimeter intru-
sion probability (PIB) for targets that have not yet pene-
trated the perimeter.

Perimeter intrusion can be determined simply based
on whether the target’s position is inside the perimeter.
However, the calculation of the PIB requires a more com-
plex technique that leverages additional information such
as the target’s velocity and acceleration. The calculated
PIB is compared to a threshold, and if the PIB exceeds
the threshold, an intrusion alarm is sent to the command
and control module. The threshold changes the true posi-
tive rate (TPR) and false positive rate (FPR) of the intru-
sion prediction results, which are discussed in more detail
in Section 4.2. The command and control module deter-
mines and performs appropriate actions against the target
that triggered the alarm.

Fig. 2. Intrusion prediction and alarm process

2.3 Challenges of Intrusion Prediction
The introduction of automated intrusion prediction

method is essential when the number of targets to be
monitored simultaneously is large. Since the informa-
tion used in intrusion prediction method is supplied by
the sensor system, the sensor system is required to have
robust detection and tracking performance for multiple
targets. Ensuring adequate performance against multiple
targets is a major challenge for all types of sensors. Sen-
sors are primarily required to provide accurate kinematic
information of multiple targets, but in some cases, they
may also need to provide class information for multiple
targets such as vehicles, humans, birds, and drones.

Intrusion prediction methods should estimate the prob-
ability of an intrusion as promptly as possible based
on the target information provided by the sensors. The
promptness is a measure of how early the method cor-
rectly predicts the intrusion of a target relative to the time
of the actual target intrusion. For this reason, the in-
trusion prediction method needs to be computationally
lightweight and predict events as far into the future as
possible. The prediction window, or how far into the fu-

Fig. 3. Process chain of perimeter intrusion predic-
tion using class-conditional probability mass func-
tions and naive Bayes classifier.

ture an event is predicted, is an important design param-
eter that affects the performance of intrusion prediction
methods. A large prediction window provides more time
to react to targets that are expected to breach the perime-
ter, but can also increase the FPR. Conversely, small pre-
diction window can reduce the FPR, but at the cost of less
time to respond to intrusive targets.

To predict the intrusion of a target within the predic-
tion window, it is necessary to estimate the expected be-
haviour of the target. For this purpose, target behaviour
models that can be observed with available sensor infor-
mation should be established. Reference [2] proposed a
method for calculating the probability of drone intrusion
into a certain area using the latent destination-following
behaviour model. The method is divided into two parts:
the first part is to calculate the probability distribution of
the drone’s latent destination in an area of interest. The
probability distribution of the latent destination is then
integrated over the area of interest to calculate the proba-
bility of entering the area.

In this paper, we define non-intrusive intention and
intrusive intention models as behaviour models of tar-
gets. The behavioural characteristics of each intention
and the intrusion probability estimation method using the
behaviour model are described in following sections.

3. INTRUSION PREDICTION

The process chain of the perimeter intrusion predic-
tion method proposed in this paper is shown in Figure 3.
The core of the method is to calculate the trajectory likeli-
hood for each of the non-intrusive and intrusive intentions
using empirically calculated probability mass functions
(PMFs). Trajectory likelihoods are computed using two
joint PMFs for each intention, which are used as the basis
for identifying the target’s intent. To establish the phase
planes that best represent the behavioural characteristics
of the target, we first consider the characteristics of each
behaviour model.



3.1 Behaviour Models
3.1.1 Non-intrusive Intention

Both the waypoints and the final destination of a target
with non-intrusive intention are only within the accessi-
ble area. If the target approaches a certain level of dis-
tance from the perimeter during its movement, a deceler-
ation or turning manoeuvre is triggered to avoid colliding
the perimeter.

3.1.2 Intrusive Intention
The final destination of the target with the intrusive

intention exists within the perimeter, and waypoints can
exist anywhere inside or outside the perimeter. The target
will not manoeuvre to avoid colliding with the perimeter.

3.2 Computation of Probability Mass Function
We adopt the trajectory frequency-based target inten-

tion estimator proposed in Reference [1] to calculate the
perimeter intrusion probability. In the technique pro-
posed by Reference [1], the first thing to do is to set
state variables that can properly represent the behavioural
characteristics of the target. As discussed in the previous
section, the behavioural rules of non-intrusive intention
are defined based on the distance information between
the target and the perimeter. Based on this, we select the
relative range, relative velocity, and relative acceleration
of the target as state variables for the construction of the
phase planes. Figure 4 shows the geometric definition of
these state variables. The velocity and acceleration ob-
tained by differentiating relative range once and twice
with respect to time provides more specific behavioural
characteristics for each behaviour model. Such charac-
teristics include the expected collision time between the
target and the perimeter, and whether the target deceler-
ates and turns.

The first phase plane defined using the selected state
variables is the range-velocity phase plane. The trajec-
tory frequency calculated from this phase plane provides
a statistical characteristics of the velocity exhibited by
the target as it approaches the perimeter. A target with
non-intrusive intention will decelerate or turn as its range
decreases to avoid colliding with the perimeter, so its ve-
locity towards the perimeter will tend to decrease. On the
other hand, a target with intrusive intention may maintain
or increase its speed towards the perimeter regardless of
the decrease in range.

The second phase plane is the range-acceleration
phase plane. Compared with the velocity information,
the acceleration information shows more directly the ten-
dency of non-intrusive intention’s collision avoidance be-
haviour, which will help to identify the target’s true be-
haviour model more quickly. The acceleration charac-
teristics of the deceleration and turning generated by the
non-intrusive intention are recorded in the corresponding
phase plane. For the intrusive intention, the acceleration
characteristics for heading towards the destination within
the perimeter will be recorded in the range-acceleration
phase plane.

The trajectory frequencies for the above two phase

Fig. 4. Definitions of a target’s relative range R, velocity
V , and acceleration A on the horizontal plane. VT

and AT denote target’s true velocity and acceleration
vector, respectively.

planes are calculated offline for each of the intrusive and
non-intrusive intentions. Ideally, the trajectory frequen-
cies should be calculated using measurements from ac-
tual sensor systems, but this is costly and time consum-
ing. Therefore, this paper uses Monte Carlo simulation to
generate four types of trajectory frequency datasets, each
of which is defined as a joint PMF. The process of calcu-
lating trajectory frequencies through Monte Carlo simu-
lation and converting them into joint PMFs is described
in detail in Reference [1].

3.3 Naive Bayes Classifier
The joint PMFs computed offline are used to compute

trajectory likelihoods online.
• ΛPRV

¬I (⟨R, V ⟩) is the joint PMF, or trajectory likeli-
hood, of a measurement coordinate ⟨R, V ⟩, of the non-
intrusive intention (¬I). The function value is an estimate
of the class-conditional probability P (⟨R, V ⟩ |¬I).
• Likewise, ΛPRA

¬I (⟨R,A⟩) is an estimate of the
P (⟨R,A⟩ |¬I).
• ΛPRV

I (⟨R, V ⟩) is the trajectory likelihood of a mea-
surement coordinate ⟨R, V ⟩, of the intrusive inten-
tion (I). The function value is an estimate of the
P (⟨R, V ⟩ |I).
• Likewise, ΛPRA

I (⟨R,A⟩) is an estimate of the
P (⟨R,A⟩ |I).

Assuming that the computed trajectory likelihoods are
mutually independent, the probability of each intention
for a given measurement coordinate can be assumed to be
proportional to the multiplication of different trajectory
likelihoods [5]. That is,

P (C¬I | ⟨R, V,A⟩) ∝ ΛPRV
¬I ΛPRA

¬I , (1)

P (CI | ⟨R, V,A⟩) ∝ ΛPRV
I ΛPRA

I . (2)

The right-hand sides of the equations are defined as in-
tention likelihoods

Λ¬I = ΛPRV
¬I ΛPRA

¬I (3)

ΛI = ΛPRV
I ΛPRA

I , (4)



where Λ denotes intention likelihood and the subscripts
¬I and I denote non-intrusive intention and intrusive in-
tention, respectively. By comparing the intention likeli-
hood calculated in (3) and (4), we can estimate the inten-
tion of the target. That is,

Target’s Intention = argmax
I∈{¬I,I}

ΛI. (5)

The technique of obtaining class likelihood and compar-
ing them to estimate the true class under the assumption
of mutual independence, as shown in (3), (4), and (5), is
called Naive Bayes classifier.

4. PERFORMANCE ANALYSIS

4.1 Prediction Window
Let tb be the time when the target with the intrusive

intention actually intruded the perimeter. To quantita-
tively evaluate how quickly a particular intrusion predic-
tion method predicts an intrusion, we introduce a mini-
mum prediction time ∆tmin and a maximum prediction
time ∆tmax. The minimum prediction time is the min-
imum requirement of prediction time that must be satis-
fied, and the performance index is calculated only for the
time before tb−∆tmin. On the other hand, the maximum
prediction time sets an upper bound on how fast the in-
trusion prediction method can predict intrusion, and the
performance index is only calculated after tb − ∆tmax.
Then, the prediction window is defined by

t−∆tmax ≤ t ≤ t−∆tmin. (6)

4.2 Performance Metrics
The intrusion prediction problem can be considered as

a behaviour model or target intention classification prob-
lem as defined in the previous section. Therefore, we
use the confusion matrix commonly used in classifica-
tion problems to define performance metrics for the intru-
sion prediction problem. Positive in the confusion matrix
means that the target has the intrusive intention and has
actually breached the perimeter at some point during the
surveillance. On the other hand, negative means that the
target has a non-intrusive intention and has never intruded
the perimeter during the surveillance. Using this defini-
tions, we define the elements of the confusion matrix as
follows.
• True positive (TP) is the amount of time a target with
intrusive intention was classified to have intrusive inten-
tion.
• False negative (FN) is the amount of time a target with
intrusive intention was classified to have non-intrusive in-
tention.
• False positive (FP) is the amount of time a target with
non-intrusive intention was classified to have intrusive in-
tention.
• True negative (TN) is the amount of time a target
with non-intrusive intention was classified to have non-
intrusive intention.

The TP and FN are calculated for the prediction win-
dow (6), and the FP and TN are calculated for the whole
duration of the surveillance. True positive rate (TPR) and
false positive rate are the two important performance met-
rics for classification problem and defined as

TPR =
TP

TP + FN
, (7)

FPR =
FP

FP + TN
. (8)

5. NUMERICAL SIMULATIONS

The probability distributions of joint PMFs obtained
by performing 1000 Monte Carlo simulations for each in-
tention are shown in Figure 5. Each trajectory comprising
the Monte Carlo simulation results is a random trajectory
based on the behaviour model defined in Section 3.1, with
no measurement noise applied.

Fig. 5. Joint PMFs calculated by 1000 Monte Carlo sim-
ulations.

Figure 6 illustrates a trajectory of the target with non-
intrusion intention. The target was initially heading
southwest that could cause a collision with the perime-
ter. The target turned to the right relative to the tar-
get’s heading just before the collision with the perime-
ter and locked onto the waypoint while still maintain-
ing its distance from the perimeter. Figure 7 shows the
computed trajectory likelihoods and intention likelihoods
of non-intrusive and intrusive intention. Initially, the
P (⟨R, V ⟩ |I) is higher than P (⟨R, V ⟩ |¬I) because the
target is moving towards the perimeter at a close distance
from it. On the other hand, the initial P (⟨R,A⟩ |¬I)
and P (⟨R,A⟩ |I) are similar, indicating that the target
is in a region where the intentions cannot be distin-
guished by acceleration characteristics. After 2 seconds,
the probability of non-intrusive intention likelihood Λ¬I

increases sharply, which is due to a clear increase in both
P (⟨R, V ⟩ |¬I) and P (⟨R,A⟩ |¬I).

Figure 8 illustrates a trajectory of the target with intru-
sion intention. The target was initially heading parallel



Fig. 6. Trajectory of a target with non-intrusion inten-
tion. The circle and cross marker denote initial and
final position of the target, respectively.

Fig. 7. Trajectory likelihood and intention likelihood of
a target with non-intrusion intention.

to the perimeter but began to turn to left and eventually
collided with the perimeter. Figure 9 shows the com-
puted trajectory likelihoods and intention likelihoods of
non-intrusive and intrusive intention. The P (⟨R, V ⟩ |¬I)
shows high probabilities until 4.2 seconds, as the target’s
heading for the initial phase was not towards the perime-
ter. On the contrary, the P (⟨R, V ⟩ |¬I) shows distinctly
higher magnitudes throughout the entire tracking. This is
because the target consistently maintained a manoeuvre
of turning towards the perimeter. The probability of in-
trusive intention likelihood ΛI shows a dominance over
Λ¬I from 3.2 seconds onwards, which is one second ear-
lier than the moment when the P (⟨R, V ⟩ |I) becomes
greater than P (⟨R, V ⟩ |¬I). This illustrates how the
acceleration-based information contributes to the perime-
ter intrusion prediction.

Fig. 8. Trajectory of a target with intrusion intention.

To measure the quantitative performance of the pro-
posed algorithm, a Monte Carlo simulation-based perfor-
mance metrics calculation technique was used. A total

Fig. 9. Trajectory likelihood and intention likelihood of
a target with intrusion intention.

of 200 random trajectories were used in the performance
tests, half of which were from targets with non-intrusive
intention and the remaining half from targets with in-
trusive intention. The TPR and FPR for each trajectory
were first calculated using (7) and (8), and then the fi-
nal TPR and FPR were calculated by averaging the TPRs
and FPRs of each trajectory. Figure 10 shows three re-
ceiver operating curves (ROC); each ROC is plotted by
varying the threshold for a given prediction window. Ta-
ble 1 shows the minimum and maximum prediction time
of each prediction window applied.

Figure 10 shows a typical form of ROC where
TPR and FPR increase simultaneously as the threshold
changes. As the prediction window gets larger, the TPR
decreases, but the FPR never exceeds 0.1 at most. Table 2
shows the area under curves (AUC) for each prediction
window. The closer the AUC is to 1, the better the perfor-
mance of the classifier. Compared to Prediction Window-
1, Prediction Window-3 has four times longer prediction
duration and three times earlier start time for AUC calcu-
lation. Nevertheless, Prediction Window-3 shows a per-
formance decrease of only 14% in terms of AUC com-
pared to Prediction Window-1.

Table 1. Minimum and maximum prediction time of each
prediction window.

Prediction
window-1

Prediction
window-2

Prediction
window-3

∆tmin[s] 1 1 1

∆tmax[s] 3 6 9

Fig. 10. Receiver operating characteristic of the perime-
ter intrusion prediction method.



Table 2. Area under the curves

Prediction
window-1

Prediction
window-2

Prediction
window-3

AUC 0.95 0.89 0.82

6. CONCLUSIONS

This paper proposes a novel perimeter intrusion pre-
diction algorithm that can be applied to generic perime-
ter intrusion detection systems. The proposed algorithm
uses multiple probability mass functions that are com-
puted offline in advance, and the PMFs are based on
behavioural models of non-intrusive and intrusive inten-
tions. A Naive Bayes technique is used to compute the in-
tention probability using multiple probabilities from dif-
ferent PMFs. The performance of the algorithm is vali-
dated by Monte Carlo simulations. The results show that
the proposed method provides robust perimeter intrusion
prediction performance even when the prediction window
is increased to a certain extent. As future work, we plan to
investigate a prediction technique that can consider more
complex behavioural characteristics rather than simple
intrusion or non-intrusion behaviour.
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