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Abstract

We investigate a semilinear stochastic time-space fractional subdiffusion equation
driven by fractionally integrated multiplicative noise. The equation involves the -
Caputo derivative of order @ € (0, 1) and the spectral fractional Laplacian of order
B e (%, 1]. The existence and uniqueness of the mild solution are proved in a suitable
Banach space by using the Banach contraction mapping principle. The spatial and
temporal regularities of the mild solution are established in terms of the smoothing
properties of the solution operators.
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1 Introduction

In this paper, we consider the following semilinear stochastic time-space subdiffusion
equation driven by fractionally integrated multiplicative noise, with a € R,

o P —y dW(t)
cy Dy u(t) + A%u(t) = f(t,u(@) + Dy g(t, u(?)) Pt a<t<T, (1.1
u(a) = uq,
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where ¢y Dg ,u(r) and wD;’;u(t) denote the y-Caputo fractional derivative of order
a € (0, 1) and the y-fractional integral of order y € [0, 1] defined in Definitions 2.3
and 2.1, respectively.

Let H = L*(D), HO1 (D) and H?(D) be the standard Sobolev spaces.Let A = —A
with D(A) = H}(D) N H*(D) where D C R?,d = 1,2,3 is a bounded domain
with the smooth boundary and A denotes the Laplacian. Let AP, B € (1/2,1] be the
fractional power of A. Further, W denotes an H -valued Wiener process with covariance
operator Q. The nonlinear functions f and g satisfy some properties in Assumptions
2.2,2.4,5.1,5.2. The initial value u, € H is a random variable.

Fractional calculus, which includes fractional integrals and derivatives, has various
practical and theoretical applications in fields such as physics, chemistry, biology,
automatic control systems, anomalous diffusion, stochastic processes, and contami-
nant transport in underground water flows, among others [4, 8, 13, 18, 34, 35, 37,
41]. The Riemann-Liouville-type fractional calculus, which includes the Riemann-
Liouville integral, Riemann-Liouville derivative, and Caputo derivative, has been
extensively studied [14, 18, 37, 38]. Some researchers have also focused on the
Hadamard-type fractional calculus [15, 17, 27-29], which includes the Hadamard
integral, Hadamard derivative, and Caputo-Hadamard derivative. These two types
of fractional integrals and derivatives have the different convolutional kernels. The
Riemann-Liouville fractional integral has a power kernel and the Hadamard fractional
integral has a logarithmic kernel. Using a general function ¢ as a convolutional kernel
instead of a specific function has significant implications, leading to the development of
fractional integrals and derivatives of a function with respect to another function, com-
monly known as i-fractional calculus (i-fractional integral, ¥ -Riemann-Liouville
derivative, and y-Caputo derivative). Recently, some authors have investigated these
types of fractional integrals and derivatives [2, 3, 11, 16, 30, 31, 33].

Deterministic fractional differential equations (FDEs) and fractional partial differ-
ential equations (FPDEs) have been extensively studied in the literature, with numerous
theoretical and numerical analyses [9, 12, 14, 18, 24-26]. However, in many practical
problems, stochastic perturbations from natural sources cannot be ignored, requiring
the consideration of stochastic fractional differential equations (SFDEs) and stochastic
fractional partial differential equations (SFPDEs). In this regard, several theoretical
results have been achieved for SFPDEs. Cui and Yan [5] discussed the existence of
solutions for fractional neutral stochastic integro-differential equations with infinite
delay. Sakthivel et al. [39] derived the existence of mild solutions for a class of frac-
tional stochastic differential equations with impulses in Hilbert spaces, utilizing fixed
point techniques. In [36], the authors proved the existence and uniqueness of mild
solutions for space-time fractional stochastic partial differential equations. Liu et al.
[23] demonstrated the existence and uniqueness of solutions to stochastic quasi-linear
partial differential equations with time-fractional derivatives. For additional references
on this subject, we refer to [1, 6, 7, 20] and the references therein.

In [19], the author studied the following semilinear stochastic evolution equation

du(t) + [Au(t) + f(t,u())]dt = g(t,u(@))dW(@), 0<t<T,

4(0) = uo. (1.2)
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and proved the existence and uniqueness of the mild solution to Eq. (1.2) and derived
spatial and temporal regularity results. The authors in [20] extended the model (1.2) and
considered the following stochastic semilinear space and time fractional subdiffusion
problem driven by fractionally integrated additive noise with 0 < o < 1, % <pB <1,
0<y=1

_, dW(t
§Du(ty + APu(t) = f(t,u(t) + §D;7 df? 0<tr<T, (L.3)

u(0) = uo,

where g D¢, th_ ¥ and AP denote the Caputo fractional derivative operator, the
Riemann-Liouville fractional integral operator and the spectral fractional Laplace
operator, respectively. They shown the existence and uniqueness of mild solution to
Eq. (1.3) by the Banach contraction mapping principle and further obtained some
regularity results of the mild solution. Yang [42] investigated the following stochas-
tic evolution equations with ¥-Caputo derivative and varying-time delay driven by
fractional Brownian motion, with 7 > 0,

w dWHI(z)
waw0+Awn=f&u@—ﬂ0»+wo——r—,0<z§T

d (1.4)
ut) =¢@), t € [-7,0],

where ¢y Dg’ (u(2) is the y-Caputo fractional derivative operator of order % <a <l
and WH1(¢) is a H-valued Wiener process with Hurst parameter H; € (%, 1). The
existence and uniqueness of the mild solution of (1.4) is proved by using the Banach
fixed point theorem.

In this paper, we expand upon the equations presented in (1.2)- (1.4) by further
exploring the equation in (1.1), which includes the y-Caputo fractional derivative and
fractionally integrated multiplicative noise. This equation has significant mathemati-
cal and practical applications. Our methodology follows the same idea as Chapter 2
in [19]. We establish a L,(£2), p > 2 integrable mild solution to Eq. (1.1) using the
well-known Mittag-Leffler functions as solution operators. We investigate the proper-
ties of the solution operators and demonstrate the existence and uniqueness of the mild
solution to Eq. (1.1) using the Banach contraction mapping principle. Furthermore,
we present the spatial and temporal regularity of the mild solution to Eq. (1.1). The
challenge of this paper is to develop various smoothing properties associated with
Mittag-Leffler operators that involve the general function ¥ and understand the rela-
tionships between the parameters «, 8, y and the spatial as well as temporal regularities
inherent in the mild solution of (1.1).

The paper is organized as follows. In Section 2, we provide some background
information, including notations, definitions, and lemmas. In Section 3, we establish
the existence, uniqueness of the mild solution to Eq. (1.1). In Section 4, we consider
the spatial and temporal regularities of the mild solution. In Section 5, we discuss the
further spatial and temporal regularities of the mild solution under strong assumptions

@ Springer



490 Z.Li,Y.Yan

for f and g. The conclusion is presented in Section 6 and the Appendix is in final
Section 1.

Throughout the paper, we use C to denote a generic positive constant, which may
vary at different occurrences and may depend on a and 7.

2 Preliminaries

In this section, we shall introduce some notations, definitions, assumptions, and lem-
mas.

Denote by (€2, F, IP) the complete probability space with filtration (F;);e[q, 7] and
by W : [a, T]x — H a Q-Wiener process on H. Let L(H) = L(H, H) denote the
space of bounded linear operators from H to H.Let Q € L(H). The Hilbert space of

all Hilbert-Schmidt operators from Q% (H) to H is defined by

o
1 1
L3={¥:Q2(H) — H, W} =) |WQ07¢;|* < oo},
j=1

where {¢ j};?o | is the orthonormal basis in H.
Assume that (A, <pk),‘§°:1 is a sequence of the eigenpairs of A : D(A) = HO1 D) N
H%(D) — H.Letr € R and denote H" := D(A%). The norm for v € H' is defined

by
o0
lu|? = Zx;(u, or)? < oo. 2.1)
k=1

Let LP(R; H "), p > 2 be the Hilbert space of L?(2)-integrable random vari-
ables with values in H” such that ||v||‘zp(Q_H,) = E[v|? < oo, where E denotes the
expectation. ’

Let

Hp={u:la,T1— H, sup E[[[u(®)]"] < oo}
tela,T]

endowed with the norm

P P
lully, = IES[SPT]E[IIM(I)II I

It is obvious that (Hp, || - [,) is a Banach space.
Next we introduce the y-fractional integral and derivatives.

Definition 2.1 [31]Let (a, b) (—oo < a < b < o0) be a finite or infinite interval. Sup-
pose that v (¢) is a strictly monotone increasing function with a continuous derivative

@ Springer



Existence, uniqueness and regularity... 491

Y/(1) and ¥ (t) — 400 as t — +oo. Assume that f € L'(a, b). The v -fractional
integral of order & > 0 is defined by

yDg i f(0) = /(W(t)—lﬂ(f))“ '@y (dr, 1> a. 2.2)

T (o)

In particular, if ¥ () = ¢, logt, then the ir-fractional integral is reduced to the
Riemann-Liouville and Hadamard fractional integrals, respectively [18]; If ¥ (1) = ¢,
then it is reduced to the exponential fractional integral [32].

Let ACla, b] be the space of absolutely continuous function defined on [a, b].
Denote AC(’;w[a bl ={f : [a,b] - R, 8"_1f(t) € ACla, b]} withn = 1,2, ...,

where 8y, (1) = (5 &) £ (0, 8 £ (1) = 848" £ (1)), and 85, £ (1) = £ (0).

Definition 2.2 [31] Let (a, b) (—00 < a < b < 00) be a finite or infinite interval and
n —1 < o < n € N. Suppose that ¥ (¢) is a strictly monotone increasing function
with ¥/(t) # 0 and ¥ (1) — +o00 ast — +00. Assume that f € AC;’W [a, b]. The
Y-Riemann-Liouville fractional derivative of order « is defined by

yDg, f() = 5"/(¢(t)—¢(f))” Ry (dr, 1>a. (23)

I'(n

Definition 2.3 [31] Let (a, b) (—00 < a < b < o0) be a finite or infinite interval and
n —1 < o < n € N. Suppose that ¥ (¢) is a strictly monotone increasing function
with ¥/(t) # 0 and ¥ (t) — +o0 ast — +00. Assume that f € Acg’w [a, b]. The
yr-Caputo fractional derivative of order « is defined as

cyDg, f() = )/(W(I)—W(r))” Il fOY (Ddr, 1> a. (24)

Now we introduce some assumptions. All the parameters «, f, ¥, the functions
Y, f and the operators A, g in the Assumptions below are related to Eq. (1.1).

Assumption 2.1 The linear operator A : D(A) C H — H is densely defined, self-
adjoint and positive definite with compact inverse.

We introduce two parameters « and 1 which are related to the spatial and temporal
regularities of the mind solution to Eq. (1.1).
Leta € (0,1), € (3,11, ¥ €[0, 1], @ + y > 5 and denote

e 28 1
K_mln{Zﬂ—l,;(ot+y—§)}, 2.5)
and .
oK (07
K1 =min{%,a—ﬁ,a+y—§}. (2.6)
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Remark 2.1 We shall prove the solution u € L”(2; H $) fors € [0, «) in Theorem 4.1
where « is defined by (2.5). When o = 1, 8 = 1, y = 0, the value « is reduced to
« = 1 which is the value used in [19, Theorem 2.25] for the stochastic heat equation.

Remark 2.2 We shall prove the solution u in Theorem 4.2 has the following temporal
regularity

lu(t) —u(@) e < CW @) — Y (@2)",

for all 11, t, € [a, T] where k is defined by (2.6). Whena =1, 8 =1, y = 0 and
x = 1, the value « is reduced to k| = % which is the value used in [19, Theorem
2.25] for the stochastic heat equation.

Assumption 2.2 Leta € (0,1),8 € (%, 1,y €0, 1Jand o + y > % The nonlinear
function f : [a, T] x H — H~! satisfies |f(a,0)]-1 < C and

Lf (@ ki) — f(t, ha)l-1 = Cllhy — ha]] 2.7

forany ¢ € [a, T], h1, ho € H. Moreover,

|f(t1, h) — ft2, B)|—1 < CA+ (AN (1) — ¥ ()] (2.8)
for any #1,p € [a, T], h € H, where k1 is defined by (2.6).
For example, we may choose f (¢, h) = h or f(t, h) = sin(h).
Remark2.3 Whena =1, 8 =1,y =0,k = 1 and ¥ (¢) = t, the power x| in (2.8)
is reduced to % which is the power in [19, Assumption 2.14] for the stochastic heat
equation. We may choose f (¢, h) = f1(¥(¢), h) where fi(s, h) satisfies the Holder

condition with order « for the variable s. We need such kind of assumption for f in
the proofs of existence, uniqueness and regularities of the mild solution to Eq. (1.1).

Assumption 2.3 The covariance operator Q € L(H) is self-adjoint and positive
semidefinite but not necessarily of finite trace.

Assumption2.4 Leta € (0,1) and 8 € (%, 1]. The nonlinear function g : [a, T] x
H — Lg satisfies ||g(a, 0)”68 < C and

llg(t, h) — g(t, h2)ll gy < Cllh1 — hall, 2.9

foranyt € [a,T], h1,hy € H,.
Moreover,

llg(t1, h) — g(t2, h)llgg < C+ AN () — ()] (2.10)
for any 1,1, € [a, T], h € H, where k1 is defined in (2.6).
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For example, we may choose g(t, h) = h or g(t, h) = sin(h).

Assumption 2.5 Leta € (0,1), 8 € (3,11, ¥ €[0,1], p € [2,00), and & + ¥ > 3.
Let « be defined by (2.5). The initial value u, : Q — H* is a random variable and
satisfies

lttall 1o vy = Ellual?D 7 < o0. 2.11)
We now introduce the definition and some properties of the Mittag-Leffler function.
Definition 2.4 [37] For o > 0 and p € R, the Mittag-Leffler function is defined as
00 £
Esp(@) =) Toki (€

k=0

Lemma 2.1 [37, Theorem 1.4] [40, Theorem 4] For 0 < o < 2, p € R, and % <
0 < min(rw, o), there exists a constant C > 0 such that, for 0 < |arg(z)| < m,

¢ e Z~ U {0}
5 — O 3
e <] THRE
o,p =
T2 otherwise.
Z

Below is the definition of the mild solution for Eq. (1.1).

Definition 2.5 A predictable stochastic process u : [a, T] — H is called a L,()-
integrable mild solution to Eq. (1.1) with p > 2 if

sup |lu(@)||Lr@;H) < 00 (2.12)
refa,T]

and, for any ¢ € [a, T, it holds that P-a.s.
t
u(t) =EL) (¥ (1) = v (@) ug + / EL (v (1) — v (0) f (. u()y/ (r)de
t
+ f EL) L (0 () — v () gt u()y' ()dW (7). (2.13)

where, for any w > 0,

ES)(w) = Eq 1 (—APw),

o

ED)(w) = ' Eqo(—APw®), EL) . (w) = w7 Eq oy (—AP0®).
Here Ey 1(-), Eq,o(-) and Ey o4y () are the Mittag-Leffler functions.
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The following lemma examines the smoothing properties of the solution operators,
which will be frequently utilized in the subsequent proofs of lemmas and theorems.

Lemma22 Leta € (0,1), B € (%, 1land y € [0, 1]. Let | - |, r > O be the norm

defined in (2.1). Then there hold, for any u € R, v € R and w > 0,

B wn| < cu 54l 02— v <25,

Eé’?&(w)v‘ < Cw* Ty, 0 < — v < 4B,

"
and
Eg?;w(w)vjﬂ < Cw® I ), 0 < p— v < 28,
Moreover,
Efi_l(w)v(ﬂ < Cut T HEE ), 0 < - v < 4B,

and

Efﬁwﬂ(w)v}ﬂ < Cw* T H ), 0 < w—v <28,
where

Efﬂ_l(w) = w2 Eyq1(—APw®),

and

ng;-‘ry—l(w) — wa+y_2Ea,a+y—l(_Aﬂwa).

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

Proof We only give the proofs for (2.14) and (2.17). The proofs of other inequalities are
similar. We first prove (2.14). According to the definition of Mittag-Leffler function,

we have

EL w2 =3 (B @, o) = 30 (Ean(-APu)v, 01
k=1 k=1

g

oo oo 2
— )y
k=1 (ma + )

m=0
00 00 ') 2
(_l)mwma mp
= A _ A , ,
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p”18

o 2
“ (= 1)myme mp
Ay <Z Tma+1) 1))»;( (v,¢k)>

2
MAEg 1 (=20 w)) (@, o).

k

1

M

»
I
—_

Applying Lemma 2.1 with 0 = «, p = 1, we arrive at,

EL wyvl? <Z p (v, g0)?

g +A’3 “)?

fw) T
wa)z k( (Pk)

<Cw ﬂ(# V) Z

=+

<Cuw 77 szuv, o> < Cw F PV,
k=1

which shows (2.14) where we use the condition 0 < p—v < 2 in the third inequality.
We now turn to the proof of (2.17). Following the same argument as in the proof
of (2.14), we have

(v, @)

oo
|E(ﬁ) 1(w)v| Z)\‘Z ‘wa—Zanail ( ﬁ (x)
k=1

Applying Lemma 2.1 witho = «, p = o — | whichimplies p —0 = —1 € Z~,
we arrive at

2(@—2)

ES) <CZA” o

2
a,o—1 (I—G—AZ'B 20[)2( 7(/)]()

282
SC 2(a—2)— ﬂ(”’ V)Z ()\, w a) 2/3

2
k= 1(1+)»2ﬂ 22 M 00

Scwz(a_z)_%(ﬂ_‘)) Z)"Z(Uv (pk)Z < sz(a_z)_%(ﬂ_v)|v|%’
k=1

which completes the proof of (2.17) where we use the condition 0 < u — v <48 in
the third inequality. The proof of Lemma 2.2 is now complete. O

We also need the following properties for the derivative of solution operators.

Lemma23 Leta € (0,1), B € (%, 1] and y € [0, 1]. We then have

E<ﬂ;<¢(t) y(a) = —APEL, (y (1) — v @)y (1), (2.19)
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d
T, WO @) =ES 0 = y@)' ). (220)
Proof We only prove (2.19) here. Similarly one may show (2.20).

d
—E(ﬂ)(w(n V(@) = T Eat (AP (Y (1)~ Y(@)")
_4 [i (—AD* (1) - w(a»“k}

dr T(ak + 1)

V(1)

Z (—APYE (k) (¥ (1) — Y (a))*h!
P I'(ak+1)

o _Aﬂ _ a1k
W — vy S A @t
k=0

— [(ak + @)
= AP (Y (1) — (@) Eqo (AP (Y (1) — Y (a)*)¥ (1)
—APES), (yr (1) — y @)y (1),

which shows (2.19). O
We close this section with a Burkholder-Davis-Gundy-type inequality.

Lemma 2.4 [10, Theorem 7.2] For any r > 1 and for arbitrary Eg-valued predictable
N
/ D (0)dW (o)

process ®(t),t € [0, T], we have
2r 2r
<c, sup E
s€[0,1] 0

E|( sup
s€[0.1]

I r

scrla(/o ||¢<s>||igds) ,

B 2r 2r C _( (2 1))r 2r 2}’2
=\ 1) » TV w—1)

Proof For the convenience of the readers, we give the sketch of the proof here. By the
martingale [10, ineqality (3.8), p. 79] and [10, Corollary 4.14, p. 103] the result is true
for r = 1. Assume now that r > 1, set Z(t) = fé O (s)dW(s),t > 0, and apply Ito’s
formula to f(Z(-)) where f(x) = |x|*", x € H. Since

/‘Y ®(0)dW (o)
0

where

fex @) =4rr — DxP"Px @ x +2r|x)?" VI, x € H,
and

|| fex (O] < 2r@2r — D]x?¢=D,
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therefore
ITr®* (1) fer(ZE)@(N)Q] = 2r2r = DIZOPC VIS @)]17y.
By taking the expectation, we obtain

t
EIZ(0)[ <r2r — DE ( / |Z<s)|2<r—”||<1>(s)||2£ods>
0 2

t
Sr(2r—1)E< sup [Z(s)]?"7" / ||d><s)||§ods).
0 2

s€[0,1]

By the Holder inequality with p = r/(r — 1),

1 1
P t rqy
EIZO <r@r—1) [E( sup |Z(s)|2<’”l’ﬂ []E (/ ||(D(S)||2£0ds> } -
sel0,1] 0 2

Using the martingales inequality (2.21) [10, p.50] one arrives at

_1
2r 2\ 2r o ' 2 '
EIZO =r@2r=1) (ﬁ) EIZOIT) []E (/0 ||<1>(S)||£(2)dS> ]

Dividing both sides by (E|Z 1> )1_% one gets

5 2 2r(r—1) t 5 r
EIZOIT < (r@2r —1))" (ﬁ) E (/0 IICD(S)IIﬁgdS) ,

1

7

which completes the proof of Lemma 2.4. O

3 Existence, uniqueness of the solution of Eq. (1.1)

In this section, we shall prove the existence and uniqueness of the mild solution
to the semilinear stochastic time-space fractional subdiffusion Eq. (1.1) driven by
fractionally integrated multiplicative noise by using the Banach contraction mapping
principle.

We first introduce the following lemma which are related to the properties of f and
g.

Lemma3.1 Letrax € (0, 1), B € (%, 1], and p € [2, 00). Let Assumptions 2.2 and 2.4
be fulfilled. Let k1 be defined by (2.6). Then, for any t,t2 € la, Tl and X,Y € 'H),
there exists a constant C > 0 such that

LSt X (@) = f (2, Y @) Lo, f-1) + 18 (1, X (1) — 82, Y21 1 01 9)
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<CA+IXDLr@;a)¥ () — @) + ClIX (1) = Y@)llr:m).  (B.1)
In particular, there holds
£t X ooty + 1186 XOM|pogguzg) < CO+ IXOllr@emy)  (32)
foranyt € a, T]and all X € 'H).

Proof Note that

I1f (@, X(01) — [0, Y@ pp g1y SIS0, X@0D) — f@2, XE) pp:.m1)
+f (2, X)) — f (02, Y@ Lo .1y

Applying Assumption 2.2 it follows that
£ 1 X @) = f 2 XA -1

1
= (/Q [f(t1, X(11) — f(ta, X(tl))ll_)ldp(w)> ’
1

=Cly (1) — Y@ (/Q(l + IIX(ll,w)II)”d]P(w)>p
SCA+XED e )Y () — ¥ @) (3-3)

Using Assumption 2.2 yields
£ (20 X (01)) = f (12, Y 02D i -1

1
= <f9 | f (2, X(11)) — [ (22, Y(tz))lfldﬂ”(w)>l

<c ( f X (11, @) — Y (1, w>||f’dP<w>)p
Q

<ClIX(t1) = Y lLr:m))- 3.4)

Combining the estimates (3.3) and (3.4) gives the proof of the function f in (3.1).
Further Assumption 2.2 implies || f (a, 0)| lLr a1y < 00, We then obtain

[1f, X(t))HLp(Q;Hfl) <f@ X@®) — fa, O)”LP(Q;H*U + 11 f(a, O)||Lp(gz;1-'171)
< CA+XOLr:H),

which gives the estimate for the function f in (3.2). Similarly, we can derive the

estimates with respect to the operator g under Assumption 2.4. The proof is completed.

]
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The following theorem establishes existence and uniqueness of the mild solution
to Eq. (1.1).

Theorem3.1 Leta € (0, 1), 8 € (%, 1, y €[0,1, anda +y > % Let Assumptions
2.1-2.5 be satisfied and p € [2, 00). Then there exists a unique LP (2)-integrable mild
solutionu : [a, T] — H to Eq. (1.1) such that P(u(t) € H) = 1 and

sup |u(®)||Lr@:H) < 00 (3.5)
rela,T]

foreveryt € [a, T].

Proof We shall apply the Banach contraction mapping principle to prove this theorem.

We first construct a mapping on the space H , and prove thatitis well-defined. Then, we

introduce a equivalent norm on the space H, to show that the mapping is contractive.
Define a mapping F : H, — H, given by

t
Fu)@) —E(ﬂ 1 (1) = (a))ua + / EL, (1) — g () f (x, u(@)Y' (1)de

f EL) L, () — w(0)g(r, u(m)y' (0)dW (1)
=Fo(t) + F1)(1) + F2u) (1) (3.6)

fort € [a,T]and u € H).
Step 1: Prove that the mapping F : H, — H, is well-defined.
In view of (2.14) in Lemma 2.2 with £ = v = 0 and Assumption 2.5, one has

FoOlLr@; ) = ||Ey (¥ (@) — ¥(a))ua

LP(QH)

- (e[ )’

<C(E [||ua||f’])P = ClluallLr(o:1)- (3.7)

EL W () — v(@)ug

This implies Fo € H, and Fo(t) takes almost surely values in H for any ¢ € [a, T].
Next, we consider F(u)(z). It follows from (2.15) (x = 1 and v = 0) in Lemma
2.2 and Lemma 3.1 that, noting 8 > %,

IF1@)Oler:m = (E[IF (u)(f)llp])%
= (]E [
o
<(=1(/

§<E-</at(w(t)—w(r))“_l_&HA e u(r))sz(r)dr) D

il

EL W0~y @A~ @ u)|, I/f’(t)dt) D

t
/ EL, (0 () = ¥ () f (r, u(@)y (1)de
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t o
Sf W () — )™ TH| | f(x. u(O)pp (g g-1y ¥ (0)de

! o
SCf W) =y (@) WY (n)dr (1+ sup Ilu(f)llu’(sz;H))

t€la,T]

-

C v
(W@ = Y (@)* 7 (1 + |u(0)]3e,).
* = 3p

This states that F7(u) is an adapted stochastic process such that
P(Fiu)(r) € H) =1
for any u € H, with ¢ € [a, T']. Therefore,

sup |[F1@)®O|lLr;ay) < CA + [lulln,) < oo. (3.8)
rela,T]

We continue to investigate > (1) (¢). Note that (2.16) (u = 0 and v = 0) in Lemma
2.2, Lemma 2.4, and Lemma 3.1 it follows that, noting & + y > %,

IF2@)OLr;my = (B [Ilfz(u)(t)ll”])%

] |
< o)

! 2
<C ( / W) =y @V lIg@ w00, W(ﬂdr)

t
/ EL) L, (@0) — g (0)g(r. u(0)y/ (1)dW (1)

1

7

B0y (0 (0) = ¥ (0)3(x u(2)|

<;(lﬂ(f) — Y@ (),
“Qat2y -2 p”
which implies
sup || F2@)@O|Lr;Hy < C(+ [lulln,) < oo. (3.9)
tela,T]

Hence, the random variable J> (u)(¢) takes almost surely values in H for any ¢ €
[a, T].

Step 2: Prove that the mapping F : H, — H is a contraction mapping.

We introduce the following norm, with p € R,

utll3¢,.0 == sup e PV OllullLr:m)
tela,T)
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on H . Itis easy to verify that the norm || - 1,0 is equivalent to || - | 1M, since ¥ (¢) is
a bounded function on [a, T']. Such equivalent norm was used in [20] when v (¢) = ¢.
Note that, by Lemma 3.1,

11/ (x, X (@) = f (@, Y@L a1y + 118(7, X () = 8T, Y (Ol 1r (9. £9)
=ClIX(t) = Y(@llLr:n) (3.10)

forall T € [a, T]. Then, for any u, v € H, we obtain by (4.1)

[IF @) @) — F)OIlLr@; H)
<IIF1)(®) = Fr)Oller@;m) + 1F2@) (@) — F2)Oller@;my-  (3.11)

Thus the first summand in (3.11) is estimated by

[|F1@) () — F1()OllLr ;)

t
< / EL, (1) = () (¢ u(0) = f (7, 0(0))|

1 o
SCf W) — Y @) TE | f (L u(D) — f(x, V() L@ g-1n ¥ (D)dT

Y (v)dt

LP(:H)

! o
SC/ W) — ¥ (@) 7 |u(r) — v(D)||Lr @ ¥ (1)dT

1 o
=C / W (1) — Y () "BV Oy (n)dr|lu — il p

where we have used (2.15) (v = Oandv = —1)inLemma?2.2 and (3.10). Analogously,
the second summand can also be estimated by applying Lemma 2.4, (2.16) (u = 0
and v = 0) in Lemma 2.2 and (3.10)

1
P

172600 = F2@)Ol Lo
8 2 :
oy (00 = W) 800 u(0) = (0 0@, v'(0)dT

1
<(={(/
, !
<C ( / W (1) = (@) 2 g (r,u(1)) - g(x, v(r)>||ip(9;£g)x//(r)dt)
; 1
<C </ W (1) — w(T))2a+2)/—262p‘//(1’)w/(t)d‘() ' llu —vllH,.p-
Therefore we derive

IF @) (@) = F)DllLr@;m)

t o
5C< / W) — Y (@) TPV Oy (1)de
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1
. 1
+ (/ W (1) — w(f))2a+2y—2€201//(r)w/(-,;)d‘[> i )||u = VlIH,.p-

For the first integral above, using Holder inequality with % + % = 1 yields

t o
/ W) — Y (@) TPV Oy (1)de

< ( / W - 1/,(1))@—1—5%)#’1//@)@)‘“ ( / l e““”“)r//(r)df)“

a—1—2)u/ ﬁ 1
< <<w<T(>—xlp<a)3;) ‘/fl’““) < R upwf)_eupwm))“,
o —1— % 122

P

where we can always choose 1 < u/ < 1+°‘+70( such that (o — 1 — %),u/ > —1 due
26

tof > % As the second integral, by Holder inequality with % + % = 1, one has

1

t 1
(/ W @) — w»“”y2e2p¢<f>w/(r>dr> 2
1

1
! W ([t w
5( / wf(t)—wr))‘z"‘”y‘”“’w’(r)dr)2 ( / ezﬂp‘“%/(r)dr)z

1
(Y (T) — () @tz =Dty 2t g (ezva(t) _ eva//(a)) :
- 2vp

s

<
Qo +2y =20 +1

where we can also take v > 1 duetoa + y > %

Hence we obtain for p > 0

e PYOFw)(t) — F)OllLr:m

1

1
< c( W () — (@) T (L (1- eupw(z)w(a»))”
= @ 1- S +1 o

(W (D) = (@) B2y 241\ 37
+ Qo +2y —2)v +1

, (L (1- e—zvp<w<z>—w<a)>>)
2vp
1

W(T) = @)@ 3N\
§C<< TR (up)

l\)‘__

v

)||u —vlln,.p
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T — Qa+2y—2)v'+1
+ ((w((z)a +w2(z)i D0 11 ) mpr;u) e = vllrty -

Choose p > 0 large enough, the mapping F is a contraction on the space H, with
respect to the norm || - [|7¢, , and thus there exists a unique fixed point u € H,, which
is a unique mild solution to Eq. (1.1). The proof of this theorem is now completed. O

4 Regularities of the mild solution to Eq. (1.1)

In this section, we shall prove the spatial and temporal regularities for the mild solu-
tion to the semilinear stochastic time-space fractional subdiffusion Eq. (1.1) under
Assumptions 2.1-2.5.

4.1 Spatial regularity

In this subsection, we shall prove the spatial regularity for the mild solution to Eq.
(1.1) under Assumptions 2.1-2.5.

Theorem 4.1 Leta € (0,1), B € (%, 1, y€[0,1, anda +y > % Let Assumptions
2.1-2.5 be satisfied and p € [2, 00). Let k be defined in (2.5). Then for any s € [0, k)
the mild solution u of Eq. (1.1) determined in Theorem 3.1 satisfies

sup ”u(t)”LP(Q sy < %,
tea,T]

foranyt €la, T].

Proof By Theorem 3.1, Eq. (1.1) admits the following unique mild solution

t
u(t) =EL) (1) — v (@)uq + / EL), (0 (0) — ¥ (0) f (r. u(x)y/ (v)dr

/ ES) L, () — v (0)g(r, u(m)y' (0)dW (7)
=Fo(t) + F1w)(1) + Fa(u) (1) @1

fort € [a, T]and u € H).
In view of (2.14) in Lemma 2.2 with £ = v = s and Assumption 2.5, one has

w1 (W (1) — Y (a))uq

||f0(t)||LP(Q;]~']S = L[;(Q.H&)

- (2] )’

1
<C (E[|ua|€])p = C||ua||Lp(Q;Hx)~ (4.2)

EL (1) — v(@)ug
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This implies Fo(t) takes almost surely values in H* for any s € [0,k)and ¢ € [a, T].
Next, we consider F (1) (¢). It follows from (2.15)(# = s+ 1 and v = 0) in Lemma
2.2 and Lemma 3.1 that, for s < 28 — 1,

S

IFI @O g0y = E[IF O]
:(E'
e
<1/
i ! a—1—25(s+1) 1 / r %
5<1E (/ W) =y HA—zfu,u(r))Hw(r)dr) D

t o
< / W) — @) T f (L u @)l g1y ¥ (1T

t
/ ES) (Y (1) — () f (x, u(m)¥ (t)de

a

il

AN
ES) (0 (0) — v (@)A fru(@)| w’mdf) D

t o
<C f W) —p @) Ty (1) de (1+ sup ||u<r>||mg;m)

t€la,T]

o

W) = @) 7V A+ [Ju (),

<« -
Ta— %(s +1)
This states that 7 () is an adapted stochastic process such that
P(Fiw)(1) € H') =1
for any s € [0, k) and ¢t € [a, T]. Therefore, for any s € [0, k),

sup (11Ol o ey < CL+ lullg,) < oo. 4.3)
tela,T]

We continue to investigate > (u)(¢). Note that (2.16) (u = s and v = 0) in Lemma
2.2, Lemma 2.4, and Lemma 3.1 it follows that, for s < %(a +y - %),

S

1F2 ) e sy = (E[F2))]F])

-]
t 2 % »
<C (E |:</ 0 W(r)dr) j|>
a 2
1
! as 7
<C ( / W@ = Y@ g @ u @I g ) vf’mdr)

c
<
~ Qo +2y —

t
/ AZEL) (0 () — Y (o) g(r. u()V ()W (1)

I

ASES, L, (00 = ¥ (@)g(r, u(@)|

a0 - Y 1 4 )l
B
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which implies

sup || F2) O Lp(q. sy = CA + [lullp,) < oo. “4.4)
tela,T]

Hence, F> (1) (t) takes almost surely values in HS fors € [0, k) and forany ¢ € [a, T].
Together these estimates complete the proof of Theorem 4.1. O

4.2 Temporal regularity

In this subsection, we shall prove the temporal regularity for the mild solution to Eq.
(1.1) under Assumptions 2.1-2.5.

Theorem4.2 Leta € (0, 1), B € (3,11, y €[0,1], anda +y > }. Let Assumptions
2.1-2.5 be satisfied and p € [2, 00). Let k1 be defined in (2.6). Then the mild solution
u determined in Theorem 3.1 satisfies

Nu(t1) —u(®)|Lr.ry < C(Y (1) — ¥ (82)!, 4.5)

forallty, t € [a, T].

Proof We again use the mild solution formula defined in (4.1). Applying (2.19), (2.15)
(u = 2B and v = k) and Assumption 2.5 gives

[|Fo(t2) — Fot)lLr(o: 1) (4.6
=ES) (0 (©2) — v (@)ua — EL) (W (1) — ¥ (@)ua -
15
_ / " LB (4(r) — y(@)drug @7)
n dr @ LP(Q:H)
15
= / Z—AﬁEg,'?W(r)—ww»w’(r)dma (4.8)
3] LP (2 H)
5]
_ABRB) _ /
< / \ APELW @ =Y @], W (O
%) «
<C f W () — ¥(@)* " F Py @) delual | o g ey
n
<COW (1) — (D)) * luall o g e - 4.9)

Further we have
[|F1(u)(t2) — F1(w)(t)|Lr o m)

n
=| / EL) (4 (12) = ¥ () f (1, u(@)y (0)dr

n
- / E®) (y(11) —w(r»f(r,u(r))x//(r)drH

LP(Q H)
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15}
= / EL) (0 (1) = ¥ (D) f (2. u(m) ¥ ()de
n LP(Q:H)
141
+ / (EL. W) — v (@) — EL @ () = v (2) F (. @)y (2)de
a LP(S:H)

By using (2.15) (w = 0 and v = —1) in Lemma 2.2 and Lemma 3.1 we obtain, for
B> 3.

n
/ ES) (9 () — ¥ (0) £ (2, u(@) P (D)

n

4]
S /
1

15) o
SC[ (w(tz)—W(t))“_l_ﬁllf(t,u(f))IILp(Q;g—n)w/(r)dr
1

LP(:H)

¥ (t)dt

LV (2 H)

EL) (Y () — ¥ () f (. u(2))

c o
< T W) —yv(t) (1 + sup ||M(T)||LP(Q;H)>
Ry t€la,T]
C —
< a (W (02) =¥ (@) (1 + ullp,).
*~ 28

From (2.20) fory =0, (2.17) (w = 0and v = —1) in Lemma 2.2, and Lemma 3.1
we arrive at, for § > %,

1
| (ELw @ - v - ELw @) - v@) £ unv @

LP( H)

11 15
[ [ e - v @i @
a n
n n
</
1 a
n prh o
<c [ [ w© ~ @ Iy O
11 a

c ? a—1—7% a—1—7% /
—e— | [w© - @y - g v v
1 + ﬁ — f

LP(QuH)

Efo @) =0 @) @[, v @dey @)

X<1+ sup IIu(r)lle(sz;H)>

t€la,T]

C —
ST E—aEo g Vv b,
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Together with the above two estimates yields, for 8 > %,

11 @) (12) — Fr@))llLrismy < CO (1) — (1)) (4.10)

foralla <ty <tp <T.

We continue to investigate F(u)(t) in || - || r(Q; 7y norm. Applying (2.20), (2.16)
(uw =0and v = 0) and (2.18) (u = 0 and v = 0), Lemma 2.4, and Lemma 3.1, it
holds that, foro + y > %,

[ F2(u)(t2) — Fa(u)(tp)]]

15}
< | [ B ) — sty oW o)
1
+ f (B2 4y ) = (o) =B, (0 1) = (2)) g(x, u()P ()dW (1)

21 2, )’
sc(e|([ B e - voneeuo][, vwour)
3l 2

131 153
+ / / ES) W) =y (@)Y (©)deg (T, u(@)y (1)dW (7)
a n

LP(Q:H)
1

=C ( /1 (W) =y (@)X g (e, u(f))||§p(g;£g)¢'<f)df)

[l (=

Y (©)dg

1

2 51\
vor)’])

EY) )1 (W) = ¥ (g (e, u(D)]

c c )
= 1 + 1
((2(01+V—1)+1)2 |2(6¥+V—2)+1|7(a+y—%)
(Y () — 1ﬁ(h))“”'y_%(l + u()l#,),

that is,

[[F2)(12) — Fa) A Lr(@;m) = C(Y(12) — YT e (4.11)

Combining (4.6), (4.10) with (4.11) completes the proof of Theorem 4.2. O
5 Further regularities of the mild solution to Eq. (1.1)

Under the following further assumptions for f, g and u,, we may obtain better regu-
larity results of the mild solution to Eq. (1.1) than those obtained in Section 4.
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Assumption 5.1 Let S [0, k) where « is defined by (2.5). The nonlinear function
f :la, T] x H— H~! satisfies

|f @ )]-14r = C(1 + |hlr) (5.1

foreveryt € [a,T], h € H'.

Assumption 5.2 Let r € [0, k) where « is defined by (2.5). The nonlinear operator
g:la, T x H— Eg satisfies

Jaseen

o = CA+I|hly) (5.2)

foreveryt € la,T], h € H'.

Assumption 5.3 Leta € (0,1), € (3,11, €[0,1], p € [2,00), and & + ¥ > 3.
Let x be defined by (2.5) and r € [0, «]. The initial value u, : Q2 — H**" is arandom
variable and satisfies

1
||ua||Lp(Q;HK+r) = (E[|Ma|,€+r])" < 0Q. (5.3)

We first give the following two technical lemmas.

Lemma5.1 Letax € (0, 1), 8 € (%, 1], and p € [2, 00). Let Assumptions 2.1-2.4, and
Assumptions 5.1-5.3 hold. Let «k and k1 be defined by (2.5) and (2.6), respectively.
Given a predictable stochastic process X : [a, T] x Q@ — H withP(X(t) € Hr) =1
foranyt € [a, T]and

sup ||X(t)||LP(Q;Hf) < 0.
rela.T]

Then forall s € [O, 2B — 1)+ min(r, %’3/{1)) there exists a constant C > 0 such that

s t2
A? / EL) (W (1) — ¥ (0)) f (2. X (1)) (r)dT
41

LP(2:H)

a—Stla+ L
<C (1 + sup ||X(r)||Ll7(Q;Hf)> W) — @) 272, (5.4
refa,T]

fora <t; <ty <T.Moreover, if there exists a constant C > 0 such that
X (1) = X()lr@;m) < Clyr () — ()| (5.5)

forallty, ty € [a, T), then one has
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=C <1 + sup ||X(77)||L1’(Q;H)) W (2) — w(m)"“%““‘. (5.6)

t€la,T]

Further we have

n
HA‘Z / EP) (¢ (12) — ¥ (1) f(r, X ()Y (v)de
n

LV (4 H)

s+1 : a
<cC (1 + sup X0 s ) (W (12) — Y0y T om0 (59)
refa,T]

Proof We first prove (5.4). By using (2.15) with u = s + 1 — r, v = 0 (note that
u=s4+1—r>0foranys > 0), and Assumption 5.1, it follows that

s )
HA2 / ELL (W (1) = () f (12, X ()9 (v)de
141

LP(Q:H)
s+1—r &
<||la™2 f ES) (Y (1) — Y (0)ATZ f (2, X (1)) (1)de
g LP (S H)
< COpt) = )T AT p x|,

=CW(n) - w(n))“‘ 1 f (2, X @) Lr @ -1+

<C (1 + sup X o fir ) W (12) = Y T,

tela,T]

which is the desired form (5.4), where we require o — S?a + 2ﬂr > 0, that is,

se[0,28—1)+r).
We now show (5.6). In terms of (2.15) (w = s + 1 and v = 0) in Lemma 2.2,
Lemma 3.1 and the condition (5.5) we derive

s 12
HA7 / EL) (1) — (D) (f (12, X(12)) — f(z, X(O))Y/(2)dT

3l

A

<C / W (02) — YNV F (141X (O Lrgem) ¥ (1)dT
1

LP(Q:H)

¥’ (v)dt

LP(Q:H)

A EL W (2) = v (@A (12, X(12) = £ (7, X (@)

a—ma-k—)q
S —— |1+ sup [IXOllern | (W) =) ;
o — WO( + Kk t€la,T]

where we require o — 52";310( + k1 > 0, thatis, s € [0 -1+ —/q)
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Finally, combining (5.4) with (5.6), we obtain

S t2
Hm / EL) (W () — v(0) f (1, X(0) ¥/ (v)dr
n

LP(2H)

=

s 2
A2 / EL) (W (1) — ¥ (D)) f(t2, X ()Y (1)d7
13l

LV (2 H)

%)
+ HA‘z / EL) (W (1) — v () (f (2, X(12)) — f (1. X ()Y (v)dt
4

LP(QH)

_s+l i a
<C <1 + sup ||X(t)||Lp(Q;HV)> (W (t) — 1//(“))0‘ S atmin(k, 557).
t€la,T]

where we require s € [O, 2B — 1) + min(ky, %r) The proof of Lemma 5.1 is now
comlete. O

Lemma5.2 Leta € (0,1), B € (%, 1], and p € [2, 00). Let Assumptions 2.1-2.4, and
Assumptions 5.1-5.3 hold. Let «k and k1 be defined by (2.5) and (2.6), respectively.
Given a predictable stochastic process X : [a, T] x Q@ — H withP(X(t) € H’) =1
foranyt € la, T] and

sup ||X(t)||LP(Q;H’) < Q.
tela,T]

Then for all s € [r, %(a +y - %) + min(r, %/q)) there exists a constant C > 0
such that

2N s e® S Ay
E ( | [A43EE we) — s x|, v (r)dr)
1 2

1 _as

=C (1 T I|X<r)||Lp<Q;m>> W) —pa)* 7B (58

forany a <t| < tp < T. Moreover, if the condition (5.5) is fulfilled for some k1 and
forallty, tr € [a, T), then it holds that

B SR 2 1\’
E ( [ [|43E L e -, X -t x| [, <r)dr)
A

0
L:Z

=C (1 + sup ||X(T)||Ll’(Q;H)) W(t2) — p(n) 7 (5.9

t€la,T]

@ Springer



Existence, uniqueness and regularity... 511

Further one has

/ AZEL) (W (1) — ¥ (0)g(r, X ()Y (1)dW (1)
1

LP (2 H)

<C(1+ sup ||X(r>||Lp(QHr>(w(tz> Y TIHED L (5.00)

t€la,T]
Proof First we show (5.8). For any ¢ < t; < r, < T, by applying (2.16) with

u=s—r,v=_0(motethat u =s—r > Osinces > r)and Assumption 5.2, it yields
that

21 s e®
/ [42EL L, o) = w@g (e,

2
£ yi(t)dr

/ |4 B, ) - vt

¥/ (r)dr

<CW (@) — b))V TF N [abg o,

where we require 2[(¢ +y — 1) — %a] +1 > 0, thatis, s € [r, %(a +y - %) +r).
Hence, the proof of (5.8) can be obtained from Assumption 5.2

(E|:</ HAzE(ﬁ)_H/(llf(lz) w(r))g(tz,X(tz))H w(f)df> D

1

n
- H( [ |43 e~ wengt, w (r)dr)
1

LP(S:R)

o

<C(1+ sup |IX ()]l nq: Hr>(w<tz> ) I

tela,T]
where we require o + y — % — % + % > 0, that is, s € [r, %(a +y - %) +r).
We next estimate (5.9). Based on (2.16) (w = s and v = 0) in Lemma 2.2,

Lemma 3.1 , the condition (5.5), and Assumption 5.2, we conclude that, with
82(7) = g(tr, X(2)) —g(7, X(7),

it o))

(/ (Y (1) =y (o)) @770~ “]||g2(r)||£ow<r>dr>

‘AzE(ﬁ)

LP(4R)
1

2
<C (f (w(tZ) w(r))Z[(OH-)/ D—25 a]”g (T)HLI’(Q LO w ('L')dl')
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tela,T]

= CW @) _w(tl))(a+yf%)*%+x| (

< 1+ sup ||X(f)||Lp(sz;H)>,
\/Z(a—i—y—l—%)—i-Z/q—i-l

where we require @ + y — % — 55 +k1 > 0, thatis, s € [r, %’S(a +y - %) + %’3/(1).
Finally, we can use (5.8) and (5.9) to obtain

n s
/ Ang,S;er(w(tz) — Y (0)g(r, X ()Y (1)dW (1)
4]

LV (0 H)

2 s a® ) 2N\
clE (/ HAfEa,a+y(w(tz)—w(r))g(r, X(r))‘ 9 WTW)
1 9

_ 1y _as . ar
<C <1 + sup ||X(t)||Lp(sz;Hr)> W) — ¥ (1) @72 §5-+minGer. $5)

IA

tela,T]

where we require s € [r, %ﬁ (x+y— %) +min(r, %’Slq )). The proof is thus completed.
O

Now we present the spatial and temporal regularity results of the mild solution
(2.13) to Eq. (1.1). The proofs are included in the Appendix.

Theorem 5.1 Leta € (0,1), B € (%, 1], and p € [2, 00). Let Assumptions 2.1-2.4,
and Assumptions 5.1-5.3 hold. Let k and «\ be defined by (2.5) and (2.6), respectively.
Let ri = min(r, %/q). Then the unique mild solution u to Eq. (1.1) satisfies

Pu(t) €e HT) =1

foranyt € [a, T]. Moreover, there exists a constant C > 0 such that

sup ||u(t)||Lp(Q;1-'1K+r1) = C||“a||Lp(Q;1-'1K+"1) +C (1 + sup ||u(t)||LP(Q;H’l)> .
tela,T) tela,T]

(5.11)

Theorem5.2 Leta € (0, 1), B € (%, 1], and p € [2, 00). Let Assumptions 2.1-2.4,
and Assumptions 5.1-5.3 hold. Let k and k1 be defined by (2.5) and (2.6), respectively.
Then, for every s € [r,r + k), the unique mild solution u(t) to Eq. (1.1) is Holder
continuous with respect to the norm || - || () and satisfies

(Ellu(tr) — u)|?1) 7
sup

’1'?’;[?’” [ (11) — w(tz)|min{%(r+x—s),a—%(s+1—r),a+y—%—§(s—r)}
17£D

< o00. (5.12)
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6 Conclusions

This paper deals with a semilinear stochastic time-space fractional evolution equation
driven by fractionally integrated multiplicative noise. The equation involves a more
general y-Caputo temporal derivative and a spectral fractional Laplacian. We estab-
lish the existence and uniqueness of the mild solution using the Banach contraction
mapping principle under appropriate assumptions. Based on this, we derive spatial
and temporal regularity results for the mild solution. When we set ¢ (1) = t, a = 0,
B =1,y =0,andleta — 1in Eq. (1.1), the results presented in this paper reduce to
the results in Chapter 2 in [19] for the stochastic heat equation. The model (1.1) with
y-Caputo temporal derivative has more applications, for example, describing subdif-
fusion in a medium having a structure evolving over time [21] or modeling diffusion
in a complex system consisting of a matrix and channels [22].
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Appendix
Proof of Theorem 5.1

According to the mild solution formula (2.13) to Eq. (1.1), we have

ry+«
u(t JHEH) = HATH ! ‘
[u( )||LP(Q,H Ra) ) LP(Q2uH)

= || A EL w0 - v @)

LP(QH)

)‘1 K t
+ HA? / EL) (1) — v () f (z, u(@) ¥ ()de

LP(Q;H)

)'1 K t
+ HA? / EL) (00 — v (@)g(r, u(@)y' ()dW (D)

LP (s H)
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=I+I1I+111I.

We now estimate these three terms, respectively. For the first term, we use (2.14)
(u =v =r1 +«)in Lemma 2.2 and Assumption 5.3 to derive

i
1=|[a""E w0 - v@u, < Cllutallp(gy i) < 00

LP(Q:H)
Applying (5.7) in Lemma 5.1 withty = a,to =t,s =ri +« <ri +28 — 1 and

X = u we can obtain

II < <1 + sup ||M(t)||LP(Q,H')> < .
t€fa,T]

For the last term, since s = r; +x < r1+%(a+y—%),wetaket1 =a,h=t,X=u
in (5.10) of Lemma 5.2 and hence get

111 < <1 + sup |Iu(t)||u<sz;H">> = o
tela,T]

Combining the above estimates for I, I/ and 111 yields (5.11) and the proof of the
theorem is thus completed.

Proof of Theorem 5.2

Applying the mild solution formula (2.13) to Eq. (1.1), fora < #; <t < T and
s € [r,r + k), one has

[u(ty) — u(t2)||LP(S2;I-'P’)

= ||(EQ wan - v@) — B w0 = (@) ua

LP(Q:HY)

5]
+ / EP) (Y (1) — ¥ (1) f (r, u(0)y' (r)dr

I

LP(SQ:HY)

n
| [ (R0 @ - v - B w0 - @) s uww @

LP(S:HS)

n
+ / EL) L, (W(0) — ¥ (0)g(r. u(m)y (1)dW (1)
1

LP(S:HY)

n
+ f (Basy W () = w(0) — B, (W) = (0))

-g(r, u(@)Y'(1)dW (1)

LP(QHY)
=h+bLb+ L+ 14+ 1.
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We now estimate these five terms respectively. From (2.15) (u = s 4+ 28 and
v =r +«)in Lemma 2.2, (2.19) in Lemma 2.3 and Assumption 5.3, the first term /;
is estimated by

n=||(ES e - y@) - EL ) - vi@)) ua

LP(Q;HY)
) t,
= HA% / "APES), (0 (0) — Y @)ua (1)
f ’ LP(Q%H)
5]
SHBR(B) _ /
< f ARG o)~ anm |, e

n o o
<C [ @ = p @I gl g ey ¥ (01
1

<CW(n) = Y@ "™ Nluall Lo g e

where we require r + k — s > 0, thatis, s < r + k.
The second term I follows from (5.7) of Lemma 5.1, that is,

L=<C <1 + sup ||M([)||LP(Q;[-'[r)> W () — W(tl))“_%(sﬂ—r)’

t€la,T]

where we require o — %(s +1—r)>0,thatis,s <r+28 — 1.
For the third term /3, it follows from (2.20) in Lemma 2.3, (2.17) (# = s and
v = —14r)in Lemma 2.2 and Assumption (5.1) that

Al
13=’ / (ELw(@2) = w () = EL,(r() = w(0)) /(7. u@)¥ (2)d7

LP (S HY)

s [hori2
- HA? / / B (00 — (D) £ (2, u@)Y' (©)de g (1)
a n

131 n
a n
norh @—2— & (s+1—r)
<C W) —y(r) »
a 1

@ u) g -1+ ¥ ()Y (T)dT

LP(Q:H)

ATES @~y f@u@)|| v ©dew e

t€la,T)

<C (1 + sup ||u(t)||Ln(Q;1.‘1r)> () — (1)) B+,

where we require s < r + (28 — 1).
A straightforward application of (5.10) in Lemma 5.2 gives

1 e
Iy <C (1 + sup ||u(t)||Lp(Q;H,)> W () — W(ﬁ))aw 2= (s r)’
tela,T]
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where we require s < r + %(a +y - %).
To estimate the last term /5, applying (2.20) in Lemma 2.3, (2.18) in Lemma 2.2
with u = s —r, v = 0 (note that u = s —r > 0), and Assumption (5.2), we arrive at

Is :‘

n
[ (L e = v - B ) - wien)

-g(T, u(0)Y (D)dW (2)

LP(Q:HS)
1 153 s
=’ / / ATED) @) — v )W ©dgg (. u(D)y (MW (x)
@ LP (% H)
5/ / A%E((fgt-ky—l(l/“;) — Y (1) A2g(r, u() Y (1)dW (1)
n a Lo H)
Y (©)de
? A ®) . > N
scfn E(/a HA : Ea,aw,l(lﬁ@)—W(f))A2g(t,u(r))) oV (f)df>
Y (0)dg
153 n o ) %
— A(aty==5gal || 45 ,
<e [ ([ wor-werter 4 pseao] g gy o)
Y (0)de
1
2 n s—r 2 2
=C f (/ W) = P @ T (L )l o) W(ﬂdr)
141 a
Y (0)dg

=C (1 e llu(ﬂllmm;m)) W (1) — Y ()BT,

t€la,T

where we require o + y — % — %(s —r) >0, thatis,s <r + %(a—i—y — %).

Combining the estimates /1-Is, we obtain the desired result (5.12), and thus con-
clude the proof.
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