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F or eff ective fishery management, estimated stock sizes, along with their uncertainties, should be accurate, precise, and unbiased. Atlantic 
salmon Salmo salar stock assessment in England and Wales (and elsewhere across the Atlantic) estimate returning salmon stocks by applying 
a measure of rod exploitation rate (RER), derived from less abundant fishery-independent stock estimates, to abundant fishery-dependent data. 
Currently, RER estimates are generated for individual principal salmon rivers based on a v ailable local data and assumptions. We propose a 
single, consistent, transparent, and statistically robust method to estimate salmon stocks that transfers strength of information from “data-rich”
rivers, i.e. those with fisheries-independent data, to “data-poor” rivers without such data. We proposed, fitted, simplified, and then validated a 
Beta–Binomial model of RER, including co v ariates representing angler and fish beha viours, riv er flo w, and random effects to control for nuisance 
effects. Our “best” model re v ealed co v ariate effects in line with our h ypotheses and generaliz ed to data not used to train it. We used this model 
to extrapolate stock estimates from 12 data-rich to 52 data-poor rivers, together with their uncertainties. The resulting river-specific salmon stock 
estimates were judged to be useful and can be used as key inputs to river-specific, national, and international salmon stock assessments. 
Keywords: angling, model extrapolation, rod exploitation, Salmo salar , stock assessment. 
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he primary objective of Atlantic salmon Salmo salar (here-
fter salmon) fishery management is to ensure the sustainable
xploitation of their stocks (Quinn II and Deriso, 1999 ), i.e.
o ensure that sufficient numbers of adult salmon spawning
scapement takes place to assure the safe state of future gen-
rations. To implement appropriate fishery management mea-
ures, we must first estimate the size of the returning adult
tock available to the fishery, assess the status of that stock
n terms of the numbers of adult fish that are subsequently
vailable to spawn and how this has changed over time. In
rder to evaluate status, measures are usually compared to
ome predetermined standard (or standards). This process
sually involves provision of estimates by quantitative mod-
lling, broadly referred to as stock assessment (Quinn II and
eriso, 1999 ). In England and Wales (E&W)—and elsewhere

round the North Atlantic basin—salmon stock management
s underpinned, following the North Atlantic Salmon Conser-
ation Organization (NASCO) guidance (NASCO, 2009 ), by
he application of biological reference points (Potter et al.,
003 ), which are derived from the relationship between the
stimated annual spawning stock size and the estimated sub-
equent recruitment of spawners (or earlier life-stages) due
eceived: 11 July 2023; Revised: 20 September 2023; Accepted: 4 October 202
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o the reproduction of that estimated annual spawning stock
Prevost et al., 2003 ; White et al., 2016 ). From this spawner–
ecruitment relationship, various biological reference points
an be estimated. In E&W, as in other International Coun-
il of the Exploration of the Sea (ICES) jurisdictions (White
t al., 2023 ), the concept of Maximum Sustainable Yield is
sed as the basis for defining biological reference points, in-
luding the setting of a lower limit spawning stock size (or
heir equivalent in number of eggs), known as the Conserva-
ion Limit. An associated fishery Management Objective has
een set that states that a river stock should equal or exceed
ts Conservation Limit in at least four years out of five on
verage [Centre for Environment, Fisheries, and Aquaculture
ciences (Cefas), Environment Agency (EA), and Natural Re-
ources Wales (NRW); Cefas, EA, and NRW, 2020 ] and fol-
ows the precautionary approach recommended by NASCO
 1998 ) and adopted by ICES (Davidson et al., 2017 ; ICES,
023 ). 
Given the purpose of salmon stock assessment and its use in
anaging fishery exploitation, it is imperative that estimates
f the sizes of the adult salmon stock returning to rivers (here-
fter salmon stocks), and subsequent spawning stocks, are
s accurate, precise, and unbiased as possible, and provided
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Figure 1. Locations of the 64 PSR in E&W. Only 12 of these PSR (indicated by grey boxes) have a fish counter or trap to derive a RSE that is needed to 
calculate a RER. 
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with measurements of their uncertainties (Rivot et al., 2001 ; 
Crozier et al., 2003 ; Prevost et al., 2003 ; Potter et al., 2004 ; 
Rivot et al., 2019 ). Broadly, estimates of salmon stocks can be 
obtained by fishery-dependent and fishery-independent meth- 
ods, and each has advantages and disadvantages (Maunder 
and Punt, 2013 ; Bentley, 2015 ; Maunder and Piner, 2015 ).
Fishery-dependent methods rely on catches by recreational 
and commercial fishers whose activities cover a large spatial 
and temporal extent, but whose choices and behaviours can 

result in complex and potentially subjective indicators of stock 

size, which are also unavailable if the fishery is closed (Maun- 
der and Punt, 2004 ; Arlinghaus et al., 2007 ). In contrast,
fisheries-independent data are collected using specific proto- 
cols to enumerate the stock directly, often using devices that 
include automated resistivity, acoustic or optical fish counters,
or the use of partial or total traps—the former includes use 
of capture–mark–recapture methods to derive full return esti- 
mates (Eatherley et al., 2005 ). Typically, these devices are oper- 
ated with a degree of standardization and validation, thereby 
produce a somewhat objective measure of stock size (Dunkley 
and Shearer, 1982 ). Their high implementation and ongoing 
costs, however, mean that they produce data that are restricted 

spatially and temporally (but see Smith et al., 1996 ; Cowx 

and Fraser, 2003 ; Eatherley et al., 2005 ). Hence, for example,
only 12 of the 64 rivers where assessments are undertaken for 
almon stocks in E&W have reported or continue to report
 fishery-independent returning stock estimate (RSE) (Cefas,
A, and NRW, 2020 ). 
Around the North Atlantic Area, salmon stocks are esti- 
ated using numerous different but related methods depend- 

ng on, inter alia , the management framework, available data,
nd suitable expertise. An early and widespread method is
o raise declared salmon catches (adjusted for catch report- 
ng rates and known as total catches; Small and Downham,
985 ) to RSEs by applying a measure of stock exploitation
y anglers [known as the salmon rod exploitation rate (here-
fter RER); Solomon and Potter, 1992 ; Milner et al., 2001 ;
’Connell, 2003 ]. An important motivation underpinning the 
evelopment and adoption of the RER method is the large
mount of spatio-temporal fish catch data generated by an- 
lers and collated and reported in a regular and consistent
anner (Milner et al., 2001 ). An extension of this approach,

ncluding exploitation by commercial fisheries, is used to re- 
onstruct pre-fishery abundances that underpin international 
tock assessments (Potter et al., 2004 ; Rivot et al., 2019 ; Ol-
os et al., 2020 ). Where available data are more extensive,

nd accompanied by emerging statistical concepts and increas- 
ng computation power, new methods have been developed 

nd are recommended (Milner et al., 2001 ; Ó Maoiléidigh 

t al., 2004 ), including models that separate ecological from
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Table 2. A set of a priori expert-agreed explanatory variables expected to describe mean and variation in Atlantic salmon RER across the 64 PSR in E&W. 

Model part Name Description Hypothesis References 

Mean Angler effort Number of declared days fished for salmon in 
each river in each year (salmon and sea trout 
effort is split based on 1992 and 2006 
questionnaires to licence holders) divided by 
accessible wetted area (hectares)—see below 

Positive becoming 
negative 

Davidson et al. 
(2017) 

Successful effort Proportion of declared days fished for which a 
salmonid was caught in each river in each year 

Positive Beaumont et al. 
(1991) 

Release 
proportion 

Percent of salmon that are returned to the 
river after capture in each year in each river 

Positive 

Mean flow Mean river water flow from the beginning to 
the end of the river-specific fishing season in 
each year in each river 

Positive Milner et al. (2001) 

Base Flow Index A measure that characterizes differences in 
exploitation rate by BaseFlowIdx that 
separates spate and chalk stream rivers 

Positive 

Variance Area (hectares) Wetted area accessible to salmon spawners Negative Milner et al. (2001) 

Columns are the explanatory variables Name and Description, the expert-agreed Hypothesis of its effect on either mean or variation in RER, and the main 
Reference informing the hypothesis. 

Figure 2. Plots showing RSE and explanatory variables expected to describe variation in Atlantic salmon RER for each RSE river. Black lines represent 
the mean explanatory variable values across all rivers. 
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observation processes (Rivot et al., 2004 ; Auger-Méthé et al.,
2021 ). For example, some recent salmon stock assessment ap- 
proaches in France have used quantitative modelling to in- 
tegrate data from multiple life stages through time, thereby 
emulating the salmon’s life cycle, while accounting separately 
for the fish counting process (Buoro et al., 2019 ; Lebot et al.,
2022 ). Similar models have been partly developed in E&W 

(Crozier et al., 2003 , Chap. 10). 
The primary method of estimating salmon stocks in E&W 

is based on the RER method (Milner et al., 2001 ), although 
egional variations include more or less information and as- 
umptions. The decision to use this approach was based 

n the widespread evidence of a strong and positive rela-
ionship between reported salmon catch by rod anglers and 

tock size (Crozier and Kennedy, 2001 ; Gargan et al., 2001 ;
ansen, 2001 ; Whelan et al., 2001 ; Thorley et al., 2007 ),

ogether with the abundance of available spatio-temporal 
atch data. In E&W, rod catch data for salmon (and sea
rout Salmo trutta ) have been collected in a consistent man-
er via a single national rod licence return-reminder system 
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ince 1994. Similar catch return systems operate in neighbour-
ng jurisdictions, including Scotland ( https://marine.gov.scot/ 
ma/ assessment/ salmon- and- sea- trout ), Ireland (White et al.,
016 ), and France (Buoro et al., 2019 ; Lebot et al., 2022 ). Such
ystems, including the E&W rod licence return data, collect in-
ormation on the amount of effort spent angling on different
ivers, and data on individual catches, including the species,
ize, and method of capture. These data can be used to reduce
iases inherent in these fishery-dependent catch data. 
To use fishery-dependent data for salmon stock assessment,

e must confront and try to overcome some of its biases.
here are several practical issues to consider when working
ith angler catches. They can represent fish (Shelton, 2001a )

nd angler (Gardiner, 2001 ) behaviours, and both might be
nfluenced by other variables, such as the prevailing weather
onditions (Hendry et al., 2007 ). The fates of captured fish are
mportant in so much as a returned fish can be re-captured
t a later time, whereas a killed fish cannot, and thus should
ot thereafter be considered as part of the spawning stock
Leeuwen et al., 2020 ; Thorstad et al., 2020 ). There are sev-
ral reasons why poorly audited catch returns could be unre-
iable, including accidental or deliberate under- or over-catch
eclaration by recreational and commercial fishers (Potter,
001 ); a study by Small (1991) suggested that this possible
ias could be corrected to give estimates of catches similar to
hose derived using capture–mark–recapture studies (Potter,
001 ). Variations in stock sizes may be due to natural vari-
bility or be the result of human actions to manage their size.
side from the practical issues, there are also issues relating to

he quantitative modelling of exploitation rates. River flow is
hought to affect the catchability and availability of fish (Gee
nd Milner, 1980 ; Gillson et al., 2020 ), but also the anglers’
erception of those factors (Aprahamian and Ball, 1995 ; Mil-
er et al., 2001 ). Angling effort should have a strong and pos-
tive relationship with catch (e.g. Gee and Milner, 1980 ; Gar-
an et al., 2001 ; Davidson et al., 2017 ), but some studies have
ound no such relationship (e.g. Crozier and Kennedy, 2001 )
r even a negative relationship (e.g. Beaumont et al., 1991 ).
elationships among variables related to angling records are

requently highly noisy and this could be due to the omission
f important sources of variation, such as differences within
nd between rivers (Milner et al., 2001 ). Nevertheless, catches
ave been found to be consistent with expectations at larger
patial and temporal scales (Milner et al., 2001 ). 

Our study aims to derive annual salmon stock estimates
with uncertainties) from RER for all principal salmon rivers
PSR) across E&W using a single, consistent, transparent, and
tatistically robust method that transfers strength from “data-
ich” rivers with fisheries-independent data to “data-poor”
ivers with fishery-dependent data. There were three main ob-
ectives, to: (1) develop a statistical model describing RER
easured on a subset of salmon rivers in E&W equipped with

utomated fish counting and/or trapping facilities (hereafter
sh counter or counter) using an a priori defined set of expert-
greed potentially influential explanatory variables; (2) trans-
er that statistical model to other salmon rivers in E&W that
re not equipped with fish counting facilities and for which
ER cannot therefore be calculated directly; and (3) use the
stimated RERs to derive salmon stock estimates from rod
atches for all major salmon-producing rivers across E&W.
e developed a special case of the model proposed by Lebot

t al. (2022) in which fishery-independent available stock es-
imates are treated as constant data, rather than latent unob-
erved quantities, and in which we attempt to describe more of
he variation in the RER with additional measured covariates,
egating the need for the year-within-river random terms. In
ther respects, our approach generalizes that of Lebot et al.
2022) by allowing for overdispersion in catches given the
tock, i.e. we use a Beta–Binomial regression as used by Män-
yniemi et al. (2015) , and allowing non-linear effects of our
ovariates on catches from the available stock. We opt to use
 Bayesian framework to allow uncertainty in the model pa-
ameter estimates to propagate through to the derived stock
stimates. 

ethods 

almon stock size estimates are derived from adjusted catch
ata raised by an estimate of RER on the stock (Solomon and
otter, 1992 ; Shelton, 2001b ). In essence, the exploitation rate
f a stock is the proportion of the available salmon in the
tock that were caught by anglers. Currently, the best measures
f available stocks come from the 12 rivers where a fishery-
ndependent RSE is reported and estimates of RER for these
ivers are transported to rivers without a fishery-independent
tock estimate. This process is akin to using “data-rich”stocks
o inform “data-poor” stocks in marine fisheries (Prevost et
l. , 2003 ; Punt et al. , 2011 ; Bentley, 2015 ). A variety of meth-
ds have been proposed and used in E&W (and elsewhere) to
stimate RER. Early methods included a power function given
y cap ture e f f ort ∝ ab undance b (or equivalently, catch ∝
f f ort × ab undance b ), where b has been estimated to be vari-
us values ∼0.3–0.7 (Small, 1991 ; Gardiner, 2001 ). However,
his technique is known to predict unrealistically high values
f rod exploitation that suggest catches greater than abun-
ances (Gardiner, 2001 ). An alternative to this model included
n effect allowing for saturation of fishing effort at high abun-
ance (Richards and Schnute, 1986 ). Recently, however, there
as been a move towards the use of hierarchical Bayesian
odelling, frequently built upon standard generalized linear
odels, often adapted to fit better highly variable data, such

s Beta–Binomial regression (Mäntyniemi et al., 2015 ). 

rincipal salmon river data and returning stock 

stimates 

here are 64 rivers with monitored salmon stocks in E&W
 Figure 1 ). These are known as PSR and our analysis was de-
igned to estimate exploitation rates on them all. We collated
ata characterizing each of these PSR. 
Only 12 of these 64 PSR have a fish counter that could

e used to calculate a fishery-independent RSE, namely, the
ivers Avon (Hants; short for Hampshire), Dee, Fowey, Frome,
tchen, Kent, Leven, Lune, Tamar, Teifi, Test, and Tyne ( Table
 ; and Cefas, EA, and NRW, 2020 ). Ideally, these rivers would
ave been purposely selected to capture the range of condi-
ions experienced by salmon stocks across all the E&W PSRs,
.e. they would be a representative sample of salmon rivers
Prevost et al., 2003 ). Unfortunately, rivers are rarely selected
or their representativeness, but rather for other, often histor-
cal or opportunistic, reasons (e.g. Lebot et al., 2022 ). Among
hese rivers, for example, fish counting/trapping facilities were
nstalled in the chalk rivers ( Table 1 ) and the rivers Fowey and
amar primarily to monitor fish stock health with respect to
hanging water use (S. Toms, pers. comm.). In contrast, the
ivers in Wales and northern England were largely selected

https://marine.gov.scot/sma/assessment/salmon-and-sea-trout


Atlantic salmon stock estimates from rod exploitation rates 2509 

 

 

 

 

 

c  

c
χ  

r

l  

a  

t  

t  

p  

c  

(
f  

t  

a
a  

r  

a  

w
t  

a  

B
a  

a
v

d  

b  

s
m
o  

f  

(
c
l  

q
s  

v
a  

p
a  

s
i  

w

a  

l
v
c
c
i  

t
e  

c
W  

d  

d
i  

d  

t
s  

fl
r

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/80/10/2504/7335584 by guest on 05 M
arch 2024
for interest in the fish stocks per se and methods to moni- 
tor them (B. Shields, pers. comm ). The issue of representative- 
ness is important if we are to generalize findings from these 
RSE rivers to other non-RSE PSRs; if they are not represen- 
tative, then their generalization will be limited. With this in 

mind, we designed our model to account for potential non- 
representativeness by including river random effects in fitting.

Angler catch, ef for t, and associated data 

A national (statutory) catch return-reminder system was in- 
troduced in E&W in 1994, replacing various previously oper- 
ated regional systems (Cefas, EA, and NRW, 2020 ). The cur- 
rent system requires that all anglers wishing to catch migra- 
tory salmonids purchase a rod licence and thereby are legally 
bound to report details of their angling catches and fishing ef- 
fort to the EA (and its predecessors) by the end of the angling 
year (Solomon and Potter, 1992 ). Angling for salmon without 
a licence/or/and failing to provide a catch-return are offences 
and can incur a financial penalty (Solomon and Potter, 1992 ).
Rod licence details and the catch-return data reported against 
them are kept by the EA in the National Rod Licence Catch 

Database (RCdb). A completely anonymized version of the 
RCdb provided the following data for each salmon caught: 
licence number, date, river, and method of capture (fly, bait,
and spin), the weight of the fish (lbs/kg), and whether it was 
released or retained (fate). Aside from these individual fish 

records, the total number of fish caught/released (including nil 
returns) and fishing effort (angler days for both salmon and 

sea trout combined) are requested from each licence holder 
for each river fished in each year. 

There are three notable issues with rod licence and catch- 
return data (Potter, 2001 ). First, catch-return data are not sub- 
mitted against all licences, despite repeated reminders and the 
associated risk of a fine (Small and Downham, 1985 ). Small 
(1991) analysed licence catch-returns and derived probable re- 
porting rates and details of how they could be used to cor- 
rect declared catch. On the basis of their work, a national rod 

catch declaration rate of 0.91 was derived for salmon in E&W 

and has been (for most rivers and in most years, except where 
catches from fisheries owners are judged to be more accurate 
and used) the sole correction applied to declared catches since 
1994 to estimate total catches (Davidson et al., 2017 ). Second,
effort spent fishing for salmon is not currently distinguished 

from effort spent fishing for other migratory fish, notably sea 
trout. While the effects of this composite fishing effort data 
might be limited given that salmon and sea trout co-occur in 

many of the PSRs (Milner et al., 2007 ) and anglers target- 
ing one species regularly catch the other (Shields et al., 2007 ),
questionnaires were sent to licence holders in 1992 and 2006 

asking them to estimate the amount of effort they spent on 

each species. The results of these surveys have been used to 

calculate a river-specific mean (of 1992 and 2006) salmon an- 
gling effort rate ( ξ ) that has been applied to declared effort 
since 1994 (Davidson et al., 2017 ). Third, effort is sometimes 
omitted when catch-return data are submitted against a li- 
cence. To adjust for this, an effort declaration rate is calcu- 
lated as the ratio between the declared catch and the declared 

catch with effort. For this study, both declared catch and de- 
clared effort were adjusted to account for these rates, thus: 
(i) declared catches were adjusted by the national rod catch 

declaration rate λ, which is taken to be 0.91 in most rivers in 

most years (Small and Downham, 1985 ), to account for in- 
omplete declarations, and (ii) declared effort for salmon was
alculated as e f f ort salmon = e f f ort declared × χ × ξ × λ, where 
is the effort declaration rate, ξ is the salmon angling effort

ate, and λ is the national licence declaration rate. 
Given the adjusted declared effort for salmon, we calcu- 

ated two measures of effort to include as explanatory vari-
bles in our statistical models of RER. First, we followed
he approach taken by Davidson et al. (2017) and scaled it
o the river size so that it measured fishing days on salmon
er hectare, i.e. angler effort ( Supplementary Figure S1 ). Be-
ause Davidson et al. (2017) found support for a non-linear
convex) relationship between exploitation rate and rod ef- 
ort for sea trout, we explored a non-linear (convex) func-
ional form in our statistical models of RER. Second, there
re some suggestions that anglers can exert a disproportion- 
te influence on exploitation rate if their effort yields a good
eturn, perhaps due to their skill or persistence (Beaumont et
l., 1991 ; Solomon and Potter, 1992 ). To account for this,
e calculated the proportion of declared effort for salmon 

hat yielded a minimum of one salmon caught in that river
nd year, i.e. successful effort ( Supplementary Figure S2 ).
oth variables were z -standardized (their mean subtracted 

nd then divided by their standard deviation) across rivers
nd years before including them in models as explanatory 
ariables. 

Aside from declared catch and effort data, the additional 
ata on individual catches (e.g. capture method and fate) can
e used to calculate additional and possibly river- and year-
pecific explanatory variables for inclusion in our statistical 
odels of RER. Different capture methods, including the use 
f barbless hooks, are likely to influence exploitation rates:
or salmon Grilli et al. (2021) , for sea trout Shields et al.
2007) . Calculation of an explanatory variable to represent 
apture method from the catch-return data is, however, chal- 
enging for two reasons: (i) capture method is often infre-
uently reported, and (ii) river-specific byelaws and club re- 
trictions are not always well documented and can censor the
ariable, i.e. making it appear as though restricted methods 
re less effective when they are actually banned. Given these
otential issues, we did not further consider “capture method”
s an explanatory variable, but rather we explore the pos-
ible implications of that decision in the Discussion, includ- 
ng proposals to include it as a subsequent extension to this
ork. 
In contrast, the fate of individual fish was well documented 

nd could be used to calculate an explanatory variable re-
ease proportion ( Supplementary Figure S3 ). This explanatory 
ariable was calculated to represent river- and year-specific 
hanges in catch-and-release practices, in particular an in- 
rease in the practice of voluntary catch-and-release, and the 
nfluence it might have on RER through released fish even-
ually becoming re-available for capture. There are, how- 
ver, two reasons why this approach could be improved: (i)
atch-and-release has become mandatory on salmon rivers in 

ales since 2020 (Cefas, EA, and NRW, 2020 ), which intro-
uces the possibility that estimates since then might not be
irectly comparable with the years preceding them, if there 
s a greater likelihood that catch returns will be falsified un-
er a mandatory regime, and (ii) returning salmon back to
he river should influence RER indirectly by changing the 
tock available to be captured within a year, rather than in-
uencing RER directly. To account for changes in catch-and- 
elease practices, such variability could be better explored by 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
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reating the available stock as a dynamic rather than static
tate. 

almon rod exploitation rate explanatory variables 

e researched and agreed a set of explanatory variables that
ere expected to describe variation in RER on the PSRs ( Table
 ). 
Through its influence on fish behaviour and availabil-

ty, and on angler behaviour, river flow is expected to ex-
lain variation in salmon catchability and thus RER within
nd between rivers (reviewed in Milner et al., 2001 ). To
ccount for river flow, we calculated a river- and year-
pecific measure of within-angling season mean flow for in-
lusion in our statistical models of RER ( Supplementary
igure S4 ). River flow data were obtained from the E&W
iver flow gauging station network, queried via the UK Cen-
re for Ecology and Hydrology (CEH) National River Flow
rchive ( https:// nrfa.ceh.ac.uk/ ), and individual flow gaug-

ng stations, as required. For each river, gauging stations
ere selected in the lower main river (where possible) to
est represent flow conditions on the catchment as a whole
nd over the period covered by the RSEs ( Supplementary
igure S5 ). Where suitable gauging stations/flow data were
bsent from a catchment, flow data from an appropriate
eighbouring catchment were used. In all cases, the gauged
aily mean flow data extracted to calculate the flow vari-
bles were limited to the period of the salmon angling
eason from the Salmonid and Freshwater Fisheries Statis-
ics ( https://www .gov .uk/government/publications/salmonid- 
nd- freshwater- fisheries- statistics- 2020 ). The resulting mea-
ures of mean flow were z- standardized within each river
cross years before they were included in models as explana-
ory variables. 

To promote generalization, we calculated variables repre-
enting river type and river size for inclusion as explanatory
ariables in our statistical models of RER. Chalk streams have
 higher Base Flow Index ( Supplementary Figure S6 ) than
pate rivers because they are largely aquifer-fed and thereby
roduce a more consistent and higher mean flow. We ex-
racted the Base Flow Index for each of the 64 PSRs from
he CEH National River Flow Archive and z -standardized
hem across rivers before including them in models as an ex-
lanatory variable. The RER on smaller rivers might be ex-
ected to demonstrate higher inter-annual variability as they
re likely to accommodate smaller stocks that could thereby
e disproportionately affected by processes acting upon them,
uch as angler behaviour (Milner et al., 2001 ). To account for
his possibility, we extracted fishery area (hectares) from Ta-
le 26 in Cefas, EA, and NRW (2020) and z -standardized it
cross rivers before including it in models as an explanatory
ariable. 

The RSE and explanatory variables were calculated for each
f the 12 PSRs where a RSE is reported and for which a RER
an therefore be calculated ( Figure 2 ; see also Supplementary
igure S7 ). 

od exploitation rate model 

o address the first objective of our study, we developed a
eta–Binomial model, using the aforementioned a priori de-
ned set of expert-agreed potentially influential explanatory
ariables, to describe the exploitation rate for RSE rivers as a
inear combination of the explanatory variables. This is given
y 

C r,y ∼ Binomial 
(
N r,y , p r,y 

)
p r,y ∼ Beta 

(
αr,y , βr,y 

)
αr,y = μr,y φr,y 

βr,y = 

(
1 − μr,y 

)
φr,y 

logit 
(
μr,y 

) = δX r,y + νr + ζy 

log 
(
φr,y 

) = γ Z r,y 

, 

here 

νr ∼ Normal ( 0 , σr ) , 
ζy ∼ Normal 

(
0 , σy 

)
, 

nd 

C r,y = c r,y /λ, 

here c r,y is the declared rod catch in river r in year y and λ

s the licence declaration rate, taken to be 0.91 in most rivers
n most years (Small and Downham, 1985 ; Cefas, EA, and
RW, 2021 ), N r,y is the RSE of river r in year y , p r,y is the

xploitation rate of river r in year y , α and β are the shape
arameters of a Beta distribution, δ is a vector of coefficients
epresenting the effects of the explanatory variables X r,y on
he mean river- and year-specific expected exploitation rate
r,y , and γ is a vector of coefficients representing the effects of

he explanatory variables Z y,r on the river- and year-specific
ariation in exploitation rates φr,y . Parameters νr and ζy are
andom effects allowing the expected mean exploitation rate
o vary by σr among rivers, representing differences between
ivers not captured by covariates, and by σy among years, rep-
esenting a temporal synchrony between rivers not captured
y covariates, respectively. We used weakly informative priors:
aussian (mean = 0, SD = 1000) for coefficients represent-

ng explanatory variable effects on exploitation rate, Student- t
mean = 0, SD = 100, df = 3) for the random effect variance,
nd Gamma (location = 0.001, scale = 0.001) for the model
rrors. 

The model parameter posterior distributions were esti-
ated from 16000 Markov chain Monte Carlo (MCMC) iter-

tions (8 parallel chains run for 2000 iterations and no thin-
ing) using Hamiltonian Monte Carlo implemented in Stan
 http://mc-stan.org ) and fitted using package brms (Bürkner,
017 ) in R ( https://www.r-project.org ) [see the output of ses-
ionInfo() in the supplementary materials ]. Convergence was
ssessed by visual examination of MCMC trace plots, the
elman–Rubin statistic (Brooks and Gelman, 1998 ), and the
ulk effective sample size, and were considered stable if the
hains were mixing, non-convergent, and well represented by
he samples, i.e. < 1.05 and > 200 (per chain) for all parame-
ers, respectively. Bayesian R 

2 values were calculated accord-
ng to Gelman et al. (2019) . 

Given that this model was to be extrapolated to data from
ivers not used to parameterize it, it was deemed worthwhile
implifying it to those a priori expert-agreed explanatory vari-
bles ( Table 2 ) that explained a non-negligible amount of the
ariation in RER. To do this, we started with the saturated
odel including all variables ( Table 2 ) and then removed it-

ratively those whose estimated effect was weakest or most
ncertain, i.e. those whose 95% credible intervals intercepted
 or were widest. We repeated this process until the esti-
ated effects of all remaining variables were considered non-
egligible, i.e. their credible intervals did not intercept 0 and
ere not too wide. The final “best” model was therefore the
ne explaining the highest variance with the fewest parame-

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
https://nrfa.ceh.ac.uk/
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
https://www.gov.uk/government/publications/salmonid-and-freshwater-fisheries-statistics-2020
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
http://mc-stan.org
https://www.r-project.org
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
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ters, i.e. the most parsimonious. We confirmed that this was 
the “best” model according to Information Criterion as the 
one with the fewest parameters (or explanatory variables) that 
was also within < 2 change in leave-one-out cross-validation 

Information Criterion (looIC), known as δlooIC, of the model 
with the lowest δlooIC (0.00) ( Table 3 ; Vehtari et al., 2017 ). 

Model validation, inference, and extrapolation 

To achieve the second objective of our study, the transfer 
of salmon-counting data from data-rich rivers to data-poor 
rivers without counters, we had to have confidence that our 
“best” statistical model for the 12 PSRs with a RSE had some 
predictive ability. To test this, we did a k = 10 fold-stratified 

cross-validation experiment whereby we trained the model on 

nine data folds, each stratified to ensure that all rivers were 
represented, and used that trained model to predict the total 
catch on the one omitted fold. We chose to use stratified rather 
than random samples of the data because there was consider- 
able variation between the RER calculated for the 12 PSRs,
with a RSE that our model accounted for with a river random 

effect, the variance of which would not be representative if 
whole rivers were omitted from the training data. Once sat- 
isfied that our model was generalizable, we used it for infer- 
ence by plotting the partial effects of the retained explanatory 
variables and comparing their coefficient estimates with the 
hypothesized relationships ( Table 2 ). 

To achieve our third objective, i.e. to extrapolate our gen- 
eralizable model to estimate salmon stocks in all 64 PSRs in 

E&W, we took 2000 draws from the model parameter poste- 
riors and used them to predict an annual RSE ( ˆ N r,y = C r,y / ̂  p r,y 

and 95% credible intervals) for each of the other 52 salmon 

rivers in E&W where an RSE is not reported, and for years 
missing an RSE in rivers where an RSE is reported. This pre- 
diction assumed that each river was well represented by the 12 

PSRs, where an RSE is reported and set the random terms to 

their means (zero). Resulting estimates included uncertainties,
represented by 95% credible intervals. 

Results 

Overall, there was substantial between-year variation in cal- 
culated RERs for the 12 PSRs, where an RSE is reported (both 

between and within-river) and exploratory analysis suggested 

that the relationships with the a priori chosen explanatory 
variables were in the directions hypothesized ( Supplementary 
Figures S1 –S6 ). 

Explanatory variable effects and inference 

Posterior estimates of explanatory variable effects from the 
Beta–Binomial model fits suggested that all a priori hypothe- 
sized variables, except for Base Flow Index, explained a non- 
negligible amount of the variation in the mean of, or vari- 
ation in, RER for the 12 PSRs where an RSE is reported 

( Table 3 , Figure 3 ). Specifically, the 95% credible intervals 
of angler effort (but not its second-order term), successful 
effort, mean flow, and phi_Area (hectares) effects were nar- 
row did not overlap 0, suggesting that their effects were non- 
negligible. The 95% credible interval of the Base Flow Index 

effect, meanwhile, was wide and although it did not overlap 

0, its contribution to explaining variation in RER could be 
considered negligible owing to the high uncertainty in the es- 
timates. Model selection confirmed that the most parsimo- 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
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Figure 3. A plot of the posterior coefficient estimate means and their 95% credible intervals for explanatory variables retained in the model describing 
Atlantic salmon RERs on the 12 PSR in E&W where a RSE is reported. The effect of BaseFlowIdx whose credible intervals overlap the dashed line at 0 
was considered negligible, whereas the effects of the other variables were considered non-negligible using Information Criteria. 
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ious model, taken to be the “best” model taken forward
or inference and extrapolation, omitted the Base Flow In-
ex effect, suggesting that it was negligible ( Table 3 ). MCMC
hains for this model were well-mixed according to the con-
ergence statistics ( Supplementary Figure S8 ) and the random
ffect estimates were judged to be approximately Gaussian
 Supplementary Figure S9 ). A summary of the best model is
rinted in the supplementary material . 
Plots of the explanatory variable partial effects confirm that

he direction of the effects were as hypothesized ( Table 2 ), in-
luding a quasi-linear effect of angler effort ( Figure 4 ). Specif-
cally, the effects of angler effort, successful effort, mean flow,
nd release proportion on RER were all positive, albeit some-
imes weak. 

Line plots of the observed and estimated RER suggest that
he model was able to describe the main patterns in RER inter-
nnual variations for each of the 12 PSRs with a RSE ( Figure
 ), albeit with many annual discrepancies, some of which
ere outside the estimated 95% credible intervals. Specifi-

ally, there were large discrepancies between observed and es-
imated RER on the rivers Avon (Hants), Fowey, Itchen, Kent,
nd Leven, for which the 95% credible intervals of the esti-
ated RER did not always include the observed value. Some
f the correspondence between observed and estimated RER
as likely helped by the year random effect that allowed for
 degree of synchronicity between rivers. 

odel validation and extrapolation 

isual inspection of the results from a ( k = 10) fold stratified
ross-validation experiment suggested that the “best” statisti-
al model was able to predict annual catches for each of the
2 PSRs where a RSE is reported with reasonable certainty
 Figure 6 ). Furthermore, posterior predictive checks suggested
hat the model was able to reproduce replicate response vari-
bles with comparable characteristics ( Supplementary Figure
10 ). 
Having confirmed its predictive ability, the model was then
xtrapolated to the 52 PSRs where a RSE is not reported, as
ell as those years in the 12 PSRs where RSEs were miss-

ng ( Figure 7 ). The resulting extrapolations seemed reasonable
nd a potentially useful baseline from which local experts and
anagers could make carefully audited changes. 

iscussion 

e present a consistent, transparent, and statistically robust
ethod to derive annual salmon stock estimates from RER for

ll major salmon-producing rivers across E&W. This method
hares similarities with a number of recently published meth-
ds, for example, Mäntyniemi et al. (2015) and Lebot et al.
2022) , but it extends them to make use of the comparatively
ich data on angler catch and effort available for E&W, and
o include consideration of non-linear effects of some of these
xplanatory variables. Our results suggest that many of these
ngling data can be included in the model to improve estimates
f RER in ways predicted from our expectations. For exam-
le, angling effort was positively related to RER (Davidson et
l., 2017 ), as was successful effort, suggesting that patterns in
ER could be attributable to a few skilled or persistent an-
lers, which could see RER increase despite decreasing effort,
s has been reported elsewhere (e.g. Beaumont et al., 1991 ).
sing these additional data can help avoid the need for addi-

ional complexities and assumptions (assuming that the data
re representative and complete) and might therefore better
esonate with fisheries managers and anglers. However, our
esults also leave space for future and ongoing improvements
o the model and its inputs to reduce discrepancies between
bserved and estimated RER in rivers with a RSE. 
To explore whether the model was generalizable, we used

 robust and stringent stratified cross-validation procedure.
he successful validation of our model suggests that it can be
xtrapolated to data from rivers that were not used to param-
terize it, thereby enabling us to use data from “data-rich”

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad161#supplementary-data
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Figur e 4. P artial-effect plots sho wing the direction, shape, and strength of e xplanatory v ariable effects on Atlantic salmon RER on the 12 PSR in E&W 

where a RSE is reported. Grey bands represent the 95% credible intervals of the partial effects. 

Figure 5. Plots of the fitted Atlantic salmon RER on the 12 PSR in E&W where a RSE is reported. Points are the calculated observed RER values 
(Observation) or the posterior estimate means with error bars represent their 95% credible intervals (Estimation). 
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rivers to inform “data-poor” rivers (Bentley, 2015 ). Further- 
more, the model appeared to be robust to rivers with highly 
contrasting declared salmon catches, deriving plausible pre- 
dictions for rivers with low declared salmon catches, such 

as the rivers Stour (SW), Piddle, and Yealm, each of which 

reported no declared catches in at least one year, to rivers 
with high declared salmon catches, such as the rivers Test and 
tchen, perhaps due to more targeted effort on individual fish.
here are only 6 ( < 10%) chalk stream rivers among the 64
SRs and yet 4 (30%) of those were among the 12 for which
n RSE is reported and were used to train this RER model.
ngler behaviours, and perhaps fish behaviours, might differ 

or chalk stream rivers compared to non-chalk stream rivers
Beaumont et al., 1991 ). Nevertheless, we proposed and tested
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Figure 6. A plot of the predicted k = 10 fold stratified cross-validation Atlantic salmon catches on the 12 PSR in E&W where a RSE is reported. Points 
are the observations and the error bands represent the 95% credible intervals of their predicted values from the cross-validation. 
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odels including a Base Flow Index as a measure of river type,
ut this index explained negligible variance in actual RER for
he 12 rivers used to train the model. This suggests that any
ifference in RER between chalk stream and spate rivers is
egligible, or at least a less important source of variation than
hose other explanatory variables that were retained in the fi-
al model. 
The model outputs provide point estimates of salmon

tocks returning to all 64 PSRs in E&W, together with an
stimate of their uncertainty. The point estimates are an in-
egral part of the E&W salmon stock assessment procedure,
orming the basis for the calculation of spawner and egg num-
ers used to assess compliance with Conservation Limits and
thereafter) evaluate the need for management intervention to
rotect stock status (Davidson et al., 2017 ; Cefas, EA, and
RW, 2020 ). A logical extension of this process could be to

llow uncertainties in the salmon stock estimates to propagate
hrough to the assessment stage, thereby accounting for some
dditional uncertainty due to the salmon stock estimation pro-
ess. For example, egg deposition estimates could be derived
rom spawning stock estimates, including their uncertainties.
llowing for the propagation of such uncertainties through

he stock assessment process would align with the precaution-
ry approach recommended by NASCO ( 1998 ) and with the
pproaches appearing in neighbouring jurisdictions, such as
reland (White et al., 2016 , 2023 ). In addition to the results
or individual rivers, aggregating the salmon stock estimates to
he whole E&W spatial scale within the model, thereby allow-
ng for proper propagation of uncertainties, could provide an
mportant input to the international salmon stock assessment
rocess undertaken by the ICES Working Group on North At-
antic Salmon (ICES, 2023 ). Specifically, the stock estimates
nd their uncertainties could be conditioned on sea age splits
nd provided as estimates of adult returns for E&W, obviating
he need for run-reconstruction and ensuring the national and
nternational stock abundance estimates are closely aligned. 

The Beta–Binomial approach taken here was chosen as a
rade-off between ease of understanding and necessary com-
lexity. As a trade-off, it is accepted and indeed encouraged
hat the outputs from the RER model are subject to review
y regional experts before they are used in any stock assess-
ent process. Changes to the outputs could be achieved in a

ariety of ways, including (but not limited to) (i) modifying
he characteristics of the priors given to the model to better
epresent, for example, mean river-specific RERs, or (ii) mod-
fying the outputs directly, especially where there are unique
vents, such as the introduction of a local byelaw or the effects
f the coronavirus pandemic on angling effort (Cefas, EA, and
RW, 2021 ), that might affect annual estimates in ways that

he core RER model may not account for fully. In the former
ase, without additional information, the salmon stock esti-
ates for rivers where an RSE is not reported will be derived

rom an overall mean RER (albeit with a river-specific devia-
ion), which might need to be altered to ensure salmon stock
stimates are, on average, lower/higher, or less/more variable
han estimated. In the latter case, it will be imperative that
uch changes to the output are carefully recorded to ensure
hat they can be fully accounted for during any audits and
uture assessments. Aside from the model outputs, the model
nd its input data should use the best available information
nd as such are subject to future and ongoing improvements,
nd we encourage the reader to visit the model codes (released
t https:// github.com/ CefasRepRes/ salmon- rod- exploitation )
o check for updates. 

If we can move away from the need for ease of understand-
ng and incorporate additional complexities that might make

https://github.com/CefasRepRes/salmon-rod-exploitation
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he estimate of salmon stocks even more realistic, then there
re a few clear ways that our model could be improved. Al-
hough we included release proportion as an explanatory vari-
ble of RER in our model, we know that releasing a fish back
nto the river—although it won’t change the annual run of
sh to that river (or RSE)—will, in general terms, change the
umber of fish available to be caught when compared, for
xample, to past practices where it was usual for most rod-
aught fish to be killed. However, while more fish may be
vailable to capture (in relative terms, because they are be-
ng released rather than killed) than in former times, the true
ate at which they are caught (i.e. the vulnerability to cap-
ure of the average fish) may not change greatly. If this was an
ssue, we could address it by modelling the number of avail-
ble fish explicitly. This could be done by, for example, using
 separate sub-model to estimate the number of fish available,
uch as a coupled Poisson–Binomial approach (e.g. Marsh et
l. , 2021 ; Lebot et al. , 2022 ), or by using state-space mod-
ls that model the ecological and observation processes sepa-
ately (Buoro et al., 2019 ; Gregory et al., 2019 ). Either of these
pproaches would allow other available data representing fac-
ors affecting catches or stocks to be incorporated directly,
ather than by proxy. Whether this type of alternative ap-
roach is needed would require further investigation into this
ssue. 

Another extension of our model would be to modify it
o estimate different salmon stock components separately—
amely one-sea-winter and multi-sea-winter fish—rather than
ombined, as is done here. Salmon stock assessments fre-
uently account for these two sea-age groups separately, prin-
ipally for fisheries management purposes because they have
ifferent reproductive potentials, but also to help maintain
he biological diversity of returning stocks. This has been the
ase, for example, in the high seas mixed-stock fisheries off
reenland and the Faroes, where these two stock components
ave faced different levels of exploitation by virtue of different
igratory patterns (ICES, 2021 ). Similarly, management of
omewater fisheries in the UK and elsewhere accounts for one-
ea-winter and multi-sea-winter fish separately, although the
onservation Limits set for individual river stocks in E&W do
ot distinguish between these stock components. Salmon that
ave spent longer at sea tend to be larger and enter rivers ear-
ier than those staying out for shorter periods. Larger salmon
roduce more eggs, but can also be subjected to different
higher) RERs as anglers seek bigger quarry, but also, in the
ase of early-run multi-sea-winter fish, because of differences
n catchability and the length of time fish are exposed to the
sheries (Davidson et al., 2000 ; Shelton, 2001a ). These points
ould have important implications for salmon stock assess-
ent (Thorley et al., 2007 ; Lebot et al., 2022 ). Sea-age-specific
ERs could be dealt with separately by extending this Bino-
ial sampling to multinomial sampling with Dirichlet priors

nformed by sea-age-specific explanatory variables (Douma
nd Weedon, 2019 ). 

Aside from modifications to the approach taken here, the
utputs could also be improved by enhancements to the in-
uts. For example, we could include additional explanatory
ariables to explain more of the high inter-annual variability
n RER. These might include angling method/gear (Shields et
l. , 2007 ; Grilli et al. , 2021 ), which could also extend to an-
ling restrictions, such as bait bans and barbless hooks. Data
n the method of capture are submitted as part of routine
atch returns, but they refer to captured fish only and so may
ot reflect method selection generally . Ideally , to include “cap-
ure method”, we would want to ensure that the sample of
ivers used to parameterize the model included some that pro-
ibited certain angling methods alongside others that did not.
nother area for possible model improvement relates to vari-
tion in migration or run timing of returning adult salmon.
vidence suggests, sometimes from fish counters and traps,
hat run timings have changed and might continue to change,
erhaps in response to changing conditions at sea (de Eyto et
l., 2022 ). Although this could be considered as an additional
xplanatory variable, as suggested above, it could be better
epresented in state-space models. 

Notwithstanding additional explanatory variables, we
ould also improve the variables already included. For exam-
le, angler effort is currently adjusted to separate effort for
almon vs. sea trout; however, this adjustment is made based
n only two angler surveys several years apart. Instead, rod
icence returns could be adjusted to ask anglers to specify
heir effort split as part of routine rod licence reporting. Simi-
arly, angler effort is currently recorded only in “days” (effec-
ively the number of daily fishing sessions per river per year),
hereas actual time spent fishing would be more nuanced, and

f this were better recorded, then it could be used to produce a
ore realistic weighting of angler effort. After investigations

nto a variety of flow metrics, such as numbers of seasonal
pate events, we used river discharge as mean flow. There are,
owever, many other ways that this could be defined (see Gill-
on et al. 2020 ) that could better explain variation in RER
hile also capturing our understanding of the complex rela-

ionships between river discharge, fish, and angler behaviours.
otwithstanding changes to the inputs, we could also include

dditional random terms that could allow for between-year
ariation within rivers, for example. 

In conclusion, salmon stock sizes have declined dramati-
ally over the last 70 years (Limburg and Waldman, 2009 ;
haput, 2012 ; ICES, 2021 ). Commercial salmon fishing
as cited as the main driver of these declines during the
0th century (Limburg and Waldman, 2009 ; Chaput, 2012 ),
articularly large commercial catches off West Greenland,
here salmon are thought to aggregate on feeding grounds

Dadswell et al., 2010 ; Olmos et al., 2019 ). Yet, salmon stock
izes have continued to decline despite the closure of those
ommercial fisheries in 1998, leading to widespread closures
f local and small-scale mixed stock fisheries along national
oastlines and in river estuaries (Chase, 2003 ). While there is
o doubt that these closures have been beneficial to salmon
tock numbers, they represent the loss of a data stream that
ould have been used in national and international salmon
tock assessments (Youngson et al., 2003 ). 

Given the state of salmon stocks and the subsequent loss
f stock assessment data, there is a need to use available data
o the best effect possible. To this end, the approach to esti-
ating salmon stocks for all 64 PSRs in E&W presented here

epresents a consistent, transparent, and statistically robust
ethod that uses information from “data-rich” rivers to in-

orm estimates for “data-poor” rivers. This approach could
e extended relatively simply to include newly available data,
uch as may derive from to technological advances or exploit-
ng publicly available data (Lennox et al., 2022 ), and could
orm the basis of a more comprehensive approach that sep-
rates the ecological and observation processes, should that
e needed. It does, however, still require angler-reported catch
nd effort data and some fishery-independent stock estimates
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without which we will need to seek an alternative approach 

to stock estimation. 
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