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For effective fishery management, estimated stock sizes, along with their uncertainties, should be accurate, precise, and unbiased. Atlantic
salmon Salmo salar stock assessment in England and Wales (and elsewhere across the Atlantic) estimate returning salmon stocks by applying
a measure of rod exploitation rate (RER), derived from less abundant fishery-independent stock estimates, to abundant fishery-dependent data.
Currently, RER estimates are generated for individual principal salmon rivers based on available local data and assumptions. \We propose a
single, consistent, transparent, and statistically robust method to estimate salmon stocks that transfers strength of information from “data-rich”
rivers, i.e. those with fisheries-independent data, to “data-poor” rivers without such data. WWe proposed, fitted, simplified, and then validated a
Beta—Binomial model of RER, including covariates representing angler and fish behaviours, river flow, and random effects to control for nuisance
effects. Our “best” model revealed covariate effects in line with our hypotheses and generalized to data not used to train it. We used this model
to extrapolate stock estimates from 12 data-rich to 52 data-poor rivers, together with their uncertainties. The resulting riverspecific salmon stock

estimates were judged to be useful and can be used as key inputs to riverspecific, national, and international salmon stock assessments.
Keywords: angling, model extrapolation, rod exploitation, Salmo salar, stock assessment.

Introduction

The primary objective of Atlantic salmon Salmo salar (here-
after salmon) fishery management is to ensure the sustainable
exploitation of their stocks (Quinn II and Deriso, 1999), i.e.
to ensure that sufficient numbers of adult salmon spawning
escapement takes place to assure the safe state of future gen-
erations. To implement appropriate fishery management mea-
sures, we must first estimate the size of the returning adult
stock available to the fishery, assess the status of that stock
in terms of the numbers of adult fish that are subsequently
available to spawn and how this has changed over time. In
order to evaluate status, measures are usually compared to
some predetermined standard (or standards). This process
usually involves provision of estimates by quantitative mod-
elling, broadly referred to as stock assessment (Quinn II and
Deriso, 1999). In England and Wales (E&W)—and elsewhere
around the North Atlantic basin—salmon stock management
is underpinned, following the North Atlantic Salmon Conser-
vation Organization (NASCO) guidance (NASCO, 2009), by
the application of biological reference points (Potter et al.,
2003), which are derived from the relationship between the
estimated annual spawning stock size and the estimated sub-
sequent recruitment of spawners (or earlier life-stages) due

to the reproduction of that estimated annual spawning stock
(Prevost et al., 2003; White et al., 2016). From this spawner—
recruitment relationship, various biological reference points
can be estimated. In E&W, as in other International Coun-
cil of the Exploration of the Sea (ICES) jurisdictions (White
et al., 2023), the concept of Maximum Sustainable Yield is
used as the basis for defining biological reference points, in-
cluding the setting of a lower limit spawning stock size (or
their equivalent in number of eggs), known as the Conserva-
tion Limit. An associated fishery Management Objective has
been set that states that a river stock should equal or exceed
its Conservation Limit in at least four years out of five on
average [Centre for Environment, Fisheries, and Aquaculture
Sciences (Cefas), Environment Agency (EA), and Natural Re-
sources Wales (NRW); Cefas, EA, and NRW, 2020] and fol-
lows the precautionary approach recommended by NASCO
(1998) and adopted by ICES (Davidson et al., 2017; ICES,
2023).

Given the purpose of salmon stock assessment and its use in
managing fishery exploitation, it is imperative that estimates
of the sizes of the adult salmon stock returning to rivers (here-
after salmon stocks), and subsequent spawning stocks, are
as accurate, precise, and unbiased as possible, and provided
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Figure 1. Locations of the 64 PSR in E&W. Only 12 of these PSR (indicated by grey boxes) have a fish counter or trap to derive a RSE that is needed to

calculate a RER.

with measurements of their uncertainties (Rivot et al., 2001;
Crozier et al., 2003; Prevost et al., 2003; Potter et al., 2004;
Rivot et al., 2019). Broadly, estimates of salmon stocks can be
obtained by fishery-dependent and fishery-independent meth-
ods, and each has advantages and disadvantages (Maunder
and Punt, 2013; Bentley, 2015; Maunder and Piner, 2015).
Fishery-dependent methods rely on catches by recreational
and commercial fishers whose activities cover a large spatial
and temporal extent, but whose choices and behaviours can
result in complex and potentially subjective indicators of stock
size, which are also unavailable if the fishery is closed (Maun-
der and Punt, 2004; Arlinghaus et al., 2007). In contrast,
fisheries-independent data are collected using specific proto-
cols to enumerate the stock directly, often using devices that
include automated resistivity, acoustic or optical fish counters,
or the use of partial or total traps—the former includes use
of capture—-mark-recapture methods to derive full return esti-
mates (Eatherley et al.,2005). Typically, these devices are oper-
ated with a degree of standardization and validation, thereby
produce a somewhat objective measure of stock size (Dunkley
and Shearer, 1982). Their high implementation and ongoing
costs, however, mean that they produce data that are restricted
spatially and temporally (but see Smith ef al., 1996; Cowx
and Fraser, 2003; Eatherley et al., 2005). Hence, for example,
only 12 of the 64 rivers where assessments are undertaken for

salmon stocks in E&W have reported or continue to report
a fishery-independent returning stock estimate (RSE) (Cefas,
EA, and NRW, 2020).

Around the North Atlantic Area, salmon stocks are esti-
mated using numerous different but related methods depend-
ing on, inter alia, the management framework, available data,
and suitable expertise. An early and widespread method is
to raise declared salmon catches (adjusted for catch report-
ing rates and known as total catches; Small and Downham,
1985) to RSEs by applying a measure of stock exploitation
by anglers [known as the salmon rod exploitation rate (here-
after RER); Solomon and Potter, 1992; Milner et al., 2001;
O’Connell, 2003]. An important motivation underpinning the
development and adoption of the RER method is the large
amount of spatio-temporal fish catch data generated by an-
glers and collated and reported in a regular and consistent
manner (Milner et al., 2001). An extension of this approach,
including exploitation by commercial fisheries, is used to re-
construct pre-fishery abundances that underpin international
stock assessments (Potter et al., 2004; Rivot et al., 2019; Ol-
mos et al., 2020). Where available data are more extensive,
and accompanied by emerging statistical concepts and increas-
ing computation power, new methods have been developed
and are recommended (Milner et al., 2001; O Maoiléidigh
et al., 2004), including models that separate ecological from
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Table 2. A set of a priori expert-agreed explanatory variables expected to describe mean and variation in Atlantic salmon RER across the 64 PSR in E&W.

Model part Name Description Hypothesis References
Mean Angler effort Number of declared days fished for salmon in Positive becoming Davidson et al.
each river in each year (salmon and sea trout negative (2017)
effort is split based on 1992 and 2006
questionnaires to licence holders) divided by
accessible wetted area (hectares)—see below
Successful effort Proportion of declared days fished for which a Positive Beaumont et al.
salmonid was caught in each river in each year (1991)
Release Percent of salmon that are returned to the Positive
proportion river after capture in each year in each river
Mean flow Mean river water flow from the beginning to Positive Milner et al. (2001)
the end of the river-specific fishing season in
each year in each river
Base Flow Index A measure that characterizes differences in Positive
exploitation rate by BaseFlowldx that
separates spate and chalk stream rivers
Variance Area (hectares) Wetted area accessible to salmon spawners Negative Milner et al. (2001)

Columns are the explanatory variables Name and Description, the expert-agreed Hypothesis of its effect on either mean or variation in RER, and the main

Reference informing the hypothesis.
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Figure 2. Plots showing RSE and explanatory variables expected to describe variation in Atlantic salmon RER for each RSE river. Black lines represent

the mean explanatory variable values across all rivers.

observation processes (Rivot et al., 2004; Auger-Méthé et al.,
2021). For example, some recent salmon stock assessment ap-
proaches in France have used quantitative modelling to in-
tegrate data from multiple life stages through time, thereby
emulating the salmon’s life cycle, while accounting separately
for the fish counting process (Buoro et al., 2019; Lebot et al.,
2022). Similar models have been partly developed in E&W
(Crozier et al., 2003, Chap. 10).

The primary method of estimating salmon stocks in E&W
is based on the RER method (Milner et al., 2001), although

regional variations include more or less information and as-
sumptions. The decision to use this approach was based
on the widespread evidence of a strong and positive rela-
tionship between reported salmon catch by rod anglers and
stock size (Crozier and Kennedy, 2001; Gargan et al., 2001;
Hansen, 2001; Whelan et al., 2001; Thorley et al., 2007),
together with the abundance of available spatio-temporal
catch data. In E&W, rod catch data for salmon (and sea
trout Salmo trutta) have been collected in a consistent man-
ner via a single national rod licence return-reminder system
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since 1994. Similar catch return systems operate in neighbour-
ing jurisdictions, including Scotland (https://marine.gov.scot/
sma/assessment/salmon-and-sea-trout), Ireland (White et al.,
2016),and France (Buoro et al.,2019; Lebot et al.,2022). Such
systems, including the E&W rod licence return data, collect in-
formation on the amount of effort spent angling on different
rivers, and data on individual catches, including the species,
size, and method of capture. These data can be used to reduce
biases inherent in these fishery-dependent catch data.

To use fishery-dependent data for salmon stock assessment,
we must confront and try to overcome some of its biases.
There are several practical issues to consider when working
with angler catches. They can represent fish (Shelton, 2001a)
and angler (Gardiner, 2001) behaviours, and both might be
influenced by other variables, such as the prevailing weather
conditions (Hendry et al., 2007). The fates of captured fish are
important in so much as a returned fish can be re-captured
at a later time, whereas a killed fish cannot, and thus should
not thereafter be considered as part of the spawning stock
(Leeuwen et al., 2020; Thorstad et al., 2020). There are sev-
eral reasons why poorly audited catch returns could be unre-
liable, including accidental or deliberate under- or over-catch
declaration by recreational and commercial fishers (Potter,
2001); a study by Small (1991) suggested that this possible
bias could be corrected to give estimates of catches similar to
those derived using capture-mark-recapture studies (Potter,
2001). Variations in stock sizes may be due to natural vari-
ability or be the result of human actions to manage their size.
Aside from the practical issues, there are also issues relating to
the quantitative modelling of exploitation rates. River flow is
thought to affect the catchability and availability of fish (Gee
and Milner, 1980; Gillson er al., 2020), but also the anglers’
perception of those factors (Aprahamian and Ball, 1995; Mil-
ner et al., 2001). Angling effort should have a strong and pos-
itive relationship with catch (e.g. Gee and Milner, 1980; Gar-
gan et al., 2001; Davidson et al., 2017), but some studies have
found no such relationship (e.g. Crozier and Kennedy, 2001)
or even a negative relationship (e.g. Beaumont et al., 1991).
Relationships among variables related to angling records are
frequently highly noisy and this could be due to the omission
of important sources of variation, such as differences within
and between rivers (Milner et al., 2001). Nevertheless, catches
have been found to be consistent with expectations at larger
spatial and temporal scales (Milner et al., 2001).

Our study aims to derive annual salmon stock estimates
(with uncertainties) from RER for all principal salmon rivers
(PSR) across E&W using a single, consistent, transparent, and
statistically robust method that transfers strength from “data-
rich” rivers with fisheries-independent data to “data-poor”
rivers with fishery-dependent data. There were three main ob-
jectives, to: (1) develop a statistical model describing RER
measured on a subset of salmon rivers in E&W equipped with
automated fish counting and/or trapping facilities (hereafter
fish counter or counter) using an a priori defined set of expert-
agreed potentially influential explanatory variables; (2) trans-
fer that statistical model to other salmon rivers in E&W that
are not equipped with fish counting facilities and for which
RER cannot therefore be calculated directly; and (3) use the
estimated RERs to derive salmon stock estimates from rod
catches for all major salmon-producing rivers across E&W.
We developed a special case of the model proposed by Lebot
et al. (2022) in which fishery-independent available stock es-
timates are treated as constant data, rather than latent unob-
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served quantities, and in which we attempt to describe more of
the variation in the RER with additional measured covariates,
negating the need for the year-within-river random terms. In
other respects, our approach generalizes that of Lebot et al.
(2022) by allowing for overdispersion in catches given the
stock, i.e. we use a Beta—Binomial regression as used by Min-
tyniemi et al. (2015), and allowing non-linear effects of our
covariates on catches from the available stock. We opt to use
a Bayesian framework to allow uncertainty in the model pa-
rameter estimates to propagate through to the derived stock
estimates.

Methods

Salmon stock size estimates are derived from adjusted catch
data raised by an estimate of RER on the stock (Solomon and
Potter, 1992; Shelton, 2001b). In essence, the exploitation rate
of a stock is the proportion of the available salmon in the
stock that were caught by anglers. Currently, the best measures
of available stocks come from the 12 rivers where a fishery-
independent RSE is reported and estimates of RER for these
rivers are transported to rivers without a fishery-independent
stock estimate. This process is akin to using “data-rich” stocks
to inform “data-poor” stocks in marine fisheries (Prevost et
al.,2003; Punt et al., 2011; Bentley, 2015). A variety of meth-
ods have been proposed and used in E&W (and elsewhere) to
estimate RER. Early methods included a power function given
by capture ef fort o« abundance® (or equivalently, catch
ef fort x abundance®), where b has been estimated to be vari-
ous values ~0.3-0.7 (Small, 1991; Gardiner, 2001). However,
this technique is known to predict unrealistically high values
of rod exploitation that suggest catches greater than abun-
dances (Gardiner, 2001). An alternative to this model included
an effect allowing for saturation of fishing effort at high abun-
dance (Richards and Schnute, 1986). Recently, however, there
has been a move towards the use of hierarchical Bayesian
modelling, frequently built upon standard generalized linear
models, often adapted to fit better highly variable data, such
as Beta—Binomial regression (Mantyniemi et al., 2015).

Principal salmon river data and returning stock
estimates

There are 64 rivers with monitored salmon stocks in E&W
(Figure 1). These are known as PSR and our analysis was de-
signed to estimate exploitation rates on them all. We collated
data characterizing each of these PSR.

Only 12 of these 64 PSR have a fish counter that could
be used to calculate a fishery-independent RSE, namely, the
rivers Avon (Hants; short for Hampshire), Dee, Fowey, Frome,
Itchen, Kent, Leven, Lune, Tamar, Teifi, Test, and Tyne (Table
1; and Cefas, EA, and NRW, 2020). Ideally, these rivers would
have been purposely selected to capture the range of condi-
tions experienced by salmon stocks across all the E&W PSRs,
i.e. they would be a representative sample of salmon rivers
(Prevost et al., 2003). Unfortunately, rivers are rarely selected
for their representativeness, but rather for other, often histor-
ical or opportunistic, reasons (e.g. Lebot et al., 2022). Among
these rivers, for example, fish counting/trapping facilities were
installed in the chalk rivers (Table 1) and the rivers Fowey and
Tamar primarily to monitor fish stock health with respect to
changing water use (S. Toms, pers. comm.). In contrast, the
rivers in Wales and northern England were largely selected
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for interest in the fish stocks per se and methods to moni-
tor them (B. Shields, pers. comm). The issue of representative-
ness is important if we are to generalize findings from these
RSE rivers to other non-RSE PSRs; if they are not represen-
tative, then their generalization will be limited. With this in
mind, we designed our model to account for potential non-
representativeness by including river random effects in fitting.

Angler catch, effort, and associated data

A national (statutory) catch return-reminder system was in-
troduced in E&W in 1994, replacing various previously oper-
ated regional systems (Cefas, EA, and NRW, 2020). The cur-
rent system requires that all anglers wishing to catch migra-
tory salmonids purchase a rod licence and thereby are legally
bound to report details of their angling catches and fishing ef-
fort to the EA (and its predecessors) by the end of the angling
year (Solomon and Potter, 1992). Angling for salmon without
a licence/or/and failing to provide a catch-return are offences
and can incur a financial penalty (Solomon and Potter, 1992).
Rod licence details and the catch-return data reported against
them are kept by the EA in the National Rod Licence Catch
Database (RCdb). A completely anonymized version of the
RCdb provided the following data for each salmon caught:
licence number, date, river, and method of capture (fly, bait,
and spin), the weight of the fish (Ibs/kg), and whether it was
released or retained (fate). Aside from these individual fish
records, the total number of fish caught/released (including nil
returns) and fishing effort (angler days for both salmon and
sea trout combined) are requested from each licence holder
for each river fished in each year.

There are three notable issues with rod licence and catch-
return data (Potter, 2001). First, catch-return data are not sub-
mitted against all licences, despite repeated reminders and the
associated risk of a fine (Small and Downham, 1985). Small
(1991) analysed licence catch-returns and derived probable re-
porting rates and details of how they could be used to cor-
rect declared catch. On the basis of their work, a national rod
catch declaration rate of 0.91 was derived for salmon in E&W
and has been (for most rivers and in most years, except where
catches from fisheries owners are judged to be more accurate
and used) the sole correction applied to declared catches since
1994 to estimate total catches (Davidson et al., 2017). Second,
effort spent fishing for salmon is not currently distinguished
from effort spent fishing for other migratory fish, notably sea
trout. While the effects of this composite fishing effort data
might be limited given that salmon and sea trout co-occur in
many of the PSRs (Milner et al., 2007) and anglers target-
ing one species regularly catch the other (Shields et al., 2007),
questionnaires were sent to licence holders in 1992 and 2006
asking them to estimate the amount of effort they spent on
each species. The results of these surveys have been used to
calculate a river-specific mean (of 1992 and 2006) salmon an-
gling effort rate (&) that has been applied to declared effort
since 1994 (Davidson et al., 2017). Third, effort is sometimes
omitted when catch-return data are submitted against a li-
cence. To adjust for this, an effort declaration rate is calcu-
lated as the ratio between the declared catch and the declared
catch with effort. For this study, both declared catch and de-
clared effort were adjusted to account for these rates, thus:
(i) declared catches were adjusted by the national rod catch
declaration rate A, which is taken to be 0.91 in most rivers in
most years (Small and Downham, 1985), to account for in-
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complete declarations, and (ii) declared effort for salmon was
calculatedasef fort p,,on = €f O goctared X X X & X A, where
x is the effort declaration rate, & is the salmon angling effort
rate, and A is the national licence declaration rate.

Given the adjusted declared effort for salmon, we calcu-
lated two measures of effort to include as explanatory vari-
ables in our statistical models of RER. First, we followed
the approach taken by Davidson et al. (2017) and scaled it
to the river size so that it measured fishing days on salmon
per hectare, i.e. angler effort (Supplementary Figure S1). Be-
cause Davidson et al. (2017) found support for a non-linear
(convex) relationship between exploitation rate and rod ef-
fort for sea trout, we explored a non-linear (convex) func-
tional form in our statistical models of RER. Second, there
are some suggestions that anglers can exert a disproportion-
ate influence on exploitation rate if their effort yields a good
return, perhaps due to their skill or persistence (Beaumont ez
al., 1991; Solomon and Potter, 1992). To account for this,
we calculated the proportion of declared effort for salmon
that yielded a minimum of one salmon caught in that river
and year, i.e. successful effort (Supplementary Figure S2).
Both variables were z-standardized (their mean subtracted
and then divided by their standard deviation) across rivers
and years before including them in models as explanatory
variables.

Aside from declared catch and effort data, the additional
data on individual catches (e.g. capture method and fate) can
be used to calculate additional and possibly river- and year-
specific explanatory variables for inclusion in our statistical
models of RER. Different capture methods, including the use
of barbless hooks, are likely to influence exploitation rates:
for salmon Grilli et al. (2021), for sea trout Shields et al.
(2007). Calculation of an explanatory variable to represent
capture method from the catch-return data is, however, chal-
lenging for two reasons: (i) capture method is often infre-
quently reported, and (ii) river-specific byelaws and club re-
strictions are not always well documented and can censor the
variable, i.e. making it appear as though restricted methods
are less effective when they are actually banned. Given these
potential issues, we did not further consider “capture method”
as an explanatory variable, but rather we explore the pos-
sible implications of that decision in the Discussion, includ-
ing proposals to include it as a subsequent extension to this
work.

In contrast, the fate of individual fish was well documented
and could be used to calculate an explanatory variable re-
lease proportion (Supplementary Figure S3). This explanatory
variable was calculated to represent river- and year-specific
changes in catch-and-release practices, in particular an in-
crease in the practice of voluntary catch-and-release, and the
influence it might have on RER through released fish even-
tually becoming re-available for capture. There are, how-
ever, two reasons why this approach could be improved: (i)
catch-and-release has become mandatory on salmon rivers in
Wales since 2020 (Cefas, EA, and NRW, 2020), which intro-
duces the possibility that estimates since then might not be
directly comparable with the years preceding them, if there
is a greater likelihood that catch returns will be falsified un-
der a mandatory regime, and (ii) returning salmon back to
the river should influence RER indirectly by changing the
stock available to be captured within a year, rather than in-
fluencing RER directly. To account for changes in catch-and-
release practices, such variability could be better explored by
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treating the available stock as a dynamic rather than static
state.

Salmon rod exploitation rate explanatory variables

We researched and agreed a set of explanatory variables that
were expected to describe variation in RER on the PSRs (Table
2).

Through its influence on fish behaviour and availabil-
ity, and on angler behaviour, river flow is expected to ex-
plain variation in salmon catchability and thus RER within
and between rivers (reviewed in Milner et al, 2001). To
account for river flow, we calculated a river- and year-
specific measure of within-angling season mean flow for in-
clusion in our statistical models of RER (Supplementary
Figure S4). River flow data were obtained from the E&W
river flow gauging station network, queried via the UK Cen-
tre for Ecology and Hydrology (CEH) National River Flow
Archive (https://nrfa.ceh.ac.uk/), and individual flow gaug-
ing stations, as required. For each river, gauging stations
were selected in the lower main river (where possible) to
best represent flow conditions on the catchment as a whole
and over the period covered by the RSEs (Supplementary
Figure S5). Where suitable gauging stations/flow data were
absent from a catchment, flow data from an appropriate
neighbouring catchment were used. In all cases, the gauged
daily mean flow data extracted to calculate the flow vari-
ables were limited to the period of the salmon angling
season from the Salmonid and Freshwater Fisheries Statis-
tics (https://www.gov.uk/government/publications/salmonid-
and-freshwater-fisheries-statistics-2020). The resulting mea-
sures of mean flow were z-standardized within each river
across years before they were included in models as explana-
tory variables.

To promote generalization, we calculated variables repre-
senting river type and river size for inclusion as explanatory
variables in our statistical models of RER. Chalk streams have
a higher Base Flow Index (Supplementary Figure S6) than
spate rivers because they are largely aquifer-fed and thereby
produce a more consistent and higher mean flow. We ex-
tracted the Base Flow Index for each of the 64 PSRs from
the CEH National River Flow Archive and z-standardized
them across rivers before including them in models as an ex-
planatory variable. The RER on smaller rivers might be ex-
pected to demonstrate higher inter-annual variability as they
are likely to accommodate smaller stocks that could thereby
be disproportionately affected by processes acting upon them,
such as angler behaviour (Milner et al., 2001). To account for
this possibility, we extracted fishery area (hectares) from Ta-
ble 26 in Cefas, EA, and NRW (2020) and z-standardized it
across rivers before including it in models as an explanatory
variable.

The RSE and explanatory variables were calculated for each
of the 12 PSRs where a RSE is reported and for which a RER
can therefore be calculated (Figure 2; see also Supplementary
Figure S7).

Rod exploitation rate model

To address the first objective of our study, we developed a
Beta-Binomial model, using the aforementioned a priori de-
fined set of expert-agreed potentially influential explanatory
variables, to describe the exploitation rate for RSE rivers as a
linear combination of the explanatory variables. This is given

S. D. Gregory et al.

Cyy ~ Binomial (N.y, pry)
Pry ~ Beta (any, ﬂny)
Qry = Mr.y‘pr,y
Bry = (1 - Mny) bry ’
logit (1ry) = 86X,y + v, + &y
IOg (¢7.y) = VZny

where

v, ~ Normal (0, o,),
¢y ~ Normal (0, o),

and
Cr,y = CrA,y/)M

where ¢, is the declared rod catch in river  in year y and A
is the licence declaration rate, taken to be 0.91 in most rivers
in most years (Small and Downham, 1985; Cefas, EA, and
NRW, 2021), N, is the RSE of river r in year y, p,, is the
exploitation rate of river 7 in year y, @ and B are the shape
parameters of a Beta distribution, § is a vector of coefficients
representing the effects of the explanatory variables X,, on
the mean river- and year-specific expected exploitation rate
Ury, and y is a vector of coefficients representing the effects of
the explanatory variables Z, . on the river- and year-specific
variation in exploitation rates ¢,,. Parameters v, and ¢, are
random effects allowing the expected mean exploitation rate
to vary by o, among rivers, representing differences between
rivers not captured by covariates, and by o, among years, rep-
resenting a temporal synchrony between rivers not captured
by covariates, respectively. We used weakly informative priors:
Gaussian (mean = 0, SD = 1000) for coefficients represent-
ing explanatory variable effects on exploitation rate, Student-¢
(mean = 0, SD = 100, df = 3) for the random effect variance,
and Gamma (location = 0.001, scale = 0.001) for the model
errors.

The model parameter posterior distributions were esti-
mated from 16000 Markov chain Monte Carlo (MCMC) iter-
ations (8 parallel chains run for 2000 iterations and no thin-
ning) using Hamiltonian Monte Carlo implemented in Stan
(http://mc-stan.org) and fitted using package brms (Burkner,
2017) in R (https://www.r-project.org) [see the output of ses-
sionInfo() in the supplementary materials]. Convergence was
assessed by visual examination of MCMC trace plots, the
Gelman—-Rubin statistic (Brooks and Gelman, 1998), and the
bulk effective sample size, and were considered stable if the
chains were mixing, non-convergent, and well represented by
the samples, i.e. <1.05 and >200 (per chain) for all parame-
ters, respectively. Bayesian R? values were calculated accord-
ing to Gelman et al. (2019).

Given that this model was to be extrapolated to data from
rivers not used to parameterize it, it was deemed worthwhile
simplifying it to those a priori expert-agreed explanatory vari-
ables (Table 2) that explained a non-negligible amount of the
variation in RER. To do this, we started with the saturated
model including all variables (Table 2) and then removed it-
eratively those whose estimated effect was weakest or most
uncertain, i.e. those whose 95% credible intervals intercepted
0 or were widest. We repeated this process until the esti-
mated effects of all remaining variables were considered non-
negligible, i.e. their credible intervals did not intercept 0 and
were not too wide. The final “best” model was therefore the
one explaining the highest variance with the fewest parame-
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ters, i.e. the most parsimonious. We confirmed that this was
the “best” model according to Information Criterion as the
one with the fewest parameters (or explanatory variables) that
was also within <2 change in leave-one-out cross-validation
Information Criterion (looIC), known as §loolC, of the model
with the lowest 8looIC (0.00) (Table 3; Vehtari et al., 2017).

Model validation, inference, and extrapolation

To achieve the second objective of our study, the transfer
of salmon-counting data from data-rich rivers to data-poor
rivers without counters, we had to have confidence that our
“best” statistical model for the 12 PSRs with a RSE had some
predictive ability. To test this, we did a k = 10 fold-stratified
cross-validation experiment whereby we trained the model on
nine data folds, each stratified to ensure that all rivers were
represented, and used that trained model to predict the total
catch on the one omitted fold. We chose to use stratified rather
than random samples of the data because there was consider-
able variation between the RER calculated for the 12 PSRs,
with a RSE that our model accounted for with a river random
effect, the variance of which would not be representative if
whole rivers were omitted from the training data. Once sat-
isfied that our model was generalizable, we used it for infer-
ence by plotting the partial effects of the retained explanatory
variables and comparing their coefficient estimates with the
hypothesized relationships (Table 2).

To achieve our third objective, i.e. to extrapolate our gen-
eralizable model to estimate salmon stocks in all 64 PSRs in
E&W, we took 2000 draws from the model parameter poste-
riors and used them to predict an annual RSE (N, = C,,/p,,
and 95% credible intervals) for each of the other 52 salmon
rivers in E&W where an RSE is not reported, and for years
missing an RSE in rivers where an RSE is reported. This pre-
diction assumed that each river was well represented by the 12
PSRs, where an RSE is reported and set the random terms to
their means (zero). Resulting estimates included uncertainties,
represented by 95% credible intervals.

Results

Overall, there was substantial between-year variation in cal-
culated RERs for the 12 PSRs, where an RSE is reported (both
between and within-river) and exploratory analysis suggested
that the relationships with the a priori chosen explanatory
variables were in the directions hypothesized (Supplementary
Figures 51-S6).

Explanatory variable effects and inference

Posterior estimates of explanatory variable effects from the
Beta—Binomial model fits suggested that all a priori hypothe-
sized variables, except for Base Flow Index, explained a non-
negligible amount of the variation in the mean of, or vari-
ation in, RER for the 12 PSRs where an RSE is reported
(Table 3, Figure 3). Specifically, the 95% credible intervals
of angler effort (but not its second-order term), successful
effort, mean flow, and phi_Area (hectares) effects were nar-
row did not overlap 0, suggesting that their effects were non-
negligible. The 95% credible interval of the Base Flow Index
effect, meanwhile, was wide and although it did not overlap
0, its contribution to explaining variation in RER could be
considered negligible owing to the high uncertainty in the es-
timates. Model selection confirmed that the most parsimo-

Table 3. Model comparison table showing the variables tested in the u and ¢ parts of the Beta—Binomial models, the leave-one-out cross-validation Information Criteria (loolC) and its difference from the saturated

model (8l0olC) and the variation explained by the model (R?).
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pRelease_std + (1 | RiverName) + (1 | Year)
SalCatch | trials(RSE) ~ DeclSalEffHa_std +

SuccessEff_std

0.95

2947.90 0.31

phi~ 1+
AreaHA_std

No BaseFlowldx

3011.17 63.58 0.94

+ mnflow_std + pRelease_std + (1 | X
phi~1

RiverNamg) + (1] Year)
SalCatch | trials(RSE) ~ DeclSalEffHa_std +

SuccessEff_std

No BaseFlowldx or AreaHA

0.94

64.33

3011.92

phi~1

+

+ mnflow_std + pRelease_std + (1 |
~ DeclSalEffHa_std

RiverNamg) + (1| Year)
SalCatch | trials(RSE)

No AreaHA

pRelease_std + (1 | Riverf\lame) + (1] Year)

SuccessEff_std + mnflow_std + BaseFlowldx_std +

0.93

79.60

3027.18

phi~1

+

+ pRelease_std + (1 | R_iverName) + (1]

~ DeclSalEffHa_std

SalCatch | trials(RSE)

SuccessEff_std

No BaseFlowldx or AreaHA or

mnflow

Year)

The random effect formulation (1 | x) expresses that they were included as random intercepts.
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Figure 3. A plot of the posterior coefficient estimate means and their 95% credible intervals for explanatory variables retained in the model describing
Atlantic salmon RERs on the 12 PSR in E&W where a RSE is reported. The effect of BaseFlowldx whose credible intervals overlap the dashed line at 0
was considered negligible, whereas the effects of the other variables were considered non-negligible using Information Criteria.

nious model, taken to be the “best” model taken forward
for inference and extrapolation, omitted the Base Flow In-
dex effect, suggesting that it was negligible (Table 3). MCMC
chains for this model were well-mixed according to the con-
vergence statistics (Supplementary Figure S8) and the random
effect estimates were judged to be approximately Gaussian
(Supplementary Figure S9). A summary of the best model is
printed in the supplementary material.

Plots of the explanatory variable partial effects confirm that
the direction of the effects were as hypothesized (Table 2), in-
cluding a quasi-linear effect of angler effort (Figure 4). Specif-
ically, the effects of angler effort, successful effort, mean flow,
and release proportion on RER were all positive, albeit some-
times weak.

Line plots of the observed and estimated RER suggest that
the model was able to describe the main patterns in RER inter-
annual variations for each of the 12 PSRs with a RSE (Figure
5), albeit with many annual discrepancies, some of which
were outside the estimated 95% credible intervals. Specifi-
cally, there were large discrepancies between observed and es-
timated RER on the rivers Avon (Hants), Fowey, Itchen, Kent,
and Leven, for which the 95% credible intervals of the esti-
mated RER did not always include the observed value. Some
of the correspondence between observed and estimated RER
was likely helped by the year random effect that allowed for
a degree of synchronicity between rivers.

Model validation and extrapolation

Visual inspection of the results from a (k = 10) fold stratified
cross-validation experiment suggested that the “best” statisti-
cal model was able to predict annual catches for each of the
12 PSRs where a RSE is reported with reasonable certainty
(Figure 6). Furthermore, posterior predictive checks suggested
that the model was able to reproduce replicate response vari-

ables with comparable characteristics (Supplementary Figure
$10).

Having confirmed its predictive ability, the model was then
extrapolated to the 52 PSRs where a RSE is not reported, as
well as those years in the 12 PSRs where RSEs were miss-
ing (Figure 7). The resulting extrapolations seemed reasonable
and a potentially useful baseline from which local experts and
managers could make carefully audited changes.

Discussion

We present a consistent, transparent, and statistically robust
method to derive annual salmon stock estimates from RER for
all major salmon-producing rivers across E&W. This method
shares similarities with a number of recently published meth-
ods, for example, Mantyniemi et al. (2015) and Lebot et al.
(2022), but it extends them to make use of the comparatively
rich data on angler catch and effort available for E&W, and
to include consideration of non-linear effects of some of these
explanatory variables. Our results suggest that many of these
angling data can be included in the model to improve estimates
of RER in ways predicted from our expectations. For exam-
ple, angling effort was positively related to RER (Davidson et
al., 2017), as was successful effort, suggesting that patterns in
RER could be attributable to a few skilled or persistent an-
glers, which could see RER increase despite decreasing effort,
as has been reported elsewhere (e.g. Beaumont et al., 1991).
Using these additional data can help avoid the need for addi-
tional complexities and assumptions (assuming that the data
are representative and complete) and might therefore better
resonate with fisheries managers and anglers. However, our
results also leave space for future and ongoing improvements
to the model and its inputs to reduce discrepancies between
observed and estimated RER in rivers with a RSE.

To explore whether the model was generalizable, we used
a robust and stringent stratified cross-validation procedure.
The successful validation of our model suggests that it can be
extrapolated to data from rivers that were not used to param-
eterize it, thereby enabling us to use data from “data-rich”
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Figure 4. Partial-effect plots showing the direction, shape, and strength of explanatory variable effects on Atlantic salmon RER on the 12 PSR in E&W
where a RSE is reported. Grey bands represent the 95% credible intervals of the partial effects.
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Figure 5. Plots of the fitted Atlantic salmon RER on the 12 PSR in E&W where a RSE is reported. Points are the calculated observed RER values
(Observation) or the posterior estimate means with error bars represent their 95% credible intervals (Estimation).

rivers to inform “data-poor” rivers (Bentley, 2015). Further-
more, the model appeared to be robust to rivers with highly
contrasting declared salmon catches, deriving plausible pre-
dictions for rivers with low declared salmon catches, such
as the rivers Stour (SW), Piddle, and Yealm, each of which
reported no declared catches in at least one year, to rivers
with high declared salmon catches, such as the rivers Test and

Itchen, perhaps due to more targeted effort on individual fish.
There are only 6 (<10%) chalk stream rivers among the 64
PSRs and yet 4 (30%) of those were among the 12 for which
an RSE is reported and were used to train this RER model.
Angler behaviours, and perhaps fish behaviours, might differ
for chalk stream rivers compared to non-chalk stream rivers
(Beaumont et al., 1991). Nevertheless, we proposed and tested
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Figure 6. A plot of the predicted k = 10 fold stratified cross-validation Atlantic salmon catches on the 12 PSR in E&W where a RSE is reported. Points
are the observations and the error bands represent the 95% credible intervals of their predicted values from the cross-validation.

models including a Base Flow Index as a measure of river type,
but this index explained negligible variance in actual RER for
the 12 rivers used to train the model. This suggests that any
difference in RER between chalk stream and spate rivers is
negligible, or at least a less important source of variation than
those other explanatory variables that were retained in the fi-
nal model.

The model outputs provide point estimates of salmon
stocks returning to all 64 PSRs in E&W, together with an
estimate of their uncertainty. The point estimates are an in-
tegral part of the E&W salmon stock assessment procedure,
forming the basis for the calculation of spawner and egg num-
bers used to assess compliance with Conservation Limits and
(thereafter) evaluate the need for management intervention to
protect stock status (Davidson et al., 2017; Cefas, EA, and
NRW, 2020). A logical extension of this process could be to
allow uncertainties in the salmon stock estimates to propagate
through to the assessment stage, thereby accounting for some
additional uncertainty due to the salmon stock estimation pro-
cess. For example, egg deposition estimates could be derived
from spawning stock estimates, including their uncertainties.
Allowing for the propagation of such uncertainties through
the stock assessment process would align with the precaution-
ary approach recommended by NASCO (1998) and with the
approaches appearing in neighbouring jurisdictions, such as
Ireland (White et al., 2016, 2023). In addition to the results
for individual rivers, aggregating the salmon stock estimates to
the whole E&W spatial scale within the model, thereby allow-
ing for proper propagation of uncertainties, could provide an
important input to the international salmon stock assessment
process undertaken by the ICES Working Group on North At-
lantic Salmon (ICES, 2023). Specifically, the stock estimates
and their uncertainties could be conditioned on sea age splits

and provided as estimates of adult returns for E&W, obviating
the need for run-reconstruction and ensuring the national and
international stock abundance estimates are closely aligned.

The Beta—Binomial approach taken here was chosen as a
trade-off between ease of understanding and necessary com-
plexity. As a trade-off, it is accepted and indeed encouraged
that the outputs from the RER model are subject to review
by regional experts before they are used in any stock assess-
ment process. Changes to the outputs could be achieved in a
variety of ways, including (but not limited to) (i) modifying
the characteristics of the priors given to the model to better
represent, for example, mean river-specific RERs, or (ii) mod-
ifying the outputs directly, especially where there are unique
events, such as the introduction of a local byelaw or the effects
of the coronavirus pandemic on angling effort (Cefas, EA, and
NRW, 2021), that might affect annual estimates in ways that
the core RER model may not account for fully. In the former
case, without additional information, the salmon stock esti-
mates for rivers where an RSE is not reported will be derived
from an overall mean RER (albeit with a river-specific devia-
tion), which might need to be altered to ensure salmon stock
estimates are, on average, lower/higher, or less/more variable
than estimated. In the latter case, it will be imperative that
such changes to the output are carefully recorded to ensure
that they can be fully accounted for during any audits and
future assessments. Aside from the model outputs, the model
and its input data should use the best available information
and as such are subject to future and ongoing improvements,
and we encourage the reader to visit the model codes (released
at https://github.com/CefasRepRes/salmon-rod-exploitation)
to check for updates.

If we can move away from the need for ease of understand-
ing and incorporate additional complexities that might make
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the estimate of salmon stocks even more realistic, then there
are a few clear ways that our model could be improved. Al-
though we included release proportion as an explanatory vari-
able of RER in our model, we know that releasing a fish back
into the river—although it won’t change the annual run of
fish to that river (or RSE)—will, in general terms, change the
number of fish available to be caught when compared, for
example, to past practices where it was usual for most rod-
caught fish to be killed. However, while more fish may be
available to capture (in relative terms, because they are be-
ing released rather than killed) than in former times, the true
rate at which they are caught (i.e. the vulnerability to cap-
ture of the average fish) may not change greatly. If this was an
issue, we could address it by modelling the number of avail-
able fish explicitly. This could be done by, for example, using
a separate sub-model to estimate the number of fish available,
such as a coupled Poisson-Binomial approach (e.g. Marsh ez
al., 2021; Lebot et al., 2022), or by using state-space mod-
els that model the ecological and observation processes sepa-
rately (Buoro et al., 2019; Gregory et al.,2019). Either of these
approaches would allow other available data representing fac-
tors affecting catches or stocks to be incorporated directly,
rather than by proxy. Whether this type of alternative ap-
proach is needed would require further investigation into this
issue.

Another extension of our model would be to modify it
to estimate different salmon stock components separately—
namely one-sea-winter and multi-sea-winter fish—rather than
combined, as is done here. Salmon stock assessments fre-
quently account for these two sea-age groups separately, prin-
cipally for fisheries management purposes because they have
different reproductive potentials, but also to help maintain
the biological diversity of returning stocks. This has been the
case, for example, in the high seas mixed-stock fisheries off
Greenland and the Faroes, where these two stock components
have faced different levels of exploitation by virtue of different
migratory patterns (ICES, 2021). Similarly, management of
homewater fisheries in the UK and elsewhere accounts for one-
sea-winter and multi-sea-winter fish separately, although the
Conservation Limits set for individual river stocks in E&W do
not distinguish between these stock components. Salmon that
have spent longer at sea tend to be larger and enter rivers ear-
lier than those staying out for shorter periods. Larger salmon
produce more eggs, but can also be subjected to different
(higher) RERs as anglers seek bigger quarry, but also, in the
case of early-run multi-sea-winter fish, because of differences
in catchability and the length of time fish are exposed to the
fisheries (Davidson et al., 20005 Shelton, 2001a). These points
could have important implications for salmon stock assess-
ment (Thorley et al.,2007; Lebot et al., 2022). Sea-age-specific
RERs could be dealt with separately by extending this Bino-
mial sampling to multinomial sampling with Dirichlet priors
informed by sea-age-specific explanatory variables (Douma
and Weedon, 2019).

Aside from modifications to the approach taken here, the
outputs could also be improved by enhancements to the in-
puts. For example, we could include additional explanatory
variables to explain more of the high inter-annual variability
in RER. These might include angling method/gear (Shields ez
al., 2007; Grilli et al., 2021), which could also extend to an-
gling restrictions, such as bait bans and barbless hooks. Data
on the method of capture are submitted as part of routine
catch returns, but they refer to captured fish only and so may
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not reflect method selection generally. Ideally, to include “cap-
ture method”, we would want to ensure that the sample of
rivers used to parameterize the model included some that pro-
hibited certain angling methods alongside others that did not.
Another area for possible model improvement relates to vari-
ation in migration or run timing of returning adult salmon.
Evidence suggests, sometimes from fish counters and traps,
that run timings have changed and might continue to change,
perhaps in response to changing conditions at sea (de Eyto et
al.,2022). Although this could be considered as an additional
explanatory variable, as suggested above, it could be better
represented in state-space models.

Notwithstanding additional explanatory variables, we
could also improve the variables already included. For exam-
ple, angler effort is currently adjusted to separate effort for
salmon vs. sea trout; however, this adjustment is made based
on only two angler surveys several years apart. Instead, rod
licence returns could be adjusted to ask anglers to specify
their effort split as part of routine rod licence reporting. Simi-
larly, angler effort is currently recorded only in “days” (effec-
tively the number of daily fishing sessions per river per year),
whereas actual time spent fishing would be more nuanced, and
if this were better recorded, then it could be used to produce a
more realistic weighting of angler effort. After investigations
into a variety of flow metrics, such as numbers of seasonal
spate events, we used river discharge as mean flow. There are,
however, many other ways that this could be defined (see Gill-
son et al. 2020) that could better explain variation in RER
while also capturing our understanding of the complex rela-
tionships between river discharge, fish, and angler behaviours.
Notwithstanding changes to the inputs, we could also include
additional random terms that could allow for between-year
variation within rivers, for example.

In conclusion, salmon stock sizes have declined dramati-
cally over the last 70 years (Limburg and Waldman, 2009;
Chaput, 2012; ICES, 2021). Commercial salmon fishing
was cited as the main driver of these declines during the
20th century (Limburg and Waldman, 2009; Chaput, 2012),
particularly large commercial catches off West Greenland,
where salmon are thought to aggregate on feeding grounds
(Dadswell et al., 2010; Olmos et al., 2019). Yet, salmon stock
sizes have continued to decline despite the closure of those
commercial fisheries in 1998, leading to widespread closures
of local and small-scale mixed stock fisheries along national
coastlines and in river estuaries (Chase, 2003). While there is
no doubt that these closures have been beneficial to salmon
stock numbers, they represent the loss of a data stream that
could have been used in national and international salmon
stock assessments (Youngson et al., 2003).

Given the state of salmon stocks and the subsequent loss
of stock assessment data, there is a need to use available data
to the best effect possible. To this end, the approach to esti-
mating salmon stocks for all 64 PSRs in E&W presented here
represents a consistent, transparent, and statistically robust
method that uses information from “data-rich” rivers to in-
form estimates for “data-poor” rivers. This approach could
be extended relatively simply to include newly available data,
such as may derive from to technological advances or exploit-
ing publicly available data (Lennox et al., 2022), and could
form the basis of a more comprehensive approach that sep-
arates the ecological and observation processes, should that
be needed. It does, however, still require angler-reported catch
and effort data and some fishery-independent stock estimates
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without which we will need to seek an alternative approach
to stock estimation.
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