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Abstract 11 

Scotch Whisky, a product of high importance to Scotland, has gained global approval for its 12 
distinctive qualities derived from the traditional production process which is defined in law. 13 
However, ongoing research continuously enhances Scotch Whisky production and is fostering a 14 
diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain 15 
the aroma and taste of “Scotch”. While each production step contributes significantly to whisky 16 
flavour - from malt preparation and mashing to fermentation, distillation, and maturation - the impact 17 
of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to 18 
alcohol, it also produces important volatile compounds, for example esters and higher alcohols, that 19 
contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can 20 
significantly influence whisky flavour, so the yeast strain employed is of high importance. This 21 
review explores the role of yeast in Scotch Whisky production and its influence on flavour 22 
diversification. Furthermore, an extensive examination of non-conventional yeasts employed in 23 
brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch 24 
Whisky yeast strains, followed by a review of methods for evaluating new yeast strains. 25 
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 27 

Introduction 28 

In Scotland, the production of whisky is important for the revenue of the country as well in attracting 29 
visitors. There are 148 operational Scotch Whisky distilleries with a contribution of £7.1 billion to 30 
United Kingdom’s economy in 2020. This results in Scotch Whisky being responsible for 77 % of 31 
Scottish food and beverage exports. Many of these distilleries have visitor centres, attracting over 2.2 32 
million visitors per year (The Scotch Whisky Association 2023) supporting Scotland’s economy and 33 
tourism. The size of a malt whisky distillery is variable, with Glenlivet and Glenfiddich having the 34 
largest production capacity of 21 000 000 LPA (litres of pure alcohol per annum) and Dornoch one 35 
of the smallest with 25 000 LPA (Gordon 2022). 36 

It is not only the revenue that is important for Scotland, but the country is also proud of this quality 37 
product and its long history as evidenced by its protection under the Scotch Whisky Regulation 38 
(2009). Nevertheless, there is a steady stream of innovation and research, with on average more than 39 
12 000 new publications every year. 40 

Following the trend of investigating the influence of non-conventional or non-Saccharomyces yeast 41 
in wine (e.g., Jolly, Augustyn and Pretorius 2006, Roudil et al. 2019) and beer (e.g., Basso, Alcarde 42 
and Portugal 2016; Bellut and Arendt 2019; Larroque et al. 2021), recent research has also been 43 
initiated for Scotch Whisky (Daute 2021). The flavour of Scotch whisky emanates from several 44 
sources during the production from raw materials (grains, water), mashing, fermentation, distillation 45 
(design, conditions), and maturation (time, cask). However, the choice of yeast strain is one of the 46 
most important factors affecting the organoleptic properties of new make spirit and young whiskies. 47 
This is primarily due to the production of high levels of volatile congeners including esters and 48 
higher alcohols. In more matured whiskies, the maturation conditions, including choice of oak cask 49 
and the duration of ageing, act to provide desirable flavours and reduce undesirable off-flavours in 50 
the spirit (Wanikawa 2020). We propose that unconventional yeasts can be exploited as novel drivers 51 
for distilled spirit flavour differentiation. This paper reviews the use of yeast in Scotch Whisky 52 
fermentations, the effect of yeast on spirit flavour, and the potential of non-Saccharomyces yeast for 53 
production in the future. While whisky is produced worldwide, this review focuses primarily on 54 
Scotch Malt Whisky. 55 

An overview of Scotch Malt Whisky production 56 

Scotch Malt Whisky production is strictly regulated by The Scotch Whisky Regulations (2009). It 57 
must be produced and matured in Scotland from only three ingredients: water, malted barley, and 58 
yeast, with plain caramel colouring allowed in some cases. When making any modifications to the 59 
production methods, it is vital to ensure that the resulting spirit has the typical aroma and taste of 60 
Scotch (The Scotch Whisky Regulations 2009). The production process is summarised in Figure 1. 61 

Malt whisky production starts with the malting of barley to break down starch and proteins into 62 
fermentable sugars and amino acids. This occurs by letting the barley germinate and then drying 63 
(kilning) it to guarantee a stable product (Bathgate 2016; Mosher and Trantham 2017). The final malt 64 
specifications are important for production efficiency, processability, spirit quality, flavour, and yeast 65 
performance (Bringhurst and Brosnan 2014; Bringhurst, 2015; Marčiulionytė et al. 2022). The malt 66 
is mashed with hot water to further break down starch via malt-derived enzymes. Use of extraneous 67 
amylolytic enzymes is not permitted (The Scotch Whisky Regulations 2009). 68 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

syr/advance-article/doi/10.1093/fem
syr/foae017/7659827 by N

H
S Scotland Abertay U

niversity Placem
ent Students user on 01 M

ay 2024



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

The resulting liquid (wort) is cooled (20-25°C) and transferred into either wooden or stainless steel 69 
washbacks (fermenters), where yeast is added to start the fermentation with a common pitching rate 70 
of 2-4x107 cells/mL (Watson 1981; Bringhurst and Brosnan 2014; Russell and Stewart 2014; Walker 71 
and Hill 2016). Commonly, the wort for Scotch Whisky has an original gravity (OG) of 1060-1080° 72 
(Russell and Stewart 2014). In contrast to brewing, the wort is not boiled, allowing the further 73 
hydrolysis of starch and in a later stage the growth of other microorganisms. During the fermentation, 74 
yeast converts malt-derived sugars (primarily maltose) into carbon dioxide, ethanol, and flavour 75 
compounds (congeners) that will transpire into the final distilled product. The fermentation 76 
temperature rises naturally to 33°C through the metabolic activity of the yeast (Watson 1981; Walker 77 
and Hill 2016). After 30 h the fermentation is largely complete and this can be detected by 78 
monitoring a decrease in the specific gravity of the wash (fermented wort) to 975°, resulting in a 79 
liquid with an alcohol by volume (ABV) of 8-10 % v/v. and a drop in pH to 4.2. Most malt whisky 80 
distilleries extend the fermentation time to allow microorganisms (mainly lactic acid bacteria) to 81 
produce more congeners (Russell and Stewart 2014; Walker and Hill 2016). 82 

Next, the ethanol and congeners are concentrated by a double distillation in traditional copper pot 83 
stills. The first distillation stops when the resulting distillate's alcohol content is below 1% v/v ABV, 84 
leading to an ABV of 20-25 % v/v. This distillate fraction is referred to as “low wines” (Nicol 2014; 85 
Piggott 2017). The second distillation is split into three sections: foreshots/head, spirit cut/heart and 86 
feints/tails based on the ABV and congener concentration. The feints and head cut will be 87 
recirculated and included in the next distillation. Only the spirit cut with an ABV of around 70 % v/v 88 
is used for the maturation which must last for at least three years in oak casks (The Scotch Whisky 89 
Regulations 2009). Some distilleries use a triple still set-up to produce their whiskies or for special 90 
releases, which was more common in the past due to lower alcohol yields during fermentation (Glen 91 
1969; Wanikawa 2020). Triple-distillation is commonly conducted for production of Irish whiskeys, 92 
but an example of a distillery in Scotland where it is practised is Auchentoshan (Auchentoshan 93 
2019). The previous cask use (Piggott et al. 1993; Mosedale 1995), as well as cask and storage 94 
conditions (Clyne et al.,1993; Spillman, Sefton and Gawel 2004, Roullier-Gall et al. 2020) influence 95 
the final flavour. The flavour profile evolves from pungent, oily, sulphury, and sour to more mellow, 96 
vanilla, and sweet notes which constitute the main flavour characteristics of Scotch Malt Whisky. 97 

History of yeast use in Scotch Whisky 98 

Reusing yeast in Scotch Whisky fermentation is not practised because the wort is not boiled or 99 
sterilised in any other way, which increases the risk of microbial contamination (Dolan 1976; Walker 100 
et al. 2011; Russell and Stewart 2014; Walker and Hill 2016). Additionally, leaving the yeast in the 101 
wash during distillation contributes to the distinct flavour characteristics of the resultant spirit 102 
(Suomalainen and Lehtonen 1979). Today, Scotch Whisky distillers usually do not propagate their 103 
yeast, buying them instead from yeast supply companies (Walker, Bringhurst and Brosnan 2011; 104 
Walker and Hill 2016). With very few exceptions, most strains used in the distilling industry in 105 
Scotland are Saccharomyces cerevisiae. 106 

Historically, spent brewing yeast was used due to its affordability and convenience (Russell and 107 
Stewart 2014). Records suggest that as early as 1833, Scotch Whisky distillers produced separate 108 
yeast to increase the yield. In 1920, the Distillers Company Limited introduced the first commercially 109 
available pure standard yeast for Scotch Whisky (Frey 1930). This did not stop distilleries from 110 
sourcing their yeast from local breweries or producing it themselves until the 1950’s. With the 111 
introduction of M strain or M-type (interspecies hybrid between S. cerevisiae and S. cerevisiae var. 112 
diastaticus) by DCL Yeast Ltd (now Kerry Biosciences) in 1952, this changed, and it became the 113 
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standard distilling yeast (Watson 1981). At this time, yeast was used in combination with 30-50 % 114 
w/w recycled brewer’s yeast. This resulted in increased alcohol yield, overall fermentation 115 
performance, and greater flavour complexity (Dolan 1976; Noguchi et al. 2008; Yomo, Noguchi and 116 
Yonezawa 2008; Walker, Bringhurst and Brosnan 2011; Walker et al. 2011; Walker and Hill 2016). 117 
This situation changed again in the late 1990’s/mid 2000 due to the closure of many of the larger 118 
breweries in Scotland and subsequent reduced availability of brewer’s yeast. As a result, most 119 
distilleries switched to relying mainly on using commercially available Scotch Whisky yeast 120 
(Walker, Bringhurst and Brosnan 2011; Stewart, Hill and Russell 2013; Walker and Hill 2016; 121 
Bathgate 2019). 122 

While the M-type yeast has changed over the years, it is still declared as one of the standards in the 123 
Scotch Whisky industry together with MX (Kerry Bio-Science), Pinnacle (Mauri/AB Biotek) and 124 
DistillaMax (Lallemand Inc.). All of these strains belonging to the species of S. cerevisiae (Watson 125 
1981; Walker, Bringhurst and Brosnan 2011; Walker et al.,2011; Walker and Hill 2016). These 126 
contemporary distilling yeasts are well adapted to fermenting cereal-based wort, being able to 127 
convert larger starch-derived sugars and dextrin more efficiently into ethanol and additionally being 128 
better able to withstand different physical and chemical environmental stresses (Russell and Stewart 129 
2014). Yeast from supply companies is provided in different formats for distilling such as dried, 130 
creamed, caked, or stabilised liquid. Each distillery selects the format based on their capability for 131 
transport, storage, and fermentation capacity (Watson,1981; Russell and Stewart 2014; Walker and 132 
Hill 2016). 133 

Variety of yeast species and their application in alcoholic beverages 134 

All alcoholic beverages, distilled or not, have one thing in common: yeast. The most commonly used 135 
yeast species S. cerevisiae has been used by humans for centuries (McGovern et al. 1996; 2004). The 136 
fermentation of food products was discovered accidentally by grapes starting to spontaneously 137 
ferment due to naturally occurring yeast. Microorganisms, including yeasts, were discovered in 1680 138 
by Antoine van Leeuwenhoek followed by further studies of fermentation in 1789 by Antoine 139 
Lavoisier (Mortimer 2000; Chambers and Pretorius 2010). 140 

Yeasts belong to the kingdom of fungi and are present in the divisions of ascomycetous, 141 
basidiomycetous, and deuteromycetous fungi. Often, only the subphylum of Saccharomycotina is 142 
considered as “real” yeast. Overall, yeast are eukaryotic, unicellular organisms that got their name 143 
based on their ability to ferment with a meaning of “foam” and “to rise” (Kurtzman, Fell and 144 
Boekhout 2011a). For the industrial use of yeast, they are often separated into Saccharomyces spp., 145 
yeast that have been used for many years for brewing or baking and “non-conventional” yeast or non-146 
Saccharomyces yeast which came into the focus of industry only relatively recently. These yeasts 147 
were frequently branded as spoilage wild yeasts (Legan and Voysey 1991; Fleet,2011; Blomqvist and 148 
Passoth 2015; Shimotsu et al. 2015) and it was assumed that they were less effective in their 149 
fermentation performance than to S. cerevisiae. Table 1 summarises the strengths and weaknesses of 150 
S. cerevisiae and non-Saccharomyces yeasts in distilled spirits production. 151 

Recent research has shown that non-Saccharomyces yeasts have more potential than previously 152 
anticipated in utilising different substrates. These include Kluyveromyces marxianus converting 153 
cheese whey into vodka and bioethanol (Grba et al. 2002; Fonseca et al. 2008) or Saccharomycodes 154 
ludwigii and Pichia kluyveri to produce low-alcohol beer (Myncke et al. 2023) or Torulaspora and 155 
Metchnikowia spp. Producing different flavour profiles in wine or beer (Bellut and Arendt 2019; 156 
Roudil et al. 2019). 157 
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Experimental data of Scotch Whisky fermentation 158 

Exploration of novel distilling yeasts for the Scotch Whisky industry is not a new task, with early 159 
initiatives, such as by Chivas Brothers in 1981, involving the establishment of a yeast production 160 
plant to produce alternative and secondary yeast strains (Watson 1981). The analytical focus at that 161 
time extended to assessing the influence of different fermentation parameters, including temperature, 162 
suspended solids, alcohol tolerance, and bacterial contamination (Merritt 1966; 1967; Dolan 1976; 163 
Ramsay and Berry 1983; 1984; Okolo, Johnston and Berry 1990; Daute et al. 2021). The primary 164 
emphasis remained on the development of high ethanol yielding yeasts, with distillers relying on the 165 
distillation process to ensure the production of an acceptable spirit (Dolan 1976; Watson 1981; 166 
Berbert de Amorim Neto et al. 2009), or comparing different commercial yeast products, formats, 167 
and pitching rates (Reid et al. 2023; Spasov, Blagoeva and Zapryanova 2023, Waymark and Hill 168 
2023). 169 

Notably, limited attention has been given over the years to investigating the influence of yeasts on 170 
the flavour profile of Scotch Whisky. Previous research predominantly explored distinctions among 171 
commercial S. cerevisiae yeasts (Ensor, Bryce and Hill 2015; Miles 2015; Ekins et al. 2018). Some 172 
non-distilling yeasts used in co-cultures with distilling strains demonstrated a reduction in yield but 173 
an increase in estery (fruity) flavours (Miles 2015). Co-fermentation with pure cultures of brewing 174 
yeast exhibited flavour enhancement (Wanikawa, Yamamoto and Hosoi 2004; Noguchi et al. 2008; 175 
Yomo, Noguchi and Yonezawa 2008), while the use of bioethanol strains resulted in spirits with 176 
flavours comparable to whisky distilling yeast (Neto et al. 2008; Berbert de Amorim Neto et al. 177 
2009, Daute 2021). 178 

To date, very few commercial Scotch Whiskies have prominently featured the use of non-179 
conventional yeasts in their marketing. Schizosaccharomyces pombe: Glen Elgin 1998 – 18-Year-Old 180 
Special Release 2017 (Master of Malt 2021) and the Glenmorangie Allta, produced with a local wild 181 
yeast from Cadboll barley named Sacchaormyces diaemath (Broom 2019). Nevertheless, some craft- 182 
distillers investigate and isolate wild yeasts from the area around the distillery or their raw materials 183 
to create new products with alternative flavours, as observed at Lindores Abbey Distillery (Burke, 184 
Speers, and Hill 2014; 2015; Walker and Hill 2016). 185 

As Scotch Whisky fermentations are not sterile processes, microorganisms other than the pitched 186 
distilling yeast strain influence the fermentation flavour of the new make spirit (Watson 1981; 187 
Walker and Hill 2016). A distilling yeast with a poor sugar-to-alcohol conversion results in more 188 
residual sugars, giving other microorganisms a higher chance to grow and potentially have a 189 
deleterious influence on product quality. These microorganisms enter the process through raw 190 
materials, the environment (air, dust), or production equipment: Water used in different production 191 
steps can bring in low levels of wild Bacillus spp., and Enterobacteria (Guild et al. 1985; Wilson 192 
2014). Barley is a source of a wide variety of bacteria and wild yeast including Candida spp., 193 
Cryptococcus spp., Hansenula spp., Rhodotorula spp., Saccharomyces spp. (Flannigan1999; Noots, 194 
Delcour and Michiels 1999; Van Nierop et al. 2006; Justé et al. 2011). During malting the variety of 195 
bacteria decreases with a dominance of lactic acid bacteria. Nevertheless, a wide variety of wild yeast 196 
is still present, consisting among others, of Aureobasidium spp., Candida spp., Cryptococcus spp, 197 
Debaryomyces spp., Issatchenkia spp., Kluyveromyces spp., Pichia spp., Rhodotorula spp. 198 
(Flannigan 1999; O’Sullivan et al. 1999; Booysen et al. 2002; Laitila et al. 2006; Justé et al. 2011; 199 
Laitila et al. 2011). During mashing, the overall wild yeast count is drastically reduced. As for 200 
bacteria, the microflora consists mostly of lactic acid bacteria, acetic acid bacteria, and 201 
Gluconobacter spp. (Guild et al. 1985; O’Sullivan et al. 1999; Wilson 2014). In the subsequent 202 
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production step, fermentation, the added yeast will be the dominant microorganism. Only low levels 203 
of other wild yeast will still be present, lactic acid bacteria and rarely acetic acid bacteria, 204 
Zymomonas spp., and Pediococcus spp.. Often the concentration of these increase with extended 205 
fermentation time (Makanjuola and Springham 1984; Priest and Barker 2010; Wilson 2014). 206 

Yeast strain improvement 207 

The primary objectives for distilling yeast strains encompass achieving a high sugar-to-alcohol 208 
conversion (exceeding 90%), minimising the production of off-flavours, exhibiting high-stress 209 
tolerance, ensuring high viability, and demonstrating efficient rehydration efficiency (Pretorius, Du 210 
Toit, and Van Rensburg 2003; Walker, Bringhurst, and Brosnan 2011). In addition to this, further 211 
development of new Scotch Whisky distilling strains is focused on the following desired attributes: 212 

-  high tolerance to ethanol, heat, low pH, osmotic pressure, and high sugar concentration 213 
- rapid fermentation of the wort sugars glucose, maltose, and maltotriose 214 
- production of appropriate congeners 215 
- high flavour consistency 216 
- high viability/vitality 217 
- a short lag phase 218 
- minimal yeast biomass requirement 219 
- competitiveness with other microorganisms 220 
- high endurance under various transport conditions 221 
- culture stability 222 
- non-flocculent 223 
- GRAS (Generally Recognised as Safe) or QPS (Qualified Presumption of Safety) status 224 

Adapted from Walker, Bringhurst and Brosnan (2011), Walker et al. (2011); Russell and Stewart (2014) and Walker and Hill (2016). 225 

Four approaches are commonly employed to attain these goals in new distilling strains: natural 226 
biodiversity, selection through methods such as mutagenesis (Liu et al. 2018b; Liu, Zhang, and Sun 227 
2008) and hybridisation/breeding (Bellon et al. 2013; Gibson et al. 2017; Gallone et al. 2019; 228 
Stewart 2019), adaptive evolution (Saerens, Duong, and Nevoigt 2010; Gallone et al. 2016; Barbosa 229 
et al. 2018; Gallone et al. 2018; Gibson et al. 2020), and genetic modification (GM)/gene editing. 230 
The current stance of the Scottish Government and public opinion opposes the use of GM crops, 231 
leading to the exclusion of these or other GMOs (genetically modified organisms) in food production 232 
(Stewart, Hill, and Russell 2013; Scottish Government 2020; Science and Advice for Scottish 233 
Agriculture 2021). Consequently, GM and asexual hybridisation methods like protoplast fusion, often 234 
considered as GM (Husby 2007) are currently not employed by the Scotch Whisky industry for yeast 235 
strain improvement. 236 

A common approach in industry is to either start with an already commercially available yeast strain, 237 
screen a strain collection, or collect wild samples to exploit the natural biodiversity. For example, a 238 
wide variety of Saccharomyces spp. and non-Saccharomyces yeasts can be isolated from different 239 
habitats (Alsammar and Delneri 2020; Hutzler, et al. 2021; Sniegowski, Dombrowsk and Fingerman 240 
2022; Pinto, et al. 2022; Piraine, et al. 2022; Iturritxa, Hill and Torija 2023), with several S. 241 
cerevisiae isolations often associated with human habitats (Fay and Benavides 2005). Different 242 
selection techniques and media have been used for the isolation of specific yeasts. The next step 243 
involves further modification and adaptation of the selected yeast strain. For this, a combination of 244 
breeding, mutagenesis and adaptive evolution or a combination thereof can be used. Yeast breeding 245 
can integrate traits from different strains and, potentially, closely related species, and this requires 246 
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further work to stabilise the traits in the final yeast strain (Krogerus et al. 2017). Mutagenesis 247 
involves exposing the yeast to mutagenic materials or UV-rays to elevate the mutation rate, and 248 
resultant yeasts are screened for specific phenotypes. Yeasts exhibiting desired traits are selected for 249 
subsequent rounds until the yeast possesses improved characteristics, which can be again bred with a 250 
different strain. A similar principle is used for directed evolution, the yeast is placed in an 251 
environment that applies an evolutionary pressure, such as steady increase of sugar concentrations to 252 
guide the direction of mutation, enhancing the yeast’s survival in an artificially adjusted 253 
environment, and thereby improving physiological traits like sugar metabolism or flavour 254 
development (Dequin 2001; Liu, Zhang, and Sun 2008). Recently, the Carlsberg Research 255 
Laboratory has introduced a new technique called FIND-IT to accelerate the identification of yeast 256 
and other organisms with desired mutations, allowing to screen for single nucleotide polymorphisms 257 
(SNP) (Knudsen, et al. 2022). 258 

Additional promising avenues for further research in whisky fermentations include exploring 259 
amylolytic yeasts for more efficient starch breakdown (Laluce et al. 1988; Pretorius, Du Toit, and 260 
Van Rensburg 2003; Cheng et al. 2011; Walker et al. 2011) or further elaborating flavour profiles, 261 
for example using POF+ (phenolic off-flavour positive) yeasts to impart phenolic and spicy notes 262 
(Heresztyn 1986; Coghe et al. 2004). Further research into non-Saccharomyces yeasts for industrial 263 
fermentations is expected. Recent findings comparing the flavour profile of wash, low wines, and 264 
new make spirit of different yeast strains showed that the key flavour notes are stable throughout 265 
these production steps. This finding will support the development of new yeast strains by reducing 266 
the time needed for sample preparation by eliminating the need for a double distillation for early 267 
yeast screening rounds (Daute et al. 2023). Together with the finding that congener profiling of wort 268 
by gas chromatography-mass spectrometry (GC-MS) gives comparable data to the sensory 269 
evaluation, this could further reduce the time by not requiring a sensorial evaluation of samples in 270 
early screening steps (Daute et al. 2021). 271 

Non-conventional yeast used for distilled spirits 272 

In the production of neutral spirits such as vodka, gin, or bioethanol, yeast selection is not a primary 273 
consideration because the final product undergoes extensive purification, and most yeast derived 274 
congeners are undesired in the final product. Consequently, efficiency becomes the primary factor, 275 
leading to the preference for highly adapted S. cerevisiae strains with robust stress tolerance (Pauley 276 
and Maskell 2017; Black and Walker 2023; Spasov, Blagoeva, and Zaprysnova 2023) instead of non-277 
conventional flavourful yeast. 278 

In contrast to Scotch Whisky production, the use of a variety of yeast strains is more commonplace in 279 
other distilled spirit industries. For example, Bourbon and Tennessee whiskey distilleries often 280 
cultivate their own proprietary yeast strains (Smith 2017). Historically, after the increased availability 281 
of commercial yeast, Scotch Whisky producers hesitated to adopt this practice, deeming it 282 
economically impractical due to concerns about quality, cost, and sustainability (Walker and Hill 283 
2016). 284 

The transition towards deliberately inoculated fermentations with S. cerevisiae marked a departure 285 
from the diversity and complexity of flavours typically associated with spontaneous fermentations 286 
(Gschaedler 2017). While wild fermentation offers potentially more complex flavours, it concurrently 287 
extends fermentation time, potentially resulting in a 40-60 % v/v decrease in alcohol yield, and 288 
higher levels of residual sugars. Despite this, some distilleries prioritise flavour over yield 289 
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(Fahrasmane and Ganou-Parfait 1998; Nuñez-Guerrero et al. 2016; Portugal et al. 2017). Table 2 290 
provides an overview of yeasts used in various distilled spirits production. 291 

Pure cultures of non-Saccharomyces yeasts exhibit distinct flavour profiles, often characterised by 292 
higher levels of esters or higher alcohols compared to S. cerevisiae. However, their fermentation 293 
performance is often poorer by comparison (Dato, Pizauro Júnior, and Mutton 2005; Oliveira et al. 294 
2005; Arellano et al. 2008; López-Alvarez et al. 2012; Segura-García et al. 2015). Therefore, a 295 
combination of a non-Saccharomyces strain with a commercial distilling yeast often results in 296 
increased yield and enhanced ester notes (Duarte, Amorim, and Schwan 2012; Nuñez-Guerrero et al. 297 
2016). Optimising non-Saccharomyces yeast could enhance their fermentation performance, increase 298 
ABV, and introduce unique flavours (Dato, Pizauro Júnior, and Mutton 2005; Oliveira et al. 2005; 299 
Arellano et al. 2008; López-Alvarez et al. 2012; Segura-García et al. 2015). Commercial yeast 300 
strains, belonging to S. cerevisiae, have undergone years of optimisation, and new yeast strains with 301 
improved fermentation properties, such as MG+ from AB Mauri, have recently been introduced to 302 
the market (Storr and Walker 2018). 303 

Recently, Kveik yeast, traditional Norwegian farmhouse yeast, has gained attention in brewing due to 304 
its phenolic off-flavour negativity, high fermentation rate, tolerance to high temperatures (>28°C), 305 
and classification within the Saccharomyces cerevisiae clade (Preiss et al. 2018). This interest has 306 
extended to the distilling industry, where Kveik yeast demonstrates a fermentation pattern similar to 307 
commercial distilling yeast and a distinct flavour profile, offering the opportunity for development of 308 
new products (Dippel et al. 2022; Horstmann, Magalhães, and Gibson 2023). 309 

Non-conventional yeast used for wine making and brewing 310 

Non-conventional yeasts are increasingly used in the production of non-alcoholic or low-alcoholic 311 
beverages, particularly for wine and beer. Although these yeasts produce less ethanol, they contribute 312 
different and often increased levels of congeners, resulting in an altered flavour profile of these 313 
beverages (Bellut and Arendt 2019). 314 

In wine and beer production, selecting starter cultures is a common practice to improve control over 315 
fermentation performance, flavour, and the creation of specific products (Carrasco, Querol, and Del 316 
Olmo 2001; Fernández-Espinar et al. 2001; Romano et al. 2003; Ribéreau-Gayon et al. 2006; 317 
Torrens et al. 2008; Chambers and Pretorius 2010; Schuller 2010; Garofalo et al. 2016; Capozzi et 318 
al. 2017; Berbegal et al. 2018; Vilela 2021). In the wine industry, S. cerevisiae strains are the 319 
predominant commercial yeast starters, resulting in most research focused on S. cerevisiae (Cadière 320 
et al. 2012; Tian et al. 2020) and related species such as S. bayanus and S. uvarum (Carrasco, Querol 321 
and Del Olmo 2001; Fernández-Espinar et al. 2001; Masneuf-Pomarède et al. 2010; Almeida et al. 322 
2014; Alonso-del-Real et al. 2017). In brewing, S. cerevisiae strains dominate ale production, while 323 
S. pastorianus (a hybrid of S. cerevisiae and S. eubayanus) is prominent in lager production. 324 
Commercially offered strains also include S. cerevisiae and S. uvarum (Stewart, Hill, and Russell 325 
2013; Gibson et al. 2017). 326 

While commercial starter cultures provide consistent fermentations and flavour profiles, non-327 
conventional yeasts offer the opportunity to diversify flavour in fermented beverages (Roudil et al. 328 
2019; Molinet and Cubillos 2020). The introduction of commercial non-Saccharomyces yeasts in 329 
winemaking began in 2004 by Christian Hansen, resulting in the release of a pure Torulaspora 330 
delbrueckii strain in 2009 (Roudil et al. 2019; Peyer 2020). Non-Saccharomyces yeasts are often 331 
used in co-cultures or sequential fermentations together with Saccharomyces yeasts to optimise sugar 332 
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utilisation, ethanol production and wine flavour elaboration. Table 3 provides a list of non-333 
conventional and non-Saccharomyces yeasts used in both spontaneous and controlled winemaking 334 
and brewing. 335 

In contrast to whisky production, where the emphasis is on maintaining or increasing alcohol content, 336 
the wine industry seeks to lower alcohol levels due to changes in agriculture leading to grapes with 337 
excessive sugar levels. This results in high-alcohol wines with decreased flavour complexity, higher 338 
taxation, and evolving consumer preferences (Heymann et al. 2013; King, Dunn, and Heymann 339 
2013; Saliba, Ovington, and Moran 2013; Varela et al. 2015). As grape juice primarily consists of 340 
fructose rather than maltose, the findings of these yeast strains cannot be directly applied to whisky 341 
production. 342 

Nevertheless, research has demonstrated that non-Saccharomyces yeasts significantly influence 343 
flavour production and fermentation performance, offering potential for innovation in various 344 
industries (Chatonnet et al.,1992; Romano et al. 2008; Lucy Joseph et al. 2013; Schifferdecker et al. 345 
2014; Agnolucci et al. 2017; Berbegal et al. 2018). Given the similarity in the early production steps 346 
of Scotch Malt Whisky and beer, the knowledge gained from brewing yeast research can be more 347 
easily transferred to Scotch Malt Whisky production due to the common fermentable carbohydrate 348 
sources (Stewart, Hill, and Russell 2013; Bringhurst 2015; Larroque et al. 2021). 349 

Examples of new yeast species for Scotch Malt Whisky production 350 

While there were 1414 accepted yeast species in 2011 (Kurtzman, Fell and Boekhout 2011b), new 351 
yeasts are regularly found or reclassified. Currently, over 2000 yeast species and over 280 yeast 352 
genera have been identified and characterised (Boekhout et al. 2023). Unfortunately, not all of them 353 
can be discussed in this review. Table 4 provides a summary of ten yeast species exhibiting potential 354 
as alternative Scotch Whisky distilling yeasts, as evaluated through an analysis of current literature 355 
and research (Daute 2021). Selection criteria include their ability to ferment glucose and maltose, 356 
prior use in the food industry, and a well-established research background. While less-known yeasts 357 
may also hold promise, starting with easily accessible and food-approved yeasts can simplify the 358 
initial stages of exploration. 359 

Six of the yeast species listed (Dekkera bruxellensis, Lachancea thermotolerans, S. bayanus, S. 360 
pastorianus, Schizosaccharomyces pombe, and Torulaspora delbrueckii) are commercially available, 361 
Generally Recognised as Safe (GRAS) and these yeast strains have demonstrated an appropriate 362 
congener profile. Commercial strains are not available for the following yeasts, but data on several 363 
laboratory studies have been carried out: S. paradoxus (Pataro et al. 2000; Redžepović et al. 2002; 364 
Orlic et al. 2007; Nikulin et al. 2020), Wickerhamomyces anomalus (Kurtzman 2011; Laitila et al. 365 
2011; Ye, Yue, and Yuan 2014; Holt et al. 2018; Osburn et al. 2018; Padilla, Gil, and Manzanares 366 
2018), and Zygosaccharomyces rouxii (Steels et al. 2002; Combina et al. 2005; De Francesco et al. 367 
2015; Devanthi et al. 2018; Escott et al. 2018). For Kluyveromyces lactis, only a limited number of 368 
studies have been conducted in winemaking. Despite this, it is used as a model organism and 369 
possesses properties to produce higher concentrations of terpenes that could contribute to altered 370 
flavour (Drawert and Barton 1978; King and Dickinson 2000; Schaffrath and Breunig 2000; 371 
Yamaoka, Kurita, and Kubo 2014; Chen, Yap, and Liu 2015). A related species, K. marxianus, is 372 
already used in some countries to ferment cheese whey, comprising lactose, into distilled spirits and 373 
bioethanol (Grba et al. 2002; Fonseca et al. 2008). 374 
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S. pastorianus and Schiz. pombe have been reported to produce lower levels of congeners compared 375 
to S. cerevisiae (Powell et al. 2022; Benito et al. 2016; Meier-Dörnberg et al. 2017; Loira et al. 2018; 376 
Callejo et al. 2019). This characteristic could be used for lighter Scotch Whiskies, where most of the 377 
flavour originates in maturation. Alternatively, they could be used in other cereal grain-based 378 
distilled spirits where lower levels of congeners are desired such as gin or vodka. In sugarcane 379 
molasses fermentations, however, Schiz. pombe is known for its congener contributions to heavy 380 
flavoured dark rums. 381 

While a wider range of non-Saccharomyces yeast is offered for brewing and winemaking, not all of 382 
these are able to ferment maltose. This includes Pichia kluyveri, C. zemlinina, K. wickerhamii, 383 
Metschnikowia pulcherrima, and M. fructicola. Since these yeasts cannot effectively convert all wort 384 
sugars, they are often sourced for brewing to produce low-alcohol beers (Johansson et al. 2021). 385 
While unsuitable for use as a pure culture in Scotch Whisky fermentations, they remain viable 386 
candidates for co-fermentation, particularly in combination with S. cerevisiae for spirit flavour 387 
elaboration. 388 

Several other yeast species capable of fermenting maltose have undergone laboratory studies in 389 
brewing and winemaking. Due to the scarcity of publications and non-food safety approval, these 390 
yeasts were not included in this review. Nevertheless, it is important that other glucose and maltose 391 
fermenting yeasts such Candida spp., K. dobzhanskii, L. citri, L. fermentati, M. caribbica, 392 
Scheffersomyces stipites, Schiz. japonicus, Schwanniomyces capriottii, Starmerella meliponinorum, 393 
T. franciscae, W. subpelliculosus, or Z. rouxii (Kurtzman, Fell and Boekhout 2011b) are further 394 
researched to make more yeast biodiversity available for the Scotch Whisky industry. Other yeasts, 395 
that are only able to ferment glucose but are known to be very flavourful could also be considered for 396 
co-fermentation. Examples are non-Saccharomyces yeast used for winemaking: C. stellata, 397 
Hanseniaspora vineae, and H. guilliermondii, M. pulcherrima, P. membranifaciens, P. kluyveri, W. 398 
anomalus, or Z. bisporus (Ravasio, et al. 2018, Postigo, et al. 2022). Some of these yeasts were 399 
assessed for Scotch Whisky as part of a PhD project (Daute 2021). 400 

In accordance with findings from prior research (Daute 2021), a strategic approach to evaluating new 401 
yeast strains for enhanced flavour diversification involves several steps, as depicted in Figure 2. 402 
Firstly, it is crucial to assemble a diverse collection of yeast from varying geographical locations, 403 
yeast species, and yeast strains, establishing a broad biodiversity. This approach aligns with 404 
observations in S. cerevisiae, highlighting the wide diversity in the same yeast species (Sampaio et 405 
al. 2017). Next, the yeast strains should undergo screening in small-scale fermentations, using 406 
platforms such as microtiter plates or anaerobic flasks, conducted under standardised conditions to 407 
allow comparison of fermentation results. An essential aspect of this process is the analysis of 408 
fermentation samples using Gas Chromatography (GC) to measure ethanol levels (indicator for 409 
fermentation performance) and congener production (indicator for flavour profile). Based on the 410 
analytical data, yeast strains with a desirable congener profile and ethanol production can be selected. 411 
Ensuring the safety of the chosen yeast strains is important before scaling further up, including 412 
assessing previous information. From this selection, a limited number of yeast strains may be 413 
selected for further optimisation if necessary. The optimisation phase may involve modifications to 414 
the yeast through mutagenesis, breeding, or adaptive evolution, followed by a re-screening of the 415 
strains. As the yeast strains progress, the evaluation should scale up, incorporating double distillation 416 
and sensory assessments by a panel of experts in a medium-scale fermentation setting. This iterative 417 
process repeats, until the final scale-up to large- or commercial-scale fermentations. By adhering to 418 
this systematic approach, researchers can effectively navigate the process of yeast strain selection and 419 
enhancement for the diversification of Scotch whisky flavours. 420 
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Evaluating new yeast species and food safety qualification 421 

Non-Saccharomyces yeast seem to offer a wide variety of flavour potential for the distilled spirit 422 
industry. Unfortunately, some can also be harmful by producing biogenic amines (Visciano and 423 
Schirone 2022), or some can cause opportunistic infections such as Candida albicans (Caetano, et al. 424 
2023). To ensure that the Scotch whisky consumption is safe, all new yeast strains, purposely added, 425 
must adhere to food safety regulation. There are two main different food safety approval systems: 426 
QPS (qualified presumption of safety) from EFSA’s scientific panel for the European Union and 427 
GRAS (generally recognized as safe) from US Food and Drug Administration (FDA). Decisions are 428 
made based on the taxonomic identification, present knowledge, known safety concerns, biogenic 429 
amines, antifungal resistance, virulence, pathogenicity, and safety concerns related to the use of the 430 
yeast such as acetaldehyde production (Miguel et al. 2022). These assessments can take a long time 431 
and can be expensive. Nevertheless, this does not stop the brewing and winemaking industry from 432 
persevering with the certification of new promising yeast species for new products (Roudil, et al., 433 
2019). Recent examples of newly registered yeast strains are Pichia kluyveri from Christian Hansen 434 
(Food and Drug Administration 2020) or M. pulcherrima and M. fructicola from Lallemand (Food 435 
and Drug Administration 2021). With more and more yeast being assessed for their food safety, it 436 
can be hoped that we see further diversification in the future. 437 

In addition to the food safety assessment, an implementation of new yeasts for Scotch Whisky also 438 
needs to adhere the Scotch Whisky Regulations (2009): Scotch whisky must "have the aroma and 439 
taste of Scotch Whisky". With non-Saccharomyces yeast bringing new flavours into the product, it is 440 
important to ensure that the product still tastes like Scotch whisky, which limits the possible 441 
diversification. 442 

Conclusion 443 

As for most distilled beverages, the considerations for Scotch Malt Whisky production revolve 444 
around ethanol yield and the overall efficiency of sugar conversion. Recent developments within the 445 
industry have witnessed distillers embracing a willingness to sacrifice ethanol yield for the creation 446 
of special-release whiskies characterised by unique and desirable flavours. Although commercial S. 447 
cerevisiae yeast strains continue to dominate the Scotch Whisky landscape, there exists an 448 
opportunity to draw from the trends observed in winemaking and brewing, where a diverse range of 449 
yeasts can be employed to enhance flavour profiles. Yeasts such as other Saccharomyces spp., D. 450 
bruxellensis, Kluyveromyces spp., or Schiz. pombe showcasing the capability to ferment primary wort 451 
sugars, demonstrate significant potential. However, using yeasts with poorer fermentation 452 
performance compared with S. cerevisiae distiller’s strains,  can result both in reduced ethanol yields 453 
and an increase in unpleasant (e.g. sulphury) flavour notes. At the same time, other factors such as 454 
the stability of consistent fermentations, risks of unwanted contamination and ease of utilisation, 455 
would need to be evaluated. In addition, it is yet unknown how any changes in new make spirit 456 
flavour profiles would pair with different oak cask types and change during maturation, although this 457 
could be predicted based on the chemical composition of the new make spirit. Looking ahead, it is 458 
predicted there will be a rise in the utilisation of non-conventional yeasts and co-fermentation 459 
strategies aimed at further diversifying the flavour spectrum of whiskies in the coming years. 460 
Nevertheless, these yeasts must comply with food safety regulations and the Scotch Whisky 461 
Regulations, in that the flavour profile adheres to the typical flavour of whisky. 462 

  463 
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Figure 1: Illustrating Scotch Malt Whisky production. 1360 

  1361 
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 1363 

Figure 2: Illustrating of a strategic approach to evaluating new yeast strains. 1364 
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Table 1: Comparison of Saccharomyces cerevisiae and non-Saccharomyces yeasts for distilled 1367 
spirits production. 1368 

Saccharomyces cerevisiae non-Saccharomyces 

Strengths Weaknesses Strengths Weaknesses 

Ferment sugars1 Only metabolise 
mono-, di-and tri-
hexoses (no starch or 
lactose)8 

Wide variety Mostly Crabtree-
negative13 

High stress tolerance1 Limited genetic 
variability 

Different sugar 
metabolism9 

Some yeasts are 
opportunistically 
pathogenic 

Wide temperature 
tolerance1 

Not regarded as 
thermophilic2 

Selected yeasts have 
high alcohol 
production10 

Only selected yeasts 
recognised as 
generally regarded as 
safe (GRAS) 

High alcohol tolerance 
(~14-15 % v/v)2 

Room for 
improvement with 
industrial strains 

Different metabolic 
pathways11 

Limited research 

High sugar tolerance3 Weak osmotolerance 
in some strains2 

Diversification of 
congener 
production11 

Produce low/no 
alcohol9 

Crabtree-positive/ 
fermenting in the 
presence of high sugar 
levels and oxygen4 

Crabtree effect needs. 
To be avoided for 
optimal yeast 
propagation 

Provide new 
congeners such as: 
4-ethylguaiacol12 

Incomplete 
fermentation9 

Generally regarded as 
safe (GRAS)5 

   

Well-researched6    

Widely used7    

Metabolic pathways    
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known7 

Easy to culture    

Superscripted numbers in the table represent following references: 

1: Torija et al. (2003) and Parviz, Mahmoud and Hrachya (2011). 2: Ghareib, Youssef and Khalil (1988), Hosaka et al. (1998), 
Pina et al. (2004), Osho (2005), Walker and Hill (2016), and Morard et al. (2019). 3: Osho (2005), Pereira et al. (2011), and 
Tao et al. (2012). 4: De Deken (1966), Alexander and Jeffries (1990), Quirós et al. (2014), and Perez-Samper et al. (2018). 5: 
Walker and Hill (2016). 6: Botstein, Chervitz and Cherry (1997), Legras et al. (2007), Liti (2015), Bilinski, Bylak and Zadrag-
Tecza (2017), and Alexander (2018). 7: Walker (2009) Wang et al. (2012), Goddard and Greig (2015), Ramazzotti et al. (2019), 
and Meriggi et al. (2020). 8: Pretorius, Du Toit and Van Rensburg (2003), Domingues, Guimarães and Oliveira (2010), and 
Walker and Hill (2016). 9: Petit et al. (2000), Knoshaug et al. (2009), Rodicio and Heinisch (2009), Basso, Alcarde and 
Portugal (2016), Varela (2016), Bellut and Arendt (2019), and Mehlomakulu et al. (2021). 10: Pina et al. (2004). 11: Romano et 
al. (1992), Lambrechts and Pretorius (2000), Zohre and Erten (2002), Clemente-Jimenez et al. (2004), Domizio et al. (2011), 
and Magyar et al. (2014). 12: Heresztyn (1986), Shinohara, Kubodera and Yanagida (2000), and Coghe et al. (2004). 13: De 
Deken (1966), Alexander and Jeffries (1990), Bellaver et al. (2004), Gonzalez, Quirós and Morales (2013), and Contreras et al. 
(2015). 
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 1371 

Table 2: Yeasts involved in the production of distilled spirits. 1372 

Product Spontaneous fermentation Researched non-Saccharomyces yeasts 
for flavour production 

Rum Candida krusei, Candida stellate, Pichia 
membranifaciens, Saccharomyces spp., 
Schizosaccharomyces spp., 
Wickerhamomyces anomalus1 

 

Mezcal, 
Tequila, 
fermentation 
of agave 
juice 

Candida spp., Dekkera bruxellensis, 
Hanseniaspora. guilliermondii, 
Hanseniaspora. vinae, Klockera 
apiculta, Kluyveromyces marxianus, 
Pichia kluyveri, Pichia 
membranifaciens, Rhodotorula spp., 
Saccharomyces cerevisiae, Torulaspora 
delbrueckii2 

Candida krusei, Candida magnolia, 
Klockera africana, Klockera apiculate, 
Kluyveromyces marxianus, Pichia 
caribbica, Pichia kluyveri, Torulaspora 
delbrueckii, Wickerhamomyces anomalus 3 

Cachaça Candida maltose, Candida sake, 
Debaryomyces hansenii, Hanseniaspora. 
uvarum, Kluyveromyces marxianus, 
Pichia heimii, Pichia methanolica, 
Pichia subpelliculosa, Rhodotorula 
glutinis, Saccharomyces cerevisiae, 
Schizosaccharomyces pombe, 
Torulaspora delbrueckii, 
Wickerhamomyces anomalus4 

Candida famata, Candida guillermondii, 
Hanseniaspora guillermondii, 
Hanseniaspora occidentalis, Meyerozyma 
caribbica, Meyerozyma guillermondii, 
Pichia caribbica, Pichia fermentans, 
Pichia subpelicullosa, 
Schizosaccharomyces pombe, 
Wickerhamomyces anomalus 5 

Honey based 
distillates 

Lachancea fermentati, Pichia 
kudriavzevii, Saccharomyces cerevisiae, 
Wickerhamomyces anomalus, 
Zygosaccharomyces bailiiand, 
Zygosaccharomyces rouxii6 

 

Grape-based 
distillates 

Candida lactis-condensi, Hanseniaspora 
osmophila, Pichia galeiformis, 
Torulaspora delbrueckii7 
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Vodka – 
cheese 
whey8 

 Kluyveromyces marxianus 

Fruit spirit9  Aureobasidium sp., Kluyveromyces 
apiculate, Lachancea thermotolerans, 
Torulaspora delbrueckii 

Superscripted numbers in the table represent following references: 

1: Parfait and Sabin (1975), Fahrasmane, Ganou-Parfait and Parfait (1988), Lachance (1995), Fahrasmane and Ganou-Parfait 
(1998), and Fleet and Green (2010). 2: Lachance (1995), Arellano et al. (2008), Escalante-Minakata et al. (2008), Lappe-Oliveras et 
al. (2008), Soto-García et al. (2009), Verdugo Valdez et al. (2011), Páez-Lerma et al. (2013), and Nolasco-Cancino et al. (2018), 
Walker et al. (2019). 3: Fiore et al. (2005), Arrizon et al. (2006), Arellano et al. (2008), López-Alvarez et al. (2012), Segura-García et 
al. (2015), and Nuñez-Guerrero et al. (2016). 4: Morais et al. (1997), Pataro et al. (2000), Schwan et al. (2001), Badotti et al. (2010), 
and Brexó et al. (2020). 5: Oliveira et al. (2004), Duarte, Amorim and Schwan (2012), Amorim, Schwan and Duarte (2016), and 
Portugal et al. (2017). 6: Gaglio et al. (2017). 7: Úbeda et al. (2014). 8: Walker and O’Neill (1990), Zafar and Owais (2006), Fonseca 
et al. (2008), Mazaheri Assadi, Abdolmaleki and Mokarrame (2008), and Delshadi (2019). 9: Satora and Tuszyński (2010) and 
Fejzullahu et al. (2021). 

 1373 

  1374 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

syr/advance-article/doi/10.1093/fem
syr/foae017/7659827 by N

H
S Scotland Abertay U

niversity Placem
ent Students user on 01 M

ay 2024



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 1375 

 1376 

Table 3: List of non-conventional and non-Saccharomyces yeasts used in spontaneous and 1377 
controlled wine making and brewing. 1378 

 Winemaking Brewing 

Commercial 
yeasts 

Candida zemplinina, 
Kluyveromyces. wickerhamii, 
Lachancea thermotolerans, 
Metschnikowia pulcherrima, 
Metschnikowia fructicola, Pichia 
kluyveri, Saccharomyces 
cerevisiae, Saccharomyces 
bayanus, Schizosaccharomyces. 
pombe, Torulaspora delbrueckii, 
Wickerhamomyces anomalus 1 

Brettanomyces spp. (Brettanomyces 
claussenii (reclassified as Dekkera 
anomala), Brettanomyces bruxellensis, 
Brettanomyces lambicus (reclassified as 
Dekkera bruxellensis)), Lachancea spp., 
Pichia kluyveri, Saccharomyces cerevisiae, 
Saccharomyces pastorianus, Saccharomyces 
uvarum (reclassified as Saccharomyces 
bayanus)2 

Spontaneous 
fermentation 

Dominated by Saccharomyces 
cerevisiae/Saccharomyces spp.  
Aureobasidium pullulans, Candida 
stellate, Candida zemplinina, 
Hanseniaspora uvarum, 
Issatchenkia occidentalis, 
Issatchenkia terricola, Kloeckera 
apiculate, Lachancea 
thermotolerans, Metschnikowia 
fructicola, Metschnikowia 
pulcherrima, Pichia fermentans, 
Pichia membranifaciens, Pichia 
kudruavzevii Rhodotorula glutinis3 

Brettanomyces spp., Candida spp., 
Debaryomyces spp., Hanseniaspora uvarum, 
Pichia spp., Saccharomyces. dairensis, 
Saccharomyces. cerevisiae, Saccharomyces. 
bayanus, Saccharomyces. pastorianus, 
Saccharomyces. uvarum4 

Researched 
non-
conventional 
yeast 

Brettanomyces spp., Candida spp., 
Hanseniaspora spp., Kloeckera 
spp., Metschnikowia spp., Pichia 
spp., Schizosaccharomyces spp., 
Starmella spp., Saccharomycodes 
spp., Torulaspora spp., Williopsis 
spp., Zygosaccharomyces spp.5 

Kveik yeast, Brettanomyces anomalus, 
Dekkera bruxellensis, Brettanomyces 
bruxellensis, Candida californica, Candida 
tropicalis, Candida shehatae, Candida 
sylvae, Candida zemplinina, Cyberlindnera 
fabianii, Cyberlindnera mrakii, 
Cyberlindnera saturnus, Hanseniaspora 
uvarum. Lachancea thermotolerans, Pichia 
kluyveri, Pichia kudriavzevii, 
Saccharomyces eubayanus, 
Saccharomycodes ludwigii, 
Saccharomycopsis fibuliger, 
Schizosaccharomyces pombe, Torulaspora 
delbrueckii, Wickerhamomyces anomalus, 
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Zygoascus meyerae, Zygosaccharomyces 
bailii, Zygosacharomyces rouxi, 
Zygotorulaspora florentina6 

Superscripted numbers correspond to following references: 

1: Roudil et al. (2019). 2: Peyer (2020), Lallemand Brewing (2021), Omega Yeast (2021), The Yeast Bay (2021), White Labs (2021), 
and Wyeast (2021). 3: Granchi et al. (1998), Pretorius (2000), Torija et al. (2001), Rementeria et al. (2003), Combina et al. (2005), Di 
Maro, Ercolini and Coppola (2007), Milanović, Comitini and Ciani (2013), Wang and Liu (2013), Liu et al. (2016), and Bougreau et 
al. (2019). 4: Van Oevelen, De L’Escaille and Verachtert (1976), Van Oevelen et al. (1977), Bokulich, Bamforth and Mills (2012), 
Spitaels et al. (2014), Crauwels et al. (2015), Dysvik et al. (2020), Bossaert et al. (2021), and Tyakht et al. (2021). 5: Jolly, Augustyn 
and Pretorius (2006), Viana et al. (2011), Hong and Park (2013), Benito et al. (2014), Englezos et al. (2016, 2017), and Hranilovic et 
al. (2020). 6: Libkind et al. (2011), Basso, Alcarde and Portugal (2016), Michel et al. (2016b), Canonico, Comitini and Ciani (2017), 
Preiss, Tyrawa and van der Merwe (2017), Preiss et al. (2018), Bellut and Arendt (2019), Canonico et al. (2019), Callejo et al. (2019), 
Methner et al. (2019), Mardones et al. (2020), Urbina et al. (2020), and Larroque et al. (2021). 
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Table 4: List of ten non-conventional yeasts with the potential to be used for Scotch Whisky 1382 
fermentations. 1383 

Yeast species Frequently used 
synonyms 

Glucose 
fermentation 

Maltose 
fermentation 

Origin/Use Congener 
production 

Additional 
traits 

Dekkera 
bruxellensis1 

Anamorph: 
Brettanomyces 
bruxellensis; 

Brettanomyces 
lambicus 

Yes Strain 
dependent 

Beer, wine, 
present in 
biofuel 
production 

Pharmaceutica, 
smoky, wet 
horse 

volatile phenols 
(4-
vinylguaiacol, 
4-
ethylguaiacol), 
nitrogenous 
compounds 

Production of 
12 % v/v 
ethanol, Custer 
effect 

Kluyveromyces 
lactis2 

Anamorph: Candida 
spherica; 

Saccharomyces 
lactis, 
Zygosaccharomyces 
lactis 

Yes Strain 
dependent 

Wine Fruity, rose-
like 

terpene 
production 
(citronellol, 
linalool and 
geraniol) 

Model 
organism, in co-
fermentations 
helps 
Saccharomyces 
cerevisiae to be 
more ethanol 
tolerant 

Lachancea 
thermotolerans3 

Zygosaccharomyces 
thermotolerans, 
Saccharomyces 
thermotolerans, 
Kluyveromyces 
thermotolerans 

Yes Strain 
dependent 

Beer, wine High lactic 
acid, terpene, 
ester, glycerol 

Ethanol 
tolerance of 5-
9 % v/v, 
maltotriose 
utilisation 

Wickerhamomyces 
anomalus4 

Anamorph: Candida 
pelliculosa; 

Pichia anomala, 
Hansenula anomala, 
Candida pelliculosa, 
Saccharomyces 
anomalus 

Yes Strain 
dependent 

Beer, wine, 
apple cider, 
present in 
malt 

Fruity, sour 

high levels of 
ethyl acetate 
and other 
acetate ester, 4-
vinylguaiacol, 
lactic acid 

 

Saccharomyces 
bayanus5 

Includes 
Saccharomyces 
bayanus var. bayanus 
and var. uvarum 

Yes Yes Commercial 
wine, cider, 
Kveik yeast 

Fruity, floral 

high in 
congeners ester 
(2-phenylethyl 
acetate, 2-
methyl 
butanoate), and 
aldehydes 
(acetaldehyde) 

Cold tolerance 

Saccharomyces Zygosaccharomyces Yes Strain Beer, wine, 
spontaneous 

4-
Vinylguaiacol, 

Production of 6-
12.5 % v/v 
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Yeast species Frequently used 
synonyms 

Glucose 
fermentation 

Maltose 
fermentation 

Origin/Use Congener 
production 

Additional 
traits 

paradoxus6 paradoxus dependent aguardiente 
fermentation 

clean flavour, 
like 
Saccharomyces 
cerevisiae 

ethanol, 
deacidification 
in wine 

 

 

Saccharomyces 
pastorianus7 

Saccharomyces 
carlsbergensis 

Yes Yes Commercial 
beer (Lager) 

Lower levels in 
fruity/floral and 
congeners 
compared to 
Saccharomyces 
cerevisiae 

Well established 
and researched 
for brewing, 
cold tolerance, 
maltotriose 
utilisation 

Schizosaccharomyces 
pombe8 

 Yes Yes Whisky, 
beer, wine, 
spontaneous 
rum 
fermentation 

Lower levels of 
congeners 
compared to 
Saccharomyces 
cerevisiae 

2nd best studied 
yeast, 
production of 
12% v/v 
ethanol, 
deacidification 
of wine 

Torulaspora 
delbrueckii9 

Saccaromyces 
delbrueckii, 
Debaryomyces 
delbrueckii, 
Zygosaccharomyces 
delbrueckii, Candida 
colliculosa, 
Torulaspora 
fermentati 

Yes Strain 
dependent 

Beer, wine Low acetic acid 
and higher 
alcohols, high 
in 

 esters, 
lactones, thiols, 
and terpenes 

High sugar 
tolerance, 
ethanol 
tolerance >5% 
v/v 

Zygosaccharomyces 
rouxii10 

Saccharomyces 
rouxii 

Yes Yes Beer, 
spontaneous 
wine 
fermentation, 
soy sauce 

High in higher 
alcohols (3-
methyl-2-
butanol) and 
aldehydes 
(acetaldehyde, 
3-
methylbutanal) 

High sugar and 
osmotolerance 

Superscripted numbers correspond to the following references: 

1: Blomqvist et al. (2010), Conterno et al. (2013), and Schifferdecker et al. (2014). 2: Drawert and Barton (1978), King and Dickinson 
(2000), Schaffrath and Breunig (2000), Yamaoka, Kurita and Kubo (2014), and Chen, Yap and Liu (2015). 3: Domizio et al. (2016), 
Morata et al. (2018), and Toh et al. (2020). 4: Kurtzman (2011), Laitila et al. (2011), Ye, Yue and Yuan (2014), Holt et al. (2018), 
Osburn et al. (2018), and Padilla, Gil and Manzanares (2018). 5: Eglinton et al. (2000), Roudil et al. (2019), Bruner and Fox (2020), 
and Morgan et al. (2020). 6: Pataro et al. (2000), Redžepović et al. (2002), Orlic et al. (2007), and Nikulin et al. (2020). 7: Gibson and 
Liti (2014), and Meier-Dörnberg et al. (2017). 8: Fahrasmane, Ganou-Parfait and Parfait (1988), Benito et al. (2016), Loira et al. 
(2018), Callejo et al. (2019), and Master of Malt (2021). 9: Bely et al. (2008), Canonico et al. (2016), Michel et al. (2016a), Benito 
(2018), Ramírez and Velázquez (2018), Toh et al. (2020), and Balmaseda et al. (2021). 10: Steels et al. (2002), Combina et al. (2005), 
De Francesco et al. (2015), Devanthi et al. (2018), and Escott et al. (2018). 
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