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Abstract— In Multi-Agent Systems (MAS), joint
goals are achieved collectively through
collaboration. In these systems no single agent
owns all the knowledge required to solve a
problem; the knowledge of a problem solution
is distributed among all agents. Thus,
collaborative decision-making must take into
account the viewpoint of all group members.
Moreover, solving complex problems in MAS
usually involves making decisions with partial,
contradictory, or uncertain information.

This paper presents a novel framework to
guide and facilitate the decision-making process
of multiple specialized agents working
collaboratively to achieve common goals. Our
proposed framework is able to estimate the
consensus level existing among agents, jointly
with the downside risk associated when
performing decisions with partial or imprecise
information.  Additionally, mechanisms are
included in the framework to suggest the best
course of actions that will likely increase
consensus and reduce risk.

Keywords: multi-agent system, collaborative
decision-making, risk, uncertainty.

1. INTRODUCTION

An agent may be described as autonomous,
social, reactive, and proactive software entity.
Agents get information from the environment,
make local decisions and perform some actions.
In Multi-Agent Systems (MAS) no single agent
owns all the knowledge required to perform
complex tasks. Moreover, agents may use
specialized knowledge, resources, and sources

of information. Thus, in such environment
agents have to coordinate their actions to meet
global constraints and achieve common goals.
Coordinating agents’ activities requires some

sort of a collaboration  mechanism.
Organizational structures enable agents to
collaborate hierarchically. Other known

mechanisms of coordination are contracting,
auctioning, negotiation, and argumentation
[51[6].

Hierarchical organizations give rise to the

well-known  master-slave or  client-server
coordination techniques. Using this type of
organization, roles, authority and

communication are known apriori. The master
agent initially distributes fragments of a plan to
its  collaborators. Afterwards, agents
accomplish their plans and report their results to
the master agent.

Another well known organizational approach
to coordination is blackboard negotiation. In
this mechanism agents coordinate their actions
through a blackboard in which they can post
and read knowledge sources.

Organizational structures based on the
application of economic concepts have been
also proposed. Examples of this approach are
the centralized and decentralized markets [5].

In the contracting protocol for MAS, a
manager agent divides a problem into sub-
problems and then searches for contractors.
Contracts are awarded to the best bid sent by a
contractor agent. In such contracting systems
an agent may be simultaneously a manager and
a contractor [5].

Auctioning mechanisms proposed for MAS
are used to allocate goods to bidder agents.
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Figure 1 Bayesian Network used to handle uncertainty

Different models used in these auctioning
mechanisms give rise to the English, Dutch,
Vickery and First-Price Sealed-Bid type of
auctions [8].

A common approach to coordinating MAS
activities is negotiation [5].  Negotiation
techniques have been either classified as based
on game-theory, a plan, Al, or inspired by
human behavior. Unfortunately, since some
sort of negotiation is also included in most
coordination protocols the distinction between
negotiation and the other mechanisms is rather
fuzzy. One significant characteristic of
negotiation is that it allows conflict resolution.
In order to negotiate effectively, agents may
reason about the beliefs, desires, and intentions
of other agents.

Negotiation via argumentation has been
proposed as an effective coordination
mechanism. In this protocol an agent attempts
to convince other agents of performing some
actions by exchanging proposals and counter-
proposals.  These proposals are backed by
arguments that summarize the reasons why the
proposals and counter-proposals should be
accepted [7].

Collaborative decision-making (CDM) refers
to a group of decentralized agents that
collaborate to achieve common goals, which are
beyond the capabilities of individual agents. In
CDM the viewpoint of all group members
should be taken into account since no single
agent has all the knowledge required to make
the best decisions. Moreover, solving complex
problems that involve partial, contradictory or
uncertain information creates new challenges in
CDM.

Bayesian networks (BN) have been proposed
to model uncertainty in intelligent systems [4].
Based on the probability theory, BN are
directed acyclic graphs that represent
conditional dependencies between random
variables. BN provide an intuitive graphical
representation  of  knowledge, allowing

reasoning under uncertainty. Agents’ design
based on representing their knowledge with
Bayesian Networks enables them to handle
uncertainty [9].

In this paper we present a novel framework
for multi-agent collaborative decision-making
under uncertainty. The framework employs a
hierarchical ~ organization = where  agents
participate using their knowledge to evaluate a
group of alternatives. The uncertainty that
occurs in the decision-making process is
modeled using Bayesian Networks.
Additionally, the level of consensus existing
among a group of agents is calculated jointly
with the risk involved in performing decisions
under uncertainty. Mechanisms are put in place
to provide the best course of action that will
increase consensus and reduce risk.

In Section 2 it is explained how decisions are
modeled in our framework. Afterwards, agent’s
decision-making architecture and the activities
performed by those agents to collaboratively
make decisions are explained.  The process
used to evaluate risk and reach consensus is
explained in the following Section. Finally, in
Section 6 we describe future work and provide
some conclusions.

2. MODELING DECISIONS

Decisions are modeled (DM) in our
collaborative decision-making framework with
the following tuple of elements:

DM =<Ag,A,C,W, T,K,L> where

Ag ={ ag.,ap,, ap,,...ap;} is set of agents

A = {a,, a,,...,a;} is set of alternatives

C = {c,, c;...,c;} is set of criteria

W = {w;, ws...,.wi} is set of preference models
T ={t;, t,....ty} are types associated to criteria



K={kiinkin,... kit agent’s knowledge
evaluations
L={l, Lo L agent’s  confidence
evaluations

Ag represents the group of agents involved in
a collaborative decision. Among this group of
agents, there is a single special coordinator ag,
that controls the whole decision-making
process. A is the set of alternatives, which are
evaluated individually by all the agents. C is
the group of criteria that agents employ to
evaluate each alternative. W represents the
preference of each agent regarding the criteria.
T is the criteria type, which may be
{qualitative, quantitative}. Qualitative criteria
are used to assess {yes, no} values whenever an
alternative fulfills a criterion according to
agent’s beliefs.

A quantitative criterion may be one of two
different types {less is better, more is better).
Quantitative criteria are used in situations where
numerical data is available to evaluate an
alternative. The data for quantitative criteria is
represented in the model by the set of values
{min, best, max}, containing the range of
numerical values available for a criterion of this
type. Min and max are the minimum and
maximum values used to grade a quantitative
criterion. The coordinator sends these values
jointly with the criteria. However, best is a
value that is assigned by a participant agent in
the decision-making process.

K is the knowledge (in the range 0.5 to 1.0)
an agent has on a particular criterion-alternative
pair. A value of K=0.5 means the agent does
not have any knowledge. A value of K=1.0
means the agent is an “expert” with perfect
knowledge. L represents the confidence of an
agent that an alternative will fulfill a criterion.
L values are set in the range 0.0 to 1.0; L=0.0
meaning no confidence and L=7.0 full
confidence that an alternative will fulfill a
particular criterion. K and L together represent
the total belief of an agent concerning the
alternatives.

The relationship between K and L variables
is modeled using Bayesian networks. In the
Bayesian Network shown in Figure 1 node Six
represents a satisfaction node, i.e. the certainty
that alternative j will satisfy criteria k according
to agent i. Node Ky has two degrees of
freedom (true, false) and Lk has only one
(true).

The probability distribution for the

satisfaction is given by:

P(ngk = yes) = OlH (KijkLg'/'k + (1 - K;‘/k )(1 - Lg/k ))

being o the normalization factor:

a=1/ H(K,-klf,k H(1=K;)(-L) +H(K-,-k(1 ~L)+(1=K;)L;0))

In previous equation K, Ly represent the
knowledge and confidence respectively that
alternative j fulfills criterion k£ according to
agent i. The expected value of an alternative is
given by:

E(4;) =2 W(C)P(Sy = yes)

Where W(C,) represents the criterion
preference model of an agent. The preference
model is a weight with range 0.0-1.0 that an
agent employs to indicate how important a
criterion is compared to all others. The
coordinating agent will select the alternative
with the highest expected value.

For a quantitative less is better criterion
type, the value of best is preferred to be closer
to min. Contrary, for a more is better criterion,
the best value of a criterion is preferred to be
closer to max. An agent uses a simple function
to convert an estimated value of best in a
quantitative criterion into its corresponding
evaluation of knowledge. This function maps
the range of values {min, best, max} into a
single knowledge value given by:

Kjip=1-(best-min)/2(max-min) for a less is better
criterion

K,ip = I-(max-best)/2(max-min) for a more is
better criterion

The confidence for quantitative criteria is
also determined using {min, best, max} values
according to the following equations:

Ly, = (max-best)/(max-min) for a less is better
criterion or

L,.ix = (best-min)/(max-min) for a more is better
criterion

Being max # min for both K and L equations
describing quantitative criteria.
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Figure 2 Participant agent decision-making architecture

Notice that an agent is enabled to use new
values for max and min instead of those sent
originally by the coordinator. This may occur
when an agent gets additional information from
the environment or its knowledge base indicates
that in some specific criterion-alternative pair
more accurate values should be used for min
and max. However, best should always be an
intermediate value in that range and is always
set by the evaluator agent. If an agent uses new
values for max and min, these values will be
sent to the coordinator agent jointly with its
evaluations of K and L. As explained in Section
3, the coordinator will use these values to
perform an evaluation of risk.

3. A FRAMEWORK FOR COLLABORATIVE
DECISION-MAKING

Before exercising the collaborative decision-

making mechanisms described in this paper, a

series of steps need to be performed by the

MAS. These steps are:

1. Agents start by identifying a potential to
solve collaboratively a problem.

2. A group of agents is formed with decision-
making purposes.

3. A coordinator agent generates alternatives
and criteria, sending the data to participant
agents.

Afterwards, during the iterative decision-

making process the next steps are performed:

1. Agents independently perform  their
evaluations on the alternatives assessing the
values of <KL W> and send those
evaluations to the coordinator.

Figure 3 Communication protocol between
coordinator and agents

2. The coordinator receives agent’s evaluations
and calculates the level of satisfaction for
each alternative, the risk, and consensus
level.

3. If a minimum consensus threshold has not
been reached on a particular alternative
and/or the risk obtained is too high, the
coordinator agent determines  which
alternatives are more susceptible of changing
a decision. Subsequently, it suggests
participant agents the actions that will likely
reduce risk and improve consensus level.
Otherwise, if the risk is low and consensus is
high on a particular alternative, the
coordinator agent selects the best alternative
and stops the decision making process.

4. Step 3 is repeated until the consensus level
has reached a minimum threshold.
However, when the consensus level does not
reach the minimum level, the coordinator
suggests agents to start a negotiation process
to resolve conflicting viewpoints.

Figure 2 shows the decision-making model
included in a participant agent’s architecture.

As Figure 2 shows, agents perform an
evaluation of their knowledge and confidence
regarding each criterion-alternative pair using
their preference model and knowledge base.
Quantitative criteria is processed to obtain the
values for <K,L> in the way described in
Section 2. These values are sent to the
coordinator. ~ The local planner uses the
alternative sent by the coordinator to execute
the appropriate set of actions.



An agent grades each criterion with respect

o . k(k-1)
to all other criteria, requiring 2
comparisons when k criteria are used.
Moreover, a pair-wise evaluation of

alternatives with k criteria requires K(/(/—1)
2

evaluations for a total of A((k-D+j(j-1)
2

pair-wise comparisons. To avoid the quadratic
explosion in pair-wise comparisons when a
relatively large number of criteria and
alternatives are used, the coordinator generates
a limited number of alternatives and criteria,
being the number of alternatives generated
larger than the number of criteriai.e. £ +1< ;.

As shown in [1], this assumption reduces
considerably the number of pair-wise
comparisons that each agent is required to
perform. In general it is important to reduce the
number of comparisons because the more
comparisons are, the higher the communication
bandwidth and the likelihood that erroneous
data is introduced.

Agents perform evaluations to generate
triplets <K,L,W> for each criterion-alternative
pair. Then, those evaluations are sent to the
coordinator. Figure 3 shows the protocol used
by the multiple agents when communicating
with the coordinator.

With the information received from
participating agents the coordinator builds
dynamically a Bayesian Network that is used to
calculate the level of satisfaction with which
each alternative fulfills the criteria.

Figure 4 shows the decision-making
architecture of the coordinator agent. As Figure
4 shows, the coordinator generates and sends
the set of alternatives and criteria that
participant agents will use to perform their
evaluations.  The alternatives and criteria
generated depend on the current status of the
task to be performed by the agents. A global
planner keeps track of the current status of a
task to make sure that agents reach the goals set
by the global planner. Bayesian networks are
used to model the uncertainty contained in the
decision-making process and to calculate the
satisfaction level with which every alternative
fulfills the criteria.  Sensitivity analysis is
performed by adding nodes to the Bayesian
network to determine which alternatives are
more susceptible in changing a decision. The
risk analysis module performs Monte Carlo
simulations on agents’ evaluation space to

calculate how much the satisfaction level of an
alternative changes with the current level of
uncertainty in data.

4. REACHING CONSENSUS AND
HANDLING RISK

The coordinating agent uses the data
received from participanting agents to calculate
the risk associated with each alternative. In a
quantitative criterion the range |max — min| is

directly proportional to the risk associated in
selecting an alternative. Risk is calculated by
randomly sampling each criterion alternative
pair using Monte-Carlo simulations.  For
qualitative criteria a uniform probability
distribution is employed.  For quantitative
criteria a Beta probability distribution was used
instead.

The  beta distribution (f(a,b)) was
implemented with parameters £(3.0, f{min,max))
and built from Gamma distributions using
Bla,b)=((a+b) /[(a)[(b))(1-x)*'x"!. Figure 5
shows the graph of the Beta distribution with
the quantitative {min,best,max} values used to
define its shape.

The downside risk is found by combining the
probability of being below the expected
satisfaction, multiplied by the consequence of
missing the ideal target value. This product is
then used to compute how much lower the
expected value might become if things do not
go as planned. Downside risk calculations are
performed for every alternative.

After assessing the risk, the framework
suggests the best course of actions that will
likely reduce risk using the rule-based expert
system. To perform this task two new extra
nodes are inserted in the Bayesian network
shown in Figure 1. One node is set up with
K=1.0, L=1.0 representing an “expert”
indicating that the alternative will fulfill the
criterion.  Additionally, the second node is
inserted with K=17.0, L=0.0 values. In this last
case the new node simulates another “expert”
indicating that the alternative will not fulfill the
criteria. Using this technique the rule-based
expert system located in the coordinator shown
in Figure 4 is able to determine quantitatively,
not only how much the satisfaction levels of an
alternative will change when the information of
an “expert” opinion is added, but also which
alternatives have the potential (and are more
susceptible) of changing a decision. Once this
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Figure 4 Coordinator's decision making
architecture

group of sensitive alternatives is detected, the
expert system will indicates to all agents that
further information on the sensitive alternatives
is required to reach the minimum threshold of
acceptable consensus and/or risk.

The level of consensus existing among the
agents is calculated by considering a
multidimensional space where all agents’
evaluations consisting of multiple <K,L> pairs
(one per criterion/alternative pair) are placed.
Then, the overall centroid (or mass center) of all
evaluations performed by all agents is
determined. The centroid of evaluations
corresponding to each agent is also calculated
separately. Finally, the average distance from
the centroid of every agent’s evaluations with
respect to the overall centroid representing all
agents’ evaluations is calculated. This last
value is the approximate measure used to
represent the level of consensus existing among
the group of agents.

The minimum threshold of consensus used
in our framework is arbitrarily selected as 80%.

5. CONCLUSIONS

In this paper we proposed a new approach to
reach consensus in collaborative decision-
making problems for MAS. Our proposal is
based on a hierarchical MAS organization in
which a coordinator agent maintains control of
the whole decision-making process.  The
coordinating agent tries to find iteratively the
best alternative that will fulfill all criteria using
all agents’ evaluations.

The framework proposed in this paper is
capable of processing quantitative and

80

60

40

20

min best max

Figure 5 Beta distribution used for quantitative criteria

qualitative criteria, while handling uncertainty
at same time. To assess the risk in performing a
decision,  Monte-Carlo  simulations  are
employed. These simulations are executed to
obtain the downside risks associated with
selecting an alternative. The effect of achieving
high risk on an alternative is to lower the
satisfaction level of such an alternative making
it less attractive for selection. When high risk
and low consensus are found in the decision-
making process, a rule-based expert system
included in the coordinator indicates the steps
that will likely reduce risk and increase
consensus among the agents. However, when it
is not possible to reach an adequate level of
consensus the coordinator agent suggests agents
to start a negotiation process to resolve their
differences. Finally, once conflicts are
resolved, the collaborative decision-making
process is continued iteratively until a low risk,
high consensus alternative is selected.

The proposed framework was tested in a
Java-based simulation environment. Currently
we are implementing the decision-making
modules and protocols described in the paper on
top of a FIPA-compliant multi-agent system.

Future work will address the problem of
implementing heuristics to generate values for
the knowledge and confidence variables, given
the knowledge base of an agent, a process
known as aggregation. In the current version of
the framework these values are statically
assigned for simulation purposes. Finally, we
are evaluating other coordination mechanisms
that could provide a more robust architecture for
our collaborative decision-making framework.
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