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ABSTRACT

In this paper, we investigate a reduced complexity approach to
rate-distortion optimized time-segmentation in audio coding. In-
stead of the conventional closed-loop approach for determining
the coding distortions, they are estimated from a set of features
extracted from the audio signal. Care is taken to ensure that prop-
erties such as convex and non-increasing rate-distortion curves car-
ries over from the training data to the estimated rate-distortion
pairs. With computational complexity reductions of a factor close
to 10, perceptual listening tests reveal a slight signal quality reduc-
tion, while maintaining a large improvement over fixed segmenta-
tion.

1. INTRODUCTION

Adaptive time-segmentation has been shown to be an efficient meth-
od for improving the rate-distortion trade-off in speech- and audio
coding [1], [2], [3]. These methods usually employ an analysis-by-
synthesis procedure in which full encoding-decoding operations
are required for each and every candidate segment, including those
not actually used in the final signal representation. This is neces-
sary in order to determine the distortion and rate if the segment is
used in the signal representation. The distortions are obtained by
explicitly comparing the encoded-decoded segments to the corre-
sponding original segments, and the optimal segmentation is then
found as the one minimizing the total distortion, usually subject to
a rate constraint. If the encoding-decoding processes are computa-
tionally extensive, as is the case e.g. in the psychoacoustic match-
ing pursuits (PMP) schemes of [4], [5], this may lead to practically
infeasible execution times, even for off-line applications such as
audio compression. However, [6] proposed a strategy for estimat-
ing, at low complexity, the distortion arising from coding a signal
segment. In [7], this approach was used to predict the optimal dis-
tribution of sinusoidal components in a fixed segmentation PMP
coder. In this work we shall use a slightly modified approach to
estimate the optimal time-segmentation in the same coder.

The rest of this paper is structured as follows: first, rate-distor-
tion optimized time-segmentation is reviewed in Section 2. Next,
Section 3 describes how to incorporate the distortion estimation
approach of [6] into such a scheme. Objective as well as subjective
results are given in Section 4 before Section 5 concludes on the
work.

This work was funded by the ARDOR (Adaptive Rate-Distortion Op-
timized sound codeR) project, EU grant no. IST–2001–34095.

2. RATE-DISTORTION OPTIMIZED
TIME-SEGMENTATION

The rate-distortion optimized time-segmentation algorithm of [1]
is based on the constrained optimization problem:

minimize : D(τ, c(τ))
s.t. : R(τ, c(τ)) ≤ RC .

(1)

Here, τ =
{
s1, s2, . . . , sσ(τ)

}
denotes the time-segmentation con-

sisting of σ(τ) variable length segments si, each having a length
equal to an integer number of grids (e.g. 5 ms). The vector c(τ) ={
c1(τ), c2(τ), . . . , cσ(τ)(τ)

}
denotes the coding templates, (i.e.

different ways of encoding each segment in a segmentation τ ). RC

is the target bit budget, whereas R is the total number of bits used
and D is the total distortion, the latter two found by summation
over the segments:

R(τ, c(τ)) =

σ(τ)∑
i=1

r(ci(τ)) and D(τ, c(τ)) =

σ(τ)∑
i=1

d(ci(τ)).

Here, r(ci(τ)) is the number of bits used for encoding segment
si using template ci(τ) and d(ci(τ)) is some measure of the dis-
tortion between the original segment and the one encoded using
template ci(τ). Usually, the constrained optimization problem (1)
is solved by recasting it as an unconstrained problem with cost-
function:

J(τ, c(τ)) = D(τ, c(τ)) + λR(τ, c(τ)). (2)

Now, by setting λ to some value (say λx) and minimizing J over
{τ, c(τ)} we will obtain a pair (Dx, Rx) optimal for λx. Thus, λ
can be iterated and J minimized in each step, until a rate R � RC

is obtained. In each iteration, the minimization of J is a two-step
procedure: first, the coding templates c�

i (τ) optimal for λx are
found for each segment:

∀i, τ : c�
i (τ) = arg min

ci(τ)

{d(ci(τ)) + λxr(ci(τ))} . (3)

By denoting j�
i (τ) = d(c�

i (τ)) + λr(c�
i (τ)), the optimal segmen-

tation τ� is the one minimizing the sum over j�
i (τ):

τ� = arg min
τ

σ(τ)∑
i=1

j�
i (τ). (4)

This minimization is carried out at reasonable complexity using a
dynamic programming technique, see [1] for details.
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The computational problems of the procedure described above
appears in (3): in order to find the optimal coding templates, we
need the distortion if the coding template is used in the signal rep-
resentation. Thus, we must encode all segments with all coding
templates, even for the segments and coding templates not used
in the final representation. If we denote the number of grids in
the signal by G and all segment lengths from 1 to G grids are al-
lowed, the total number of possible segments in the signal equals
K = G2+G

2
. Alternatively, if the maximum segment length is lim-

ited at L with G � L, K ≈ GL. This is in contrast to the number
of segments actually used in the signal representation, σ(τ) ≤ G.

The number and nature of the coding templates depend di-
rectly on the type of coder(s) employed. In the rest of this paper,
we shall focus on (psychoacoustic) MP-based coders, e.g. [4], [5],
[7]. In such a coder, the signal segments are iteratively decom-
posed into a weighted sum of basis functions. In each iteration, a
basis function is chosen from an over-complete dictionary as the
one minimizing a perceptual error norm (a distortion). In that the
representation of each basis function requires a certain amount of
bits, varying the number of components results in different cod-
ing templates with corresponding {r(ci(τ)), d(ci(τ))} pairs. Due
to the MP approach, these pairs will lie on a non-increasing (and
sometimes also convex) hull. Unfortunately, the PMP algorithm
is computationally extensive, primarily because accurate model-
ing of certain signal segments such as transients requires quite a
large number of iterations, (e.g. [7] applied 0-85 sinusoids in each
segment). Even with the efficient implementation of [5] requiring
3 FFTs per iteration, this results in up to 255 high-order FFTs for
each of the K frames; clearly, means for reducing this complex-
ity is called for. One way of doing so is based on the observation
that running the MP on all K possible segments is wasteful, be-
cause only σ(τ) of them are used in the final segmentation. This
motivates estimating the distortions d(ci(τ)) used in (3) instead of
calculating them explicitly.

3. DISTORTION ESTIMATION

The principle of [6] is to estimate the coding distortion from a
vector of features extracted from each candidate audio segment;
the computational complexity required to determine these features
should be low, or little complexity reduction is gained. Section 3.1
will account for the features explicitly used, but they should be
general signal describing ones, such as spectral information, pe-
riodicity, stationarity, power, etc. The P features are stacked in
a vector pi, i denoting the candidate segment index. Now, the
distortions arising if assigning 1, 2, ..., C components for repre-
senting the segment are added to this vector1:

oi =
[
d
(1)
i d

(2)
i · · · d

(C)
i pT

i

]T

=

[
di

pi

]
∈ R

C+P (5)

Now, from a set of training data (we used a subset of the SQAM
database [8]), a pdf in the form of a multivariate Gaussian mixture
is estimated:

oi ∼
M∑

m=1

wmN (µm,Σm), (6)

1Actually, the vector is built from normalized distortions, d
(c)
i /‖si‖2

2,
with the estimates being rescaled accordingly. This reduces the dynamic
range of the distortions and thus eases the statistical modeling to be de-
scribed in the following.

where M is the number of mixture components, wm denotes the
mixture weights (

∑M
m=1 wm = 1), and µm, Σm are the Gaussian

mean vectors and covariance matrices, respectively. wm, µm and
Σm are found using the expectation maximization algorithm [9],
with a model being build for each possible segment length. In the
following, we shall drop the subscript i leaving the frame index
implicit.

At this point, we have obtained a pdf in the form of a Gaussian
Mixture Model (GMM) describing the features and the distortion
arising from coding jointly. The task at hand is: given the features
extracted from a segment and the GMM, estimate the vector of
distortions. It can be shown that the conditional MMSE estimator
is of the form:

d̂ = E[d|p] =
M∑

m=1

w̃mµ̃m, (7)

where 0 ≤ w̃m ≤ 1 depends on p (see [6] for details), and

µ̃m = µm,d + Σm,dp (Σm,pp)−1 (
p − µm,p

)
, (8)

with µm,d ∈ R
C and µm,p ∈ R

P being sub-vectors of µm,

µm =

[
µm,d

µm,p

]
, (9)

whereas Σm,dp ∈ R
C×P and Σm,pp ∈ R

P×P are sub-matrices
of Σm,

Σm =

[
Σm,dd Σm,dp

Σm,pd Σm,pp

]
. (10)

In some cases, the approach reviewed above leads to a prob-
lem reported in [7], in that there is no guarantee that the estimated
distortion vector d̂ will be a non-increasing sequence. This leads
to certain problems, for example, the algorithm does not recog-
nize that adding sinusoidal components never leads to increased
distortion. However, this problem is easily circumvented by con-
fining the covariance matrices to a diagonal structure, implying
that Σm,dp = 0 so that (8) reduces to:

µ̃m = µm,d. (11)

Now, the estimator in (7) is a positively weighted sum of the GMM
mean sub-vectors µm,d and thus non-increasing if the individual
µm,d are. This is indeed true because in the EM-algorithm, the
µm updates are positively weighted sums of the training vectors
[9]. Thus, because the distortion vectors di extracted for training
are non-increasing, so are µm,d, and in turn d̂. Also, note that
convexity carries over in the same way, which is a coveted property
because it prevents ambiguity in the minimization (3).

Also, it should be noted that constraining the covariance matri-
ces to be diagonal has the beneficial side effect of significantly re-
ducing the computational complexity associated with finding w̃m

and µ̃m. Specifically, the main complexity in calculating w̃m

stems from evaluating M Gaussians in the GMM, which has com-
plexity O(MP 2) for full covariance matrices, but only O(MP )
for diagonals. Also for full covariance matrices, determining µ̃m

for all m using (8) has complexity O(MPD), whereas the diago-
nal case of (11) is cost free. On the other hand, a somewhat larger
number of mixtures M will be necessary to obtain an adequately
precise modeling.
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3.1. The feature vector

A problem not addressed in the preceding work is how to select
which features to include in the vector p. For this, a “deflation”
strategy is employed, the idea being to start out with a large num-
ber of parameters and then sequentially remove one at a time until
the estimation performance begins to degrade on a test set. Such
a large number of parameters requires many degrees of freedom
in the model, and we therefore used M = 320 mixture compo-
nents. The initial length P = 22 parameter vector contained the
parameters listed in Table 1. Note that some of the parameters are
redundant, for example both power and log-power are included.
However, it is not obvious which of these to use.

1. Signal power.
2. Number of zero-crossings.
3. Loudness (log-power).
4. A spectral flatness measure.
5. A spectral centroid measure.
6. A spectral bandwidth measure.
7. A LPC flatness measure.
8. A periodicity measure.

9.-20. 12 mel-cepstrum coefficients.
21. A power stationarity measure.
22. A spectral stationarity measure.

Table 1: The features included in the initial feature vector p.

An example illustrating the behavior of the deflation strategy
is shown in Figure 1. The left-hand plot seems to indicate that no
feature is much more important than any other; the estimated dis-
tortion MSEs obtained are quite similar. However, since the case
where the signal power is removed gives a slightly better overall
performance, this parameter is eliminated. Then, in the next iter-
ation, parameter number 3 (log-power) becomes very important,
since the information contained in this parameters is no longer re-
dundant with the rest. Also, this plot indicates that the next param-
eter to be removed from the model should be number 8, the pe-
riodicity measure. Using this approach, the features sequentially
removed from the parameter vector were the mel-cepstrum coeffi-
cients, the signal power, the periodicity measure, and the number
of zero-crossings, resulting in a final parameter vector length of
P = 8. It should be noted that different parameters (and coders)
could be applied for different segment lengths; doing so, however,
is beyond the scope of this paper.

4. EXPERIMENTS

In the following, experimental results will be presented with 4 dif-
ferent segment lengths being allowed in the segmentation: 10 ms,
20 ms, 30 ms and 40 ms (including 5 ms overlap). For fixed seg-
mentation, a window update rate of 15 ms was used, corresponding
to the 20 ms window in adaptive segmentation. Through informal
listening, these windows were found appropriate for the 30 kbps
target bit rate used. For further details, see [7].

An example of the optimal and the estimated segmentations is
shown in Figure 2 for a section of the SQAM “claves” signal. We
see that the estimation captures the onset, whereas the segmenta-
tion deviates in the more stationary signal areas. This is a typical
behavior that seems sensible, in that adaptive segmentation has its
greatest impact in non-stationary signal areas.
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Optimal segmentation

5.9 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8

x 10
4

−0.2

−0.1

0

0.1

0.2
Estimated segmentation

Samples

Figure 2: Comparison of the optimal segmentation and that yielded
by the proposed method. The vertical lines represent the segmen-
tation.

To access the perceptual degradations (if any) induced by the
proposed segmentation approach as compared to optimal segmen-
tation a MUSHRA [10] listening test was carried out. The test
set consisted of 6 different audio samples (3 single instrument, 1
solo, 1 orchestra, and 2 pop), none of which were included in the
training.

The samples were presented for the proposed method based on
estimated distortions (“estimated”), for fixed segmentation (“fixed”),
and for rate-distortion optimal segmentation (“optimal”). More-
over, signals low-pass filtered at 3.5 kHz, 7 kHz and 10 kHz were
included as anchors 1 to 3, whereas the original was included as a
hidden reference (HR). Averaged results for 8 listeners are shown
in Figure 3. Typically, the ratio between the total number of seg-
ments, K, and the number of segments actually used, σ(τ), lay
between 10 and 15.

5. CONCLUSION

The scores in Figure 3 indicate that the perceptual quality is slightly
degraded for the distortion estimation based approach as compared
to optimal segmentation. However, there is still a significant qual-
ity gain over fixed segmentation. These results should be com-
pared to computational complexity of the methods. While the op-
timal segmentation approach requires K executions of the PMP,
the distortion estimation based approach requires only σ(τ), with
the ratio K

σ(τ)
> 10. On top of this, the distortion estimation ap-

proach requires a feature vector extraction as well as the GMM-
based estimation procedure described in Section 3 for each of the
K segments. However, the complexity of these steps is low as
compared to the +200 FFTs required by the PMP, so realistically
the complexity reduction is in the neighborhood of 10. This is
supported by the observed Matlab execution times.
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Figure 3: Average scores of MUSHRA listening test. The vertical
lines indicate the 95% confidence intervals.


