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Abstract

Neural networks estimating conditional
distributions and their associated quantiles are
investigated in this paper. A basic network structure is
developed on the basis of kernel estimation theory, and
consistency property is considered  a mild set of
assumptions. A number of applications within statistics,
decision theory and signal processing are suggested.

1. Introduction

Relationships between random variables are most often
described by characteristic parameters such as mean
vectors and covariance matrices or in extraordinary cases
moments of higher order. When standard situations are
considered, for example, if all variables are jointly
Gaussian or when the conditional characteristics are linear
or low degree polynomial functions, that approach is to be
recommended. On the other hand when the situation is far
from the above, more general methods should be
considered. Statistical relationships are completely
described by the joint distribution of all the variables in
consideration, however in some cases it is appropriate to
partition the considered random variables into two groups.
One group of so called explanatory variables yielding
information about or explaining the variables in the
second group. From that point of view conditional
distributions as well as their associated quantiles are the
objects of interest. In some cases such conditional
distributions are sufficiently precisely described by
standard expressions with only a low number of
characteristic parameters to be estimated statistically. In
the remaining cases nonparametric methods including
neural networks may prove to be useful, and the purpose
of this paper is to develop a neural network applicable for
estimating conditional distributions and quantiles in the
general nonstandard situation.

Neural networks have in recent years developed into
powerful tools for solving optimization problems within

e.g. classification, estimation and forecasting. For the
majority of cases, the applied neural networks, from a
statistical point of view, solve conditional estimation
problems. The celebrated Back Propagation Error
algorithm used for training Feed Forward Neural
Networks is shown to be a special case of gradient
optimization in the sense of mean squared error [  Feed
Forward Neural Networks are analyzed in paper  for
consistent estimation of conditional expectation functions,
which optimize expected squared error. Optimal
classification is concerned with the problem of classifying
a set of objects, on the basis of feature measurements,
while obtaining a minimal probability of misclassification.
This problem is equivalent to conditional estimation, and
it is shown in work  that Feed Forward Neural
Networks estimate the optimal discriminating function,
when trained with the Back Propagation Error Algorithm.
In all of the above cases, some sort of optimization or
training algorithm is applied adjusting initially random
network parameters optimally  average loss functions
on a finite set of training data. A more constructive way to
follow is indicated in paper  where a Probabilistic
Neural Network for classification based on kernel
estimators is investigated, as well as in works  in
which a similar line is followed for proposing neural
networks estimating conditional expectation functions.
From a certain point of view, this strategy is the basis for
suggesting a large class of different neural network
architectures, including among others Localized Receptive
Fields  and Counter Propagation Networks  In this
paper such a constructive strategy is pursued in order to
design a Feed Forward Neural Network capable of
estimating conditional distributions.

2. Mathematical Preliminaries

Consider a real random variable w with a distribution
function  , and a number    Any real number q

fulfilling

 P
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is said to be a quantile of order p  If the distribution
function  is continuous and strictly monotonous, the
quantile of order p is uniquely defined for all values p by
equation (1). In general the p th order quantile q(p) can

be uniquely defined as follows

 =      l

Consider two real random variables w and v defined on a
common probability space with a joint distribution  on

the space  . Then the function     , exists

 section 33) such that
1. for every v   l  is a distribution function

on the real space,
2. for every A = and every measurable set B  

   =     l

B

The function is called the conditional distribution

function of the random variable w with respect to v. In the
case where the joint distribution  has a density

function  , a conditional density function  is given

as

for every v where the-denominator in the above formula is
 Then the conditional distribution function 

can be found explicitly by

 =   l

For any v    conditional quantile  of

order p can be uniquely defined as in the unconditional
case, i.e.

 =  I  P} l

The following equations

  = 4

    v) = P

are readily shown to hold in any point where  is a

continuous function of its first argument.
Generalization of the definition of the conditional

distribution function for  and w  is

straightforward, as of well as the conditional quantile 

for v   and w   . In the most general case, where

w  the quantiles q(p) and  are to be

defined as sets. That is omitted here.

3. Applications

Two applications of conditional distribution functions
and quantiles are considered below. One is a time-optimal
control problem from the area of decision theory, and the
other is the task of data compression in the field of digital
signal processing.

A. Time-optimal control

Let the        , here after referred

to as the loss function be defined by

 w) =
-a(W-w)  W-w S O

b ( W - w )  i f   

Obviously  w) = 0 for W = w , so the loss function

describes the losses incurred when the estimate W does not
equal the optimal value w. As seen from equation (9)
losses may depend strongly on the sign of estimation
error, depending on the values of the coefficients a and b.
If the optimal value w is a random variable with a
probability distribution  , the expected loss is given by

the so called Bayes loss function  defined as follows

 =   l

The value  simply constitutes  expected loss

when estimating w by the value W. Any real number 
such that

 

is called a Bayes estimator. When the loss function  is
defined by equation (9) it is readily shown that the Bayes
estimator equals the quantile of order

a
P a+b l

A practical example illustrating the relevance of
quantiles as Bayes estimators is described in paper  
where they are the solution of a time-optimal control
problem. A parameter w, representing motion resistances
in a mechanical system, is estimated by the value W,
which appear directly in the equations of a time-optimal
feedback controller. If W  w , overshoots occur which
increases the time of reaching the target proportionally to
W  w with a coefficient b. In the case where W  w , 
called sliding trajectories appear, also prolonging the
reaching period proportionally to w  W with a
coefficient a. The Bayes optimal estimate of the parameter

a
w therefore exactly constitutes a quantile of order 

When explanatory variables v are available the Bayes
estimator for the above loss function is constituted by the
conditional quantile  . In the time-optimal control
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problem, the vector v may contain disturbances possibly
influencing the resistances of motion, as for example
temperature or target position. Minimum expected
reaching time is then obtained for W =  .

B. Signal processing

When a finite capacity channel is used for data
transmission, coding is often provided for optimal channel
utilization. One example is the ADPCM  speech
coding used for digital data transmission in mobile
telephony. The objective is to transform a sequence of
mutually dependent random data      

with a certain distribution into a sequence

l **,uc_,, of mutually independent and

uniformly distributed data. The transformed data are then
quantified and transmitted across the line to the receiver
where they are decoded. ADPCM coding is designed on
the assumption that the uncoded data exhibit the
properties of linearly filtered white noise, in which case
coding can be performed by the inverse linear filter
removing the time correlation of the data. When the
uncoded data are not correlated but still strongly
dependent, linear filtering will of course work.

Assume that the sequence   is Markov, i.e.

F - F    =  
and that the conditional distribution function  is a

continuous function of its first variable. Then the sequence
{UC,  defined by

   

will be independent and  is uniformly distributed on

the interval  for all i. After quantization the sequence

 is transmitted. At the receiver side the original

sequence with quantization error 
���� be restored

     l

The coding scheme can directly be generalized to k th
order Markov processes, i.e. where:

F              

The above coding scheme is based on the assumptions that
the conditional distribution  is known in both ends of

the transmission line. Therefore means for transmitting
this knowledge without occupying any significant amount
of channel capacity is needed.

4. Neural Networks for Estimating
Conditional Distributions

Feed Forward Neural Networks are most frequently

trained by applying some sort of optimization procedure
like Back Propagation in order to set weights and offsets
optimally w.r.t. some objective function. In most cases the
objective function  the average of some loss function
on the available set of data. Thus the objective function
constitutes an estimate of the expected loss function, i.e.
the Bayes loss function, and the training procedure an
attempt to minimize the Bayes loss function. Successful
training will force the neural network output to estimate
the theoretical optimum, which for mean squared error is
the conditional mean, and for the loss function  defined in
formula (9) equals the conditional quantile.

In this section, a neural network for solving the more
general problem of estimating conditional distribution
functions, and their associated quantiles of any order. In
paper  a perceptron like structure is trained with Back
Propagation to reproduce so called fractional bins
representing the conditional density. Here the reasoning
follows the constructive line of works   and is based
on the theory of kernel estimation, which will be
introduced shortly below.

A. Kernel estimation

Let  in the following be a sequence of identically

distributed random variables with a common density  .

For any and   0 the density estimate

   can be defined by

where the volume function  expressed as

and the kernel function    obeys

    
for any bounded continuous density function h. The above
estimator has been investigated in paper  for the case
of the sequence   being i.i.d. (independent identically

distributed) random variables with a common continuous
density   . F o r   a n d   a s

m   the mapping is shown to be a pointwise
consistent estimator of the density  and its modes. By
interpreting the kernel function  as the nonlinear

function of a neuron, and the sequence  as a set of

observations serving as training data, it has been
demonstrated in work  how this estimator exhibits
properties equivalent to neural networks From a
computational point of view it possesses a massively
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parallel structure, which allows for high speed
implementation on dedicated hardware; functionally, it is
capable of learning general probabilistic information from
measured data. It should be pointed out, however, that the
number of neurons in the network defined from formula
(17) equals the number of data in the training set, and that
learning more or less takes place by memorizing data. In
that respect the network provides no data compression.

In papers   the estimator (17) was transformed to
compute conditional expectation functions and a structure
equivalent to the kernel smoother described in work 
was obtained. Here this transformation is directed towards
estimators of conditional distribution functions.

In the multivariable case the training data is a finite
sequence of the form   , where  denotes an

observation of ‘some observable explanatory variable. In
that case the multivariable density estimate  can be

1
  exp(-d) l

The above elaboration has been based on kernel
estimation of a joint density function  and leads to an

estimate of the conditional distribution  ; and

serves here merely as motivation to formula (22). In fact,
from definitions (24) and (25) it can be shown by fairly
standard means, on only a very mild set of assumptions,
that a slightly modified version of the mapping 

consistently estimates the distribution  , as stated

precisely in the following theorem, which is proved in
paper [ 

Theorem

Let  be a probability measure on the space  with

an associated distribution function  and define the
measure  on the real space by

given as

 .A conditional distribution estimate  can be obtained
A s s u m e  a discrete time random process

 to be such that empirical

distributions converge to the function  at every point

by subjecting the function h WV to a transformation
analogous to the one defined

d
equations (4) and  i.e.

of its continuity, i.e.  

     

for every continuity point  of the mapping   where the

function     is given as

which leads to the following closed form expression

 
m

 

� ��� 
1 if   0 and 00 otherwise .

Also let the conditional distribution function
F :    fulfill the following smoothness

condition

the antiderivative of the function

S(d)    .

  A scaled Gaussian density function may be proposed as a
candidate for the function  that is at any point  , where  continuous  its

 =  first argument. Then, for the estimator  defined by
where  .  denotes the Euclidean metric. This 

exhibits all properties required except that its
antiderivative is not computable in a closed form
expression. Therefore the function  can be chosen not
according to equation (23) but as a function exhibiting
equivalent properties and which is computable in a closed
form expression. The well known sigmoid function then
constitutes a natural choice, i.e.

  

support of the

m � ���

 

the following is true for any number v in the
measure  :

  =  .
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In above Theorem only a very general ergodic property
has to be fulfilled, requiring empirical measures of the
data sequence to converge to the limit measure 
which not even locally is assumed to possess a density
function. The conditional distribution function  needs

to vary smoothly  t. the explanatory variable v in the
sense stated in equation  which allows for almost any
degree of discontinuity w.r.t. the explained variable w.
The estimator is redefined in formula (30) from its

original definition in equation (22). The term  now
appears in the argument of the function  allowing for
convergence to points of discontinuity w.r.t. the explained
variable w. It should be noted that the Theorem is easily
generalized to arbitrary dimensions only by redefining the
function  to an arbitrary dimension D, i.e.

   .

For D =  the conditional quantile estimate  is
defined uniquely by

 Data compression

The neural network defined by equation (30) maps its
training data directly onto its network parameters
implying a number of neurons equal to the number of
training data m. At least in the signal processing
application discussed earlier some sort of efficient data
compression is needed for the network to serve its
purpose. Data compression is generally introduced by
replacing the estimator

modification 

 (d,v) =

F with its compressed

In this equation  denotes the number of neurons which is
considered to be a design parameter restricted by   m
in order to ensure a sufficient level of compression. The

parameters    are viewed adjustable

weights and offsets, subject to some training procedure
projecting the statistical information of the training data
to the network parameters. Two different procedures for
setting the parameters  are discussed below.

Algorithm 

l The parameters are initially drawn randomly

according to the joint density estimate  defined in

equation (20). For every i  1,. . .  , � is selected from
the numbers , . . .  with equal probability for all
values. The parameter  is then initially set by

 

where e is independent and Gaussian distributed with a

A/--rvariance 
2

l All parameters are then submitted to an LVQ
correction scheme:

 repeat
 for j = 

  t h e n

l 

until all parameters have stabilized.
The initial random setting according to the estimated
density produces a rather qualified starting guess for the
subsequent self organizing, which in turn diminishes the
randomness from the initial settings to a level fair to the
number of available training data n. That is the statistical
uncertainty of the compressed modification  (d,v)

will be comparable to that of the estimator   v) .

For the signal processing application discussed earlier
only the initial settings might be transmitted whereas the
subsequent LVQ correction were to be done independently
at transmitter and receiver ends respectively. Such an
approach closely resembles the ADPCM scheme
mentioned earlier and even generalizes certain elements of
that method.

Another approach to setting the parameters 

utilizes the estimator  as well as an analogous

estimator  , and is based on the following reasoning.

Let the function G :    be defined by

   
where q is a quantile associated to the distribution  and

 is a conditional quantile associated to the conditional

distribution  . If the random variables  and  are

independent and uniformly distributed on the interval
 , then the random variable  ,  is distributed

according to the function  on the space  . Also if

 is a sequence of finite subsets of the set  and

the empirical distributions of the points in 

converges weakly to the uniform distribution on the set

 1  then the empirical distributions of the random

variables converge weakly to the distribution

�� 
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function  . For example  might be crossing points

on rectangular grids with gridsizes converging to zero.
These properties are used in Algorithm 2 to make network
parameters imitate the empirical distributions of the data.

Algorithm 2:

l Select  ,  = 1,. . .  equidistantly on the interval

  .

l Let =  for  =  .

l Select  , j =  equidistantly on the interval

 1 .

l for  = 1 : 

 for j= 1: 

 

 

   

The parameter setting scheme above can be generalized to
arbitrary dimensions but it is not recommended for high
dimensionality as the computational effort tends to grow
exponentially with dimension. The advantage of this
second approach for parameter setting is that constitutes a
deterministic mapping from the available training data
onto the network parameters, which makes it feasible for
analysis. Convergence properties for the compressed
estimator could be stated along the same line as for

the estimator  . The possibility for such analysis is

only mentioned at this point, whereas the analysis itself is
not presented in this paper.

5. Conclusion

A neural network for estimating conditional
distributions and their associated quantiles has been
constructed in the present paper. Although the network is
designed on the basis of kernel estimation of joint
probability density functions, theory has been presented
showing the network to be valid in more general settings,
where only a smoothness condition w.r.t. the dependence
on the explanatory variable, as well as a very general
ergodic property of the training data have to be fulfilled.

The problem of estimating conditional quantiles has
been related to Bayes estimation in the case of a special
asymmetric loss function feasible for application within a
variety of areas in engineering, as well as science and
economics. An example from the area of time-optimal
control is briefly discussed.

An application of the presented neural network within
digital signal processing has been suggested. A scheme for
encoding and decoding a sequence of data for optimal

channel utilization is presented, along with two algorithms
for training the network parameters before and during
data transmission.
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