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ABSTRACT

The extrinsic information transfer (EXIT) chart describes
the input-output behavior of a decoder by means of the map-
ping from a-priori information and channel information to
extrinsic information. In this paper, we consider single par-
ity check and repetition codes over binary-input symmet-
ric memoryless channels. Using the concept of information
combining, we derive bounds on the extrinsic information
for these codes, which depend only on the a-priori informa-
tion and on the channel information, but not on the channel
models. The bounds are applied to the EXIT charts of these
codes and to the EXIT charts of low-density parity-check
codes.

1. INTRODUCTION

Extrinsic information transfer (EXIT) charts have shown to
be a powerful tool for analysis and design of iteratively de-
codable channel codes [1, 2]. These charts show for each
constituent decoder the mapping from a-priori information
to extrinsic information, called EXIT function. The mutual
information of the communication channel, denoted as chan-
nel information, is used to parameterize the curves.

Since a decoder combines the a-priori information and
the channel information to the extrinsic information, decod-
ing may be interpreted as information processing. The com-
bining of mutual information is called information combin-
ing [3].

For given a-priori information and channel information,
the combined information can be computed exactly if models
for the a-priori channel and for the communication chan-
nel are assumed. Often, the binary-input additive white
Gaussian noise (AWGN) channel is applied as channel model
(e.g. [1,2]). On the other hand, bounds on the combined in-
formation can be given, if the a-priori channel and the com-
munication channel are only required to be symmetric and
memoryless.

The concept of bounding combined information was in-
troduced in [4] for two binary-input symmetric memoryless
channels having the same input. In this paper, we general-
ize this concept to give bounds on the extrinsic information
for single parity check codes and for repetition codes. As
applications, we consider analytically the EXIT charts of
these codes and the EXIT charts of low-density parity-check
codes. Using [4,5] as a starting point, similar concepts were
independently developed in [6], recently.

This paper is organized as follows: In Section 2, the de-
coding model is introduced. In Section 3, bounds on the ex-
trinsic information are derived for single parity check codes
and for repetition codes. These bounds are applied in Sec-
tion 4 to EXIT charts for these codes and to EXIT charts
for LDPC codes. Section 5 summarizes our results.

2. DECODING MODEL

Throughout this paper, random variables are denoted by up-
percase letters, and realizations are denoted by lowercase let-
ters. For a vector a = [a1, . . . , aJ ], we adopt the short-hand
notation a\i := [a1, . . . , ai−1, ai+1, . . . , aJ ].

Consider a single parity check code or a repetition
code of length N with equiprobable code words x =
[x0, x1, . . . , xN−1] ∈ B

N , B := {−1,+1}. The noisy ob-
servation of code bit Xi is denoted by Yi, Yi ∈ R, and the
channel between this code bit and its observation is denoted
by Xi → Yi, i = 0, 1, . . . , N−1. These channels are assumed
to be independent, and they are assumed to be binary-input
symmetric memoryless channels. In Fig. 1, the code con-
straints and the transmission channels Xi → Yi are illus-
trated for N = 4. The mutual information of the channel
Xi → Yi is called intrinsic information about code bit Xi:
Iint,i := I(Xi;Yi).

In an iterative decoder, a constituent decoder may see
two types of channels. On the one hand, there is the com-
munication channel; its mutual information is called channel
information Ich. On the other hand, there is the virtual
channel between a code bit and the soft estimate, provided
by another constituent decoder and used as a-priori value;
the mutual information of this “a-priori channel” is called
a-priori information Iapri. Thus, we have Iint,i = Ich if the
channel Xi → Yi is the communication channel, and we have
Iint,i = Iapri if the channel Xi → Yi is the a-priori channel.
Let Iapri denote the index set of the code bits, about which
we have a-priori information.

For each code bit Xi, i ∈ Iapri, the decoder computes the
extrinsic log-likelihood ratio (LLR) [7, 8]:

wi := ln
Pr(Xi = +1|Y \i = y\i)

Pr(Xi = −1|Y \i = y\i)
,

where ln(.) denotes the natural logarithm. Using LLRs, these
values can easily be computed using the boxplus operator for
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Figure 1: (a) Single parity check (SPC) code and (b) repe-
tition (REP) code of length N = 4.



the single parity check code, and using addition for the rep-
etition code [8]. We define the extrinsic information about
code bit Xi as

Iext,i := I(Xi;Wi).

It can be shown that I(Xi;Wi) = I(Xi; Y \i), because an
extrinsic LLR is basically a special a-posteriori LLR [9]. The
average extrinsic information about code bits in Iapri is called
extrinsic information [1, 2]:

Iext :=
1

|Iapri|

X

i∈Iapri

Iext,i.

As we consider only single parity check codes and repetition
codes, we have obviously Iext = Iext,i for all i ∈ Iapri. The
EXIT function plots the extrinsic information versus the a-
priori information. If channel information is available, i.e.,
if |Iapri| 6= N , it is used to parameterize the EXIT functions.

As mentioned above, we restrict ourselves to binary-input
symmetric memoryless channels (BISMCs). Examples for
BISMCs are the binary symmetric channel (BSC), the bi-
nary erasure channel (BEC), and the binary-input AWGN
channel. In the following, we shortly summarize definitions
and properties of BISMCs given in [4].

Let X → Y denote a BISMC with input X ∈ X := B

and output Y ∈ Y ⊆ R. The transition probabilities of
the channel are given by pY |X(y|x), denoting the probability
density function for continuous output alphabets and de-
noting the probability mass function for discrete output al-
phabets. Since the channel is symmetric, we can assume
pY |X(y|x) = pY |X(−y| − x) for all x ∈ X and for all y ∈ Y

without significant loss of generality.
A BISMC can be separated into subchannels which are

BSCs. For this separation, we define the subchannel indica-
tor J := |Y |, where J ∈ J := {y ∈ Y : y ≥ 0}. Thus, for
j > 0, the channel X → Y |J = j is a BSC with crossover
probability ε(j) := pY |X,J (−j| + 1, j). For j = 0 this chan-
nel is a BEC with erasure probability 1; but without loss
of generality, we can interpret this channel as a BSC with
crossover probability ε(0) := 1/2.

As all subchannels are BSCs, the mutual information of
the subchannel defined by J = j can be written as

I(j) := I(X;Y |J = j) = 1 − h(ε(j)),

where h(ξ) := −ξ ld ξ − (1 − ξ) ld(1 − ξ), ξ ∈ [0, 1], denotes
the binary entropy function. Let further h−1(η), η ∈ [0, 1],
denote the inverse of h(ξ) for ξ ∈ [0, 1/2]. The mutual in-
formation I of the BISMC can be obtained by taking the
expectation of the mutual information of the subchannels:

I := I(X;Y ) = I(X;Y |J)

= E
j∈J

{I(X;Y |J = j)} = E
j∈J

{I(j)}.

This concept for separation of BISMCs into BSCs can
be generalized to channels with vector-valued outputs. Let
X → Y denote a BISMC with input X ∈ X := B and output
Y = [Y1, Y2, . . . , Yn], with Yi ∈ Yi ⊆ R, i = 1, 2, . . . , n.
Using J1 := {y ∈ Y1 : y ≥ 0} and J := J1×Y2×Y3×· · ·×Yn,
we define the vector-valued subchannel indicator J ∈ J as
J := j for y ∈ {j,−j}. Then, the crossover probability and
the mutual information of each subchannel X → Y |J = j
can be defined in a similar way as above.

The separation of a BISMC into subchannels which are
BSCs is applied in the following section.

3. BOUNDS ON EXTRINSIC INFORMATION

First, we introduce two functions which allow us to write
the bounds in a compact form. For each function we give an
interpretation.

Definition 1
Let ξ1, ξ2, . . . , ξn ∈ [0, 1], n ≥ 1. We define the binary
information function for serial concatenation for n = 1 as
f ser
1 (ξ1) := ξ1, for n = 2 as

f ser
2 (ξ1, ξ2) := 1 − h

`

(1 − ε1)ε2 + ε1(1 − ε2)
´

,

and for n > 2 as

f ser
n (ξ1, ξ2, . . . , ξn) := f ser

2

`

ξ1, f
ser
n−1(ξ2, ξ3, . . . , ξn)

´

,

where εi := h−1(1 − ξi) for i = 1, 2, . . . , n.

The meaning of this function is as follows: Consider n in-
dependent BSCs, each having mutual information Ii, i =
1, 2, . . . , n. Let these BSCs be serially concatenated such
that the output of one channel is equal to the input of the
following; let further the input of the first channel be uni-
formly distributed. Then, the mutual information between
the input of the first channel and the output of the last chan-
nel is given by f ser

n (I1, I2, . . . , In).

Definition 2
Let ξ1, ξ2, . . . , ξn ∈ [0, 1], n ≥ 1, and let r = [r1, r2, . . . , rn],
ri ∈ B. We define the binary information function for par-
allel concatenation as

fpar
n (ξ1, ξ2, . . . , ξn) := −

X

r∈Bn

ψ(r) ldψ(r) −
n
X

i=1

(1 − ξi)

with ψ(r) := 1
2

“

Qn

i=1 ϕi(ri) +
Qn

i=1

`

1 − ϕi(ri)
´

”

, where

ϕi(ri) := εi for ri = +1 and ϕi(ri) := 1 − εi for ri = −1,
and εi := h−1(1 − ξi) for i = 1, 2, . . . , n.

The meaning of this function is as follows: Consider n in-
dependent BSCs, each having mutual information Ii, i =
1, 2, . . . , n. Let the inputs of these channels be the same
(this is called parallel concatenation of these channels), and
let the inputs be uniformly distributed. Then, the mutual
information between the input and the vector comprising the
outputs of all channels is given by f par

n (I1, I2, . . . , In).
For the following two theorems, we use the notation in-

troduced in Section 2. The theorems give bounds on the
extrinsic information about code bit X0 using only the in-
trinsic information about the other code bits. The proofs of
the theorems are based on the separation of BISMCs into
BSCs. We consider first single parity check (SPC) codes and
then repetition codes.

Theorem 1 (Extrinsic Information for SPC Codes)
For a single parity check code of length N , the extrinsic
information about code bit X0 is bounded as:

Iext,0 ≥ Iint,1Iint,2 · · · Iint,N−1,

Iext,0 ≤ f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1).

The lower bound is achieved if all channels are BECs, and
the upper bound is achieved if all channels are BSCs.

The proof of the theorem can be found in [10].

Theorem 2 (Extrinsic Information for Rep. Codes)
For a repetition code of length N , the extrinsic information
about code bit X0 is bounded as:

Iext,0 ≥ f par

N−1(Iint,1, Iint,2, . . . , Iint,N−1),

Iext,0 ≤ 1 − (1 − Iint,1)(1 − Iint,2) · · · (1 − Iint,N−1).

The lower bound is achieved if all channels are BSCs, and
the upper bound is achieved if all channels are BECs.



Note that BSCs lead to the lower bound for repetition
codes but to the upper bound for single parity check codes;
for BECs, the reverse holds.

Due to the limited space, we cannot give the complete
proof. Instead, we would like to point out the basic ideas:
First, we interpret the channel between code bit X0 and the
channel outputs Y1, Y2, . . . , YN−1 as the parallel concatena-
tion of the channel X1 → Y1 and the channel Z → Y [2,N−1],
where X1 = X0 due to the repetition code and Z := X0

by definition. Then, the extrinsic information about code
bit X0 is a combination of the intrinsic information about
code bit X1, Iint,1, and the intrinsic information about bit Z,
Iint,Z := I(Z; Y [2,N−1]). The channel X1 → Y1 is a BISMC
by definition, and the channel Z → Y [2,N−1] can easily be
seen to be also a BISMC. Thus, we can apply methods sim-
ilar to that in [4], but we have to take into account that
Z → Y [2,N−1] is a BISMC with vector-valued output.

4. BOUNDS ON EXIT FUNCTIONS

The bounds on the extrinsic information, given in the previ-
ous section, depend only on the intrinsic information about
the code bits. As discussed in Section 2, for a constituent de-
coder of an iterative decoder, the intrinsic information about
a code bit is either equal to the channel information Ich, or
it is equal to the a-priori information Iapri. Thus, we can
directly apply the bounds to the EXIT charts.

As single parity check codes and repetition codes are
(short) block codes, they are usually used as constituent
codes in concatenated coding schemes in the following way:
For encoding, the whole bit sequence is divided into blocks,
and the blocks are encoded separately. For decoding, each
block of coded bits corresponding to one code is decoded
separately. In the following, we assume that only one type
of code (e.g., a (4, 3, 2) single parity check code) is used at
the same time. Then, the decoder for the whole set of codes
can be characterized by the decoder for only one code.

4.1 Single Parity Check Codes

Consider first single parity check codes used as outer codes
in a serially concatenated coding scheme. In this case,
the decoder for one code operates on a-priori information
about all code bits, i.e., |Iapri| = N and Iint,i = Iapri for
i = 0, 1, . . . , N − 1. Observing that Iext,i = Iext for i ∈ Iapri,
we have from Theorem 1:

Iext ≥ (Iapri)
N−1,

Iext ≤ f ser
N−1(Iapri, Iapri, . . . , Iapri). (1)

Consider now single parity check codes used as inner
codes in a serially concatenated coding scheme, where only
the parity bits XN−1 are transmitted over the communica-
tion channel. Then, the decoder for one code operates on
channel information about code bit XN−1, Iint,N−1 = Ich,
and a-priori information about the other code bits, Iint,i =
Iapri for i = 0, 1, . . . , N − 2. Observing that Iext,i = Iext for
i ∈ Iapri, and using Theorem 1, we get:

Iext ≥ Ich · (Iapri)
N−2,

Iext ≤ f ser
N−1(Ich, Iapri, . . . , Iapri). (2)

The bounds given in (2) are depicted in Fig. 2. Obvi-
ously, the extrinsic information cannot become larger than
the channel information, even if the a-priori information is
equal to 1.

4.2 Repetition Codes

Bounds on the extrinsic information for repetition codes can
be given by means of Theorem 1. When used as outer codes
in a serially concatenated coding scheme, the decoder for one
code operates on a-priori information about all code bits.
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Figure 2: Bounds on the EXIT functions for inner single par-
ity check codes of length N = 4 for several values of channel
information Ich. (Upper bounds: solid line; lower bounds:
dashed line. Mutual information is given in bit/use.)

This is for example the case in nonsystematic repeat accu-
mulate codes [11,12]. Thus, we obtain the bounds:

Iext ≥ f par

N−1(Iapri, Iapri, . . . , Iapri),

Iext ≤ 1 − (1 − Iapri)
N−1. (3)

The corresponding EXIT charts are depicted in Fig. 3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

I
e
x
t

Iapri

N = 2
N = 4
N = 8
N = 16

Figure 3: Bounds on the EXIT functions for outer repetition
codes of several code lengths N . (Upper bounds: solid line;
lower bounds: dashed line. Mutual information is given in
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In systematic repeat accumulate codes, some code bits of
the outer repetition codes are directly transmitted over the
communication channel [11,12]. This motivates the following
model: Let us assume that the decoder for one code operates
on channel information about code bit XN−1 and on a-priori
information about the other code bits. (This is the same
situation as in the case of inner single parity check codes, as
discussed above.) Accordingly, the bounds on the extrinsic
information are given as:

Iext ≥ f par

N−1(Ich, Iapri, . . . , Iapri),

Iext ≤ 1 − (1 − Ich)(1 − Iapri)
N−2. (4)



4.3 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes (see e.g. [13,14]) are
an alternative to parallel and serially concatenated codes (see
e.g. [1, 2] and the references therein). Regular LDPC codes
are defined by the variable node degree dv and the check node
degree dc, giving the number of ones per column and per
row in the parity check matrix, respectively. LDPC codes
are decoded using the message passing algorithm on their
factor graph, comprising variable nodes and check nodes (see
e.g. [15]). The EXIT chart method may be used to determine
whether decoding of an LDPC code (of infinite code length)
converges for a certain communication channel.

The decoding operation in a variable node is equiva-
lent to computing extrinsic LLRs for a repetition code of
length N = dv + 1, where the decoder has channel infor-
mation about one code bit and a-priori information about
the other code bits. Accordingly, we can give bounds on the
EXIT functions using (4). Similarly, the decoding operation
in a check node is equivalent to computing extrinsic LLRs
for a single parity check code of length N = dc, where the
decoder has a-priori information about all code bits. Thus,
we can give bounds on the EXIT functions using (1).
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For illustration, we consider the simple example of an
LDPC code with variable node degree dv = 3 and check node
degree dc = 4, having design rate R = 1/4. The EXIT chart
of this code is depicted in Fig. 4 for two values of channel
information. (The curves for the check node are flipped.) For
Ich = 0.28, the lower bound for the check node EXIT function
and the upper bound for the variable node EXIT function
touch each other. Thus, the decoder can never converge for
Ich < 0.28. Accordingly, this code is not capacity achieving
for any communication channel which is a BISMC, because
R < 0.28. For Ich = 0.40, the upper bound for the check node
EXIT function and the lower bound for the variable node
EXIT function touch each other. Accordingly, the decoder
will converge for sure if Ich > 0.40.

Thus, Theorem 1 and Theorem 2 allow us to give a
necessary condition and a sufficient condition for conver-
gence. These conditions are valid for all a-priori channels
that are BISMCs and for all communication channels that
are BISMCs. On the other hand, the conventional EXIT
chart method relies on a specific model for the a-priori chan-
nel (often the binary-input AWGN channel is applied), which
is usually only an approximation of the actual a-priori chan-
nel. Hence, convergence conditions derived from the conven-
tional EXIT chart method cannot guaranteed to be strict.

5. SUMMARY

In this paper, we presented bounds on the extrinsic informa-
tion for single parity check codes and for repetition codes,
which are valid for all binary-input symmetric memoryless
channels. These were applied to EXIT charts for these codes
and for LDPC codes. As opposed to the conventional EXIT
chart method, no specific channel models are necessary.
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