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Abstract

This paper proposes and evaluates the
k-greedy equivalence search algorithm (KES)
for learning Bayesian networks (BNs) from
complete data. The main characteristic of
KES is that it allows a trade-off between
greediness and randomness, thus exploring
different good local optima when run repeat-
edly. When greediness is set at maximum,
KES corresponds to the greedy equivalence
search algorithm (GES). When greediness is
kept at minimum, we prove that under mild
conditions KES asymptotically returns any
inclusion optimal BN with nonzero probabil-
ity. Experimental results for both synthetic
and real data are reported showing that KES
finds a better local optimum than GES con-
siderably often. Additionally, these results
illustrate that the number of different local
optima is usually huge.

1 INTRODUCTION

Learning Bayesian networks from data has been widely
studied for the last few years. Two approaches to
learning have been developed: one tests conditional
independence constraints while the other searches the
space of models using a score. In both of these frame-
works asymptotically optimal learning algorithms have
been developed under the faithfulness assumption, the
PC algorithm (Spirtes et al. 1993) for the constraint
based approach and the greedy equivalence search al-
gorithm (Chickering 2002) for the space search ap-
proach. In this paper we deal with the space search
approach, usually called model selection.

A model selection procedure usually consists of three
components: (1) a neighborhood, (2) a scoring crite-
rion and (3) a search strategy. The neighborhood of a
model restricts the search to a small part of the search

space around that model, usually defined by means
of local transformations of the model representative.1

The scoring criterion evaluates the quality of a model
and it is usually required to be score equivalent, locally
consistent and decomposable. The search strategy se-
lects a new model, from those in the neighborhood of
the current best model, based on the scoring criterion.

Chickering (2002) shows that the greedy equivalence
search algorithm (GES), using the inclusion bound-
ary neighborhood and a locally consistent scoring cri-
terion, is asymptotically optimal under the faithful-
ness assumption. Several of these assumptions are
not strictly necessary to obtain the optimality: the
neighborhood used can be slightly reduced, the faith-
fulness assumption is replaced by a weaker assump-
tion, namely the composition property assumption, in
(Chickering and Meek 2002) yielding inclusion optimal
GES and, finally, the greediness of GES is not needed.

The same optimality result as for GES holds for any
BN learning algorithm that, using the inclusion bound-
ary neighborhood and a locally consistent scoring cri-
terion, strictly increases the score in every step and
stops when there is no model with a higher score in
the neighborhood of the current best model. In other
words, GES chooses in every step the best scoring
neighbor of the current best model, while choosing any
of its neighbors that are better than the current best
model is sufficient for asymptotic optimality. Thus,
the most we can relax the greediness of GES in favor
of randomness while keeping the optimality is what we
call the stochastic equivalence search algorithm (SES).
SES randomly selects in every step a model, from those
in the inclusion boundary neighborhood of the current
best model, with higher score than the current best

1We completely leave out the question of the represen-
tation of the model. It can be an acyclic directed graph,
an essential graph, a pattern or even a largest chain graph.
The representation is not crucial, even though some rep-
resentations are more efficient than others for generating
some neighborhoods.



model. It stops when there is no neighbor better than
the current best model.

A natural generalization of both SES and GES con-
sists in making the degree of greediness a parameter
of the learning algorithm. We call this algorithm the
k-greedy equivalence search algorithm (KES), where
the parameter k specifies the degree of greediness. SES
and GES are, therefore, special cases of KES. KES
combines the greedy bias towards promising solutions
of GES with the randomness of SES, which enables
it to visit different local optima when run repeatedly.
Consequently, KES can outperform GES in practice,
as it is known that the behavior of the latter may
be suboptimal if several locally optimal models exist
(Chickering and Meek 2002).

In the next section we introduce basic concepts of
probability distributions, Bayesian network models
and their learning. In Section 3 we define KES and
prove some theoretical results. Section 4 describes our
implementation of KES, the data we use in the ex-
periments and the results obtained. We conclude in
Section 5.

2 BASIC CONCEPTS

Throughout the paper the symbol V denotes a
nonempty finite set of discrete variables that are iden-
tified with nodes of graphs. A directed graph G over a
set of nodes V is specified by a collection of arcs AG,
i.e. a collection of ordered pairs of distinct nodes in V .
A directed graph G is an acyclic directed graph (DAG)
if there is no directed cycle formed by the arcs in G.
If there is an arc X → Y in G, then the node X is
a parent of the node Y . The set of parents of Y in
G is denoted by PaG(Y ) and when the graph is clear
from context by Pa(Y ) only. The union of a node
X and its parents is called a family and is denoted
Fa(X) = {X} ∪ Pa(X). An arc X → Y is covered in
a DAG G if Pa(Y ) = Fa(X) in G. For every DAG
G there exists a causal order CO(G) of the nodes V
such that X precedes Y in CO(G) if X → Y in G. We
denote by Pre(X) the set of nodes that precede the
node X in a causal order.

A Bayesian network (BN) is a pair (G, θ), where G is a
DAG and θ are parameters specifying the conditional
probability distribution for each node X ∈ V given
its parents, p(X|Pa(X)). A BN represents a joint
probability distribution p(V ) through the factorization
p(V ) =

∏
X∈V p(X|Pa(X)). A BN model M(G) is the

set of all the joint probability distributions p(V ) that
can be represented by a parameterization θ of the BN
(G, θ).

Model M1 includes model M2, denoted M2 ⊆ M1, if

for every parameterization θ2 of M2 there exists a pa-
rameterization θ1 of M1 that represents the same joint
probability distribution over the (observed) variables
V . Two models M1 and M2 are the same if M1 in-
cludes M2 and M2 includes M1, i.e. M1 = M2. M1

strictly includes M2, denoted M2 ⊂ M1, if M2 ⊆ M1

and M1 6= M2. Two DAGs G1 and G2 are equivalent if
they represent the same model, i.e. M(G1) = M(G2).
It is shown by Chickering (1995) that two DAGs G1

and G2 are equivalent iff there is a sequence of covered
arc reversals that converts G1 into G2. A model M is
inclusion optimal w.r.t. a joint probability distribu-
tion p if M includes p and there is no model strictly
included in M that includes p.

All the joint probability distributions in a BN model
M(G) satisfy certain conditional independence con-
straints among the variables that can be read from the
DAG G by means of d-separation, one says that they
are globally Markov w.r.t. G. See Lauritzen (1996) for
the definition of d-separation. Joint probability distri-
butions that do not satisfy any other conditional inde-
pendence than those enforced by d-separation in G are
called faithful to G. Note that among others the condi-
tional independencies X⊥⊥Pre(X)\Pa(X)|Pa(X) for
all the nodes X ∈ V are enforced by d-separation in
G for any causal order CO(G) in G. A joint probabil-
ity distribution p that satisfies these conditional inde-
pendencies is said to satisfy the local ordered Markov
property w.r.t. CO(G) (Cowell et al. 1999), and it is
included in the model M(G), i.e. p ∈ M(G).

Conditional independencies holding in a joint proba-
bility distribution satisfy semi-graphoid axioms: triv-
iality X ⊥⊥ ∅|Z, symmetry X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X|Z,
decomposition X ⊥⊥ Y U |Z ⇒ X ⊥⊥ Y |Z, weak union
X⊥⊥Y U |Z ⇒ X⊥⊥Y |ZU and contraction X⊥⊥Y |ZU∧
X ⊥⊥U |Z ⇒ X ⊥⊥ Y U |Z. Note that from contraction,
weak union and decomposition follows the so called
block independence lemma X ⊥⊥ Y |ZU ∧ X ⊥⊥ U |Z ⇔
X ⊥⊥ Y U |Z. In addition, any joint probability dis-
tribution faithful to some DAG (as well as many
more distributions) satisfies the composition property
X⊥⊥Y |Z ∧X⊥⊥U |Z ⇒ X⊥⊥Y U |Z.

One uses data to select among different models accord-
ing to some scoring criterion that assigns a score S(M)
to a model M . Sometimes, it is convenient to assign
a score S(G) = S(M(G)) to a representative DAG of
the model, too. If a scoring criterion assigns the same
value to all the DAGs representing the same model,
then we say that the scoring criterion is score equiva-
lent. A scoring criterion is locally consistent if the score
assigned to a DAG G for some data i.i.d. sampled from
a joint probability distribution p asymptotically al-
ways increases by removing an arc in G, unless this arc
removal adds a conditional independence constraint to



the model that does not hold in p. A scoring criterion
is decomposable if it can be expressed as a sum over
all the nodes X ∈ V of some function of their families
Fa(X). We consider in this paper the two most com-
mon scoring criteria, namely the Bayesian information
criterion (BIC) and the Bayesian marginal likelihood
with “uniform” Dirichlet prior (BDeu). Both are score
equivalent, locally consistent and decomposable.

The inclusion boundary IB(M1) of a model M1 is the
union of the lower and upper inclusion boundaries,
LIB(M1) and UIB(M1), respectively. LIB(M1) is
the set of models M2 that are strictly included in
M1 and such that no model strictly included in M1

strictly includes M2. Likewise, UIB(M1) is the set
of models M2 that strictly include M1 and such that
no model strictly including M1 is strictly included in
M2. IB(M(G)) is characterized by Chickering (2002)
to be the set of models represented by all those DAGs
that can be obtained by adding or removing a single
arc from any DAG G∗ equivalent to G. A more com-
plex characterization of the inclusion boundary of a
BN model, which enables an efficient generation of the
inclusion boundary, can be done using essential graphs.

Theorem 1 (Chickering 2002, Lemmas 9 and 10)
The greedy equivalence search algorithm (GES) us-
ing inclusion boundary neighborhood, locally consistent
scoring criterion and fully observed learning data i.i.d.
sampled from a joint probability distribution faithful to
a DAG G asymptotically always discovers the model
M(G).

The version of GES we use in this paper considers in
each step the whole inclusion boundary of the current
best model and is described as a variant of the original
GES in (Chickering 2002). The original version of GES
(Meek 1997) is a two-phase algorithm using first only
the upper inclusion boundary and afterwards only the
lower inclusion boundary. The theorem above holds
for both versions of GES. Moreover the two algorithms
usually proceed in exactly the same way in practice.
Thus we use the conceptually simpler alternative, de-
spite the original GES is closer to the optimality proof
and performs slightly less operations. Note that even
the original GES does unnecessarily many operations
in the first phase. One does not have to use the whole
upper inclusion boundary, it is enough to be able to
add a single arc for any pair of non-adjacent nodes.

As the faithfulness assumption is not realistic, Chick-
ering and Meek (2002) propose replacing it by a weaker
assumption, the composition property assumption.

Theorem 2 (Chickering and Meek 2002, Theorem 4)
The greedy equivalence search algorithm (GES) us-
ing inclusion boundary neighborhood, locally consistent

scoring criterion and fully observed learning data i.i.d.
sampled from a joint probability distribution p satis-
fying the composition property asymptotically always
discovers a model that is inclusion optimal w.r.t. p.

Chickering and Meek (2002) provide an example of an
undirected graphical model for which joint probabil-
ity distributions faithful to it satisfy the composition
property and exhibit two inclusion optimal BN mod-
els. We extend it by a particular parameterization for
which GES is not asymptotically optimal, it asymp-
totically returns the locally but not globally optimum.

Example 1 Let X be a variable with four states and
Y , Z and U be three binary variables. Let p be a joint
probability distribution over XY ZU , satisfying the
conditional independencies X⊥⊥Z|Y U and Y ⊥⊥U |XZ
and having marginal joint probability distributions
p(XY ) = (0.22, 0.03, 0.22, 0.03; 0.03, 0.22, 0.03, 0.22),
p(XU) = (0.22, 0.22, 0.03, 0.03; 0.03, 0.03, 0.22, 0.22)
and p(Y Z) = p(UZ) = (0.35, 0.15; 0.15, 0.35). There
are two inclusion optimal BN models w.r.t. p, M(G1)
and M(G2) with AG1 = {X → Y, X → U, Y → Z,
U → Z, Y → U} and AG2 = {X → Y,X → U, Y → Z,
Z → U,X → Z}. The two models have different num-
ber of parameters, 19 for M(G1) and 23 for M(G2).
Thus, M(G1) is globally optimal while M(G2) is not.

3 KES ALGORITHM

As seen above, GES may be asymptotically subop-
timal when several inclusion optimal models exist. A
straightforward solution to this problem consists in the
addition of randomness to the BN learning algorithm.
In this section we introduce the k-greedy equivalence
search algorithm (KES), which allows the user to trade
off between greediness and randomness. KES is for-
mally described as follows:

KES (k∈[0,1])
M = empty graph model
repeat

B = set of models in IB(M) with
higher score than the model M

if |B| > 0 then
C = random subset of the set B

with size max(1,|B|·k)
M = the highest scoring model

from the set C
else return(M)

It is easy to see that KES includes SES and GES as
special cases with settings k = 0 and k = 1, respec-
tively. We will show that the nice properties of GES
described in Theorems 1 and 2 hold for KES, too.



Theorem 3 The k-greedy equivalence search algo-
rithm (KES) using inclusion boundary neighborhood,
locally consistent scoring criterion and fully observed
learning data i.i.d. sampled from a joint probability
distribution faithful to a DAG G asymptotically always
discovers the model M(G).

Proof: The high level idea behind the proof of The-
orem 1, see (Chickering 2002, Lemmas 9 and 10), is
that asymptotically, for data faithful to a DAG G
and locally consistent score, for any model M differ-
ent from M(G) there is another model in IB(M) with
higher score. This is explicitly shown in (Castelo and
Kočka 2003, Theorem 3.4). Thus, any algorithm that
increases the score in each step and stops only when
there is no model in IB(M) with higher score than the
current best model M , always finds the model M(G).
This holds because there is a finite number of different
models, and increasing the score in each step prevents
the algorithm from visiting the same model twice. It
is obvious that this proof applies to KES equally well
as to GES, for which it was first derived.

Theorem 4 The k-greedy equivalence search algo-
rithm (KES) using inclusion boundary neighborhood,
locally consistent scoring criterion and fully observed
learning data i.i.d. sampled from a joint probabil-
ity distribution p satisfying the composition property
asymptotically always discovers a model that is inclu-
sion optimal w.r.t. p.

Proof: The high level idea behind the proof of The-
orem 2, see (Chickering and Meek 2002, Theorem 4),
is that asymptotically, for data sampled from a joint
probability distribution p satisfying the composition
property and locally consistent score, for any model
M that is not inclusion optimal w.r.t. p there is an-
other model in IB(M) with higher score. Therefore,
the result applies to KES, too.

Moreover, KES with k = 0, i.e. SES, can asymptot-
ically find any inclusion optimal model. In practice,
SES examines all the local optima if run repeatedly
enough times.

Theorem 5 The stochastic equivalence search algo-
rithm (SES) using inclusion boundary neighborhood,
locally consistent scoring criterion and fully observed
learning data i.i.d. sampled from a joint probabil-
ity distribution p satisfying the composition property
asymptotically discovers with nonzero probability any
model that is inclusion optimal w.r.t. p.

Proof:2 Let M(G) be any inclusion optimal model
w.r.t. p. Let us denote by e = |AG| the cardinal-

2This proof proceeds similarly to the proof of Theorem
2, see (Chickering and Meek 2002, Theorem 4). However,

ity of AG, i.e. the number of arcs in G. We will
prove the theorem by constructing a sequence of mod-
els M(G0), . . . ,M(Ge) where G0 is the empty graph,
Ge = G and each Gi is obtained from Gi−1 by adding
an arc that increases the score. Obviously M(Gi) is
in IB(M(Gi−1)) and, thus, considered by SES with
nonzero probability. We denote by AGi

the arcs in Gi.
It holds for each Gi in the sequence that AGi

⊆ AG.

It is easy to see that G0 satisfies the condition AG0 ⊆
AG. Thus, we will use the induction hypothesis AGi ⊆
AG, and we will show that there is a DAG Gi+1 ob-
tained from Gi by adding an arc for which AGi+1 ⊆ AG

and S(Gi+1) > S(Gi) for all i < e.

It follows from i < e and AGi ⊆ AG that M(Gi) ⊂
M(G). Because the model M(G) is inclusion opti-
mal, p ∈ M(G) and p 6∈ M(Gi). It follows from
p 6∈ M(Gi) that there is a node X for which the condi-
tional independence X ⊥⊥ Pre(X)\PaGi(X)|PaGi(X)
is enforced by d-separation in Gi but it does not hold
in p. Moreover, X ⊥⊥ Pre(X)\PaG(X)|PaG(X) is
enforced by d-separation in G and, thus, it holds in
p, too. Note that Pre(X) are the same in both G
and Gi if any causal order CO(G) in G is used as a
causal order in Gi as well. This is possible because
AGi ⊆ AG. Then, X 6⊥⊥ Pre(X)\PaGi(X)|PaGi(X)
in p together with X ⊥⊥ Pre(X)\PaG(X)|PaG(X) in
p yields X 6⊥⊥PaG(X)\PaGi(X)|PaGi(X) in p by the
block independence lemma. It follows, by composi-
tion, that there exists a node Y ∈ PaG(X)\PaGi(X)
for which X 6⊥⊥ Y |PaGi(X) in p. Thus, we can add
the arc Y → X to Gi and obtain a DAG Gi+1 that
has asymptotically higher score (because we have re-
moved a conditional independence that does not hold
in p and we use a locally consistent score). Moreover,
AGi+1 ⊆ AG (note that Y ∈ PaG(X)).

We have proven above that the algorithm can asymp-
totically get to any inclusion optimal model M(G). It
follows from the definitions of inclusion optimality and
locally consistent score that the algorithm asymptoti-
cally stops in the model M(G) because all the models
in IB(M(G)) have lower score.

The bad news, which limits the practical applicability
of SES, is that the number of inclusion optimal models
for a domain with n variables can be exponential in n.

Example 2 The undirected model over four variables
in Example 1 encodes a joint probability distribution
having two inclusion optimal models. Consider a
model M that consists of n such disjoint undirected
models. M encodes a joint probability distribution
where all these n groups of four variables are indepen-

note that Chickering and Meek use the local Markov prop-
erty for their proof, while we need to resort to the local
ordered Markov property in order to prove our theorem.



dent and, thus, each inclusion optimal model consists
of n disjoint submodels. For each of these n groups
of four variables there are two possible inclusion op-
timal submodels and any combination of these is an
inclusion optimal model. Then, there are 2n inclusion
optimal models for a domain of 4 · n variables.

4 EVALUATION

In this section we empirically evaluate the effective-
ness of SES and KES (k 6= 0, 1) with respect to GES,
for both synthetic and real data. We start by describ-
ing the implementation of KES. Then, the databases
involved in the evaluation are introduced. Finally, we
report and discuss the results obtained.

4.1 IMPLEMENTATION

So far we have studied the theoretical properties of
KES (including SES), regardless of the representation
of the models in the search space. However, we need
to adopt a certain model representation scheme in or-
der to evaluate its effectiveness in practice. As men-
tioned before, common representations include DAGs,
essential graphs, patterns and largest chain graphs.
For the sake of simplicity, we represent each model
in the search space by a DAG. This approach involves
a major difficulty: there is no efficient way of generat-
ing IB(M(G)) in each iteration of KES using DAGs,
where the DAG G represents the current best model.

Recall from Section 3 that KES first generates the set
B of models in IB(M(G)) that are better than M(G)
and, then, it samples a random subset C of B of a
defined size. As we cannot produce IB(M(G)) effi-
ciently in our implementation of KES, we first draw a
random sample of a defined size from IB(M(G)) and,
then, we select the models than are better than M(G)
out of those in the sample, i.e. we swap in practice
the first two steps of KES. This way of working has
an impact on the implementation of the stopping cri-
terion of KES: instead of halting when no model in
IB(M(G)) has higher score than M(G), KES stops
in practice when M(G) has not been improved for a
sufficiently large number of consecutive iterations.

Fortunately, there is a simple way of generating at ran-
dom any member of IB(M(G)) with nonzero proba-
bility (Castelo and Kočka 2003): choose at random a
covered arc in G and reverse it, repeat this covered
arc reversal operation (CAR) several times and, then,
choose at random a pair of nodes and either remove
the arc between them or add an arc between them
without creating a directed cycle. Specifically, we use
a descendant matrix to check for directed cycles. If we
need to generate more than one member of IB(M(G)),

then we can repeat the process above. Note that we do
not have to do the repeated CAR each time a member
of IB(M(G)) is to be produced. Instead, we may per-
form CARs less frequently and still randomly generate
a member of IB(M(G)) as far as the total number of
CARs is high enough.

It should be mentioned that the implementation of
KES described above may sample from IB(M(G)) the
same model more than once per iteration. To neutral-
ize this risk and draw the specified amount of distinct
models in each step of KES, the parameter k is in-
ternally translated into k∗ in the implementation of
KES, so that the mean percentage of distinct mod-
els sampled from IB(M(G)) by generating at random
k∗ · |IB(M(G))| models with the possibility of repeat-
ing equals k. For example, k = 0.4 corresponds to
k∗ = 0.5. Note that in order to guarantee that KES
with k = 1 behaves as GES in practice, i.e. the best
scoring model in IB(M(G)) is selected in each itera-
tion, k∗ must equal infinity which is, of course, imprac-
tical. We checked in all our experiments that we used
a sufficiently high value for k∗ when KES simulated
GES (k∗ = 20 was enough). As the exact value of
|IB(M(G))| is difficult to compute, we approximate it
by the number of arcs that can be added to an empty
graph over V , i.e. |V | · (|V | − 1). This is a good ap-
proximation as shown in (Chickering 2002) and thanks
to the fact that connectivity components in essential
graphs representing common models tend to be small.

We are aware that using essential graphs to represent
the models in the search space may avoid many of
the implementation issues discussed above and, con-
sequently, result in a more efficient implementation of
KES. However, this approach is discarded due to its
higher complexity. Moreover, we are mainly concerned
in this paper with the effectiveness of KES.

Finally, it is a good idea in any implementation of a BN
learning algorithm to store computed scores in a cache
with the purpose of avoiding computing them more
than once. This is particularly necessary in our im-
plementation of KES: only by using some cache mech-
anism we can afford generating the same models as
many times as it may occur when KES simulates GES
in our implementation, because the score is computed
from data only the first time while all the repeated
computations are done extremely fast by accessing the
cache. Specifically, our implementation of KES uses a
tree-like structured cache to store the scores computed
for any family, i.e. we take advantage of the decom-
posability of the BIC and the BDeu. Each entry E of
the cache tree stores the score for the node specified in
the first level of the branch from the root entry to E
given the parents specified by the remaining entries in
the branch. It should be mentioned that we consider



-133000

-132000

-131000

-130000

-129000

-128000

-127000

-126000

-125000

 0  100  200  300  400  500  600  700  800  900  1000

B
IC

 v
al

ue

Models (sorted in ascending BIC value order)

 k = 1
 k = 0.8
 k = 0.4
 k = 0.1
 k = 0.02
 k = 0.005
 k = 0

-127300

-127250

-127200

-127150

-127100

-127050

-127000

-126950

-126900

-126850

-126800

 0  100  200  300  400  500  600  700  800  900  1000

B
IC

 v
al

ue

Models (sorted in ascending BIC value order)

 k = 1
 k = 0.8
 k = 0.4

Figure 1: Effectiveness of KES for the ALL database when k = 0, 0.005, 0.02, 0.1, 0.4, 0.8, 1 (left), and a close-up
thereof for k = 0.4, 0.8, 1 (right).

an arbitrary ordering of the nodes in V according to
which the parents are always ordered to access the
cache. This relates each family to a unique entry of
the cache tree, and vice versa. The structure of the
cache described here is similar to an R-tree index, but
it is fixed and reasonably balanced. Only those parts
of the cache tree that are needed are allocated in mem-
ory. This cache provides an extremely fast alternative
to computing the score from data.

4.2 DATABASES

The first synthetic database in the evaluation is the
widely studied Alarm database (Herskovits 1991). It
contains 20000 cases, sampled from a BN representing
potential anesthesia problems in the operating room.
The generative model has 37 nodes and 46 arcs, and
each node has from two to four states. As reported by
Cooper and Herskovits (1992), one of the arcs in the
generative model is not supported by the data.

The second synthetic database in the evaluation is
named the Trap database and consists of 20000 cases,
sampled from the joint probability distribution in Ex-
ample 2 with n = 10, i.e. 40 nodes in the model.

The first two real databases in the evaluation are ob-
tained by preprocessing the Leukemia database (Golub
et al. 1999), 72 samples from leukemia patients with
each sample being characterized by the expression lev-
els of 7129 genes, as follows. First, gene expression lev-
els are discretized into three states via an information
theory based method (Beibel 2000). Then, the dis-
cretized database is split into two auxiliary databases:
one containing the data of the 47 patients suffering
from acute lymphoblastic leukemia (ALL), and the
other containing the data of the 25 patients suffer-

ing from acute myeloid leukemia (AML). Finally, these
two databases are transposed, so that the 7129 genes
are the cases and the measurements for the corre-
sponding patients are the attributes. The resulting
databases are simply denoted ALL and AML, respec-
tively, in the forthcoming discussion. It should be men-
tioned that the cases in ALL and AML are treated as
i.i.d., although some genes may be co-regulated and,
thus, some cases may be correlated. This simplifies
the analysis and may not change the essence of the re-
sults. In fact, this approach is commonly taken in gene
expression data analysis (e.g. Ben-Dor et al. (2001)).

The third real database in the evaluation comes from
the CoIL Challenge 2000 (Putten and Someren 2000),
and contains information on customers of an insurance
company. The database in the evaluation corresponds
to the training data in the challenge, but restricted to
attributes 2, 43 and 65-86, i.e. 5822 cases with each
case being characterized by 24 binarized attributes.
These data are referred to as CoIL in the forthcoming.

4.3 RESULTS

Figure 1 illustrates the effectiveness of KES for the
ALL data when different values for the parameter k
are considered. Concretely, it compiles the BIC values,
sorted in ascending order, of the BNs resulting from
1000 independent runs of KES for the ALL data when
k = 0, 0.005, 0.02, 0.1, 0.4, 0.8, 1. Recall that KES with
k = 0 corresponds to SES and with k = 1 to GES.
The first conclusion that we can make from Figure
1 (left) is that SES performs poorly. The reason of
this somewhat deceptive behavior is in the fact that
there exist many locally optimal BNs for the data at
hand making, therefore, negligible the probability of
SES reaching a model of similar effectiveness to that



Table 1: Effectiveness of KES for the Alarm, Trap,
ALL, AML and CoIL databases when k = 0, 0.4, 0.8, 1.

Data k Best >GES <GES
Alarm 0 -95207 0 1000 (1000)

0.4 -94288 0 918 (477)
0.8 -94288 0 565 (69)

1 -94288 — —
Trap 0 -227932 1000 (840) 0

0.4 -227955 857 (343) 88 (3)
0.8 -227977 275 (39) 276 (3)

1 -227999 — —
ALL 0 -130154 0 1000 (1000)

0.4 -126856 222 (222) 774 (774)
0.8 -126873 656 (606) 324 (316)

1 -127010 — —
AML 0 -74503 0 1000 (1000)

0.4 -73956 32 (32) 968 (968)
0.8 -73952 227 (131) 719 (524)

1 -73998 — —
CoIL 0 -10964 11 (11) 989 (983)

0.4 -10964 114 (43) 879 (674)
0.8 -10967 221 (19) 740 (126)

1 -10969 — —

returned by GES. Specifically, the 1000 independent
runs of SES for the ALL data identify 1000 different
locally optimal BNs. The second observation that we
can make from the graph on the left of Figure 1 is that
increasing greediness seems to be beneficial in general.
The graph on the right of Figure 1, which is a close-up
of the graph on the left, shows that this is true only
to some extent: KES with k = 0.4, 0.8 outperforms
GES significantly often, exactly in 22 % and 66 % of
the runs, respectively. This confirms that the trade-off
between greediness and randomness enabled by KES
can result in a gain of effectiveness when compared to
GES, which is based solely on greediness.

Due to space restrictions, the graphs corresponding
to the effectiveness of SES, KES (k 6= 0, 1) and GES
for the rest of the databases in the evaluation are not
shown. Instead, Table 1 summarizes the performance
of KES (k = 0, 0.4, 0.8, 1) for the five databases consid-
ered. Unless otherwise stated, KES refers to KES with
k = 0.4, 0.8 in the discussion below. For each database,
Table 1 reports the highest BIC value scored by the
BNs induced by each algorithm in the 1000 indepen-
dent runs, Best, and the number of the runs where
SES, alternatively KES, performs better, >GES, and
worse, <GES, than GES in terms of BIC values of
the induced models. Additionally, >GES and <GES
include in parenthesis the number of distinct models
identified in these runs. As can be appreciated from
Table 1, KES outperforms GES significantly often for
all the databases, except for the Alarm. It is partic-
ularly encouraging that KES enjoys such a behavior
relative to GES for all the 3 real databases: between

3 % and 22 % of the runs of KES (k = 0.4) and be-
tween 22 % and 66 % of the runs of KES (k = 0.8)
identify models that score higher BIC values than that
of the model selected by GES. In other words, these
results suggest that the probability of KES identify-
ing a locally optimal BN with higher BIC value than
that of the BN returned by GES can be considerable,
specially for real data. Furthermore, many of the runs
where KES beats GES converge to different models.
Therefore, it is not only that GES misses the best
model in four out of the five databases involved in
the evaluation, but that there are several models that
are superior to the one returned by GES. These ob-
servations indicate that learning BNs based solely on
greediness, as GES does, may likely lead to notice-
able suboptimal performance in practice. The reason,
again, is that many locally optimal BNs may exist,
even for data faithful to a DAG.

Going back to the Alarm database, it is not surpris-
ing that GES is more effective than SES and KES: the
Alarm database is faithful to a DAG and, therefore,
GES is asymptotically optimal. The results in Table
1 suggest that the 20000 cases in the Alarm database
may be enough to guarantee such a behavior. As a
matter of fact, the BN returned by GES is equiva-
lent to the generative model, except for the arc not
supported by the data that is missing. Regarding the
Trap database, it is not surprising either that SES and
KES outperform GES by far. Recall that the Trap
database is generated to deceive GES. The fact that
SES is superior to KES for this domain stresses that
incorporating some kind of randomness in the model
learning process may be of crucial importance.

Regarding the number of different locally optimal BNs
for the databases in the evaluation, Table 1 provides
the reader with evidence that this number is very large.
Out of the 1000 independent runs, SES identifies 1000
distinct locally optimal models for the Alarm, ALL
and AML databases, 994 for the CoIL and 840 for the
Trap. Obviously, these figures are just lower bounds of
the number of local optima and, therefore, many more
such models may actually exist for these databases.
Moreover, even when the data at hand is faithful to a
DAG and the amount of available data is considerable,
the number of locally optimal BNs may be huge. See
the results for the Alarm database in Table 1: faithful
to a DAG, large sample assumption supported by the
unbeatable behavior of GES, but however at least 1001
different locally optimal models exist.

Finally, it is worth mentioning that running all the
experiments in this section with the BDeu (equivalent
sample size of 1) as score, instead of the BIC, led to
the same conclusions as those discussed above. We also
ran the experiments with different sizes of the learning



databases. The most interesting observation that we
made is that for small sizes of the Alarm database
(200-1000 cases for the BIC and 100-500 cases for the
BDeu) KES outperformed GES as often as reported in
Table 1 for the real databases.

5 CONCLUSIONS

We introduced and evaluated a new algorithm, KES,
for BN learning from complete data. Actually, KES
can be seen as a family of algorithms, due to the fact
that it provides the user with the possibility of trad-
ing off between greediness and randomness through a
parameter k ∈ [0, 1]. We proved that KES, no matter
the degree of greediness, i.e. the value of k, is asymp-
totically optimal under the faithfulness assumption as
well as asymptotically inclusion optimal when only the
composition property holds. When greediness is set
at maximum (k = 1), KES is equivalent to GES. On
the other hand, when greediness is set at minimum
(k = 0), KES is named SES. We proved that SES
can asymptotically discover any inclusion optimal BN
with nonzero probability under the composition prop-
erty assumption. Unfortunately, there can be expo-
nentially many such models for some given data. This
limits the applicability of SES. In fact, the behavior of
any instance of KES (including GES) can be subopti-
mal when several inclusion optimal models exist.

The experimental evaluation of SES and KES (k =
0.4, 0.8) with respect to GES was carried out by com-
paring the BIC and BDeu values of the BNs induced
from two synthetic and three real databases. The main
conclusions made from the results reported are the
following ones. First, the number of locally optimal
BNs can be huge, even when the faithfulness assump-
tion holds and the amount of available learning data
is considerable. Second, SES performs poorly due to
the previous point. Third, KES (k = 0.4, 0.8) outper-
forms GES significantly often in general. In partic-
ular, it is very noticeable and encouraging that KES
(k = 0.4, 0.8) beats GES in up to 66 % of the runs for
the real databases in the evaluation. Consequently,
BN learning algorithms that address the problems de-
rived from the existence of several locally optimal mod-
els, for instance, trading off between greediness and
randomness as KES does, are worth studying.
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