Metadata, citation and similar papers at core.ac.uk

Provided by VBN

Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Multitemporal conditional schema evolution

Jensen, Ole Guttorm; Bghlen, Michael Hanspeter

Published in:
Conceptual Modeling for Advanced Application Domains

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Jensen, O. G., & Bghlen, M. H. (2004). Multitemporal conditional schema evolution. In Wang (Ed.), Conceptual
Modeling for Advanced Application Domains (pp. 441-454). IEEE Computer Society Press. Lecture Notes in
Computer Science No. 3289

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbon@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://core.ac.uk/display/60304164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://vbn.aau.dk/en/publications/f314d470-003b-11da-b4d5-000ea68e967b

Multitemporal Conditional Schema Evolution

Ole G. Jensehand Michael H. Bohleh

! Department of Computer Science, Aalborg University,
Fredrik Bajers Vej 7E, DK-9220 Aalborg @st, Denmark,
gutt or m@s. aau. dk,
2 Faculty pf Computer Science, Free University of Bozen-Bot,
Dominikanerplatz 3, 1-39100 Bolzano, Italy,
boehl en@nf.unibz.it

Abstract. Schema evolution is the ability of the database to resportidnges
in the real world by allowing the schema to evolve. Theltidimensional condi-
tionally evolving schen(®D-CES) is a conceptual model for conditional schema
changes, which modify the schema of those tuples that gditisfchange condi-
tion. The MD-CES is lossless and preserves schemas, butrhezpanential
space complexity. In this paper we restrict conditionakseh changes to times-
tamp attributes. Specifically, we develop 1D-CES for scheensioning over one
time dimension, and 2D-CES for schema versioning over tme tilimensions.
We show that the space complexity of these new evolution fadddinear or
polynomial. 1D-CES and 2D-CES are compared to temporalnsahersioning,
and we show that, unlike valid time versioning, they arellEssand achieve the
same space complexity as temporal versioning if the schéarages are ordered.

1 Introduction

Conditional schema changes modify the schema of thosesttipde satisfy the change
condition [5], and they properly subsume unconditional eamdporal schema changes.
The semantics of conditional schema evolution is definedrims of themulti-dimen-
sional conditionally evolving schem{D-CES) [4]. The MD-CES has many desir-
able properties that are essential for relations that aotuples with different intended
schemas. First, the MD-CESlsslessi.e., the intended schema of each tuple is consis-
tent with the initial schema definition and the subsequentlitional schema changes.
Thus, at any point during the evolution process the corrdehided schema of a tuple
is known? Second, the MD-CES ischema preserving.e., all schemas are preserved
and tuples never have to be migrated to a schema with mores®até&ibutes. On the
downside, however, the space complexity of the MD-CES gexp®nentially with the
number of schema changes, and, consequently, the MD-CES dgspractical model.

In this paper, we specialize conditional schema changesriditions over times-
tamp attributes. This leads to the 1D-CES and 2D-CES witkalior polynomial space

% Models with an ad-hoc approach to schema evolution oftelatédhis property. For example
if NULL values are used to “flag” attributes that are not pdrthee schema and with multi-
ple schema changes the correct identification of currenipastiintended schemas is often a
problem.

complexity for monoconditional and biconditional schenmarges, respectively. We
prove that 1D-CES and 2D-CES are still lossless and, if tlséohi of conditional
schema changes is ordered, ensure schema preservatiolsofecvide the cost of en-
suring schema preservation for 1D-CES and 2D-CES with weredthistories. Thus, by
restricting the MD-CES to mono- and biconditional schemangles, we get a practical
model for schema evolution that is particularly relevartetmporal schema versioning.

An important aspect of our work is that it offers an altervatpproach to investi-
gate the semantics of temporal evolution models. As pointeefore the semantics of
temporal schema versioning, in particular for bitemporhtiases, is non-trivial. We
compare 1D-CES and 2D-CES to transaction-time, valid-tene bitemporal schema
versioning. For transaction-time the two models are edeitaln valid-time and bitem-
poral schema versioning, a schema change is applied to k& siclgema version spec-
ified by the user irrespective of the validity of the changd #re version. In contrast,
with MD-CES a schema change modifies the schema of all segmwthta validity that
overlaps the validity of the change. We show that valid-tamé bitemporal schema ver-
sioning are not lossless, and that valid-time schema vargialoes not ensure schema
preservation.

2 Preliminaries

2.1 Multi-Dimensional Conditionally Evolving Schemas

A multi-dimensional conditionally evolving schert®dD-CES), E = {S1,...,Sh},
generalizes a relation schema and is defined as a set of scfegments. Aschema
segmentS = (A, P), consists of a schemd and a qualifie®. Throughout, we write
Ag and Py to directly refer to the schema and qualifier of segnt&ntespectively. As
usual, aschemaA = {4,,...,A,}, is defined as a set of attributes. No distinction
is made between schemas and sets of attributegiahfier P is eitherTRUE, FALSE,

or a conjunction/disjunction of attribute constraints. &ttribute constrainis a pred-
icate of the formAfc or ~(Afc), where A is an attributef € {<, <, =,#,>,>}

is a comparison predicate, ands a constant. A MD-CES may have segments with
different schemas. Consequently, some tuples may be miasiibutes that appear in
other segments. In order to evaluate attribute constramsuch tuplesdéc is an ab-
breviation for3uv(A/v € t A vfc) wheret is a tuple and4 /v is an attribute/value pair.
Likewise,—~(Afc) is an abbreviation for3(A/v et A vc). Note that this implies that
the constraints (A = ¢) and A # ¢ are not equivalent.

A tuplet is a set of attribute values where each attribute value idtabwte/value
pair: {A;/v1,..., A, /v, }. The value must be an element of the domain of the at-
tribute, i.e., ifdom(A) denotes the domain of attributé, thenVA, v, t(A/v € t =
v € dom(A)). A tuple tqualifiesfor a segmensts, qual(t, S), iff ¢ satisfies the quali-
fier Ps. A tuple satisfies a qualifie?(¢), iff the qualifier isTRUE or the tuple makes
the qualifier true under the standard interpretation. If pletd qualifies for a seg-
ment .S in a MD-CES E, then Ag is theintended schemaf ¢, i.e., Vi, S, E(S €
E A qual(t,S)) = is(t, E) = Ag). A tuplet matchesa segment iff the schema
of S andt¢ are identical:match(t, S) iff VA(A € Ag & Ju(A/v € t)). If a tuplet

matches a segmeist in the MD-CESF, then Ag is therecorded schemaf ¢, i.e.,
Vt, S, E(S€E Amatch(t,S) = rs(t,E) = Ag).

2.2 Conditional Schema Changes

A conditional schema change an operation that changes the set of segments of a
MD-CES. The condition determines the tuples that are aftkby the schema change.

A conditionC is eitherTRUE, FALSE, an attribute constraint, or a conjunction of at-
tribute constraints. For the purpose of this section weid@nswo conditional schema
changes: adding an attribute(A, E, C), and deleting an attributgd(A, E, C). An
extended set of schema changes that includes mappingsdreaiteibutes and a dis-
cussion of their completeness can be found elsewhere [4].

a(A, E,C): An attribute A is added to the schemas of all segments that do not
already include the attribute. For each such segment twosegments are generated:
a segment with a schema that does not include the new aétrdma a segment with a
schema that includes the new attribute. Segments with arethigat already includes
A are not changed.

B(A, E, C): The attributed is deleted from the schemas of all segments that include
the attribute. For each such segment two new segments ageadeth: a segment with
a schema that still includes the attribute and a segmentavidbhema that does not
include the attribute. Segments with a schema that doesidlodie A are not changed.

The precise formal definitions of conditional attribute gidtds and deletions are
givenin Figure 1. Note that conditional schema changesgrlppubsume regular (i.e.,
unconditional) schema changes. It is possible to have thditton (TRUE) select the
entire extent of a relation.

alA0,C)=10
{(A, P)} Ua(A, E,C) iff AcA
a(A,{(A,P)}UE,C) =< {(AU{A},PANC),(A,PAN-C)}
Ua(A, E,C) iff Ac/A
B(A,0,C)=10
{(A,P)}UB(A,E,C) iff AgA
BAA{(A P)}UE,C) = {{(A\{A},P/\O),(A,P/\ —C)}
UB(A, B, C) iff AcA

Fig. 1. Adding (A, E, C)) and Deleting 6(A, E, C)) Attribute A on ConditionC

A history H = [y1(A41,E,C4),..., (A, E,Cy)] wherew; € {a, 3} is a se-
quence of conditional schema changes. We say(figtH) is theevolution historyof
E whereE, = {S} consists of a single segment, iif = ~,,(A4,,...71(A41, Ey, C1)

. Ch).

2.3 Lossless and Schema Preserving Properties

The MD-CES is bothosslesg6] andschema preserving].

The lossless property ensures that the intended schemadi&jina MD-CES for
each tuple is consistent with the initial schema definitiod ¢he conditional schema
changes. Intuitively, the intended schema of a tufglan be determined from the initial
schema by applying only those schema changes with a condisitisfied byt in the
sequence given by the history.

The schema preserving property guarantees that all schiefined by segments in
a MD-CES also appear in segments after a conditional schearage. Schema preser-
vation is a requirement if the segments of the MD-CES are tadsel as relations to
store the (heterogeneous) tuples of evolving relations.

3 Schema Change Conditions on a Single Attribute

Conditional schema evolution allows schema changes tomaitiened by any attribute
in the schema. Since each conditional schema change @diestilits every segmentin
the MD-CES into two new segments, conditional schema eaoli¢ads to MD-CESs
where the number of segments is exponential in the size dfittery [5]. Therefore,
solutions that rely on the segments of a MD-CES are not toéetancluding using the
segments as relations to record tuples or querying indalisegments.

In this section we restrict the conditions of conditiondiema changes to a single
attribute. This leads tone-dimensional conditionally evolving schertl®-CES). We
show that the number of segments in a 1D-CES becomes propalto the size of
the history. This is achieved by the elimination of segmevith false qualifiers. We
show that this optimization preserves the lossless prppdrthe MD-CES but can
violate schema preservation. To achieve schema presamadiitional segments must
be kept in the 1D-CES increasing its space complexity to tgnponial in the size of
the history. We show that if the history is ordered, then stdpreservation is achieved
without recording additional segments. First, howeverpwesent a running example to
be used throughout.

3.1 Running Example

We use a relation storing information about employees asmimg example. The em-
ployee relation records a name, an address, and a phone ntonlgach employee.
Additionally, a timestamp attribute records when the faaswecorded in the database
(a detailed discussion about different notions of time feed until Section 5). The
schemaEmpioyee = (Name, Adaress Phong Time) defines the (initial) employee relation schema.

A conditional schema changg = «(Sn, Empioyes Tine > 2003-01-0] adds a social
security number to employees recorded on and after Jangar®003. The schema
change splits the employee schema into two segméits= ({N,A, P, T}, T <
2003010%) andSy; = ({N, A, P, S, T}, T > 20030101).

The schema change only adds a social security number to lleenscof employ-
ees recorded with a timestamp value equal to or greater t9@8-@1-01. Employees
recorded with a timestamp before 2003-01-01 are not affecte

We require that all tuples have a timestamp value and th&nsalchanges cannot
drop the timestamp attribute from the schema. The evaluatiqualifiers is affected
by this requirement. Recall that qualifiers are existelgtiquantified, so—(T0c) =
—3T'(THc). This implies that conditions(T" = ¢) andT # ¢ are not equivalent. E.g.
tuples without al" attribute value evalues to true for the former condition sk for
the latter condition. However, since we require that allégpavea timestamp value,
the equivalence holds, and the negation can be pushed daéad¢omparison predicate
as is the case faf;.

A second schema change drops the address from the schemplofees recorded
from the 1st of March 2003 and replaces it witiiaattribute. In response, two condi-
tional schema changes are applied to Higoye. MD-CES:

6(Addresg Employeg Tme Z 2003'03'01 O[(Gly, Employee, Tme 2 2003'03'01

The conditional schema change on the left drops4hesattribute from the schema
of employees with a timestamp value of at least 2003-03-6&. donditional schema
change on the right adds tlag attribute on the exact same condition. Both conditional
schema changes are applied in sequence as seen below. Alotieettorder in which
the two schema changes are applied does not change the besidtise the schema
changes affect different attributed«.ssandCy respectively).

E2=a(C,B(A, E1, T > 2003-03-0), T > 2003-03-0) =

{({N,C, P,S,T},T > 2003-01-01A T > 2003-03-01A T > 2003-03-0",
({N, P,S,T}, T > 2003-01-01A T > 2003-03-01A T < 2003-03-02,
({N,A,C,P,S,T},T > 2003-01-01A T < 2003-03-01A T' > 2003-03-01%,
({N, A, P,S,T},T > 2003-01-01A T < 2003-03-01A T' < 2003-03-03%,
({N,C,P,T},T < 2003-01-01A T' > 2003-03-01A T' > 2003-03-01°,
({N,P,T},T < 2003-01-01A T > 2003-03-01A T' < 2003-03-03°,

({N, A,C,P,T},T < 2003-01-01A T < 2003-03-01A T > 2003-03-017,
({N, A, P,T},T < 2003-01-01A T < 2003-03-01A T < 2003-03-03°}

The employee MD-CESE,, now consists of eight segments (marked with small
numbers in the above expression). Clearly, the number ahsats inE, increases
exponentially with the application of conditional schenhawges.

3.2 Elimination of Segments with False Qualifiers

Consider the qualifier of segment 2 f#:

T > 2003-01-01A T" > 2003-03-01A T' < 2003-03-01=
T > 2003-03-01n T' < 2003-03-01=
FALSE

Clearly, the qualifier is false. No tuple can qualify for sisglgments. Future condi-
tional schema changes applied to a segnsentith a false qualifiel’s cannot result in
segments with non-false qualifiers, because those qusl#iereither identical t&s or
in conjunctive form withPg (cf. Section 2) and, clearlfALSE A p = FALSE.

A MD-CES defines the intended schema of all tuples for a gia@ial schema and
history. The association of tuples and their intended selsdmdone through qualifica-
tion of tuples with individual segments. Since tuples carpalify for segments with
false qualifiers, such segments define no intended scheneasaitherefore omit seg-
ments with false qualifiers from a MD-CES without loss to thedaf intended schemas
defined by it, i.e., without losing the lossless propertyisTit stated by Lemma 1. All
proofs have been omitted due to space considerations, biectound in [3].

Lemma 1. Let E and E’ be MD-CESs and let be a conditional schema change. If
E’ consists of exactly the non-false segment& othen~(A, E,C) and~(A, E’,C)
define the exact same intended schema for any tupleyiet(is(t,v(4, E,C)) =
is(t,v(4, E', C))).

3.3 MD-CES with Linear Space Complexity

Schema changes conditioned by a single attribute resulMBaCES, where the qual-
ifier of each segment is a conjunction of predicates over dltabute only. We say
that such MD-CESs are one-dimensional (denoted as 1D-Am8)intended schema
of a tuple depends exclusively on its recorded attributeesébr the attribute used to
condition the schema changes. Moreover, for every valukatfattribute, the 1D-CES
defines exactly one intended schema, because the qualifiers segments part of the
same MD-CES never overlap (a property of the MD-CES [5]).

Note that the number of segmentshhyiyve Scales with the number of conditional
schema changes applied. In the general case conditiorethscbhanges cause an ex-
ponential increase of segments, as each schema changégilyteplits every segment
into two new segments. However, because all the conditisectedma changes applied
to Emioyee are conditioned by the same attribute, at most one segmeptiisnto two
non-false segments after each schema change (every otiraeseyields only one
non-false segment).

Unbounded Conditions We shall assume that all conditional schema changesurave
boundectonditions, i.e. conditions of the formidc wheref € {>, >, <, <}. Bounded
conditions can be specified easily. EndA, E, T > t; AT < t3) has a bounded condi-
tion affecting only tuples with & value in the interval front; to .. Schema changes
with bounded conditions can split up to two different segta¢one per predicate in the
condition). However, any conditional schema change witloa-false bounded con-
dition has an equivalent pair of unbounded conditions. &dbkhows the equivalent
conditional schema changes for attribute addition andidelevith bounded condition,
respectively. Conditional schema changes applying tog@esiooint, i.e. with a condi-
tion of the form A = ¢, is a specialization of a bounded condition (sifee= c¢) =
(A>ecNA<c)).

We can assume unbounded conditions without loss of getyetdtibounded con-
ditions result in segments where the qualifier is satisfied fmontiguous set of attribute
values (an interval). This facilitates the comparison leetvsegments of a 1D-CES
(and 2D-CES) and schema versions in Section 5. Next, we gezenain result of this
section.

Table 1. Conditional Schema Change Equivalences between Bounaktalmounded Condi-
tions

Bounded Condition Unbounded Conditions
a(A,E\T >t AT <t2)|a(A,E, T > t1), (A, E, T > t2)
BAE,T>t1 AT <t2)|B(A, E, T >t1),a(A,E, T > t2)

Lemma 2. Let bothE and E’ be a MD-CES. Lefd = [y1(A1, E,C1), ..., (4n,
E,C,)] be a history wherey; € {«, 5} and each conditiorC; is unbounded and
over the same attribut@. If £/ = ~,(4,,...71(41,E,C1)...,C,) thenE’ has a
number of additional non-false segments that is propodiada the size of the history,
i.e.|E| —|E| < |H].

Lemma 2 shows that solutions to conditional schema evaidimsed on the seg-
ments of the MD-CES become tractable when schema changesdéioned by a
single attribute.

3.4 Ordering of Histories

While Lemma 2 guarantees the scalability of the 1D-CES, alitimmal schema change
can potentially change the schema of every segment in th€BS-The 1D-CES is no
longer guaranteed to ensure schema preservation once rssgwith false qualifiers
have been eliminated. Using the segments of the 1D-CES asored to record the
(heterogeneous) tuples of an evolving relation, requitas éxisting schemas are pre-
served for tuples already recorded in the database witle thayeemas. In the worst case,
a conditional schema change results in a 1D-CES where alldivemas of the original
segments appear in new segments with false qualifiers. fineréhey would all need
to be kept in addition to the new segments created by the stivbiange. An upper
bound of"Q% segments, where is the size of the history, would have to be kept to
ensure schema preservation. In this section we show thatd®ring the history it is
possible to keep the number of segments linear.

Example 1.Consider a 1D-CES with segmen{$A,C, T}, T > 3) and({B,C, T},
T < 3). Assume a conditional schema change that drop&'thitribute on the condition
T > 1. Theresultis a 1D-CES with the following segments:

1. {AT}HT >3ANT>1)=({AT}HT >3)

2. {A,C, T}, T>3AT <1)=({A,C,T}, FALSE)
3. {B, T}, T<3AT >1)

4. {B,C,T}, T<3ANT <1)=({B,C, T}, T <1)

Note that the 1D-CES no longer contains a segment with thensahA, C, T'} (since
it was dropped due to a false qualifier).

Unbounded conditions over a single attribute leads to satgwath qualifiers that
are satisfied for a contiguous interval of attribute valugse problem illustrated by
Example 1 arises when the condition of a schema change caatibfesl by attribute

values within the interval qualified by more than one segnfémim Lemma 2 we have
that at most one segment is split by the conditional scheraagghresulting in two non-
false segments. For all other segments, the conditionahsalthange creates only one
non-false segment. The interval of attribute values qealifiy each of these segments
either all satisfy the condition or none satisfy the comuditiln the former case, the
segment with the schema of the original segment, will haxase fqualifier.

To ensure schema preservation while still eliminating seggswith false qualifiers,
we impose an ordering on the conditional schema changesiifizgiil defines ordered
histories of conditional schema changes.

Definition 1. (ordered history) Let H = [y1(A1, E,C1), ...,y (4., E,C,)] be a
history. If each conditional schema change applies to a prapbset of the tuples which
the previous conditional schema change applied to, i.¢t)ie dom(T) A Ci11(t)} C
{t|t € dom(T) A C;(t)} wheredom(T) is the domain of attribute values, thed is
anordered history

In general, all schemas are preserved by a conditional slobiange if it splits
exactly one segment into two non-false segments and nbwttralue in the interval
defined by any other segment satisfy the condition. Thiseviure that all previously
defined schemas appear in segments with non-false qualifiers

Lemma 3 states that a 1D-CES with an ordered history presetgreviously
defined schemas.

Lemma3. Let H = [y1(A1, E,C1),...,v(An, E,Cy)] be a history wherey, €

{«, 8} and each conditiol’; is unbounded over a single attribufe Let £ be a MD-
CES with a single segment, and let edch= ~;(4;,...v1(A1,E,Cy)...,C;) be a
MD-CES. IfH is an ordered history theR,, preserves all schemas defined by segments
in EandFE; to E,,_1, i.e., H is ordered implies thatS(S € FUE, U...UE,_1 A
38'(S" € E, N Ag = Ag)).

Lemma 2 and 3 ensure that a 1D-CES with an ordered historymafittonal schema
changes using unbounded conditions over a single attribbieth lossless and schema
preserving and has a space complexity, which is linear isiteeof the history.

4 Schema Change Conditions on Different Attributes

So far conditional schema changes with a single attributestcaint have been con-
sidered. We refer to these schema changes as monoconb#ibrema changes. This
section investigates histories where monoconditionatszhchanges are over differ-
ent attributes. We show that as the number of differentaatteis used in the conditions
increases, so does the space complexity of the MD-CES. Vdecalssider bicondi-
tional schema changes, i.e., schema changes where thdigorslia conjunction of
two attribute constraints over different attributes. Bidi@ional schema changes lead to
two-dimensional conditionally evolving schen{a®-CES). A 2D-CES with a history
of biconditional schema changes has a polynomial space leaityp We show that an
ordered history of biconditional schema changes ensur&@ES, which is lossless
and schema preserving and has a linear space complexity.

Monoconditional schema changes over different attribatesorthogonal. These
conditional schema changes split every segment in a MD-@ESwo non-false seg-
ments. Since the qualifigP of the segmend and the conditiorC of the change are
over different attributes, the logical conjunctiéhA C' cannot be equivalent to false
(unless eithelP or C is already false), so both segments resulting from applthieg
conditional schema change fohave non-false qualifiers.

Lemma 4 establishes the upper bound on the number of segmightaon-false
qualifiers in a MD-CES with a history of monoconditional seteechanges over differ-
ent attributes.

Lemma 4. Let H be a history of monoconditional schema changes with unbedind
conditions. Letdy = {44, ..., A, } be the set of attributes appearing in conditions in
H, and letnum(A, H) be the number of schema change#fironditioned byA. LetE
and E’ be a MD-CES and leF consist of a single segment.(If, H) is the evolution
history of E’ then the upper bound on the number of segments with nonefaidéiers

in E"is (1 +num(A1, H)) X ... x (1 4+ num(A,, H)).

4.1 Ordering of Biconditional Schema Changes

In the general case, biconditional schema changes leaddlyagmial number of seg-
ments in a 2D-CES. This occurs when the condition of a schdraage overlaps the
qualifiers of all segments. However, if the condition is @néd by the qualifier of a
single segment then the number of segments increase by abmas

This is the case for ordered histories of conditional schehanges. Recall that
a history is ordered iff each conditional schema changeieppb a proper subset of
the tuples which the previous conditional schema changkeaie. For biconditional
schema changes this occurs when the conditional of eacimscbleange is contained
by the qualifier of the latest segment.

Lemma 5 states that the number of segments in a MD-CES definadhistory of
biconditional schema changes is proportional to the sizhehistory, if there exists a
sequence of those schema changes such that the sequenocedsraa history.

Lemma 5. Let H be a history of biconditional schema changes with cond#ioh
of the formT > ¢; AV > v;. Let E and E' be a MD-CES and lef/ consist of a
single segment. LetE, H) be the evolution history oF’. If there exists a sequence
H’ of the schema changes i such thatH’ is an ordered history, the®’ has a
number of additional non-false segments that is propodiada the size of the history,
ie,|E'|—|E| < |H|.

Lemma 5 does not guarantee that all schemas are preservesjimessts in the
2D-CES after a biconditional schema change has been apglibéma preservation is
achieved by ordered histories as stated in Lemma 6.

Lemma6. LetH = [y1(A41, E,C1), ..., (4n, E, Cy)] be a history of biconditional
schema changes whete € {«, 3}. Let E be a MD-CES with a single segment, and
let eachE; = ~;(4;,...7m1(41,E,Cy)...,C;) be a MD-CES. IfH is ordered then
E,, preserves all schemas defined by segmentsamd £, to E,,_1, i.e., H is ordered
implies thatvS(S € EUE,U...UE,,_1 A3S' (8" € E, AN As = Ag/)).

5 Related Work

A versioning approach to schema evolution has been propweikiuh the context of
both OODBs and temporal databases. In OODBSs, a new versitie abject instances
is constructed along with a new version of the schema.Qihien [1] schema version-
ing mechanism keeps versions of the whole schema hieramshsad of the individual
classes or types. Every object instance of an old schemaeaogied or converted
to become an instance of the new schema. The class versiapprgach CLOSQL
[8] provides update/backdate functions for each attributeclass to convert instances
from the format in which the instance is recorded to the fdrreguired by the ap-
plication. TheEncore[11] system provides exception handlers for old types td dea
with new attributes that are missing from the instancess &hows new applications to
access undefined fields of legacy instances.

Schema changes relating to time have been investigatee icotfitext of temporal
schema versioning, where proposals have been made for tikemance of schema
versions along one [7,9, 10] or more time dimensions [2]. Tine dimensions are
usually consideredransaction timewhich tells when facts are logically present and
events occur in the database, afadid time which tells when facts are true and events
occur in the reality [12].

In schema versioning each version associates a schematsviime pertinence
specified as an interval of time stamp values. The symbol &iades the special values
initiation in transaction time (i.e. the time when the system was stpeedbeginning
in valid time (i.e. the minimum value of valid time). The syoilf oo” denotes the
special valuesintil_changedin transaction time (which is used to timestamp a still
current fact) andoreverin valid time (i.e. the maximum value of valid time).

In this section we use 1D-CES and 2D-CES with mono- and bitiondl schema
changes over timestamp attributes as a yard stick to igaestiemporal schema ver-
sioning. There is a strong similarity between segments ibaGES and schema ver-
sions. This facilitates a comparison between the effectschEma changes in both
frameworks. Only changes at the intensional (schema) kneelconsidered. The in-
teraction between intensional and extensional versioigiognsidered elsewhere [5].

5.1 Transaction-time Schema Versioning

In transaction-time schema versioning, one of the versi®tise currentschema ver-
sion. Only the current version can be affected by a schemagehaVhen this occurs,
the current version is archieved and replaced by a new duwession obtained by
applying the schema change to the old schema. The impladisé&ction-time perti-
nence of a schema change is alwaysw; o], i.e., the schema change takes effect
when recorded in the database and remains in effect untilggthby another schema
change [2].

Example 2.Consider the schema version with sche(& A, P,T) and time perti-
nencel0; oo[. Two schema changes are applied: 1) on20@—01—01 an S attribute
is added to the schema, and 2) on 2083 —03 —01 the A attribute is dropped.

The first schema change results in a new current schema wensgib schema
(N, A, P,S,T) and the time pertinence of the schema change. The old schema v
sion is archieved and its time pertinence is restricte2D3 — 01 —01:

Vi:(N,A,P,T) [0;2003—01—01]
Va: (N, A, P,S,T) [2003—01—01; 00|

The second schema change is then applied to the new curf@racversior/s.
V1 is not considered. The result is a new current schema vetsiamd the restriction
of the time pertinence dfs:

Vi: (N,A,P,T) [0:2003—01—01]
Va1 (N, A, P,S,T) [2003—01—01;2003—03—01]
Vs:(N,P,S,T) [2003—03—01;00]

Note the similarity between the time pertinence of schenraiees in Example 2
and the qualifiers of segments in 1D-CES. Assuming Tha¢cords transaction-time,
then both schema versions and segments define the interdemador an interval a
timestamp values.

The implicit time pertinence of schema changes in transadime schema version-
ing corresponds to unbounded monoconditional schema elsarighe formi™ > ¢,,.,
wherec,,, is the timestamp value efow when the schema change is recorded.

Due to the nature of transaction-timg,,,, will increase with each additional schema
change. This implies that the history of schema changesams#ction-time schema
evolution is always ordered.

Lemma 2 and 3 ensure that all schemas are preserved (so schanges do not
affect archieved schema versions) and only one schema (fthent schema version)
is affected by a schema change splitting it into a versiom wit old schema and a
restricted time pertinence (corresponding to a conjunotiih the negated condition
for the schema change) and the new current schema versibioough, transaction-time
schema versioning considers only the current version wisehema change is applied,
the resulting schema versions are still equivalent to tlgeneaits in 1D-CES due to
transaction-time providing a natural ordering of the schamanges.

5.2 Valid-time Schema Versioning

In valid-time schema versioning, a schema change createsvesthema version by
applying the changes to a specified schema version. The nesiords assigned the
validity of the schema change. Previous schema versionpletely overlapped by the
validity of the new schema segment are deleted and schers®rgwhich are only
partially overlapped have their validity restricted aatogly [2].

The sequence of schema changes as well as the versions pickach evolution
step determine which schema versions are created.

Example 3.Consider the schema version with scheiivaA, P, V') and validity[0; oo.
Two schema changes are applied: 1) attribtitss added with validity[cs; o[, and
2) attributeC is added with validity[c;; oo[, wheree; = 2003 —01—01 andcy =
2003—03—-01.

The table below shows the possible outcomes of applyingtbhesthema changes.
The sequence is the order in which the two attribute additame applied. The second
column indicates the result of applying the second scheraag#to the initial schema
version, and the third column contains the schema versasdting from applying the
second schema change to the new version created by the fiesshacchange.

Sequencg st version 2nd version

as,ac [(N,A,P,V) [0;e1] |(N,A, P V) [0;¢1]
(N,A,P,C, V) [c1;0[|(N, A, P, S,C, V) [c1; 00]

ac,as [((N,A,P,V) [0;e] |(N,A, P V) [0;¢1]
(N,A,P,C,V) [01;02[(N,A,P,C,V) [01;62[
(N,A,P,S, V) [c2; 0[|(N, A, P,C, S, V) [c2; 00]

Consider the schema changes in Example 3 isolated. Acaptalthe lossless prop-
erty, we should expect that tiieandC attributes both appear in the schema of tuples
valid after2003—03—01, and that none of them are in the schema pri@0@—01—01.
Additionally, betweer2003 — 01 —01 and2003 — 03 —01, only theC attribute should
appear in the schema. This is achieved by three segments@EDregardless of the
order in which the schema changes are applied.

In valid-time schema versioning, this is achieved by firstiad theC attribute and
then apply the addition of to the new schema version resulting from applying the
attribute addition of”. Note that in this case, the schema changes are orderedj and i
each evolution step the schema change is applied to the schension with a validity
that extends forevent). The situation corresponds exactly to transaction-tiohema
versioning.

Valid-time schema versioning and monoconditional schevo&ugon differ on two
points, when the conditions for transaction-time schemaioring are not met. First,
there is no relation between the schema version chosen aartfet for the schema
change and the validity of the schema charfgéecond, the schema change does not
apply to any of the schema versions with a validity that ayeslthe validity of the
schema change. Instead, these schema versions are eitedd# their validity is
completely overlapped by the validity of the schema chaongegstricted accordingly.

Valid-time schema versioning is not schema preserveringlét is possible for
the number of schema versions to shrink as a result of a scbieamye (if the validity
of the change overlaps several existing schema versidresygper bound on the num-
ber of schema versions in valid-time schema versioningapgrtional to the number
of schema changes applied. The space complexity of 1D-CHSaid-time schema
versioning are therefore the same.

5.3 Bitemporal Schema Versioning

In bitemporal schema versioning, schema versions are aiaét along both transaction-
time and valid-time. A schema change creates a new versi@pplying the changes

4 There is, however, one case, where the schema version awdlittiey of the schema change
are related. If no validity is specified for the schema chattgen the schema change assumes
the validity of the schema version.

to a specified schema version which is current. The new cuveggion is assigned the
validity of the schema change, and previous schema vers@npletely overlapped by
the change validity are archieved, rather than being dilesehappens in valid-time
schema versioning.

Example 4.Consider the schema version with the schéiaA, P, T, V), time perti-
nence0; oo[¢, and validity[0; oo[,,. First, anS attribute is added 02003 —02—01 with
validity [2003—03—01; co|. We are left with two current schema versions.

Vi: (N,A,P,T,V) [0;00]; [0; 2003 —03—01[,
Vo : (N,A,P,S,T,V) [2003—02—01; oo[; [2003—03—01; 0o,

Next, aC attribute is added 02003 — 04 — 01 with validity [2003 —01 —01; co].
The schema change is applied to a current version. Sincelhadind V5 are current,
we choose one of then¥y).

Vi: (N,A,P,T,V) [0;00[s [0;2003—01—01],
Va: (N, A, P,S,T,V) [2003—02—01;2003—04—01[, [2003—03—01; 0],
Vs : (N, A, P,C,T,V) [2003—04—01; 0o, [2003—01—01; oo,

The validity of V5, is completely overlapped by the validity of the schema cleang
soV; has to be archieved by updating its time pertinence.

Note that for bitemporal schema versioning “holes” can appe the bitemporal
domain, where no schemas are defined. E.g., the intendeshadbe a tuple recorded
before2003—02—01 and valid afte2003—03—01 cannot be determined for bitemporal
schema versioning. Therefore, bitemporal schema versidainot lossless. However,
it is schema preserving, because it archieves the versighsawalidity that is com-
pletely overlapped by the validity of the schema changeeratian deleting them as in
valid-time schema versioning. Only one new version is @@at response to a schema
change, so the space complexity of bitemporal schema wvengjds linear.

6 Summary

The MD-CES is a conceptual model for conditional schema gbhamwith many de-
sirable properties that are essential for relations thpletuwith different intended
schemas. The MD-CES is both lossless and schema presepuinbgas an exponen-
tial space complexity.

The paper investigates MD-CES where conditional schemaggsaare restricted
to conditions over one or two timestamp attributes. Thid$ga 1D-CES and 2D-CES
with a linear or polynomial space complexity. Both 1D-CES &D-CES are lossless
and if the conditional schema changes in their historie®edered, then they are also
schema preserving.

Figure 2 compares 1D-, 2D-, and MD-CSE with transactioretand valid-time.
Ordered and unordered refers to whether the history of tiondi schema changes is
ordered or not, and ordered reordering refers to unorddpe@RS, where there exists
a different ordered sequence of the same conditional schbarayes.

Table 2. Properties of Different Evolving Schema Models

|LosslesESchema Preservif§pace Complexity

Transaction-time Schema Versioning Yes Yes O(n)
Ordered 1D-CES Yes Yes O(n)
Valid-time Schema Versioning No No O(n)
Unordered 1D-CES Yes No O(n)
Unordered 1D-CES with schema preservatioryes Yes 0O(n?)
Bitemporal Schema Versioning No Yes O(n)
Unordered 2D-CES Yes No 0O(n?)
Unordered 2D-CES with ordered reordering Yes No O(n)
Ordered 2D-CES Yes Yes O(n)
MD-CES Yes Yes o2m)
References

1. J. Banerjee, W. Kim, H.-J. Kim, and H.F. Korth. Semantied &mplementation of Schema

10.

11.

12.

Evolution in Object-Oriented Databases. ACM SIGMOD International Conference on
Management of Datgages 311-322. ACM Press, 1987.

. C.D. Castro, F. Grandi, and R.R. Scalas. Schema VergjdomMultitemporal Relational

Databaseslnformation System22(5):249-290, 1997.

. 0.G. JensenMulti-Dimensional Conditional Schema Evolution in Redatl Databases

PhD thesis, Aalborg University, 2004.

. O.G. Jensen and M.H. Bohlen. Evolving Relations.Detabase Schema Evolution and

Meta-Modeling volume 9th International Workshop on Foundations of Medahd Lan-
guages for Data and Objects ®pringer LNCS 2065age 115 ff., 2001.

. 0.G. Jensen and M.H. Bohlen. Current, Legacy, and lwRlples in Conditionally Evolv-

ing Databases. IADVIS volume Second International Conference, ADVIS 2002, izmi
Turkey, October 23-25, 2002, ProceedingSpfinger LNCS 245pages 65-82, 2002.

. 0.G.Jensen and M.H. Bohlen. Lossless Conditional SalH&volution. INER, volume 22nd

International Conference on Conceptual Modeling, ER 2@dénghai, China, November 8-
12, 2004, Proceedings, 14 pages, 2004.

. L.E. McKenzie and R.T. Snodgrass. Schema Evolution aadRélational Algebralnfor-

mation Systemd5(2):207-232, 1990.

. Simon R. Monk and lan Sommerville. Schema Evolution in @3Dsing Class Versioning.

SIGMOD Recorg22(3):16-22, 1993.

. J.F. Roddick. SQL/SE - A Query Language Extension for betas Supporting Schema

Evolution. ACM SIGMOD Record?1(3):10-16, 1992.

J.F. Roddick and R.T. SnodgrasSchema Versioning. In; The TSQL92 Temporal Query
Language Noewell-MA: Kluwer Academic Publishers, 1995.

Andrea H. Skarra and Stanley B. Zdonik. The Manageme@hahging Types in an Object-
Oriented Database. I®OPSLA, 1986, Portland, Oregon, Proceedingages 483-495,
1986.

R.T. Snodgrass et al. TSQL2 Language Specificatd@M SIGMOD Record23(1), 1994.

