

Aalborg Universitet

Multitemporal conditional schema evolution

Jensen, Ole Guttorm; Bøhlen, Michael Hanspeter

Published in:
Conceptual Modeling for Advanced Application Domains

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Jensen, O. G., & Bøhlen, M. H. (2004). Multitemporal conditional schema evolution. In Wang (Ed.), Conceptual
Modeling for Advanced Application Domains (pp. 441-454). IEEE Computer Society Press. Lecture Notes in
Computer Science No. 3289

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by VBN

https://core.ac.uk/display/60304164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://vbn.aau.dk/en/publications/f314d470-003b-11da-b4d5-000ea68e967b

Multitemporal Conditional Schema Evolution

Ole G. Jensen1 and Michael H. Böhlen2

1 Department of Computer Science, Aalborg University,
Fredrik Bajers Vej 7E, DK-9220 Aalborg Øst, Denmark,

guttorm@cs.aau.dk,
2 Faculty pf Computer Science, Free University of Bozen-Bolzano,

Dominikanerplatz 3, I-39100 Bolzano, Italy,
boehlen@inf.unibz.it

Abstract. Schema evolution is the ability of the database to respond tochanges
in the real world by allowing the schema to evolve. Themultidimensional condi-
tionally evolving schema(MD-CES) is a conceptual model for conditional schema
changes, which modify the schema of those tuples that satisfy the change condi-
tion. The MD-CES is lossless and preserves schemas, but has an exponential
space complexity. In this paper we restrict conditional schema changes to times-
tamp attributes. Specifically, we develop 1D-CES for schemaversioning over one
time dimension, and 2D-CES for schema versioning over two time dimensions.
We show that the space complexity of these new evolution models is linear or
polynomial. 1D-CES and 2D-CES are compared to temporal schema versioning,
and we show that, unlike valid time versioning, they are lossless and achieve the
same space complexity as temporal versioning if the schema changes are ordered.

1 Introduction

Conditional schema changes modify the schema of those tuples that satisfy the change
condition [5], and they properly subsume unconditional andtemporal schema changes.
The semantics of conditional schema evolution is defined in terms of themulti-dimen-
sional conditionally evolving schema(MD-CES) [4]. The MD-CES has many desir-
able properties that are essential for relations that contain tuples with different intended
schemas. First, the MD-CES islossless, i.e., the intended schema of each tuple is consis-
tent with the initial schema definition and the subsequent conditional schema changes.
Thus, at any point during the evolution process the correct intended schema of a tuple
is known.3 Second, the MD-CES isschema preserving, i.e., all schemas are preserved
and tuples never have to be migrated to a schema with more or less attributes. On the
downside, however, the space complexity of the MD-CES growsexponentially with the
number of schema changes, and, consequently, the MD-CES is not a practical model.

In this paper, we specialize conditional schema changes to conditions over times-
tamp attributes. This leads to the 1D-CES and 2D-CES with linear or polynomial space

3 Models with an ad-hoc approach to schema evolution often violate this property. For example
if NULL values are used to “flag” attributes that are not part of the schema and with multi-
ple schema changes the correct identification of current andpast intended schemas is often a
problem.

complexity for monoconditional and biconditional schema changes, respectively. We
prove that 1D-CES and 2D-CES are still lossless and, if the history of conditional
schema changes is ordered, ensure schema preservation. We also provide the cost of en-
suring schema preservation for 1D-CES and 2D-CES with unordered histories. Thus, by
restricting the MD-CES to mono- and biconditional schema changes, we get a practical
model for schema evolution that is particularly relevant totemporal schema versioning.

An important aspect of our work is that it offers an alternative approach to investi-
gate the semantics of temporal evolution models. As pointedout before the semantics of
temporal schema versioning, in particular for bitemporal databases, is non-trivial. We
compare 1D-CES and 2D-CES to transaction-time, valid-time, and bitemporal schema
versioning. For transaction-time the two models are equivalent. In valid-time and bitem-
poral schema versioning, a schema change is applied to a single schema version spec-
ified by the user irrespective of the validity of the change and the version. In contrast,
with MD-CES a schema change modifies the schema of all segments with a validity that
overlaps the validity of the change. We show that valid-timeand bitemporal schema ver-
sioning are not lossless, and that valid-time schema versioning does not ensure schema
preservation.

2 Preliminaries

2.1 Multi-Dimensional Conditionally Evolving Schemas

A multi-dimensional conditionally evolving schema(MD-CES), E = {S1, . . . , Sn},
generalizes a relation schema and is defined as a set of schemasegments. Aschema
segment, S = (A, P), consists of a schemaA and a qualifierP . Throughout, we write
AS andPS to directly refer to the schema and qualifier of segmentS, respectively. As
usual, aschema, A = {A1, . . . , An}, is defined as a set of attributes. No distinction
is made between schemas and sets of attributes. Aqualifier P is eitherTRUE, FALSE,
or a conjunction/disjunction of attribute constraints. Anattribute constraintis a pred-
icate of the formAθc or ¬(Aθc), whereA is an attribute,θ ∈ {<,≤, =, 6=,≥, >}
is a comparison predicate, andc is a constant. A MD-CES may have segments with
different schemas. Consequently, some tuples may be missing attributes that appear in
other segments. In order to evaluate attribute constraintson such tuples,Aθc is an ab-
breviation for∃v(A/v ∈ t ∧ vθc) wheret is a tuple andA/v is an attribute/value pair.
Likewise,¬(Aθc) is an abbreviation for¬∃(A/v∈ t ∧ vθc). Note that this implies that
the constraints¬(A = c) andA 6= c are not equivalent.

A tuple t is a set of attribute values where each attribute value is an attribute/value
pair: {A1/v1, . . . , An/vn}. The value must be an element of the domain of the at-
tribute, i.e., ifdom(A) denotes the domain of attributeA, then∀A, v, t(A/v ∈ t ⇒
v ∈ dom(A)). A tuple t qualifiesfor a segmentS, qual(t, S), iff t satisfies the quali-
fier PS . A tuple satisfies a qualifier,P (t), iff the qualifier isTRUE or the tuple makes
the qualifier true under the standard interpretation. If a tuple t qualifies for a seg-
ment S in a MD-CESE, thenAS is the intended schemaof t, i.e., ∀t, S, E(S ∈
E ∧ qual(t, S)) ⇒ is(t, E) = AS). A tuple t matchesa segmentS iff the schema
of S andt are identical:match(t, S) iff ∀A(A ∈ AS ⇔ ∃v(A/v ∈ t)). If a tuple t

matches a segmentS in the MD-CESE, thenAS is the recorded schemaof t, i.e.,
∀t, S, E(S∈E ∧ match(t, S) ⇒ rs(t, E) = AS).

2.2 Conditional Schema Changes

A conditional schema changeis an operation that changes the set of segments of a
MD-CES. The condition determines the tuples that are affected by the schema change.
A conditionC is eitherTRUE, FALSE, an attribute constraint, or a conjunction of at-
tribute constraints. For the purpose of this section we consider two conditional schema
changes: adding an attribute,α(A, E, C), and deleting an attribute,β(A, E, C). An
extended set of schema changes that includes mappings between attributes and a dis-
cussion of their completeness can be found elsewhere [4].

α(A, E, C): An attributeA is added to the schemas of all segments that do not
already include the attribute. For each such segment two newsegments are generated:
a segment with a schema that does not include the new attribute and a segment with a
schema that includes the new attribute. Segments with a schema that already includes
A are not changed.

β(A, E, C): The attributeA is deleted from the schemas of all segments that include
the attribute. For each such segment two new segments are generated: a segment with
a schema that still includes the attribute and a segment witha schema that does not
include the attribute. Segments with a schema that does not includeA are not changed.

The precise formal definitions of conditional attribute additions and deletions are
given in Figure 1. Note that conditional schema changes properly subsume regular (i.e.,
unconditional) schema changes. It is possible to have the condition (TRUE) select the
entire extent of a relation.

α(A, ∅, C) = ∅

α(A, {(A, P)} ∪ E, C) =

8

<

:

{(A, P)} ∪ α(A, E, C) iff A∈A
{(A ∪ {A}, P ∧ C), (A, P ∧ ¬C)}
∪α(A, E,C) iff A 6∈A

β(A, ∅, C) = ∅

β(A, {(A, P)} ∪ E, C) =

8

<

:

{(A, P)} ∪ β(A, E, C) iff A 6∈A
{(A \ {A}, P ∧ C), (A, P ∧ ¬C)}
∪β(A, E, C) iff A∈A

Fig. 1. Adding (α(A, E, C)) and Deleting (β(A,E, C)) AttributeA on ConditionC

A history H = [γ1(A1, E, C1), . . . , γn(An, E, Cn)] whereγi ∈ {α, β} is a se-
quence of conditional schema changes. We say that(E0, H) is theevolution historyof
E whereE0 = {S} consists of a single segment, iffE = γn(An, . . . γ1(A1, E0, C1)
. . . , Cn).

2.3 Lossless and Schema Preserving Properties

The MD-CES is bothlossless[6] andschema preserving[5].
The lossless property ensures that the intended schema defined by a MD-CES for

each tuple is consistent with the initial schema definition and the conditional schema
changes. Intuitively, the intended schema of a tuplet can be determined from the initial
schema by applying only those schema changes with a condition satisfied byt in the
sequence given by the history.

The schema preserving property guarantees that all schemasdefined by segments in
a MD-CES also appear in segments after a conditional schema change. Schema preser-
vation is a requirement if the segments of the MD-CES are to beused as relations to
store the (heterogeneous) tuples of evolving relations.

3 Schema Change Conditions on a Single Attribute

Conditional schema evolution allows schema changes to be conditioned by any attribute
in the schema. Since each conditional schema change potentially splits every segment in
the MD-CES into two new segments, conditional schema evolution leads to MD-CESs
where the number of segments is exponential in the size of thehistory [5]. Therefore,
solutions that rely on the segments of a MD-CES are not tractable, including using the
segments as relations to record tuples or querying individual segments.

In this section we restrict the conditions of conditional schema changes to a single
attribute. This leads toone-dimensional conditionally evolving schemas(1D-CES). We
show that the number of segments in a 1D-CES becomes proportional to the size of
the history. This is achieved by the elimination of segmentswith false qualifiers. We
show that this optimization preserves the lossless property of the MD-CES but can
violate schema preservation. To achieve schema preservation additional segments must
be kept in the 1D-CES increasing its space complexity to be polynomial in the size of
the history. We show that if the history is ordered, then schema preservation is achieved
without recording additional segments. First, however, wepresent a running example to
be used throughout.

3.1 Running Example

We use a relation storing information about employees as a running example. The em-
ployee relation records a name, an address, and a phone number for each employee.
Additionally, a timestamp attribute records when the fact was recorded in the database
(a detailed discussion about different notions of time is deferred until Section 5). The
schemaEmployee= (Name, Address, Phone, Time) defines the (initial) employee relation schema.

A conditional schema changeγ1 = α(Ssn, Employee, Time ≥ 2003-01-01) adds a social
security number to employees recorded on and after January 1st 2003. The schema
change splits the employee schema into two segments:S1 = ({N, A, P, T }, T <
2003-01-01}) andS2 = ({N, A, P, S, T }, T ≥ 2003-01-01}).

The schema change only adds a social security number to the schema of employ-
ees recorded with a timestamp value equal to or greater than 2003-01-01. Employees
recorded with a timestamp before 2003-01-01 are not affected.

We require that all tuples have a timestamp value and that schema changes cannot
drop the timestamp attribute from the schema. The evaluation of qualifiers is affected
by this requirement. Recall that qualifiers are existentially quantified, so¬(Tθc) ≡
¬∃T (Tθc). This implies that conditions¬(T = c) andT 6= c are not equivalent. E.g.
tuples without aT attribute value evalues to true for the former condition andfalse for
the latter condition. However, since we require that all tupleshavea timestamp value,
the equivalence holds, and the negation can be pushed down tothe comparison predicate
as is the case forS1.

A second schema change drops the address from the schema of employees recorded
from the 1st of March 2003 and replaces it with aCity attribute. In response, two condi-
tional schema changes are applied to theEmployeeMD-CES:

β(Address, Employee, Time ≥ 2003-03-01) α(City, Employee, Time ≥ 2003-03-01)

The conditional schema change on the left drops theAddressattribute from the schema
of employees with a timestamp value of at least 2003-03-01. The conditional schema
change on the right adds theCity attribute on the exact same condition. Both conditional
schema changes are applied in sequence as seen below. Note that the order in which
the two schema changes are applied does not change the result, because the schema
changes affect different attributes (AddressandCity respectively).

E2 = α(C, β(A, E1, T ≥ 2003-03-01), T ≥ 2003-03-01) =
˘

({N, C, P, S, T}, T ≥ 2003-01-01∧ T ≥ 2003-03-01∧ T ≥ 2003-03-01)1,
({N, P, S, T}, T ≥ 2003-01-01∧ T ≥ 2003-03-01∧ T < 2003-03-01)2,
({N, A,C, P, S, T}, T ≥ 2003-01-01∧ T < 2003-03-01∧ T ≥ 2003-03-01)3,
({N, A,P, S, T}, T ≥ 2003-01-01∧ T < 2003-03-01∧ T < 2003-03-01)4,
({N, C, P, T}, T < 2003-01-01∧ T ≥ 2003-03-01∧ T ≥ 2003-03-01)5,
({N, P, T}, T < 2003-01-01∧ T ≥ 2003-03-01∧ T < 2003-03-01)6,
({N, A,C, P, T}, T < 2003-01-01∧ T < 2003-03-01∧ T ≥ 2003-03-01)7,
({N, A,P, T}, T < 2003-01-01∧ T < 2003-03-01∧ T < 2003-03-01)8

¯

The employee MD-CES,E2, now consists of eight segments (marked with small
numbers in the above expression). Clearly, the number of segments inE2 increases
exponentially with the application of conditional schema changes.

3.2 Elimination of Segments with False Qualifiers

Consider the qualifier of segment 2 inE2:

T ≥ 2003-01-01∧ T ≥ 2003-03-01∧ T < 2003-03-01⇔

T ≥ 2003-03-01∧ T < 2003-03-01⇔

FALSE

Clearly, the qualifier is false. No tuple can qualify for suchsegments. Future condi-
tional schema changes applied to a segmentS with a false qualifierPS cannot result in
segments with non-false qualifiers, because those qualifiers are either identical toPS or
in conjunctive form withPS (cf. Section 2) and, clearly,FALSE∧ p ≡ FALSE.

A MD-CES defines the intended schema of all tuples for a given initial schema and
history. The association of tuples and their intended schemas is done through qualifica-
tion of tuples with individual segments. Since tuples cannot qualify for segments with
false qualifiers, such segments define no intended schemas. We can therefore omit seg-
ments with false qualifiers from a MD-CES without loss to the set of intended schemas
defined by it, i.e., without losing the lossless property. This is stated by Lemma 1. All
proofs have been omitted due to space considerations, but can be found in [3].

Lemma 1. Let E andE′ be MD-CESs and letγ be a conditional schema change. If
E′ consists of exactly the non-false segments ofE, thenγ(A, E, C) andγ(A, E′, C)
define the exact same intended schema for any tuple, i.e.,∀γ, t(is(t, γ(A, E, C)) =
is(t, γ(A, E′, C))).

3.3 MD-CES with Linear Space Complexity

Schema changes conditioned by a single attribute result in aMD-CES, where the qual-
ifier of each segment is a conjunction of predicates over thatattribute only. We say
that such MD-CESs are one-dimensional (denoted as 1D-CES).The intended schema
of a tuple depends exclusively on its recorded attribute value for the attribute used to
condition the schema changes. Moreover, for every value of that attribute, the 1D-CES
defines exactly one intended schema, because the qualifiers of two segments part of the
same MD-CES never overlap (a property of the MD-CES [5]).

Note that the number of segments inEmployee scales with the number of conditional
schema changes applied. In the general case conditional schema changes cause an ex-
ponential increase of segments, as each schema change potentially splits every segment
into two new segments. However, because all the conditionalschema changes applied
to Employee are conditioned by the same attribute, at most one segment issplit into two
non-false segments after each schema change (every other segment yields only one
non-false segment).

Unbounded Conditions We shall assume that all conditional schema changes haveun-
boundedconditions, i.e. conditions of the formAθc whereθ ∈ {≥, >, <,≤}. Bounded
conditions can be specified easily. E.g.α(A, E, T ≥ t1∧T ≤ t2) has a bounded condi-
tion affecting only tuples with aT value in the interval fromt1 to t2. Schema changes
with bounded conditions can split up to two different segments (one per predicate in the
condition). However, any conditional schema change with a non-false bounded con-
dition has an equivalent pair of unbounded conditions. Table 1 shows the equivalent
conditional schema changes for attribute addition and deletion with bounded condition,
respectively. Conditional schema changes applying to a single point, i.e. with a condi-
tion of the formA = c, is a specialization of a bounded condition (since(A = c) ≡
(A ≥ c ∧ A ≤ c)).

We can assume unbounded conditions without loss of generality. Unbounded con-
ditions result in segments where the qualifier is satisfied for a contiguous set of attribute
values (an interval). This facilitates the comparison between segments of a 1D-CES
(and 2D-CES) and schema versions in Section 5. Next, we give the main result of this
section.

Table 1. Conditional Schema Change Equivalences between Bounded and Unbounded Condi-
tions

Bounded Condition Unbounded Conditions
α(A, E, T ≥ t1 ∧ T ≤ t2) α(A, E, T ≥ t1), β(A,E, T > t2)
β(A, E, T ≥ t1 ∧ T ≤ t2) β(A, E, T ≥ t1), α(A,E, T > t2)

Lemma 2. Let bothE and E′ be a MD-CES. LetH = [γ1(A1, E, C1), . . . , γn(An,
E, Cn)] be a history whereγi ∈ {α, β} and each conditionCi is unbounded and
over the same attributeT . If E′ = γn(An, . . . γ1(A1, E, C1) . . . , Cn) thenE′ has a
number of additional non-false segments that is proportional to the size of the history,
i.e. |E′| − |E| ≤ |H |.

Lemma 2 shows that solutions to conditional schema evolution based on the seg-
ments of the MD-CES become tractable when schema changes areconditioned by a
single attribute.

3.4 Ordering of Histories

While Lemma 2 guarantees the scalability of the 1D-CES, a conditional schema change
can potentially change the schema of every segment in the 1D-CES. The 1D-CES is no
longer guaranteed to ensure schema preservation once segments with false qualifiers
have been eliminated. Using the segments of the 1D-CES as relations to record the
(heterogeneous) tuples of an evolving relation, requires that existing schemas are pre-
served for tuples already recorded in the database with those schemas. In the worst case,
a conditional schema change results in a 1D-CES where all theschemas of the original
segments appear in new segments with false qualifiers. Therefore, they would all need
to be kept in addition to the new segments created by the schema change. An upper
bound of n

2
+n

2
segments, wheren is the size of the history, would have to be kept to

ensure schema preservation. In this section we show that by ordering the history it is
possible to keep the number of segments linear.

Example 1.Consider a 1D-CES with segments:({A, C, T}, T ≥ 3) and({B, C, T},
T < 3). Assume a conditional schema change that drops theC attribute on the condition
T ≥ 1. The result is a 1D-CES with the following segments:

1. ({A, T}, T ≥ 3 ∧ T ≥ 1) ≡ ({A, T}, T ≥ 3)
2. ({A, C, T}, T ≥ 3 ∧ T < 1) ≡ ({A, C, T}, FALSE)
3. ({B, T}, T < 3 ∧ T ≥ 1)
4. ({B, C, T}, T < 3 ∧ T < 1) ≡ ({B, C, T}, T < 1)

Note that the 1D-CES no longer contains a segment with the schema{A, C, T} (since
it was dropped due to a false qualifier).

Unbounded conditions over a single attribute leads to segments with qualifiers that
are satisfied for a contiguous interval of attribute values.The problem illustrated by
Example 1 arises when the condition of a schema change can be satisfied by attribute

values within the interval qualified by more than one segment. From Lemma 2 we have
that at most one segment is split by the conditional schema change resulting in two non-
false segments. For all other segments, the conditional schema change creates only one
non-false segment. The interval of attribute values qualified by each of these segments
either all satisfy the condition or none satisfy the condition. In the former case, the
segment with the schema of the original segment, will have a false qualifier.

To ensure schema preservation while still eliminating segments with false qualifiers,
we impose an ordering on the conditional schema changes. Definition 1 defines ordered
histories of conditional schema changes.

Definition 1. (ordered history) Let H = [γ1(A1, E, C1), . . . , γn(An, E, Cn)] be a
history. If each conditional schema change applies to a proper subset of the tuples which
the previous conditional schema change applied to, i.e., if{t|t∈dom(T)∧Ci+1(t)} ⊂
{t|t∈dom(T) ∧ Ci(t)} wheredom(T) is the domain ofT attribute values, thenH is
anordered history.

In general, all schemas are preserved by a conditional schema change if it splits
exactly one segment into two non-false segments and no attribute value in the interval
defined by any other segment satisfy the condition. This willensure that all previously
defined schemas appear in segments with non-false qualifiers.

Lemma 3 states that a 1D-CES with an ordered history preserves all previously
defined schemas.

Lemma 3. Let H = [γ1(A1, E, C1), . . . , γn(An, E, Cn)] be a history whereγi ∈
{α, β} and each conditionCi is unbounded over a single attributeT . LetE be a MD-
CES with a single segment, and let eachEi = γi(Ai, . . . γ1(A1, E, C1) . . . , Ci) be a
MD-CES. IfH is an ordered history thenEn preserves all schemas defined by segments
in E andE1 to En−1, i.e.,H is ordered implies that∀S(S ∈ E ∪ E1 ∪ . . . ∪ En−1 ∧
∃S′(S′ ∈ En ∧ AS = AS′)).

Lemma 2 and 3 ensure that a 1D-CES with an ordered history of conditional schema
changes using unbounded conditions over a single attributeis both lossless and schema
preserving and has a space complexity, which is linear in thesize of the history.

4 Schema Change Conditions on Different Attributes

So far conditional schema changes with a single attribute constraint have been con-
sidered. We refer to these schema changes as monoconditional schema changes. This
section investigates histories where monoconditional schema changes are over differ-
ent attributes. We show that as the number of different attributes used in the conditions
increases, so does the space complexity of the MD-CES. We also consider bicondi-
tional schema changes, i.e., schema changes where the condition is a conjunction of
two attribute constraints over different attributes. Biconditional schema changes lead to
two-dimensional conditionally evolving schemas(2D-CES). A 2D-CES with a history
of biconditional schema changes has a polynomial space complexity. We show that an
ordered history of biconditional schema changes ensures a 2D-CES, which is lossless
and schema preserving and has a linear space complexity.

Monoconditional schema changes over different attributesare orthogonal. These
conditional schema changes split every segment in a MD-CES into two non-false seg-
ments. Since the qualifierP of the segmentS and the conditionC of the change are
over different attributes, the logical conjunctionP ∧ C cannot be equivalent to false
(unless eitherP or C is already false), so both segments resulting from applyingthe
conditional schema change toS have non-false qualifiers.

Lemma 4 establishes the upper bound on the number of segmentswith non-false
qualifiers in a MD-CES with a history of monoconditional schema changes over differ-
ent attributes.

Lemma 4. Let H be a history of monoconditional schema changes with unbounded
conditions. LetAH = {A1, . . . , An} be the set of attributes appearing in conditions in
H , and letnum(A, H) be the number of schema changes inH conditioned byA. LetE
andE′ be a MD-CES and letE consist of a single segment. If(E, H) is the evolution
history ofE′ then the upper bound on the number of segments with non-falsequalifiers
in E′ is (1 + num(A1, H)) × . . . × (1 + num(An, H)).

4.1 Ordering of Biconditional Schema Changes

In the general case, biconditional schema changes lead to a polynomial number of seg-
ments in a 2D-CES. This occurs when the condition of a schema change overlaps the
qualifiers of all segments. However, if the condition is contained by the qualifier of a
single segment then the number of segments increase by at most one.

This is the case for ordered histories of conditional schemachanges. Recall that
a history is ordered iff each conditional schema change applies to a proper subset of
the tuples which the previous conditional schema change applied to. For biconditional
schema changes this occurs when the conditional of each schema change is contained
by the qualifier of the latest segment.

Lemma 5 states that the number of segments in a MD-CES defined by a history of
biconditional schema changes is proportional to the size ofthe history, if there exists a
sequence of those schema changes such that the sequence is anordered history.

Lemma 5. Let H be a history of biconditional schema changes with conditions Ci

of the formT ≥ ti ∧ V ≥ vi. Let E and E′ be a MD-CES and letE consist of a
single segment. Let(E, H) be the evolution history ofE′. If there exists a sequence
H ′ of the schema changes inH such thatH ′ is an ordered history, thenE′ has a
number of additional non-false segments that is proportional to the size of the history,
i.e., |E′| − |E| ≤ |H |.

Lemma 5 does not guarantee that all schemas are preserved by segments in the
2D-CES after a biconditional schema change has been applied. Schema preservation is
achieved by ordered histories as stated in Lemma 6.

Lemma 6. LetH = [γ1(A1, E, C1), . . . , γn(An, E, Cn)] be a history of biconditional
schema changes whereγi ∈ {α, β}. Let E be a MD-CES with a single segment, and
let eachEi = γi(Ai, . . . γ1(A1, E, C1) . . . , Ci) be a MD-CES. IfH is ordered then
En preserves all schemas defined by segments inE andE1 to En−1, i.e.,H is ordered
implies that∀S(S ∈ E ∪ E1 ∪ . . . ∪ En−1 ∧ ∃S′(S′ ∈ En ∧AS = AS′)).

5 Related Work

A versioning approach to schema evolution has been proposedwithin the context of
both OODBs and temporal databases. In OODBs, a new version ofthe object instances
is constructed along with a new version of the schema. TheOrion [1] schema version-
ing mechanism keeps versions of the whole schema hierarchy instead of the individual
classes or types. Every object instance of an old schema can be copied or converted
to become an instance of the new schema. The class versioningapproach CLOSQL
[8] provides update/backdate functions for each attributein a class to convert instances
from the format in which the instance is recorded to the format required by the ap-
plication. TheEncore[11] system provides exception handlers for old types to deal
with new attributes that are missing from the instances. This allows new applications to
access undefined fields of legacy instances.

Schema changes relating to time have been investigated in the context of temporal
schema versioning, where proposals have been made for the maintenance of schema
versions along one [7, 9, 10] or more time dimensions [2]. Twotime dimensions are
usually considered:transaction time, which tells when facts are logically present and
events occur in the database, andvalid time, which tells when facts are true and events
occur in the reality [12].

In schema versioning each version associates a schema with its time pertinence
specified as an interval of time stamp values. The symbol “0” denotes the special values
initiation in transaction time (i.e. the time when the system was started) andbeginning
in valid time (i.e. the minimum value of valid time). The symbol “∞” denotes the
special valuesuntil changedin transaction time (which is used to timestamp a still
current fact) andforeverin valid time (i.e. the maximum value of valid time).

In this section we use 1D-CES and 2D-CES with mono- and biconditional schema
changes over timestamp attributes as a yard stick to investigate temporal schema ver-
sioning. There is a strong similarity between segments in a MD-CES and schema ver-
sions. This facilitates a comparison between the effects ofschema changes in both
frameworks. Only changes at the intensional (schema) levelare considered. The in-
teraction between intensional and extensional versioningis considered elsewhere [5].

5.1 Transaction-time Schema Versioning

In transaction-time schema versioning, one of the versionsis thecurrentschema ver-
sion. Only the current version can be affected by a schema change. When this occurs,
the current version is archieved and replaced by a new current version obtained by
applying the schema change to the old schema. The implicit transaction-time perti-
nence of a schema change is always[now;∞], i.e., the schema change takes effect
when recorded in the database and remains in effect until changed by another schema
change [2].

Example 2.Consider the schema version with schema(N, A, P, T) and time perti-
nence[0;∞[. Two schema changes are applied: 1) on the2003−01−01 anS attribute
is added to the schema, and 2) on the2003−03−01 theA attribute is dropped.

The first schema change results in a new current schema version with schema
(N, A, P, S, T) and the time pertinence of the schema change. The old schema ver-
sion is archieved and its time pertinence is restricted to2003−01−01:

V1 : (N, A, P, T) [0; 2003−01−01[
V2 : (N, A, P, S, T) [2003−01−01;∞[

The second schema change is then applied to the new current schema versionV2.
V1 is not considered. The result is a new current schema versionV3 and the restriction
of the time pertinence ofV2:

V1 : (N, A, P, T) [0; 2003−01−01[
V2 : (N, A, P, S, T) [2003−01−01; 2003−03−01[
V3 : (N, P, S, T) [2003−03−01;∞[

Note the similarity between the time pertinence of schema versions in Example 2
and the qualifiers of segments in 1D-CES. Assuming thatT records transaction-time,
then both schema versions and segments define the intended schema for an interval a
timestamp values.

The implicit time pertinence of schema changes in transaction-time schema version-
ing corresponds to unbounded monoconditional schema changes of the formT ≥ cnow,
wherecnow is the timestamp value ofnow when the schema change is recorded.

Due to the nature of transaction-time,cnow will increase with each additional schema
change. This implies that the history of schema changes in transaction-time schema
evolution is always ordered.

Lemma 2 and 3 ensure that all schemas are preserved (so schemachanges do not
affect archieved schema versions) and only one schema (the current schema version)
is affected by a schema change splitting it into a version with the old schema and a
restricted time pertinence (corresponding to a conjunction with the negated condition
for the schema change) and the new current schema version. Although, transaction-time
schema versioning considers only the current version when aschema change is applied,
the resulting schema versions are still equivalent to the segments in 1D-CES due to
transaction-time providing a natural ordering of the schema changes.

5.2 Valid-time Schema Versioning

In valid-time schema versioning, a schema change creates a new schema version by
applying the changes to a specified schema version. The new version is assigned the
validity of the schema change. Previous schema versions completely overlapped by the
validity of the new schema segment are deleted and schema versions which are only
partially overlapped have their validity restricted accordingly [2].

The sequence of schema changes as well as the versions pickedin each evolution
step determine which schema versions are created.

Example 3.Consider the schema version with schema(N, A, P, V) and validity[0;∞[.
Two schema changes are applied: 1) attributeS is added with validity[c2;∞[, and
2) attributeC is added with validity[c1;∞[, wherec1 = 2003−01−01 and c2 =
2003−03−01.

The table below shows the possible outcomes of applying the two schema changes.
The sequence is the order in which the two attribute additions are applied. The second
column indicates the result of applying the second schema change to the initial schema
version, and the third column contains the schema versions resulting from applying the
second schema change to the new version created by the first schema change.

Sequence1st version 2nd version
αS , αC (N, A, P, V) [0; c1[(N, A, P, V) [0; c1[

(N, A, P, C, V) [c1;∞[(N, A, P, S, C, V) [c1;∞[
αC , αS (N, A, P, V) [0; c1[(N, A, P, V) [0; c1[

(N, A, P, C, V) [c1; c2[(N, A, P, C, V) [c1; c2[
(N, A, P, S, V) [c2;∞[(N, A, P, C, S, V) [c2;∞[

Consider the schema changes in Example 3 isolated. According to the lossless prop-
erty, we should expect that theS andC attributes both appear in the schema of tuples
valid after2003−03−01, and that none of them are in the schema prior to2003−01−01.
Additionally, between2003−01−01 and2003−03−01, only theC attribute should
appear in the schema. This is achieved by three segments in 1D-CES regardless of the
order in which the schema changes are applied.

In valid-time schema versioning, this is achieved by first adding theC attribute and
then apply the addition ofS to the new schema version resulting from applying the
attribute addition ofC. Note that in this case, the schema changes are ordered, and in
each evolution step the schema change is applied to the schema version with a validity
that extends forever (∞). The situation corresponds exactly to transaction-time schema
versioning.

Valid-time schema versioning and monoconditional schema evolution differ on two
points, when the conditions for transaction-time schema versioning are not met. First,
there is no relation between the schema version chosen as thetarget for the schema
change and the validity of the schema change.4 Second, the schema change does not
apply to any of the schema versions with a validity that overlaps the validity of the
schema change. Instead, these schema versions are either deleted (if their validity is
completely overlapped by the validity of the schema change)or restricted accordingly.

Valid-time schema versioning is not schema preservering. While it is possible for
the number of schema versions to shrink as a result of a schemachange (if the validity
of the change overlaps several existing schema versions), the upper bound on the num-
ber of schema versions in valid-time schema versioning is proportional to the number
of schema changes applied. The space complexity of 1D-CES and valid-time schema
versioning are therefore the same.

5.3 Bitemporal Schema Versioning

In bitemporal schema versioning, schema versions are maintained along both transaction-
time and valid-time. A schema change creates a new version byapplying the changes

4 There is, however, one case, where the schema version and thevalidity of the schema change
are related. If no validity is specified for the schema change, then the schema change assumes
the validity of the schema version.

to a specified schema version which is current. The new current version is assigned the
validity of the schema change, and previous schema versionscompletely overlapped by
the change validity are archieved, rather than being deleted as happens in valid-time
schema versioning.

Example 4.Consider the schema version with the schema(N, A, P, T, V), time perti-
nence[0;∞[t, and validity[0;∞[v. First, anS attribute is added on2003−02−01 with
validity [2003−03−01;∞[. We are left with two current schema versions.

V1 : (N, A, P, T, V) [0;∞[t [0; 2003−03−01[v
V2 : (N, A, P, S, T, V) [2003−02−01;∞[t [2003−03−01;∞[v

Next, aC attribute is added on2003−04−01 with validity [2003−01−01;∞[.
The schema change is applied to a current version. Since bothV1 andV2 are current,
we choose one of them (V1).

V1 : (N, A, P, T, V) [0;∞[t [0; 2003−01−01[v
V2 : (N, A, P, S, T, V) [2003−02−01; 2003−04−01[t [2003−03−01;∞[v
V3 : (N, A, P, C, T, V) [2003−04−01;∞[t [2003−01−01;∞[v

The validity ofV2 is completely overlapped by the validity of the schema change,
soV2 has to be archieved by updating its time pertinence.

Note that for bitemporal schema versioning “holes” can appear in the bitemporal
domain, where no schemas are defined. E.g., the intended schema for a tuple recorded
before2003−02−01 and valid after2003−03−01 cannot be determined for bitemporal
schema versioning. Therefore, bitemporal schema versioning is not lossless. However,
it is schema preserving, because it archieves the versions with a validity that is com-
pletely overlapped by the validity of the schema change rather than deleting them as in
valid-time schema versioning. Only one new version is created in response to a schema
change, so the space complexity of bitemporal schema versioning is linear.

6 Summary

The MD-CES is a conceptual model for conditional schema changes with many de-
sirable properties that are essential for relations that tuples with different intended
schemas. The MD-CES is both lossless and schema preserving,but has an exponen-
tial space complexity.

The paper investigates MD-CES where conditional schema changes are restricted
to conditions over one or two timestamp attributes. This leads to 1D-CES and 2D-CES
with a linear or polynomial space complexity. Both 1D-CES and 2D-CES are lossless
and if the conditional schema changes in their histories areordered, then they are also
schema preserving.

Figure 2 compares 1D-, 2D-, and MD-CSE with transaction-time and valid-time.
Ordered and unordered refers to whether the history of conditional schema changes is
ordered or not, and ordered reordering refers to unordered 2D-CES, where there exists
a different ordered sequence of the same conditional schemachanges.

Table 2.Properties of Different Evolving Schema Models

LosslessSchema PreservingSpace Complexity

Transaction-time Schema Versioning Yes Yes O(n)
Ordered 1D-CES Yes Yes O(n)

Valid-time Schema Versioning No No O(n)
Unordered 1D-CES Yes No O(n)
Unordered 1D-CES with schema preservationYes Yes O(n2)

Bitemporal Schema Versioning No Yes O(n)
Unordered 2D-CES Yes No O(n2)
Unordered 2D-CES with ordered reordering Yes No O(n)
Ordered 2D-CES Yes Yes O(n)

MD-CES Yes Yes O(2n)

References

1. J. Banerjee, W. Kim, H.-J. Kim, and H.F. Korth. Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. InACM SIGMOD International Conference on
Management of Data, pages 311–322. ACM Press, 1987.

2. C.D. Castro, F. Grandi, and R.R. Scalas. Schema Versioning for Multitemporal Relational
Databases.Information Systems, 22(5):249–290, 1997.

3. O.G. Jensen.Multi-Dimensional Conditional Schema Evolution in Relational Databases.
PhD thesis, Aalborg University, 2004.

4. O.G. Jensen and M.H. Böhlen. Evolving Relations. InDatabase Schema Evolution and
Meta-Modeling, volume 9th International Workshop on Foundations of Models and Lan-
guages for Data and Objects ofSpringer LNCS 2065, page 115 ff., 2001.

5. O.G. Jensen and M.H. Böhlen. Current, Legacy, and Invalid Tuples in Conditionally Evolv-
ing Databases. InADVIS, volume Second International Conference, ADVIS 2002, Izmir,
Turkey, October 23-25, 2002, Proceedings ofSpringer LNCS 2457, pages 65–82, 2002.

6. O.G. Jensen and M.H. Böhlen. Lossless Conditional Schema Evolution. InER, volume 22nd
International Conference on Conceptual Modeling, ER 2004,Shanghai, China, November 8-
12, 2004, Proceedings, 14 pages, 2004.

7. L.E. McKenzie and R.T. Snodgrass. Schema Evolution and the Relational Algebra.Infor-
mation Systems, 15(2):207–232, 1990.

8. Simon R. Monk and Ian Sommerville. Schema Evolution in OODBs using Class Versioning.
SIGMOD Record, 22(3):16–22, 1993.

9. J.F. Roddick. SQL/SE - A Query Language Extension for Databases Supporting Schema
Evolution. ACM SIGMOD Record, 21(3):10–16, 1992.

10. J.F. Roddick and R.T. Snodgrass.Schema Versioning. In: The TSQL92 Temporal Query
Language. Noewell-MA: Kluwer Academic Publishers, 1995.

11. Andrea H. Skarra and Stanley B. Zdonik. The Management ofChanging Types in an Object-
Oriented Database. InOOPSLA, 1986, Portland, Oregon, Proceedings, pages 483–495,
1986.

12. R.T. Snodgrass et al. TSQL2 Language Specification.ACM SIGMOD Record, 23(1), 1994.

