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Random Decrement: ldentification of Structures Subjected 
to Ambient Excitation 

J.C. Asmussen\ S.R. Ibrahim2 & R. Brincker1 

1 Department of Building Technology and Structural Engineering 
Aalborg University, Sohngaardsholmsvej 57, 9000 Aalborg, Denmark. 

2Department of Mechanical Engineering, Old Dominion University, 
238 Kaufman/Duckworth Hall, Norfolk, Virginia, USA. 

Abstraet Thispaper demansirates how to use the 
Random Decrement (RD) technique for identification o f 
linear structures subjected to ambient excitation. The 
theory behind the technique will be presented and guide­
lines how to choose the different variables will be given. 
This is done by introducing a new concept: Quality As­
sessment. The identification process and quality assess­
ment is illustrated by an analysis o f the ambient response 
of a two-span concrete bridge. 
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Damping Matrix. 
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Conditional mean value. 
N atural frequency. 
Stiffnes matrix. 
Mass matrix. 
N umber af triggering points. 
Initial modal conditions. 
Time variables. 
Triggering conditions. 
Applied general triggering condition. 
Local extremum triggering condition. 
Level crossing triggering condition. 
Positive point triggering condition. 
Zero crossing triggering condition. 
Stochastic processes. 
Realization of X(t), Y(t). 
Auto cerrelation functions. 
Cross cerrelation functions. 
Error function. 
Mode shape matrix. 
Diagonal matrix with eigenvalues. 
Damping ratio. 
Degrees of Freedom. 
Fast Fourier Transform. 
Ibrahim Time Domain. 
Polyreference Time Domain. 
Random Decrement. 

l Introduetion 

The RD technique was introduced by H.A. Cole during 
the late 1960s and early 1970s, see Cole [1], [2], [3] and [4] 
as an alternative to the FFT algorithm for the analysis 
of response measurements only. Cole mainly applied the 
technique to the measured vibrations of space structures 
subjected to unmeasurable ambient excitation. The RD 
technique is attractive since the implementation is sim­
ple and the estimation time is low. The principle is to 
estimate RD furretions by averaging time segments of 
the mesurements, which have been selected under cer­
tain conditions. From the RD furretions the modal para­
meters of the structure can be extracted using methods 
developed to extract modal parameters from free decays 
or cerrelation functions. 

Since the development of this technique, the theory be­
hind the technique has been extended and the technique 
has been applied to a large variety of structures. N asir 
et al. [5] applied the RD technique to vibrations of off­
shore platforms, Siviter et al. [6] used the technique for 
measuring railway vehicle kinematics, Al-Sannad et al. 
[7] used the technique in soil testing and the technique 
has been applied in ambient testing of bridges, see e.g. 
Asmussen et al. [8], [9], [10] and Fasana et al. [11]. 

The purpose of this paper is to describe a procedure for 
the analysis of vibrations of ambient excited structures 
using the RD technique. The theory behind the tech­
nique is deseribed and a recipe for the application of the 
technique is given. 

The natural starting point is the definition and the es­
timation of RD furretions which is shown in section 2 . 
Section 3 describes how RD furretions can be interpreted 
as free decays of the structure, and section 4 describes 
how RD furretions can be interpreted as cerrelation func­
tions. These two interpretations support each other and 
constitute the theoretical background for the RD tech­
nique. Section 5 describes how the structures and the 
loads are modelled. Section 6 describes how the trigger­
ing conditions can be chosen using quality assessment. 
Section 7 describes how the modal parameters can be 
extracted fromtheRD functions. To illustrate the appli-
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cation of the above theoretical statements and guidelines 
a two-span concrete highway bridge is identified. 

2 Definition and Estimation 

To describe the RD technique two stationary stochastic 
processes, X(t) and Y(t) are considered. The ambient 
measurements are considered to be realizations of X(t) 
and Y(t). The auto, Dxx, Dyy, and cross, Dy x, Dxy, 
RD furretions are defined as conditional mean values 

Dxx(r) 

Dy x( r) 

Dyy(r) 

Dxy(r) 

E[X(t + r)ITx(tJ] 

E[Y(t + r)ITx(tJ] 

E[Y(t + r)ITY(t)] 

E[X(t + r)ITY(t)] 

(l) 

(2) 

(3) 

(4) 

The first index refers to the process where the mean 
value is calculated and the second index refers to the 
process where the condition is fulfilled. The conditions 
Tx(t) and TY(t) are denoted triggering conditions and an 
actual time, t, where the condition is fulfilled, is denoted 
a triggering point. If n measurements are available it is 
possible to estimate n different sets of RD furretions each 
containing n functions. This corresponds to the number 
of correlation functions, which can be estimated from the 
n measurements. Dxx, Dy x in eqs. (1), (2) and Dxy, 
Dy y in eqs. (3), ( 4) constitute two different sets of RD 
functions, e.g. 

[ ( 
Set l ) ( Set 2 ) l 

Dxx(r) Dxy(r) 
Dyx(r) Dyy)(r) 

(5) 

If the processes are assumed to be ergodie the RD furre­
tions can be estimated unbiased as 

l N 
Dxx(r) = N Lx(t; +r)ITx(t,) 

i=l 

(6) 

Dy x(r) (7) 

l N 
N L x( t;+ r)ITy(t;) 

i=l 

(8) 

l N 

N LY(i; + r)ITy(t;) 
i=l 

(9) 

where x(t) and y(t) are the measurements and N is the 
number of triggering points. The estimation of RD furre­
tions is very simple. It only involves the detection of 
triggering points and averaging of data time segments. 

The triggering condition simply describes a requirement 
for the initial condition of the time segments in the ave­
raging process at the time lag r = O. S everal different 
triggering conditions have been used. They can all be 
considered as specific formulation of the applied general 
triggering condition, T~(~) 

T~(~J = {a1 ::; X(t) < a2, b1 ::; ,Y(t) < b2} (10) 

The most frequently used triggering conditions are level 
crossing, T}((t)' positive point, Tf(t)' local extremum, 

T:(t), and zero crossing, T§(tJ 

T}( (t) {X(t) =a} (11) 

Tf(t) {a1 :S: X(t) < a2} (12) 

T:ctJ {a1::; X(t) < a2,X(t) =O} (13) 

T§(t) {X(t) =a, _,Y(t) >O} (14) 

Tf( t) is themost versatile condition, since the number of 
triggering points can be adjusted by changing the trig­
gering levels. The number of triggering points controls 
the estimation time and the accuracy of the estimates. 
Therefore, it is recommended to use the positive point 
triggering condition in application to ambient data un­
less the measurements are extremely long. If the trigger­
ing levels are chosen as a1 ~ a2 the positive point equals 
the level crossing triggering condition. 

3 RD Functions and Free Decays 
Traditionally the RD fundions have been interpreted as 
free decays, see e.g. Cole [1], [2], [3], [4] and extended 
to deal with multiple mode multiple measurements in 
Ibrahim [13] and [14]. 

The response from time t0 to t 0 +t of a st.ructure sub­
jected to stochastic loacis consists of three parts: l) The 
response from the initial dispiacement at the time to. 
2) The response from the initial velocity at the time to. 
3) The random response from the stodlastic loacis ex­
citing the structure at the time to to to + t. l f time 
segments from X(t) are pieked out and averaged each 
time X(t) =a andfor _,Y(t) = v, corresponding to eqs. 
(6) and (8), the stochastic response will average out and 
the only part left will be the free decay corresponding to 
the initial conditions X(t) = a andfor X(t) = v. If the 
only condition is X(t) =a the free decay will correspond 
to a step response and if the only condition is X(t) = v 
the free decay will correspond to an impulse response. 
The reason is that X(t) and X(t) are independent and 
the mean value of X(t) and X(t) is zero. 

The problem if the averaging is performed at another 
process, Y(t), see eqs. (7), (8), is whether the deter­
ministic response can average out. Since the free de­
cay of X(t) exists and since the stochastic responses of 
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X(t) and Y(t) were recorded simultaneously on the same 
structure and they are dynamically coupled, it is impos­
sible to have response from one measurement location 
and n o response from the other. 

Since RD functions are equivalent to free decays, the 
modal parameters can be extracted using methods as 
e.g. the Ibrahim Time Domain (ITD), see Ibrahim [13], 
[14]. 

4 RD and Correlation Functions 

Several different papers discuss the relation between the 
RD functions and correlation functions. The idea was 
first presented in Vandiver et al. [15] and extended by 
Brincker et al. [16], [17] and Asmussen [12]. The as­
sumption is that the stochastic processes are stationary 
Gaussian distributed with zero mean. Fromthis assump­
tion and the use of conditional statistics i t can be proven 
that the RD functions calculated using T!:~) are given 
by 
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Rxx(r) 
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R'xx( r) ·b (15) aJ 
R~ x( r) 

o b (16) 
u2 x 

R~y(r) 
·b (17) 

(j'2 y 

R'xy(r) ·b (18) 
uiT 

(19) 

and x, x are replaced by y, y if y is the triggering pro­
cess. Equations (15)- (18) show how versalile the RD 
technique is. By adjusting the triggering levels different 
weights can be given to either the correlation functions 
or their time derivative. Furthermore, the number of 
triggering points is controlled by the triggering levels. 

This paper will only consider the positive point trigge­
ring condition for application of the RD technique to 
ambient testing of linear structures. By reformulating 
the positive point triggering condition to 

5 Application to Ambient data 

In application of the RD technique to identification of 
structures subjected to ambient excitation it is assumed 
that the vibrations of the structure can be modelled u­
sing a lumped mass parameter model. 

Mx(t) + Cx(t) + Kx(t) = F(t) 

x(O) = Xo x(O) = xo 

(21) 

(22) 

where M, C and K are the mass, damping and stiffness 
matrices of the discrete n-DOF system modeiling the 
dynamic response at the measurement locations of the 
continuous structure. Using modal coordinates the free 
decay response is given by 

(23) 

where t;t; is the mode shape matrix, A is a diagonal ma­
trix with the eigenvalues of the state matrix formulated 
from the state equation corresponding to eq. (21) and 
q0 is the modal initial condition dependent on x 0 , xo 
and t;t;. T his relation is the basic equation for PTD and 
ITD etc. If the force vector, F(t) can be deseribed as a 
white noise vector process passed through a linear filter, 
see Ibrahim et al. [19], the response are Gaussian dis­
tributed. Furthermore, the ith column of the correlation 
matrix of the response can be written as 

i - AT Rxx( r) = t;t;e c; (24) 

where ~ contains the mode shapes of the structure and 
the filter, A contains the eigenvalues of the structure 
<:n d the filter and c; is a scaling vector dependent on ~, 
A and the covariance matrix of the white noise vector 
process, see Asmussen [12]. 

The results of eqs. (23) - (24) are identical except for 
different scaling vectors. This means that interpreting 
RD functions as free decays or correlation function ends 
up with the same final results and the same algorithm 
is applied to extract modal parameters. In the applica­
tion of the RD technique to ambient data it is assumed 
that the ambient loads, wind, waves, traffic, etc., can be 
modelled as a filtered white vector noise process. 

6 Quality Assessment 

Quality assessment of RD functions has two main objec­
tives 

p ~ T X(t) = { a1 :S X(t) :S a 2, -oo < .\(t) < oo} (20) • Obtain information about an appropriate choice of trig-

and inserting the triggering levels in eqs. (15)- (18) it 
is easily shown that the RD functions are proportional 
to the correlation functions of the processes only. The 
contribution from the time derivative of the correlation 
functions is averaged out. 

gering levels and RD function length prior to the ful! 
estimation of the RD matrix. 

• Evaluate the accuracy of the RD functions in order to 
look for sets of RD functions, which should not be used 
in the modal parameter extraction procedures. 
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Before the ful! correlation matrix can be estimated us­
ing the RD technique the triggering levels and the RD 
funetion length have to be chosen. It is very difficult 
to predict an appropriate RD funetion length, since the 
chosen modal parameter estimation technique has high 
influence on the necessary funetion length. The best way 
is to pick out a measurement with a relatively high stan­
dard deviation. From this measurement an auto RD 
funetion is calculated using an expected high funetion 
length ( e.g. ± 500 points). From a plot o f t his furretion 
it is easily detected when the RD furretion has decayed 
and noise becomes dominant. An example is given in 
seetion 8. 

After an appropriate funetion length has been chosen 
the triggering levels should be chosen. Immediately one 
would choose the triggering levels which maximize the 
number of triggering points. But this is not always the 
best choice. Consider an SDOF system with f = l Hz 
and ( = 0.01 %. The system is loaded by white noise. To 
investigate the influence of the choice of triggering level 
500 responses of the system are simulated. Each time 
series contains 5000 points and the sampling frequency 
is 15 Hz. For each time series the RD funetions as a 
furretion of the lower and upper triggering level are cal­
culated. By normalizing each RD funetion to be equal to 
the autocorrelation funetion a consistent error funetion 
can be defined as 

500 

E; = -1
- 2)Rxx(i)- R~x(i)) 2 

500 j=l 
(25) 

Figure l shows the choices of a1, a2 which minimize the 
error function. The triggering levels a 1 a 2 have been 
varied from O to 311x with steps of 0.211x. 

Optimal triggering levels 

1A ~~~-~------------------~A~ ~~.~--~ 
OJ 
o 2 8 10 12 

Auto correlation lunetion 

t 

Figure 1: Optimal choice of triggering levels for r:ctJ 
for an SDOF system. 

As seen for this system it would be optimal to choose 
[al a2] = [crx oo] approximately. This is a new result 
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and very convenient since the optimal choice of trigger­
ing levels is not the triggering levels which result in the 
highest estimation time. 

Of course the above result is only restricted to the dy­
namic system under consideration. So every time a new 
dynamic system is considered a new analysis for predic­
ting the optimal triggering levels has to be performed. 
Two different methods are suggested: Shape invariance 
test and symmetry test. 

The shape invariance test is based on several different 
estimationsofa correlation function. It could in general 
be a cross correlation function, but in the preanalysis 
state only autocorrelation funetions should be conside­
red. The different estimates are obtained using the RD 
technique with different triggering levels. 

where superscripts l, 2, ... refer to the different choices of 
t riggering levels. In theory R 1 , R 2 , ... should b e identical 
due to the shape invariance of the RD functions. Two 
different approaches can be used to test this shape invari­
ance. First a plot of the different correlation furretions 
is usually sufficient to validate the different estimates. If 
a single estimate differs significantly from the rest, the 
corresponding triggering levels should not be used. If all 
estimates differ significantly the data should be analysed 
carefully by the RD technique. 

If more than e.g. 5 or 6 different RD furretions are esti­
mated it might be difficult to asses the different trigge­
ring levels graphically. Instead it is suggested to calcu­
late the correlation between the different RD functions. 

RR' R 1 
YX YX 

Theoretically the value should be unity. If different trig­
gering levels result in a high correlation between the 
scaled RD furretions these triggering levels are a good 
choice for the ful! estimation. The principle is illustrated 
in seetion 8. 

The symmetry test is based on the symmetry relation 
for the correlation furretions of stationary processes. 

Ryx(r) = Rxy(-r) (28) 

If the estimated RD furretions are scaled to be equal to 
the correlation furretions then an error furretion can be 
defined as 

[;(T) 
R~x(r) R~y(-r) 

2 
(29) 



and a final estimate of the correlation functions can be 
defined as 

Ryx(r) + Rxy(-r) 
2 

(30) 

In order to evaluate the different RD functions estimated 
at different triggering levels the foliowing error function 
can be used 

(31) 
'\"'n Ri,Jinal( ') 
uj=l YX J 

Equation 31 constitutes a basis for selecting the optimal 
choice of triggering level among a set of different trig­
gering levels without the knowledge of the theoretically 
exact correlation function. In section 8 an example is 
given. 

After the triggering levels have been selected using the 
above tools, the full correlation matrix can be estimated. 
In order to evaluate the different estimates, a time do­
main plot of the final estimated correlation matrix and 
the corresponding error function, see eqs. (29) and (30), 
can be performed. A better way to evaluate the cor­
relation matrix is to plot the error defined in eq. ( 31) 
for each correlation function in the estimated correlation 
matrix. This makes i t possible to detect erroneous sets of 
correlation functions in a simple manner. The principle 
is illustrated in section 8. 

The final step in quality assessment of RD functions is 
to average the absolute val u e of the Fourier transform of 
all estimated correlation functions. This is a simple way 
to compress the information from all correlation func­
tions in a single plot. Usually it is very simple to detect 
the modes of the structure from this plot and use it as 
information prior to the modal parameters extraction 
procedure. 

7 Modal Parameters 

The modal parameters can be extracted from the esti­
mated correlation matrix using methods like Polyrefer­
ence Time Domain (PTD), see Vold et al. [20] or Ibrahim 
Time Domain, see Ibrahim [21], which were developed to 
extract modal parameters from free decays. 

From the quality assessment procedures the number of 
modes and the approximate natura! frequencies of the 
modes are known. This is valuable information when 
the number of modes has to be selected for the input 
to the above algorithms. The main task is to separate 
the noise modes from the physical modes. To do this, 
modal confidence factors, see Ibrahim [22] or Vold et aL 
[23], modal participation factors, the demand of complex 
conjugate modes and low damping ratios are applied. 
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8 Example - Concrete Bridge 

To illustrate the given guidelines for identification of 
structures subjected to ambient loads an ambient test 
of the Vestvej bridge is considered. The Vestvej bridge 
is a two-span concrete bridge over the highway between 
Aalborg and Frederikshavn just north of Aalborg, Den­
mark. The ambient testing of the Vestvej was performed 
on August 22, 1997. The bridge was loaded mainly by 
the vehicles passing the bridge, but also wind and trucks 
passing under the bridge contributed to the dynamic re­
sponse of the bridge. 

Figure 2: The Vestvej bridge. 

The illustration is delimited to identification of the right­
han d span only. An outline draft of the Vestvej bridge 
and the measurement locations is shown in fig. 3. 

48.5 

8 9 IO 11 12 13 14 

ff ff # ff Support 

ff ff 
7 6 

x 

4 3 2 
x 

24.25 4.0 4.0 4.0 4.0 4.0 4.0 
x: Reference location 

Abutment 

Figure 3: Outline drajt of the Vestvej bridge and the 
measurement locations. Distances in m. 

The accelerations of the bridge were recorded using 
Schaewitz accelerometers with a sensitivity of ± 0.25 g. 
The accelerations were recorded for 900 seconds at 320 
Hz. No analog filter was applied, since none of the am­
bient loads are exciting the structure above 160 Hz. In 
order to reduce the noise content the data were filtered 
digitally and decimated to end up with a resulting sam­
pling frequency of 80 Hz and 72000 points in each mea­
surement. Two reference locations are selected: 2 and 
13. The responses of the bridge have been collected in 



two measurement setups with simultaneously recorded 
measurements. The measurements in each setup are 
shown in table l together with the standard deviation 
of the measurements. 

Meas. No. Setup l IJ"X (g] Setup 2 ux [g] 
l 2 0.0060 2 0.0071 
2 13 0.0063 13 0.0072 
3 l 0.0018 3 0.0103 
4 14 0.0017 2 0.0109 
5 6 0.0088 4 0.0113 
6 7 0.0035 5 0.0072 
7 9 0.0057 11 0.0079 
8 8 0.0065 lO 0.0107 

Table 1: Setup number and measurement location. 

A time do main plot of measurement 5 in set up 2 is shown 
in fig. 4. 

Setup 2 Measurement 5 

-5 

o 100 200 300 400 500 600 700 800 
T1me [sec] 

Figure 4: Time domain plot of data from measurement 
location 4. 

In ord er to find the necessary number of points in the RD 
functions the measurement shown in fig. 4 is considered, 
since it has the highest standard deviation. The auto 
RD function is calculated using positive point triggering 
with [al a2] = [lTxoo] and ±500 points corresponding to 
±6.25 s. 

1 

0.5 

.Jl~J li~J~ .. ,,.~ w r· o 

-0.5 

1 
-6 -4 -2 o 6 

Time (sec) 

Figure 5: Initial auto RD function of measurement 5 
setup 2, N=4340. 

From fig. 5 it is seen that ±500 points are too 
many. Instead ±250 is chosen. In order to determine 
the optimum triggering levels the auto RD functions 
are calculated from each measurement with different 
choice of triggering levels, [al a2] = [ai ITX oo], ai = 
O, 0.5, l. O, 1.5, 2.0, 2.5, 3.0. For each of these RD func­
tions (normalized) the error function and the final e­
stimate are calculated using eqs. (29) and (30) and the 

error measure in eq. (31) are calculated. Figures 6 and 
7 show the errors for each measurement as a function of 
the lower triggering level. 

C\11 ~ ui 0.1 

~ 0.0~~------

0 2 3 

M v-l ui 0.1 

~o o~ '<t~ --l ui 0.1 

~0.0~ ----

o 1 2 3 0 2 3 

~~ ui o. 1 

~0.0: 
ID~ ui 0.1 

~0.0: 
o 1 2 3 o 1 2 3 

r--.1-- ~ ui 0.1 

~o o: 
o 1 2 3 

Triggering level 

Figure 6: Error measures for the auto RD functions for 
setup 1 as a function o f the lower triggering level. 

(\J l -----1 ui o. 1 

~o.o:t----

o 2 3 

'<t~ --1 ui 0.1 

~o o: 
OL---------2----~ 

'~ ui o. 1 

~o o: 
o 1 2 3 

T riggering level 

Figure 7: Error measures for the auto RD functions for 
setup 2 as a function of the lower triggering level. 

The errors show that it would not be optimal to choose 
[al a2] = [O oo], which would result in the highest num­
ber of averages. Instead it is chosen to use [al a2] = 
[lTx oo]. 

The correlation between each estimated RD function is 
calculated for measurement 5 setup 2 and plotted in fig. 
8 as a function of the lower triggering level. 

It is seen that there is a high correlation between the 
RD functions from ai = l, 1.5, 2, 2.5, 3, wheras the cor­
relation between the RD function from ai = O, 0.5 and 
ai = l, 1.5, 2, 2.5, 3 is low. This supports the choice of 
[al a2] = [lTx oo]. 
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MAC - Measurement 5 

0.95 

0.9 

0.85 

0.8 

0.75 
3 

Triggering level o o 
Triggering level 

Figure 8: C orre/ation between RD functions for measure­
ment 5 setup 2. 

All cross and auto RD furretions are calculated with 
±250 points and [a 1 a 2] = [ux oo]. Befare the modal pa­
rameters are extracted an average spectral density is cal­
culated from the sum of the Fourier transform of each of 
the RD functions. The result is shown in fig. 9. It seems 
that 9 different modes with the frequencies [5.08 6.64 
7.97 8.20 8.83 13.05 13.28 14.53 14.77] Hz arepresent in 
the measurements. 

ASPD- RD 

10' 

10 15 20 25 
Frequency [Hz] 

Figure 9: Average spectral densities o f the measurements 
calculated using the RD algorithm. 

In order to evaluate the estimated RD furretions the error 
for each RD furretion is calculated and plotted in fig. 10. 

As seen the error for each furretion has approximately 
the same level. None of the sets of RD furretions has 
significantly higher error than the others. This means 
that all estimated sets of RD furretions can be used in 
the modal parameter extraction process. The analysis of 
setup 2 gave an equal result. 

0.4 

0.3 

0.2 

0.1 

Measurement 
Measurement 

Figure 10: The error of the RD matrix for setup 1 cal­
culated using eq. {31}. 

The modal parameters are extracted from the RD ma­
trices using PTD. The number of modes was varied from 
20 to 30 and the number of points used from the final 
RD matrices was varied from 100 to 120. Stabilization 
diagrams together with a demand of low damping ratios 
and high modal confidence factors were used to extract 
physical modes. Table 2 showsthemodes which resulted 
in mode shapes with high confidence. 

Table 2: Estimated frequencies and damping ratios. 

The mode shape corresponding to the three first modes 
are shown in fig. 11. 

2 
o 

Bridge width [m] 

5 

o 

Bridge width [m] 

Bridge length [m] 

Bridge length [m] 

o 
Bridge width [m] Bridge length [m] 

Figure 11: M ode shape for the firs t 3 modes o f the bridge. 
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9 Conclusion 

The theory behind the Random Decrement technique 
has been discussed together with the implementation of 
the technique. Different formulations of the triggering 
levels are shown and it is recommended to use the posi­
tive point triggering condition to analyse ambient data. 

A new concept: Quality Assessment has been intro­
duced. The purpose is to give a method to select the 
triggering levels prior to the estimate of Random Deere­
ment furretions and to perform an evaluation of the esti­
mates of RD functions. 

The technique has been illustrated by an analysis of the 
ambient response of a concrete bridge. 
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