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Abstract —
In this work the flows in a three-dimensional wall jet and in a fully developed plane channel are

computed. Two different turbulence models are used, the low-Re � � � model [1] and the ���� model [2,
3]. Two modifications of the �� � � model are proposed. In the original model the wall-normal stress
�� is allowed to exceed ����, although it is supposed to be the smallest of the normal stresses. A simple
modification of the �� � � model is proposed which takes care of this problem.
In the �� � � model, two velocity scales are available, ���� and �������, where the latter is the wall-
normal fluctuations which are dampened by the wall. In the second modification of the �� � � model
we propose to use two viscosities, one (����) – based on ������� – for the turbulent diffusion in the wall-
normal direction, and the other (����) – based on ���� – for the turbulent diffusion in the wall-parallel
directions.

1. Introduction
In rooms ventilated with mixed ventilation the flow is usually supplied through an inlet device
mounted on a wall just below the ceiling. The resulting flow is a wall jet developing along the
ceiling. The flow in this wall jet determines the flow in the whole room. Thus it is very important
to be able to predict the flow in the wall jet in order to be able to design the ventilation system.

The flow in an isothermal three-dimensional wall jet is the subject of the present work. It
is well known that the spreading rates of a wall jet are very different in the wall-normal and
the spanwise directions. The reason for this behavior is the presence of the wall which inhibits
the turbulence in the wall-normal direction and hence also the spreading. According to the
measurement [4], the spreading rates in the wall-normal and spanwise direction are �������� �
����� and �������� � ����, respectively. The large spreading rate in the spanwise direction is
created by a strong secondary motion, generated by the normal stresses [5], analogous to how
secondary motion in a square duct is generated. Whereas the magnitude of secondary motion in
a square duct is approximately one percent of the streamwise velocity [6], the secondary motion
in a three-dimensional wall jet is much larger. In [4] values of up to 18% (scaled with the local
streamwise velocity) are reported, and predictions employing second-moment closures [5] show
spanwise velocities of up to almost ���.

In the present study we use a low-Re � � � model [1] and the 	�� 
 model [3]. Two modifi-
cations are proposed for the 	� � 
 model.

1. In the 	�� 
 model, a transport equation is solved for the wall-normal stress 	�. The idea
is to model the reduction of 	� as walls are approached. Thus 	� should be smaller than
the other normal stresses, which means that 	� � ����. This relation is not satisfied in



Mesh ������ ����� �	���� �	��� ������ ����� �
	� 

���

1 ��� � �	��� 	��� ��
 � �	��� 	�	�� ��� � �	��� 	�	�� ��� �

2 ��
� � �	��� 	�	� ��� � �	��� 	�	�� ��� � �	��� 	�	�� ��� ��

Table 1: Details of the meshes. Number of grid points 	��� �	� �

 for Mesh 1 & 2 are
	��� ��� �
 and 	���� ���� ��
, respectively. Maximum stretching for Mesh 1 is 	
�� 
	� 


 �
	���� ���� ���
 and for Mesh 2 	
�� 
	� 


 � 	����� ����� ����
. In the table are given minimum
and maximum cell size in each direction and number of cells that cover the inlet, 	�	 ��

��.

the standard 	� � 
 model. In the present work a simple modification is proposed which
gives 	� � ���� everywhere. The modification is shown to work well in fully developed
channel flow and for the 3D wall jet.

2. In the 	� � 
 model, two turbulent velocity scales are available, 		�
��� and ����. In
eddy-viscosity models – including the 	�� 
 model – the turbulent diffusion is modelled
employing an isotropic turbulent viscosity using one turbulent velocity scale and one
turbulent lengthscale. Since in the 	� � 
 model we have two turbulent velocity scales,
the 	� � 
 model is in the present work modified so that one turbulent viscosity (���) –
computed with 		�
��� – is used for the turbulent diffusion in the wall-normal direction,
and another one (���) – computed with ���� – is used for the turbulent diffusion in the
wall-parallel directions.

The report is organized as follows. First a short description of the numerical method is
presented. In the following section, the 	� � 
 model and the proposed modifications are de-
scribed. Then the results are presented and discussed, and in the final section some conclusions
are drawn.

2. Numerical Method

The finite volume computer program CALC-BFC (Boundary Fitted Coordinates) for three-
dimensional flow [7] is used in this study. The program uses collocated grid arrangement,
Cartesian velocity components, and the pressure-velocity coupling is handled with SIMPLEC.

The convective terms in the momentum equations are discretized using the second-order,
bounded van Leer scheme [8]. The convective terms in the equations for turbulent quantities
are discretized with hybrid upwind/central differencing.

3. The �� � � model

In [2] a modification of the 	� � 
 model was proposed allowing the simple explicit boundary
condition 
 � � at walls. This model is used as standard model in the present work. The 	 � and

 -equations read [2]

� ���	�

���
�

�

���

�
	 � �


�	�

���

�
� �
 � �

	�

�
� (1)
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(b) Wall-normal stress.
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(c) Wall-normal anisotropy.
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(d) Thick solid line line: Modification
I, �� from Eq. 3; dashed line: Modifica-
tion I and �� from Eq. 7.

Figure 1: Channel flow. ��� � ���. 	�� 
 model. Thin solid line: standard model; thick solid
lines: Modification I. Circles represent DNS [9]
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(2)

The turbulent viscosity is computed from

� � ��	�� (3)

The standard � and �-equations are also solved (without damping functions). Boundary con-
ditions at the walls are

� � 	� � 
 � �� � � ����� (4)

The coefficients are given the following values:
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Figure 2: Configuration. � � �� , ��� � ����, ��� � ����. �� � ������ � ���.
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Figure 3: Spreading of the wall jet. Thick solid line: the slope ������. Thin solid line: �����;
dashed line: ����; No markers: AKN model; Æ: 	�� 
 model, Modification I; �: 	�� 
 model,
Modification I and II. Mesh 2.

�� ��� � �� �� �� �� ��

0.22 1.9 1 1.3 1.4 0.3 0.23 70

and ��� � ���	� � ����	��	�
���
.
Note that in the 	�� 
 model 	� denotes a generic wall-normal fluctuation component rather

than the fluctuation in the � direction. This is achieved through the source (� �
 ) which is
affected by the closest wall.

3.1. Modification I

The source term �
 in the 	�-equation (Eq. 1) is the modeled pressure strain term which is
dampened near walls as 
 goes to zero. Since 	� represents the wall-normal normal stress, it
should be the smallest normal stress, i.e. 	� � �� and 	� � ��, and thus 	� should be smaller
than �

�
�. In the homogeneous region far away from the wall, the Laplace term is assumed to be

negligible i.e. ��
������� � �. Then Eq. 2 reduces to


��� � �
�

�

�
	�� � �


	�

�
�
�

�
	�� � �


�
� ��

�

�
(5)
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It turns out that in the region far away from the wall, the Laplace term is not negligible, and as a
consequence 	� gets too large so that 	� � �

�
�. A simple modification is to set an upper bound

on the source term �
 in the 	�-equation as

	������� � ���

	
�
��

�

�

�
	�� � �
	� �

��

�
	�� � �


�
� ���

�
(6)

This modification ensures that 	� � ����. In regions where 	� � ����, the turbulent viscosity
with the 	� � 
 model is � � �������	��
 � �������� (see Eq. 3) which is considerably larger
than the standard value in the � � � model, ��������. A simple remedy is to compute � as

� � ���
�
��������� ����	��

�
(7)

Equations 6 and 7 are called ”Modification I”, unless otherwise stated.

3.2. Modification II
In the 	� � 
 model we have two velocity time scales, 		�
��� and ����. The wall-normal stress
	� is dampened near walls as 
 goes to zero. Thus it is natural to introduce two viscosities, one
for wall-normal diffusion (���) and one for diffusion parallel to the wall (���) In the present
study, we propose to compute them as

��� � ����	��� ��� � ������ (8)

For a wall parallel to the �� � plane (for example), the turbulent diffusion terms are computed
as

�

��

�
���

��

��

�
�

�

���

�
���

��

���

�
� � �� � (9)

where � denotes a velocity component. Equation 9 could also be used for the turbulent quanti-
ties, but the effect is largest in the momentum equations, and in the present work Eq. 9 is used
only in the momentum equations.

4. Results
4.1. Channel Flow
In Fig. 1 channel flow predictions are presented. The computations are carried out as 1D simu-
lations, and the Reynolds number based on the friction velocity is ��� � ��Æ� � ���, where
Æ denotes half-width of the channel. The number of cells used to cover half of the channel is
��, and a geometric stretching factor of ���� is used. The node adjacent to the wall is located at
�� � ����.

From 1a it can be seen that the velocity profile is only very little affected by Modification
I. The 	� profile is much better predicted with Modification I, as can be seen from Fig. 1b.
Without the modification, 	� becomes too large for �� � ���, and it is also seen from Fig. 1c
that 	� for �� � ��� erroneously becomes larger than ����.

Modification I reduces 
 [10]. The reason is that we have a positive feedback: the modifica-
tion reduces 	� by reducing its source (Eq. 6), which in turn reduces 
 by reducing part of its
source 	�� ��
	���, which further reduces the source in the 	� equation and so on.

The turbulent viscosity is presented in Fig. 1d using either Eq. 3 or Eq. 7. It can be seen that
switching from the 	� � 
 expression (Eq. 3) to the � � � expression has only a small effect on
the computed �. For �� � ��� the viscosity from the � � � expression becomes larger than �
from the 	� � 
 model. The effect this switching has on the results in Fig. 1a-d are negligible.
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(a) Standard �� � � model.
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(b) �� � � model, Modification I.

Figure 4: Profiles of 		��� � ���
 between ��� � ���� and ��� � ���. Thin solid line:
��� � ����; thick dashed line: ��� � ���. Comparison between standard 	� � 
 model and
Modification I. Mesh 1.

4.2. The Wall Jet
The configuration is shown in Fig. 2. The square inlet is located at the uppermost part of the left
wall and the outlet (a slot) is situated at the lowermost part of the right wall. Since the geometry
is symmetric only half of the configuration is considered.

Two different grids have been used to check the grid independence of the computations, see
Table 1. In [10] it was shown that the predictions are grid independent. In Fig. 3 the predicted
half widths (defined as the position where ��	�� �� �
 is half of �����	�
) are presented. The
spreading rates ��������� and �������� for the AKN model are both larger than �����. This is
in disagreement with experiment from where it is known that the spreading rate in the wall-
normal direction (�) is much smaller than the one in the spanwise direction (�). The reason
is that the turbulence in the wall-normal direction is dampened by the wall. The experimental
values are ��������� � ����� and �������� � ���� according to the measurement [4]. The
predicted spreading rates for the 	� � 
 model, Modification I are also included in Fig. 3. It
can be seen that, as expected, the predicted spreading of the wall jet is smaller with this 	� � 

model than with the AKN model. The reason is that the wall-normal stress 	 � in the 	� � 

model is dampened by the reduced 
 as the wall is approached. When 	� is reduced, so is also
the turbulent viscosity and thereby also the entrainment.

In Fig. 4 the effect of Modification I is investigated. It can be seen that without Modification
I the predicted 	� becomes much larger than ����, which is physically incorrect. However, with
Modification I, 	� � ���� as required. The effect on 
 is hardly noticeable, see [10]. As 	�

is over-predicted, this also gives an over-predicted turbulent viscosity compared with a � � �
model. � is over-predicted with up to a factor of four in the outer shear layer of the wall jet
compared with a � � � model, see [10]. Recall that in Modification I � is computed from Eq. 7.

In [5] it was shown that the reason why the spreading rate in the lateral (�) direction is much
larger than that in the wall-normal direction (�) is due to a strong secondary motion in the �� �
plane, driven by the anisotropy in the normal stresses. Thus a Reynolds stress model is required
to predict this flow in a proper way [11]. One way to create anisotropic normal stresses in an
eddy-viscosity model is to use anisotropic turbulent viscosities.

Below results using the 	� � 
 model with anisotropic turbulent viscosities are presented. In
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Figure 5: 	� � 
 model, Modification I and II. Mesh 2. �������

Fig. 5 the predicted viscosity profiles are depicted for Modification I and II. In Modification II
different viscosities are used for the diffusion terms in the wall-normal direction (���) and in the
wall-parallel direction (���). The viscosity in the wall-normal direction is taken from the 	��

model and the viscosity in the wall-parallel direction is computed with the � � � expression.
The ratio between these viscosities is ������� � ����	��	�����
, see Eq. 8. The expected
effect is that the spreading of the wall jet in the spanwise direction with this modification should
be larger than with Modification I. From Fig. 3 we find that this is indeed the case. Actually
the spreading in the wall-normal direction has also increased somewhat, but clearly ���������� is
larger for Modification I and II than for Modification I.

Profiles of the ratio ������� are shown in Fig. 5. It can be seen that ��� is much smaller than
���. The ratio ������� is approximately ��� at the location of the velocity peak (�������� � ����).
Inside the velocity peak the ratio goes to zero as 	� is dampened by wall (
 � �).

5. Conclusions
Two modifications of the 	� � 
 model have been presented. In the first modification – Mod-
ification I – the source term in the 	� equation is limited so as to ensure that 	� � ����. The
second modification – Modification II – is based on a non-isotropic eddy-viscosity approach.
Different viscosities are used for the turbulent diffusion in the wall-normal direction and in the
wall-parallel directions. The object of Modification II was to be able to model the different
spreading rates in the wall-normal and spanwise direction of a 3D wall jet.

Modification I was shown to work well. The predicted 	� was smaller than ���� both for
the fully developed channel flow and the 3D wall jet. Modification II was found to give only a
small improvement for the 3D wall jet, and with this modification the spanwise spreading rate
was increased.

A further modification of the 	� � 
 could be to use the limitation of the time scale � model
derived from the requirement that the normal stresses must stay positive in regions of large
irrotational strains (e.g. in stagnation regions) [12]. It is very important that this limitation is
imposed in a consistent manner in Eqs. 1 and 2. Furthermore, the limitation has a strong effect
also in region far away from stagnation regions. For more details, see Refs. [13, 14].
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4. H. Abrahamsson, B. Johansson, and L. Löfdahl. The turbulence field of a fully developed
three-dimensional wall jet. Report 97/1, Dept. of Thermo and Fluid Dynamics, Chalmers
University of Technology, Gothenburg, 1997.

5. T.J. Craft and B.E. Launder. On the spreading mechanism of the three-dimensional turbu-
lent wall jet. Journal of Fluid Mechanics, 435:305–326, 2001.

6. J. Pallares and L. Davidson. Large-eddy simulations of turbulent flows in stationary and
rotating channels and in a stationary square duct. Report 00/03, Dept. of Thermo and Fluid
Dynamics, Chalmers University of Technology, 2000.

7. L. Davidson and B. Farhanieh. CALC-BFC: A finite-volume code employing collocated
variable arrangement and cartesian velocity components for computation of fluid flow and
heat transfer in complex three-dimensional geometries. Rept. 95/11, Dept. of Thermo and
Fluid Dynamics, Chalmers University of Technology, Gothenburg, 1995.

8. B. van Leer. Towards the ultimate conservative difference scheme. Monotonicity and
conservation combined in a second order scheme. Journal of Computational Physics,
14:361–370, 1974.

9. R.D. Moser, J.D. Kim, and N.N. Mansour. Direct numerical simulation of turbulent chan-
nel flow up to ��� � ���. Physics of Fluids A, 11:943–945, 1999.

10. L. Davidson and P.V. Nielsen. Comparing a � � � model and the 	� � 
 model in a 3D
isothermal wall jet. Report R0301, Dept. of Building Technology and Structural Engineer-
ing, Aalborg University, Aalborg, Denmark, 2003.
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