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ESTIMATION OF CORRELATION FUNCTIONS 
BY THE RANDOM DECREMENT TECHNIQUE 

Rune Brincker, Steen Krenk and Ja.kob Laigaard Jensen 

UNIVERSITY OF AALBORG 
Sohnga&holmsvej 57, DK-9000 Aalborg, Denmark 

Abstract 

The Random Decrement (RDD) Technique is aver- 
satile technique for characterization of random sig- 
nals in the time domain. In this paper a short re- 
view of the theoretical hasis is given, and the tech- 
nique is illustrated hy estimating auto-correlation 
functions and cross-correlation functions on modal 
responses simulated by two SDOF ARMA mod- 
els loaded by the sane bandlimited white noise. 
The speed and the accuracy of the RDD technique 
is compared to the Fast Fourier ‘Ikansform (FFT) 
technique. The RDD technique does not involve 
multiplications, but only additions. Therefore, the 
technique is very fast - in some case up to 100 
times faster that the FFT technique. Another im- 
portant advantage is that if the RDD technique is 
implemented correctly, the correlation function es- 
timates are unbiased. Comparkn with exact so- 
lutions for the correlation functions show that the 
RDD auto-correlation estimates suffer from smaller 
estimation errors than the corresponding FFT es- 
timates. However, in the case of estimating crews- 
correlations functions for stochastic processes with 
low mutual correlation, the FFT technique might 
be more accurate. 

t,7 : time 

i,j,rn : subsctipts 

X(t) : stochastic process 

z(t) : corhnous time series 

z,,, : sampled time series 

Dxy(~) : RDD signature 

Bx~(T) : RDD estimate 

variance on X(t) 

correlation function 

correlation function estimate 

number of trig points 

number of points in estimate 

sampling interval 

window variance 

variance on k(t) 

natural frequency 

m.turs.l period 

damping ratio 

ARMA paxaneters 

estimE%tio” errm 

1. Introduction 

The Random Dee Technique was developped at NASA in 
the late sixties aad early seventies by Henry Cole and co- 
workers [l-4]. The purpose was to develop a simple and fast 
data analysis algorithm for the characterization of stocha- 
sic response of space atuctures and aeroelastic syatetns and 
to identify damage in such systems by identifying system 
changes. Since then, the technique haa been used for many 
purposes, ranging !?om system identification of large strut- 
tures, Ibrahim [5] and structural damage detection to de- 
termination of fluid damping, Yang, [6-g], vehicle system 
identification and damping measurements of soil [9-IO]. 

The b&c idea of the technique is to estimate a co-called 
Random Dee signature which can be used to characterize 
stochastic time series. If the time series z(t), g(t) are @“en, 
then the Random Dee signature estimate Dxy(~) is formed 
by averaging N segments of the time series z(t) 



where the time series y(t) at the times ti satisfies the trig 
condition CYctSl, and N is the number of trig points. The 
condition might b+~ that y(&) = a (the level crossing con- 
dition), or that y(ti) = 0 A $(ti) > 0 (the zero crossing 
condition with positive slope) or some similar condition. 
The algotrithm is illustrted is figure I. In eq. (I) a cross 
signature is estimated since the accumulated average cr& 
culation and the trig condition are applied to two different 
time series. If instead the trig condition is applied to the 
same time series az, the data segnxnts are taken from, an 
auto signature is estimated. 

The advantage of the technique is that is establishes a basis 
for simple and fast on-line system identification. Because of 
the simple algorithm it can be programmed in any language 
u&g only a few programming lines. It involves only a& 
ditions, not multiplications like the E’FT technique, there- 
fore having the potential of being fast. Moreover it works 
directly in the time darntin, which is often an advantage 
when identifying system changes, especially when changs 
in damping ratios are of importance. 

However, one of the problems of the technique is tk&t the 
theoretical basis is still being disputed. In all the refer- 
eoces mentioned above, the authors argue on a more or les8 
heuristic basis that the Random Dee signature formed by 
averaging time series segments from the output of a stocha- 
sic loaded systero should describe system properties only. 
This was shown to be incorrect by Vandiver et al, [ll], who 
proved that under certain conditions (applying the level 
crossing trig condition to a Gaussian process) the Random 
Dee signature is simply proportional to the auto-correlation 
function, Vandiver’s proof is simple and convincing directly 
involving the Gaussim distribution and the derivation of 
closed form solutions for the variance on the estimate. How- 
ever, the general propblem of the interpretation of RDD 
cross signatures, and the practicrJ problems arising from 
applying the trig conditions on sampIed time series was not 
addressed. In practice the trig condition most be formu- 
lated by use of a finite size window (se next section). The 
choice of window is essential for the succesful use of the 
RDD technique on sampled time series, since the finite size 
windows will introduce additional variance and sometimes 
also bias the estimat,e, Brincker et al 1141, 1151. 

In Brincker et al [15] the results of Vandiver are generalized 
to the case of cross signatures, and general trig conditions. 
Fixthermore in [IS] some relations are given for general prc- 
cesses and general trig conditions, and solutions for variance 
and bias introduced by finite size trig windows aze derived. 
In the following some of these results are shortly s”rnm- 
rized and the potential of the technique is illustrated by 
application of the level trig conditions on simulated time 
series. 

2. Theoretical Basis 

The investigations in this paper will be restricted to the 
level trig condition. For thi8 condition the mathematical 
definition of the RDD signature reads 

DXX(T) = E[X(t,+ 4 X(t) = 4 (2) 

where X(t) is a stationary stochastic process and o is the 
trig level. Vandiver et al. [ll] shoved that if X(f) is a sta- 
tionaxy Gaussirm process, then the RDD signature D,y.x(r) 
and the m&z-correlation function Rx.Y(T) are related by 

where 0; is the variance of the process X(t). In this ax, 
therefore, the function given by eq. (1) is simply an esti- 
mate of the auto-correlation function R,Y,Y(~). 



I” Brincker et al [15] it is show” that the corresponding 
form&s for the general case of two stationary Gaussian 
processe8 x(t), Y(t) are 

For a sampled finite time series however, the event y(t) = a 
ha the probability zero, and therefore aa mentioned above, 
the condition m”st be modified by intrcd”ctio” of ” finite 
size window. A finite size horizontal window is introduced 
by the co”ditiw 

c; : (8 5 a A s/i+, > a) v (!A > a A !A+, 5 0) (5) 

valid for sampled data with and without q”a”tization er- 
rors. To prevent bias, the trig point is placed in the midle 
of the window by averaging two ajacent sepe”ts, Brincker 
et al [15] 

where At is the sapling interval. Asmning the data seg- 
me”& to be independent, the variance of the estimate can 
be estimated by 

vaT[&.(T)] = % (1 - (z)y + & (7) 

where azw is the w&.“ce introdxed by the finite size win- 
dow 

AT’ 
“iv = 12N t’ cy 

-c? (+q (81 

a”d where v$ is the variance of the derivative proces p(t). 

3. ARMA model simulation 

A set of modal responses X;(t) aze created by loading SDOF 
system3 with natural frequencies w a”d damping ratios c; 
by the sane stationary Ganssia” white noise Q(t), 8.z fig- 
me 2. For this c”.~e the ““e.lytical sol”tiom for the cross- 
correlation functions are given by, Madse” et ai [16], (sec. 
8.3) 

free decay for a ““it displacement, and h;(r) is the impulse 
response function 

For 7 < 0 the indicis i and 7 are interchanged in eq. (9). 
Note the symmetry relations aij = CX~; and p;j = -bj;. 

The system responses were sim”lated “sing a (2,l) ARMA 
model given by 

zm = @IX,,-* + %z,,-2 + a”, - h.-, (121 

where ~~, ez axe the Auto Regressive (AR) paraneters, 0 
is the Moving Average (MA) pammeter a”d a,,, is a time 
series of independent Gaussian distributed numbers. The 
model is denoted (2, 1) since it haa 2 AR parameters and 
1 MA parameter. If the ARMA paanxters are chosen aa 

where 

*I = 2exp(-u)cos(v) (13.a) 

& = exp(-2u) (13.b) 

0 = -p*./F=i; lOi< (13x) 

P= w: sinh(2u) - &ui sin(Zv) 
2&i sin(w) cash(u) - Audi si”h(u)cos(u) 

u = &;At a”d u = w;At, the” the ARMA model given by 
eq. (1’2) is the representation of the co”ti”“o”s system in 
the discrete time space. It can be show”, Pandit [18], that 
the discrete aut*correlation f”“ction of the time series Z~ 
give” by eq. (12) is equal to the sampled ““to-correlation 
f”“ctio” of the corresponding co”ti”“o”s process. 

The sim”latio”s were performed wing the PC version of the 
MATLAB software package, 1171, except the algorithm for 
estimation of the RDD signatmes which was programned 
i” the C programming 1a”g”age and linked to the MATLAB 
software hy the MATLAB “ser f”“ctio” interface. When 
cross-correlation f”“ctions were estimated from two system 
responses, the sampling interval At was take” aa one tenth 
of the shortest natural period of the systems. 



4. Typical RDD results 
A typical result for estimation of cross correlation functions 
hy the Random Decrement technique is shown in figure 3. 
Two responses z~(t) and zz(t) were simulated, using the 
systm parrmeters T, = 2,r/q = 1 s, Tz = 2~1~2 T 2 s, 
and <, = c2 = 0.05. The cross-correlation estimate R.y,,y> 
was determined using the trig level o = uxz and time series 
of 100.000 data points, corresponding to approxinmtely 3 
hour records. 

Fgure 4 shows the corresponding r&c-correlation estimate 
R~,.x~. The estimate NW obtained by estimating a set 
of RDD estimates @,x,, k = l,Z, ..lOO from time series 
of 1000 data points each. Froro this set of estimates the 
mean and the empitical variance was calculated. Figure 
4 show the mean of the RDD e&n&es and the standard 
deviation on fii,x,. The theoretical variance VJ~ deter- 
mined from eq. (7) and (8) using the Gaussian proporties 
O,q> = -R&,(O) = l+;,. As it appears from the results, 
the level of uncertainty is well predicted by the theoretical 
solution. The oscilations in the uncertainty predicted by 
eq. (7) and (S) however, does not appear in the empiric& 
results. This discrepancy is due to the strong correlation 
between data segments, 

The high efficiency of the RDD technique is illustrated by 
comparing estimation times with the Fast Fourier Trams- 
form (FFT) technique, Brigham [lZ]. Auto-correlationfunc- 
tion estimates were obtained from time series of 4000 points. 
FFT estimates were obtained in the following way. First, 
the 4000 points were divided into segments of 2M points 
each. Then the segments were FFT’ed, multiplied by their 
complex conjugate, the results were averaged and the re- 
suiting power spectrum was then transformed back to the 
time domain by inverse FFT. A radix-2 FFT algorithm wru 
used in ail cases. !Vo spectral windows waz used. 

Figure 5 shows the CPU-times as a function of the length of 
c&mated auto-correlation function. There are two curves 
for the RDD algorithm, one from an earlier investigation, 
Brincker et al [14], where a floating point implementation 
WE used, and one from a new integer implementation of the 
RDD algorithm, both corresponding to a trig level af a = 
1.5u.y. Comparing the CPU results for the FFT algorithm 
and the integer implementation of the RDD algorithm show 
that for short estimates the R.DD algorithm is ordem of 
magnitude faster than the FFT algorithm. For M = 16 the 
CPU-time for the RDD estimates were about a factor 120 
shorter than for the FFT estimates, and the corresponding 
factor for M = 32 was found to about 50. However, since 
reliable estimates for the damping and the natural frquency 
might be found from short unbiased correlation function 
estimates, se figure 3 and 4, the RDD technique has a great 
potential in all cases where speed is essential, for instance 
in the case of on line system identification. 

0.1, RDD estimate, M = 19 
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Figure 4. E.Amation oj auto covelation junction. A: 
comparization between Random Decrwnent e&n& (no”) 
and ezact solution (“-“) and B: between theoretical (“- “) 
and empirical (“*x) standard de&tion. 
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5. Accuracy of RDD estimates 
In this section the accuracy of the Random Decrement tech- 
nique is compared to traditional FFT estimation, the FFT 
technique being applied ES described in the preceeding set- 
tion. Time series zl(t) and zz(t) of 4000 data points were 
simulated and cross-correlation functions R,y,,yz were esti- 
mated, the RDD technique using the trig level a = 1.5~7,~~. 

The influence of the lenght of the correlation function es- 
timates on the estimation error hm already been reported, 
Brincker et al [14]. Therefore, only the influence of the 
damping ratio and the system difference (Tz - T,)/Tl on 
the estimation error is investigated here. When the system 
difference is zero it corresponds to the case of estimating 

auto~correlatioo functions, The estimation error e is de- 
fined as 

describing the average error per point in relation to the 
maximum value of the correlation function. 

The FFT estimation errors for M = 16 and M = 128 are 
shown in figure 6. As it appears from these results, the 
error for long estimates does not seem to be sensitive to 
the correlation between the time series, only in the case 
of low damping (c = 0.01) there is a significant increse in 
estimation error for increasing system difference. In the 
case of short estimates there is a significant denpendency 
for both small and medium damping (< = 0.01, c = 0.05). 
The ox&tory behaviour of the results in figure 6.A is not 
valid in general, but is governed by the degree of fulfillment 
of the assumption of periodicity of the correlation function 
changing more or less arbitmrely with the system difference 
parameter (Tz - T,)/T, (note that the sampling deriod At 
is taken as the smallest of the natural periods therefore 
the sampling period is changing with the system difference 

I 
'0 

I 
0.2 0.4 0.6 0.8 1 

40 
Bz error on FIT, M = 128 

0.2 0.4 0.6 0.8 1 

40, 
AZ error on RDD, M = 16 

7 I 

OT I 
0 0.2 0.4 0.6 0.8 1 

Figure 7. E.&mtim ermm on Rmdorn Dcrcrement 
e.vtimatea uemus (TI - Tz)/Tl for A: M = 16 (data 
wpmt length) and B: M = 128. < = 0.01 (no*), 
0.05 ("*") and 0.25 ("+"). 



parameter, and so is the degree of fulfillment of the assump- 
tion of periodicity of the correlation function). 

The corresponding results for the RDD estimates are given 
in figure 7. As it appears from these results, the dependency 
of the system difference parameter is significant for small 
and medium damping (c = 0.01, c = 0.05), and is about the 
same for short and long estimates. The errom on the RDD 
esthnates are substantially smaller than the FFT errors for 
small system differences, but there is a significant increase 
in the estimation error with increasing system difference, 
and for a system difference of (fi - T,)/Tl = 1 the FFT 
technique is superior. It is natural to expect an increase in 
the estimation error for increasing system difference. When 
the system difference increases, the correlation between the 
time series decrease, the values of the correlation function 
becomes smaller, and therefore the relative error increases. 

The Random Decrement technique is a versatile very simple 
non parametric technique for estimation of auto correlation 
functiom az well az cross-correlation functions. 

The technique is simple to implement. If a few simple rules 
are respected, estimates obatined by the Random Decre- 
ment technique will be unbiased, allso in the case of low 
darnping and short estimates. 

The technique is very fast. If the estimates are short, the 
estimation algorithm might be more than 100 times faster 
than Fast Fourier Transform algorithm. 

The Random Decrement techniqne provides an accurate 
way of estimating auto-correlation functions and cross car- 
relation functions. Especially in the case of low damping 
and short estimates, the FFT e&m&es becomes heavily 
biased, and the RRD technique is superior. However, in 
the case of estimating cross correlation functions, when the 
correlation between time series is small, random errors be 
come large in relation to the estimated correlation func- 
tions, and therefore, it might be more accurate to estimate 
cross-correlation functions by the FFT technique. 
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