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ARMA Models in Modal Space 
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Palle Andersen, Assistant professor 

Aalborg University, Sohngaardsholmsvej 57 
9000 Aalborg, Denmark 

ABSTRACT 

In this papers a new approach for estimation of ARMA 
models is developed. Based on an analytical transforma
tion between the modal parameters and the ARMA pa

rameters, it is explained how the optimization can be per
formed in the modal domain. It is explained how the prac
tical estimation problems can be significantly reduced by 
optimizing on a reduced set of parameters in the modal 
do main. 

NOMENGLATURE 

t:. t sampling time step 

Y t response vector 
An,Bn ARMA coefficient matrices 

et prediction error 
A, B, C state space matrices 

X t state vector 
I unity matrix 
q shift operator 

H(.) transfer function 
v eigenvector matrix 

f.l.i' .\; pol es 
~,'l! mode shape matrices 

Ø i' 1/Ji mode shape vectors 
R; residue matrix 
f,( natura! frequency, damping 

INTRODUCTION 

In prediction error methods (PEM), Ljung [1987], the 
measmed response is modeled by titting directly to the 
time series by minimizing the error, i.e. the difference 
between the measmed and the modeled time series. The 
vector ARMA structure is the simplest possible covari-

ance equivalent model of linear structural systems formu
lated in discrete time, Andersen et al. [l 996], and t hus, 
it is an obvious choice in cases where an optimal estima
tion of modal parameters is needed. However, since the 
prediction error can only be minimized using non-linear 
optimization, and since practical applications often in
volve many response channels and many modes, the large 
set of parameters needed to be estimated eauses severe 
problems in calculation time, computer memory manage
ment and convergence. 

In this paper, a simple way of reducing the number of pa
rameters is considered by performing the optimization on 
a subset of the model parameters in modal domain. The 
modal set is then transformed to ARMA domain where 
the prediction errors are obtained and minimized. First, 
however, the problems of calibration of ARMA models is 
briefly explained. 

Assume p channels of measurements simultaneously sam
p led with the time step b.t and ordered in the vector Y t. 
The subscript t denates discrete time, i.e. real time is 
o b tained by multiplying t by the time step b. t. 

A corresponding vector ARMA model with np poles 1s 
given by, Andersen [1997] 

Yt +A1Yt-l + ... + AnYt-n et+ Blet-l + ... + Bnet-n 
(l) 

where all A;, B; are real p x p matrices, and et is a vec
tor of white noise sequences driving system to response 
with the sequence Yt· Using PEM estimation, the ARMA 
model is estimated by predicting the response Y t from lin
ear regression on the past values of the measurements Y t 
and noise et, i.e. the estimator is, Andersen [1997] 
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Now, assuming, that the measurements can be modeled 
as given by Equation (1), the differences between the pre
dictions and the measurements are given by the noise se
quence e 1 , and thus, using least squares estimation, the 
model is calibrated by minimizing same norm of the co
variance matrix of the prediction error e1 . Because of the 
recursive nature of the equation, the minimization must 
be solved using non-linear optimization. As it appears, 
the Ai matrices, denoted as the Auto Regressive (AR) 
parameters, and the Bi matrices, denoted as the Moving 
Average (MA) parameters, both contain np2 real scalar 
parameters. This corresponds to a total of 2np2 real num
bers that has to be estimated when calibrating the model. 
lf y 1 is the response of a structure, then poles appear in 
camplex conjugate pairs, and thus, in general np must be 
a multiplum of two, and the number of structural modes 
is then np/2. 

For a realistic case, the number of parameters might b e so 
large, that problems estimating the parameters by non
linear optimization becomes time consuming. For a typ
ical number of channels, say 16 channels, and for n = 4, 
the number of modes appearing in camplex conjugate 
pairs (including noise modes) becomes 32, and the to
tal number of parameters is 2048. This is a large set 
of parameters to be estimated, and this results in well 
known problems with calculation time, computer memory 
management and convergence. Thus, when using ARMA 
models for modal extraction, a simple way of reducing the 
number of parameters is needed. 

Performing the optimization in the ARMA domain, i.e. 
using the A;, Bi matrices as the parameter set, there is 
no simple way ofreducing the number af parameters. The 
Ai matrices are directly associated with the mode shapes 
and poles. The np2 AR parameters conespond exactly 
to np/2 natura! frequencies, damping ratios and scaled 
mode shapes. However, anyelement of the AR coefficient 
matrices infiuences all modal parameters, and thus, the 
AR parameter set eannot be reduced. The MA param
eters Bi take care of the covariance equivalence and the 
noise modeling, however, at the same time these param
eters have modal relation. They define the residues, and 
again, any element in the MA coefficient matrices is in
fiuencing all residues. The condusion is, that the ARMA 
set of parameters does not allow a reduction of the pa
rameter set to the modal parameters of interest. 

However, if a transformation to and from the modal do
main can be formulated, the optimization can be per
formed in modal domain, and thus, the parameter set 
can be reduced to the modal parameters of interest. 

FROM ARMA TO MODAL DOMAIN 

One of the difficulties of the ARMA model as formulated 
in Equation (1) is the high and changing arder of the 
difference equation. This difficulty is removed by using a 
stochastic state space representation, Kailath [1980] and 
Aoki [1990] 

Y t 

(3) 

(4) 

where x 1 is the state vector whose elements depends on 
the actual realization. An example of a realization of a 
vector ARMA model is given in Andersen and Brincker 
[1999, 1]. 

~ow, introducing the shift operator q defined by qx1 

x 1+1 , the Equation (3) can now be written 

o r 

substituting this result for x 1 in to Equation ( 4) yields 

(5) 

(6) 

(7) 

where I is the identity matrix. From this result the trans
fer function of the ARMA model, given by y 1 = H(q)e1 , 

can be obtained 

H( q) (8) 

the next step is to deearnpose the transfer function. This 
is done by a modal deearnposition of the A matrix 

(9) 

where V is the eigenvector matrix, and [Jl;] is a diago
nal matrix holding the eigenvalues. Substituting this into 
Equation (8) we get 

H(q) C(Iq- V[11;]V- 1)- 1B +I 

CV[(q- Jli)- 1]V- 1 B +I 

~[(q- Jli)- 1]\li +I (10) 
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From t his equation i t appears, t hat ~ = ['P l, ip2 , .. ] is the 
matrix holding the left mode shapes 'Pi of the system as 
column vectors and similarly W= [!,bf, !,b§, . .f is holding 
the right mode shapes l,b; as row vectors. Note that both 
~ and wT are complex valued p x np matrices. 

The left mode shapes is the observable part and cone
spond to the physical mode shapes. Both the left mode 
shapes and the right mode shapes define the residues. 
The eigenvalues /J are in faet the discrete poles of the 
system, this is easily recognized doing a partial fractional 
expansion of the transfer furretion 

FROM MODAL TO ARMA DOMAIN 

Starting in modal domain we have the mode shape ma
trices ~, W and the diagonal eigenvalue matrix [r;]. The 
modal set constitutes the transfer furretion as decribed 
by Equation (10). Comparing with Equation (8), which 
defines the transfer furretion in the state spate matrices 
A, B, C, it is clear that the foliowing state space realiza
tion exists 

[r;]xt + Wet 

c)xt +et 

(14) 

(15) 

H( q) ~ ip;J,b; +I 
i=l q - Jli 

~~+l 
i= l q -/-li 

In this formulation, the state vector x is transformed by 
thc eigenvector matrix V. The formulation c an b e con

(11) verted to the ARMA format by comparing solutions in 
modal and ARMA domain. 

where R; is the residue matrix for i'th mode, a complex 
valued p x p matrix ofrank one. 

This solution defines the parameter set in the modal do
main. If one wants to optimize on all parameters associ
ated with one mode, the parameter set is the correspond
ing pole/J and the left and the right mode shape ip, l,b. If 
the noise modeling is excluded, only the pole and the left 
mode shape 'P is included, and finally, if only the natura! 
frequency and the damping is needed, the set is just the 
pole /J· Note, that the discrete pole !J is related to the 
pole .\ in continuous time by 

(12) 

and that the relation between the continuos time pole and 
the corresponding natura! frequency f and the damping 
ratio ( is given by 

.\ = -27rf( ± i2?rj~ (13) 

This transformation explains the physical meaning of the 
ARMA model, it relates the AR and MA matrices to the 
structural system under consideration. Doing optimiza
tion however, this transformation does not help much. 
It defines the parameter set in modal domain, but does 
not provide the right tool for the optimization algorithm. 
Optimizing on the parameter set in modal domain, the 
inverse transformation is needed. 

The first step is to compare the solutions of the homoge
nous equations. A solution to Equations (14) and (15) 
for et = O is easily obtained by recursion 

(16) 

Substituting this solution into the corresponding solution 
to the homogerrous part of the ARMA model given by 
Equation (l) and dividing on both sides by x 1 yields the 
foliowing equation 

o (17) 

which can be solved for the AR coefficient matrices 

(18) 

Without any proof the readers attention is drawn to the 
faet that in this solution the AR matrices always comes 
out as p x p real valued matrices. 

The MA part is obtained by considering the general solu
tion to Equations (14) and (15) found by recursive sub
stitution 
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(19) 

By stacking the general solution for Yt to Yt-n+l together 
with the observation equation (15) the foliowing set of 
equations is obtained 

Y t ~[J.Li]n 

Yt-1 ~[J.lir-l 

Xt-n + 

Yt-n+l ~[J.Li] 

Y t-n ~ 

I ~[J.L;]n-2w ~[J.L;]n-Iw et 
o ~[J.L;]n-3w ~[J.Li]n-2w et-l 

+ (20) 

o I ~w et-n+l 
o o I et-n 

Now, multiplying this equation from left by the matrix 
[I A1 A2 ... An] then the left-hand side equals the Auto 
Regressive part of Equation (l). According to Equation 
( 17) the firs t part of the right-han d side of the equation 
van is h, and the last part t hen defines the Moving Average 
part of Equation (1), thus 

[I B1 B2 Bn] = 

I ~[J.L;]n-2w ili[J.L;Jn-Iw 

o ili[J.L;]n-3w ili[J.L;]n-2w 

[IA1 A2 ... An] 21) 

o I il> w 
o o I 

Now the basis for optimization in modaldomain is estab
lished. From the full set of modal parameters a subset is 
chosen for optimization. From the full set of parameters 
the ARMA matrices are obtained from the above equa
tions, and the parameters in the optimization set can then 
in every optimization step be changed in order to mini
mize the prediction error. A technique of minimizing the 
prediction error is deseribed in Andersen and Brincker 
[1999, 1]. 

OUTLINE OF ESTIMATION ALGORITHM 

The idea ofthe algorithm is already explained above, how
ever a short outline of the algorithm is given in the fol
lowing. 

The estimation procedure is divided in to three major 
steps: Initialization, minimization and uncertainty esti
mation. 

1. Initialization. Step 1. a: In this step an initial estimate 
for the ARMA model is provided. Any initial estimate 
can be used that provide the needed modal information 
(poles and left and right mode shapes). Step 1.b: In this 
step the modal parameters in the optimization parameter 
set is selected. 

2. Minimization by recursion. Step 2. a: The first step 
(not to b e performed the first time) is to detect i f the op
timization parameter vector has caused a significant de
crease of themeasure of the prediction errors. To do this, 
the full modal parameter set is transformed to ARMA 
domain, the prediction erros are determined and the mea
sure of the prediction errors is calculated. If there is no 
significant change of this measure step 2 is terminated. 
Step 2. b: Based on the modal parameter optimization set 
the search gradient is constructed. Step 2.c: Basedon the 
search gradient the modal parameter optimization set is 
updated. Continue the recursion by repeating from Step 
2.a. 

3. Uncertainty estimation. Using PEM estimation al
lows for estimation of the covariance matrix of the opti
mization parameter set, Ljung [1987] and Andersen and 
Brincker [1999, 1]. Assuming that the subset of parame
ters consist of all uncertain parameters in the model, the 
covariance matrix of the parameter subset can be esti
mated. When using traditional ARMA model calibration, 
where the calibration is performed in ARMA domain, in 
many cases numerical difficulties or additional uncertain
ties are introduced by transforming the parameter covari
ance matrix from ARMA domain to modal domain. In 
t his case however, where the parameter vector contain 
the modal parameters, the modal parameter covanance 
matrix is estimated directly. 

CONCLUSIONS 

A new technique for PEM estimation of ARMA mod
els for structural ambient responses has been introduced. 
Based on analytical solutions for the transformation be
tween ARMA domain and modal domain, the optimiza
tion is performed in modal domain. The parameter set 
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contain the modal parameters, or if only some of the 
modal parameters are of interest, a subset of the modal 
parameters. The set of modal parameters consists of the 
pol es (natur al frequencies and damping ratios), the left 
mode shapes (scaled mode shapes) and the right mode 
shapes. The technique allows for a reduction of the pa
rameter set to a minimum set consisting only of the modal 
parameters of interest. This strongly reduces the well 
known problems often observed in practice concerning 
long estimation times, memory management problems and 
convergence problems. The technique also allows for a 
more reliable and more accurate estimation of the modal 
parameter covariance matrix. Applications of the tech
nique can be found in Andersen et al. [1999, 2] and 
Peeters et al. [1999, 3]. 
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