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MAST G6-S PROJECT I, WAVE ACTION ON AND IN COASTAL
STRUCTURES

On stationary and non-stationary porous flow in coarse granular
materials

by

H.F. Burcharth ! and Claus Christensen *

1. INTRODUCTION AND SUMMARY

Traditionally the hydrodynamic response of rubble mound structures are studied
in physical models scaled according to the Froude scaling law which neglects vis-
cous forces. This introduces scale effect because the inherent length scaling of the
stone diameters creates laminar flow in regions which in prototypes are dominated
by turbulent flow. Numerical modelling of the flow do not have this draw back
and is therefore attractive. One important part of a numerical model is the basic
description of the non stationary wave generated flow in the porous structure of
the breakwater. This flow differs from ground water flow in that fairly large accel-
erations and velocities are present. The present paper deals with the description
of this kind of flow.

A critical discussion based on physical considerations is given of the mathematical
description of steady flow. It is argued that the conventional use of the Forch-
heimer equation is not suitable in case of fully turbulent flow, which is the relevant

flow regime for rubble mound breakwaters.

The relationship between the bulk velocity and the pressure gradient in steady and
non-steady flow was studied in U-tube permeameter tests for various stone sizes

and gradations.

Moreover, a mathematical model of the non-stationary flow in the U-tube perme-
ameter was established in order to provide more insight in the sensitivity of the
system to variations in the parameters. In this way also the experimental limita-
tions of the U-tube permeameter technique was explored.

1Professor of Marine Civil Engineering, University of Aalborg, Denmark.

2M.Sc., University of Aalborg, Denmark. The experimental test results presented in this paper
are from the M.Sc. dissertation “Hydrodynamic performance of rubble mound breakwaters” April
1990, by Claus Christensen.



Results from stationary flow tests confirmed an apparent validity of the Forch-
heimer equation but demonstrated also the inconsistency in using this equation
when extrapolating results from one flow regime to another. A proposal is given
for a formula covering the fully turbulent flow range relevant to flows in breakwa-
ters including the effect of the surface characteristics of the stones.

Results from unsteady flow tests were related to a generalized Forchheimer equation
which includes an inertia term. However, it was not possible with the technique
used to determine the related added mass coefficient with reasonable accuracy
within the tested range of accelerations. Thus the general importance of the iner-
tia effect is still a question although the present research indicate the effect to be
marginal. It is concluded that answer to this question demands a different experi-
mental technique where the period of large acceleration are increased compared to
present tests.

2. STEADY FLOW. THEORETICAL AND EXPERIMENTAL BACK-
GROUND

The approach used in the research presented in this paper was macroscopic in the
sense that a relationship between the bulk (discharge) velocity, V, and the hy-
draulic pressure gradient, I, was investigated. Related to this approach there are
two theoretically sound models which are generally used for the steady flow case.

2.1 The friction factor model

This model, which is one form of the general exponential form I = av™, is based
on the general force balance equation
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where v is a characteristic velocity, e.g. v = V/n, where n is the porosity. R is
a characteristic length (e.g. the hydraulic radius R = d/4 in case of pipe flow,
here taken as proportional to a stone diameter), and f is a friction factor which is
dependent on the geometry of the granular body and on a Reynolds’ number, e.g.
Re = VR/v, where v is the kinematic viscosity.

(1)

The problem is to establish an analytical expression for the variation of f. A rather
complicated expression is to be expected because it must cover the whole range
from laminar flow through the transition to fully turbulent rough flow. Moreover,
it must include the relevant characteristics of the granular system. The latter
presents a real problem because the hydraulic resistance is sensitive to changes
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valid for smooth pipe flow, is an example of this type of expression, but is relatively
simple due to the fact that the geometry of the system can be given only by two
parameters namely the pipe diameter and the pipe surface roughness.

Although the character of porous flow is different from pipe flow there are sim-
ilarities with respect to the flow regimes commonly recognised in the literature.
Consequently, it might be illustrative to show the well explored but rather compli-
cated variation of f with Re in pipe flow, shown in Figure 1.
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Fig. 1. Variation of the friction factor f with the Reynolds number
in pipe flow.

Using the hydraulic radius R = f as characteristic length the transition Reynolds
number Re. between the laminar and the smooth wall turbulent region is app.
580. The smooth flow occurs when the wall roughness elements are covered by a
laminar boundary layer, but the main flow is turbulent. In this range f is weakly
dependent on Re or viscosity. The rough flow corresponds to turbulent boundary
layer, i.e. the laminar boundary layer thickness is reduced to a thin film following
the surface of the wall roughness elements which then protrude into the turbulent
flow. In this range the friction factor f will be influenced only by the relative
roughness k/d and not by the viscosity or Re. The Reynolds number range for the
smooth wall turbulent flow depends on the relative roughness of the pipe, i.e. the



smooth wall turbulent flow depends on the relative roughness of the pipe, i.e. the
ratio between the surface roughness, k and the pipe diameter. The larger the value
of k/d, the smaller the Reynolds number range for smooth flow. For very rough
pipes this range is almost insignificant and consequently the transition Reynolds
number between smooth and rough flow is close to 580.

Several researchers have tried the friction factor model approach for porous flow
but generally without much success (Bakhmeteff 1937, De Lara 1955, Rumer 1966,

Barends 1978).

2.2 The Forchheimer model

The model is given by a two term series expression
I=aV +0bV? (2)

where V is the bulk velocity and @ and b are supposed to be constants for a
given fluid viscosity and granular body geometry. Eq. (2) is often denoted the
Forchheimer equation because Forchheimer (1901) was probably the first to suggest
this type of equation.

The general interpretation of the equation is that the linear term constitutes the
contribution from the laminar flow, for which reason the factor a depends on the
viscosity. The nonlinear term represents the fully turbulent flow contribution, i.e.
the factor b is independent on the viscosity. It is an open question to which degree
eq. (2) can describe the transition between laminar and turbulent flow, because
the variation of I in the transition is most probably dependent on the surface
charactersistic of the grain matrix, cf. the well known variation of f (in eq. (1))
in pipe flow. The nonlinear second term in eq. (2) signifying the turbulent flow
contribution has the same character as eq. (1), but is different in that b depends
only on the granular matrix geometry while f is dependent also on a Reynolds’
number, i.e. the viscosity, because eq. (1) covers also the laminar and the transition
regions.

If the nonlinear term is neglected we obtain the Darcy equation for laminar flow.

2.3 Flow regimes and related Reynolds number ranges

A conventional way of relating eq. (2) to the various flow regimes is depicted in
Fig. 2 for one specific porous matrix and viscosity.
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Fig. 2. Conventional representation of flow regimes for porous flow
based on a Forchheimer equation analysis. Values ofa , a' and I |
a” depend on the granular matriz and the viscosity. Values of |
b and ¥ depend on the granular matriz.

The Reynolds numbers corresponding to the transitions between the various regimes
were studied by Fand et al., 1987. Based on experiments with uni-size and mixed-
size glass spheres they found the ranges of the diameter - Reynolds number given @
in Table 1. The applied definition of the Reynolds number is

Re = ‘—/(i (3)

v
where d is the sphere diameter in case of uni-size spheres. In case of mixed-size
spheres d is a weighted “mean” diameter defined as

1
n F
d;

1=1

d=

(4)

where F; is the mass fraction for particles having the diameter d; and n is the total




number of fractions applied to the sample. Eq. (4) assumes that all particles have
the same density.

Table 1. Diameter - Reynolds number ranges for various flow
regimes. Results of experiments by Fand et al. (1986)
with 2, 8, and 4 mm glass spheres.

uni-size multi-size
Darcy flow Re < 23 Re < 16-21
Forchheimer flow 5 < Re < 80 27-37 < Re < 55-74
Turbulent flow Re > 120 Re > 120

It should be noticed that the Re-range for turbulent flow was found identical for
uni-size and multi-size media when the definitions egs. (3) and (4) are used.

Dybbs et al. (1975) found on the basis of tests with plexiglass spheres in a hexag-
onal packing the Reynolds number regimes shown in Table 2. They use the “pore-
size” Reynolds number based on average pore size and average pore velocity as
characteristic length and velocity, respectively.

Table 2. Pore-size-Reynolds number ranges for wvarious flow
regimes. Results of experiments by Dybbs et al. (1975)
with plexiglass spheres in hezagonal packing.

Darcy flow Re < 1-10
Forchheimer flow 1-10 < Re < 200
Turbulent flow Re > 350

When considering the ratio of characteristic grain diameter to characteristic pore
diameters to be in the order of 2 - 3 and the ratio between bulk velocity and aver-
age pore velocity to be in the order of 4 it is seen that the results given in Tables 1
and 2 are rather consistent, the values in Table 1 being somewhat on the low side.
Test results for stone samples indicate higher values than those given for spheres.

The relationship between the diameter Reynolds number and the pore-size-Reynolds
number might be explored by considering an analogy between the flow in a pipe
with large roughness, cf. Fig. 1., and the porous flow.

For the porous flow, like in pipe flow, a relevant characteristic length in the
Reynolds number might be a hydraulic radius, R, which for pipe flow is LZ-, where
D is the pipe diameter. For porous flow R is often defined as the ratio of the pore
volume to the total surface area of the grains within a unit volume. If we consider

a sample of uni-size spheres we get
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pore volume n dn

R= = = (5)

~ number of spheres X area of a sphere 1-n . d\? 6(l—-n
’ e gy @ 0T

where n is the porosity and d the sphere diameter.

For samples of uni-size spheres having n =~ 0.36 we obtain R ~ 0.1d. By comparing
this to R = % used for pipe flow it is seen that on “equivalent pipe diameter” for
porous flow would be 0.4d, since R = Qf‘d = 0.1d. This might support the use of an
average “pore” size of 0.4d as characteristic length in the Reynolds number, cf. the
discussion given above of the results by Dybbs et al. It might then be concluded
that the diameter Reynolds number range for the transition between Forchheimer
flow (smooth wall flow) and the turbulent flow (rough wall flow) in the case of
spheres is in the range 80 < Re < 120. A wider range is to be expected for real
stone samples. Moreover, it is to be expected that the shape and the relative
surface roughness influences the various transition values of the Reynolds number

in the non-Darcy flow ranges.

Engelund (1953) argues that a conventional Reynolds number like the one defined
by eq. (3) cannot adequately describe the ratio between the inertial and the viscous
forces because it is not dependent on the porosity and the shape of the grains. As
a logic solution to this problem Engelund uses a Reynolds number defined as

1%
€=_a— ’ (6)

i.e. the ratio between the turbulent and the laminar terms in eq. (2). As an ex-
ample Engelund found ¢ ~ 0.07 for the transition between Darcy and Forchheimer
flow.

The definition (6) works very well in the Forchheimer flow regime but is very dif-
ficult to use for the turbulent regime because @ is ill-determined as a very small
quantity compared to bV.

Consequently, it is recommended to use the Reynolds number definition given by
eq. (3) for turbulent flow in breakwaters. The argument by Engelund is not so
important in this case because the influence of the normal variations in the porosity
and the shape of the grains will not cause significant changes in Re. Alternatively
a Reynolds number defined by Re = Y;E , where R is given by eq. (5) could be

used.

In the following sections Re means the diameter-Reynolds number given by eq.

(3)-
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2.4 Evaluation of the factors in the Forchheimer equation

Many researchers have tried to develop generally applicable empirical or semj.
empirical expressions for a and b (Lindquist 1933, Carman 1937, Muskat 1946,
Ergun 1952, Engelund 1953, Irmay 1958, Scheidegger 1960, Ward 1964, Ahmed et
al., 1969, Hanoura et al., 1978).

2.4.1 Dimensional analysis

A rational approach is to use dimensional analysis.
From eq. (1) it is seen that

Iz](%’ V,g,R,geornetry> (7)
The geometry might be expressed partly by a surface roughness element height, &
characterizing the surface characteristics of the grains and partly by a gradation
parameter, G. In case of laminar flow the surface roughness element height & can
be neglected and for the turbulent flow the viscosity v can be neglected. Thus by
dimensional analysis

v v
Ilam = -llam (ﬁ; b G) (8)

(&) vy
Tuws = Iy | \E (—) e for all N 9)

gR n

If for R eq. (5) is applied we obtain

(1-n)%y

Iam = am { T 4 oV,

! I ( g d? vV, G (10)

1-n 1-n k\V

Iturb = -[turb (n3gd V2 ( % ' E) ) G) (11)

The most simple interpretation of (10) and (11) would be
N Gt )
Ilam = « 3 gd2 |74 (12)
l-n1
Iturb = ﬁ —V? (13)




and consequently the Forchheimer equation (2) becomes

(1-n)* v l1-n

2 14
= gd2V+ﬂ = 3V (14)

I =« 1
gd
in which case o depends only on the gradation, G and f depends both on the
relative surface roughness, f and the gradation, G.

Another way of deriving eq. (13) is by considering the total drag force on the

grains within a sample of volume dy dz dz. The force on each grain is ~ % p (%)2 -
where & means proportional to. The number of grains within the volume is ~
122 dz dy dz. The total force of grains is then ~ 152 dzdydzp 7‘:2—2 This force is
balanced by (equal to) the differential pore water pressure force in two consequtive
sections spaced dz in the bulk velocity direction, i.e. & Apn dy dz where the pore

water area of a unit area plane section as of fairly close assumption is taken as n.

1-n .2
n;,gdv .

; _ A .
Using I = 7%= we arrive at, ] &

One or both of the simple expressions given by egs. (12) and (13) have been used
by several researchers, e.g. Ergun (1952), Lindquist (1933), Fand et al. (1987),
Dudgeon (1966).

Table 3 lists examples of experimental values of @ and f related mainly to the
Forchheimer flow Reynolds number range. « and J are often denoted shape factors,
because researchers generally explain « and 8 as dependent on the geometry of the
granular medium. However, no distinction is made between the a- and the f-
dependency as explained by the above given dimensional analysis.

Table 8. Ezamples of o and B values (defined by eq. (14)) covering mainly
the Forchheimer flow range.

Researcher Particles Porosity Diameter range or dsp Re a B
mm

Fand et al. uniform glass spheres 0.360 2-4 5-80 ~ 182 ~1.92

1987

Lindquist *)  shot 0.383 1-5 4-263 184 1.82

1933

Dudgeon **)  unifarm glass spheres 0.415 16 < 400 164 1.7

1966 —_ " - 0.385 29 < 180 193 2.4
river gravel 0.367 18 < 85 329 4.7
—_ " — 0.408 110 < 7000 922 2.0
angular rock 0.455 16 < 400 622 5.4
—_ " — 0.515 14 < 200 479 4.0
_ " — 0.438 25 < 400 425 5.3
—_ " — 0.483 37 < 500 92 10.8

Engelund flinty, calcareous 0.395 1.4-2.8 25-150 335 3.57

1953 sand and of uniform size

*) Data taken from Ahmed et al., 1969.
*2) Data calculated from Dudgeon's graphs, not from the data points.
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2.4.2 Engelund coefficient
Engelund (1953) used eq. (13) but proposed an alternative to eq. (12), namely

(1-n)° Y v
= gdZEI (15)

]Ia,m = Qg

where the indices E stands for Engelund. The characteristic diameter dg is defined
as the diameter of a sphere which has a volume equal to the average volume of the
grains. Using eq. (15) the Forchheimer equation reads

1—-n)® 1- 1
(1—-n)® v v n

— Y2
oy TP gV (16)

I=CYE

Engelunds argument for recommending this expression was a better fit to the ex-
perimental data available to him (data of Franzini (1951) with uniform spheres
covering the porosity range n = 0.27 — 0.48 and data by Rose (1945)). However,
it should be noticed that for what might be regarded the relevant porosity range
for rubble mound structures, n = 0.37 — 0.48, there is no significant difference
between egs. (12) and (15) as the corresponding ratio between the porosity factors
U”T;‘La/ﬂ;n:’,‘ﬁ = n(1 — n) only varies between 0.233 and 0.250. Moreover, because
Engelund’s semi-empirical expression eq. (15) was based mainly on experiments
with small particles it is recommended to prefer the theoretically better founded
eq. (12), especially when dealing with breakwaters where extrapolation to much
larger particle diameters is needed.

The o and § values recommended by Engelund are given in Table 4.

Table 4. The Engelund coefficients (defined by egs. (16).

oE B
Uniform, spherical particles ~ 780 ~ 1.8
Uniform, rounded sand grains ~ 1000 ~ 2.8
Irregular, angular grains up to 1500 or more up to 3.6 or more

Engelund pointed out that the recommended values of f are based only on very
few experiments (by Lindquist, 1933, Givan, 1934 and Chardabellas, 1940).

The Engelund a-coefficients can be transformed to the o value defined by eq. (12)
by multiplying with (1 — n)n =~ 0.24, cf. Table 5.

10



Table 5. Engelund coefficients transformed to fit eq. (14).

a B
Uniform, spherical particles ~ 190 ~ 1.8
Uniform, rounded sand grains ~ 240 ~ 28
Irregular, angular grains up to 360 or larger up to 3.6 or larger

2.4.8 Shih coefficients

Very recently and after the completion of tests presented in this paper Shih (1990)
proposed the following expressions for @ and B, based on regression analyses of
steady flow permeameter test results for single size and wide grade samples of
chrushed limestone with stone diameters of up to 75 mm, respectively 40 mm. The
values are to be applied in eq. (16) with d = dy3, i.e. the diameter that 85% of the
sample exceeds.

Single size sample:
(Tested ranges: dgs/dys ~ 1.3 , 5mm < dy5 < 55mm)

g\2/3 .
a = 1684+3.12.103 (;5) d?, (17)
1/3
B = 172+ 1.57 exp [—5.10-10-3 (%) dw] (18)

Wide grade sample:
(Tested ranges: 2< dgs/d15 <5 5 dmm < d15 < 17mm)

Eqgs. (16), (17) and (18) are used with dy5 replaced by

d15 -1.11 <d50)0.52
dy, =dis | — — 19
t (dso) o (19)

The shape of the limestones and the porosities of the samples used by Shih are not
specified.

The tested Reynolds range is app. 50 < Re < app. 6,000, i.e. mainly the fully
turbulent range and as such relevant to flow in rubble mound breakwaters,

11



Apart from not being stringent in accordance with the dimensional analysis, cf,
egs. (8) - (11), egs. (17) and (18) demonstrates an unexpected dependency of o
and B on the grain diameter, cf. egs. (12) - (14). Fig. 3 shows the experimental
results by Shih (1990).

Legend:

X Experimental results
Best fit

4&-10'3 ::: Iﬁ;‘;::% Engelund's limits

© Wall effect corrected results

1
1.0 + B =1.72+1.57 exp[—5.10x10“3(1%)3 dlﬁ]
05 +
d;s mm
0.0 i f i } t t b
0 10 20 30 40 50 60 70

Fig. 8. Ezperimental results by Shih (1990). Corrections for wall effects
according to Fig. 18 also shown.

The surprising but theoretically uncorrect trend of o increasing with the diameter
is also observed in the experimental results presented in this paper if a conventional
fit to the Forchheimer equation is used, cf. section 9. A similar analysis of the test
results by Fand et al. shows the same trend.
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The use of the Shih formulae for large size materials, e.g. extrapolation to a rea]
breakwater situation, implies a considerable overestimation of the laminar flow re-
sistance.

A discussion of the appearence of this fictive variation of a and 8 with the diameter
is given in section 2.4.4.

Because of a relative large ratio between the stone diameter and the permeame-
ter diameter in some of the test series by Shih (1990) a correction for wall effects
should be made. The circles in F ig. 3 shows the experimental results corrected for
wall effects using the correction factors presented in section 8.

2.4.4 Critical review of conventional fit of the Forchheimer equation to experimen-
tal data.

It is seen from Fig. 2 that for a given granular matrix the values of the coefficients
a and b in the Forchheimer equation generally vary with Re. Only within certain
ranges (denoted Darcy, Forchheimer and Turbulent) they attain constant (but dif-
ferent) values. Consequently, the asymptotic values of a and b, depends on the
Re-range covered by the underlaying experimental results.

Taking the a-value as an example it will depend on the lower limit of the Re-
values applied in the specific test series. Fig. 2 demonstrates clearly that an
a-value corresponding to a Forchheimer range Re-value is smaller than an a-value
corresponding to an upper transition range Re-value,

In permeameter tests with samples of different grain diameters the upper and lower
Re limits usually depend on the diameter. This is due to normal experimental lim-
itations. For example in the case of small diameter samples the max obtainable
Re-value is smaller than for a large diameter sample and vise versa for the min-
imum obtainable Re-value. Thus the experimental Re-range increases with the
grain diameter as in the case for almost all published permeameter test results,
including the results by Shih. In some cases there might not even be an overlap
in the Re-ranges for the finest and the coarsest materials applied in one set of
published results.

The drastic increase in @ with the diameter seen in Fig. 3 can most probably be
explained by this effect. This is because the lowest Re-values, which are related to
the smallest diameter samples, correspond to the upper limit of the Forchheimer
flow range where o obtains minimum values, while the larger Re-values, which are
related to the larger diameter samples, correspond to the fully turbulent flow range
characterized by larger o values, cf. Fig. 2.

13




In this way also the large values of B for small diameter samples seen ip Fig. 3 can
be explained because the B-values decreases when moving from the Forchheimer

flow range to the fully turbulent range, cf. Fig. 2.

It is concluded that jt can be very misleading to use Forchheimer equation co-
efficient values (or @ amd g values) outside the Re Tfange corresponding to the

underlaying test results,

Correct asymptotic values of the coefficients a”", ¢ — b, a’ — ¥ in Fig. 2 can only
be found from set of test results completely within each of the related Re-ranges.

Simple extrapolation from one Re-range to another s not possible.,

2.5 Proposal for a turbulent flow equation

For prototype rubble mound breakwaters exposed to design waves the flow regime

will be turbulent almost without exception.

I=lc+b(V-V,)?

lef———--— T Al
Forchhej— ,IFJ' ,' Turbulent
<~ G
mer flow | ¢ 0 flow
| =3
| 'l | -V
V.= Rec v
d

Fig. 4. Representation of the turbulent flow equation.

14

—



Re. is in principle the critical Reynolds number signifying a lower value for the
turbulent flow regime and V, is the corresponding bulk velocity. According to
the previous discussion the Reynolds number range for the transition between the
Forchheimer flow and the turbulent flow is rather narrow, 80 < Re < 120 for
spherical particles. For this case it can be assumed as a close approximation that
Re. = 100 separates the Forchheimer flow range and the turbulent range. For
stone samples the corresponding Reynolds number range are wider and a larger
value of Re. must be chosen, e.g. 300.

The turbulent flow equation is given by
I=1.+bV-V.) (20)

I, can be calculated from the Forchheimer flow equation with V equal to

Re,v
d

Inserting eq. (21) into eq. (14) we obtain

V= (21)

_ A=n) v | pag l=n v’
I. = Re.ar o3 gd3 + Rec ,BF 3 gd3 (22)
or
vi 1l—n .
I, = ;ﬁ = [ap(l —n)Re. + ,BFRec] (23)

where ar and B correspond to the Forchheimer flow range and to the related
definition of the characteristic diameter, d.

In order to evaluate eq. (21) Table 6 shows typical values of I, and the related Ve
calculated for various characteristic grain diameters using o = 500, 8 = 5.0 and
n = 0.45, which are approximate values for irregular, angular grains, cf. Table 5,
v=1.14-10"% m?/s and Re, = 300.

Table 6. Typical values of I, and V,.

Characteristic I, |A
diameter, d

m m/s
0.001 430 0.34
0.01 43.1072 0.034
0.03 1.6-10"2 0.011
0.06 2.0-1073 0.006
0.20 5.3-10°8 0.002
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It is seen from Table 6 that for all breakwaters with core material of quarry run
(d > 0.03 m) or coarser material I. will be smaller than app. 1072 and the corre-
sponding critical bulk velocity V, smaller than app. 1072 m/s. In this case I. and
Ve >~ 0 and eq. (21) reduces to

_,1=—nV?

l=p = -_g;c_i (24)

where 3 depends on the relative surface roughness of the grains and the grading,
cf. eq. (11).

For the quasi-steady flow in breakwater sand cores the viscous effects will be present

and consequently the Forchheimer equation (14) with the « and the 2 values given
in Table 5 might be used. The very large I.-value of 430 given in Table 6 for sand
with d = 0.001 m indicates that fully turbulent flow in sand will never occur in
a breakwater situation. Even related to permeameter tests such a large hydraulic

gradient is extreme.

Considering that eq. (22) is expressing the conditions at transition between Forch-
heimer flow and fully turbulent flow it is surprising that the laminar and the
turbulent terms are of almost the same magnitude. It is to be expected that the
laminar term should be negligible. The ratio between the two terms are, cf. also
the Engelund Reynolds number equation (6),

—ﬂi@c) ~5  for Re,=300 (25)

¢= ar(l—n
This indicates that the Reynolds number, ReT'L, corresponding to the lower value
of the fully turbulent flow regime should be somewhat larger, i.e. Re. ~ 600—1000.
However, if this is the case then it can be concluded that the empirically determined
@ and f values by Engelund and other researchers dealing with sand size grains
have not been fitted to results covering the whole regime from Darcy flow to fully
turbulent flow, but only the lower Reynolds number range where viscous forces are
of importance. Consequently, it is doubtful if the reported small grain A-values
by Engelund and others can be taken as the asymptotic values for turbulent flow
regime. Instead of this S-values determined from experiments with fully turbulent

flow should be used.

As to the a-value = 190 for uniform spherical particles reported by Engelund,
cf. Table 5, it represents truly the lower asymptotic value for the Forchheimer
flow regime because it is quantitatively identical to the uniform diameter sphere
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_ (L=n)) ,, v
= f’(”OmT A (30)

The force Fy over a unjt area corresponds to a difference jp Pressure Ap; oyer the
sample length AZ, i.e.

F[ = Apj = I1A€pg ;

(31)
where I} is the gradient corresponding to the inertia forces.
Substituting (31) into (30) we obtain for the last term in (27)
1+Cp (122) qv
[[ — \L_) —— (32)
g dt

The overall inertia coefficient C,, is expected to be dependent on a Reynoldg’
number, the shape and the relative surface roughness of the grains, the relatjve

motion of the fluid (usually expressed by a Keulegan-Carpenter number) and the
history of the fluid motion.

The complete equation (27) now reads

1 + Cm 1-n
I=aV+bV2+¢d~V (33)
g dt

are as an approximation used with values of ¢ and determined from steady
flow tests. Under this assumption it js possible by means of Permeameter tests

range —7 < Cp, < 5 for river gravel of size 1.6 cm. Hannoura et al, yged a U-
tube permeameter with a 15.2 cm square sample section and a maximum pressure
difference corresponding to 150 cm head of water. The fluid velocity (and thus
the acceleration) was determined by a TSI laser anemometer in one point a short
distance upstream of the sample. The authors explain the reasons for the very
large scatter in their results to be partly due to the very short period of “large”
acceleration (0.15-0.25 sec) which makes accurate fneasurements very difficult, and
partly due to the use of the steady flow coefficient values of ¢ and b in (23), which
might be a bad approximation because the flow regime corresponding to the steady

flow Reynolds’ number cannot be fully developed during the very short period of
fast acceleration starting with the fluid at rest,
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coeficient, 36 x = 36 - 5.34 = 192, given in the Darcy flow equation

(1=n)® v

I =
36 k = P

% (26)

where « is the Kozeny-Carman constant, see Fand et al. (1990).

3. UNSTEADY FLOW. THEORETICAL AND EXPERIMENTAL BACK-

GROUND

A model for unsteady flow in porous media was probably first proposed by Pol-
ubarinova Kochina (1962) who generalized the Forchheimer equation by adding a
time dependent inertia term

I=aV+bV2+C% (27)

where a, b and C are taken as constants for a given porous media. However,
Polubarinova Kochina did not investigate the inertia term further.

The force F; corresponding to the inertia term might be formulated as the sum of
the contributions from the inertia generated fluid forces on the grains, Frg, and
the forces necessary to accelerate the pore water, Fi, i.e. Fr = Frg+ Fru.

d_v dv dv

7 =p(1+Cs) v =pCrvs (28)

dt dt
where p is the fluid mass density, vy is the volume of the grains and v is a char-
acteristic fluid velocity. The first term in (28) is the Froude-Krylov force and the
second term is the added mass term.

dv
Frq =pv + Capoe

The pore water inertia term might be formulated as

dv
Fru = poy pr (29)

where v,, is the pore water volume.

If we consider a sample of length A¢ with a unit area cross section perpendicular
to the flow and introduce the volumetric porosity n = void volume/total volume
and take the characteristic velocity v = V/n, where V is the bulk velocity (Darcy
velocity) we obtain

1—-n dv dv
Fr = F,,g+F,,w_pcm( - )A£E+pA£—d}—
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In the present study the same approach as used by Hannoura et al. (1978) was
applied but with a larger cross section U-tube.
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