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1 INTRODUCTION 

The persistent development of new and faster computer hardware, has in general eased the 
cam~licated t w a  and three dimensional analvsis of stresses and strains in struetures. This 
development is espeeially noticeably when it comes to cases where the load is padually in- 
creased tawards failure or in eombined deformation and fiow problems. Today, many of these 
problems are solved using variaus finite element eomDuter softwares. e a~ab l e  of handlina both - 
aeometric and material non-linearities. The latter is esoeeiallv imoortant in sail medianies - 
ard aoil-itr~:rure ii:ie:ac!ioii prcl , l imi D-niie .he iact lliai :.\,eral rolcept, ial  irode.s. <!c- 
,iril.ing rir !#,n '.near anc ~rretrrsible I,,il.~v:i iir 'f a < # . .  i.avc !,<?n di\ ,rl . iprd <.vzr rhz I h i  
three deeades few of them are aeeessible in commereial finite element orograms. 

In the oresent studv the Sinele Hardenine Model. that is a time indeoendent elastoolastic 
u 

ro:.s'iri.ii\,< inoilcl ch~vtupid o) l ade  ar.d Kiiii 'hi!!! a. I..iilr 198~.  l.a<ir A. h.in I'iRdo, l.nd. 
& Kim IYI.66 i, .rnplrmrnlr<! n i  i< user <!ef%i:ed ciarer.rl r indde I3lAT i i .  r i r  currmrrcia! 
fi . i ir rlerne?, piopran. AU.4QCj ' lht  ad\dn:agej oi ilir. Singi, Ha:<lening .\lade !>e i n  11, 

ability to predict elastie and plastic displacements during loading for various materials such 
as sand, clay and concrete. 

1 .l Scope of work 
This work was initially based on an ineomplete version of the UUAT, ieceived from Dr. P.V. 
Lade. Initially ABAQUS was run with this version, which however revealed that a number 
of revisions were necessary. Con~quently, a new and revised UMAT, denoted SHhl-module 
(Single Hardening Model), has been designed and coded. 

The SHM-module handles the compatibility requirement, which is the core in elastoplas- 
tic modeiling, in a more consistent and up-to-date way. The present module pravides the 
apportunity of fulfilling the cantinuity requirements by various methods. These methods are 
described and their capabilities are demonstrated in this report. Further, the elastic part of 
the model has been updated and che behaviour in the softening regime can now be controlled 
by the user. The feasibility of the SHM-module is demonstrated by several examples including 
single element analysis for predicrion of triaxial behaviour and multipLelement analysis for 
determination of bearine eaoaeitv and settlement5 in combined deformation and flow ~ r o b -  - . "  
lems. Model pararneters used for the simulations are all derived from conventional triaxial 
test performed on Eastern Seheldt Sand (Jakobsen k Fraastrup 1998). An evaluation of the 
madels capabilities to predict the true material behaviour is found to be beyand the scope af 
the present work, hence, no comparisons with test results are performed. 

1.2 Report outline 
The above mentioned topies are treated separately in the report and it is the idea that the 
user should be able to use the report as a work of reference. A brief outline of the chapters is 
given below. 

Chapter 2 contains the definition of the eommonly used stress and strain quantities. 

Chapter 3 presents the governing elastie and plastic stress-strain relations for the 
Single Hardening Model incorporated in the original version of the UMAT. 
The elastic behaviour is prwcribed by Hooke's iaw and a pressure dependent 
function for the elastie coeffieients. The framework for plastic behaviour con- 
sisting of a failure criterion, a yield eriterian, a nonassociated fiow nile and 
work hardening or softening law is deseribed in detail. 

Chapter 4 explains the working principles of elastoplastic modeis and deais with 
the updating af stresses and the hardening parameter. The intepation scheme, 
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used for updating of stresses and the hardening parameter, in the original 
UMAT is presented and commented on. 

Chapter 5 &dds an updated elastie model and redefines the soil behaviour in the 
softening regime. Problems discovered during initial runs with the original 
UMAT are addressed and corrected in the new version. Furthermore, several 
&anges have been made to the numerieal schemes for improvement of the 
computational effieiency af the SHhl-module. 

Chapter 6 gives a description of the SHM-modules campatibility with ABAQUS. 
This indudes specifieation of materid and model properties, predefined input 
and output variables, initialization of state dependent variables etc. 

Chapter 7 contains the doemmentation of the SHM-modules ability to function. 
The SHM is validated by perfarming numerous single element analyses of tri- 
~ ~ i ~ i  .,,d true triaxial tests in the eompression and extension regimes, foliowing -. .- .- - 
various stress paths. 

The work is further doeumented in appendix A and B, containing the eomplete 
SHM.madule souree code for 2D modelling and matching flow chart. 

JAKOBSEN 
AGEP R0201 
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2 DEFINITIONS 

Finite element analyses within the field of geotechnical engineering serve a twofold purpose. 
Calculation of settlement8 due to a given external force ar determination of eomplete perfor- 
mance curves as the force is gradually incressed towards failure. In both cases the foundation 
perfomance is evaluated an the basis af directional displacements and external forees. In 
most finite element formulations the displaeernents are the primary variables af the problem 
and the requested results are direetiy obtained. This view holds for users who are only inter- 
ested in the global solution to the problem. When a single element is considered it gets more 
complicated as the displacements may lead to deformation of the element, and this in tur" to 
internal forces. The magnitude af the internal forces will essentially depend an the relation 
between material properties and the deformation of the element. A description of the material 
response based on a relation between deformations and internal forces is, however, meaning- 
less as such a description wouid depend on the size and geometry of the considered element. 
Instead the material behaviour must be described by robust and versatile relations between 
relative quantities as stresses and strains. The stress and strain quantities used throughout 
this report are defined in advanee in arder to amid misunderstandings and repetitions. The 
description is mainly based on Spencer (1980), Crisfield (1991) and ABAQUS (1995). 

2.1 Stresses 
When deseribing the forces aeting in the interior of an element it is, from an engineering 
point of view, obviaus to use the Cauchy or tme stress measure. This measure is physically 
easy to interpret, as it simply expresses the ratio between current farce and current area. For 
porous materials in which the pores are interconneeted the pressure of the fluid can affect the 
behaviour of the material greatly As frictional materids deform and fail in response to normal 
effective stresses the pore pressure should be dedueted. Stresses, which cause compression, 
arp regarded positive and hence the principle of effeetive stresses can be enpressed as: 

u'  = u - u1 (2.1) 

The stresses, u, and the identity I, are both syrnmetric second order tensom, whereas the pore 
pressure, u,  is a sealar: 

nL1 C12 0 1 3  1 0 0 

u=[m. m -1 ;  I = [ ;  :] (2.2) 
O81 V.32 0.33 

The principle of effective stresses is adapted throughout the report and u generally refers to 
the effective stress state. The stresses are due to symmetry occasionally presented on veetor 
form: 

uT [ 01, O O 4 3  031 012 ] (2.3) 

In geotechnical engineering i t  is common to relate the material response to the pressure ar the 
mean normal effective stress: 

1 
P = -tr (u) 

3 (2.4) 

In conneetion with triaual tests the term 'triaxial s t m s  difference' is used for identifieation 
of the scalar difference between major and minor principal stresses: 

q = O, - 0 3  (2.5) 
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For isotropic material models it is cammon to use the three independent Cauchy stress invari- 
ants of the stress tensor: 

I l = t r ( m ) = 3 p  (2.6) 

1 r, = , [(tr (m))2 - t r  (u)2] (2.7) 

I3 =det  (u)  (2.8) 

The deviatoric stress tensor appears from a decomposition of the symmetric stress tensor and 
expresses the deviation from the isotropic mean stress: 

s = r - p 1  = o ,  on - p  023 

[",p "1 (2.9) 

The iduenee of the deviatoric stresses is often expressed in term of the second deviatoric 
invariant, defined as: 

1 1 
.I2 = -ssT = -1: + 1 2  

(2.10) 
2 3 

2.2 Deformations and stmins 
Determination of displacements throughout the hictory of loading is as described earlier the 
analysts pnmary objective. The geametrie configuration of the problem is initially described 
by the initial position vector X defined at discrete material @"tg. During loading a materid 
partiele will move from its initial position X to a new position x. By sssuming mass Con- 
senation there will always be a one-to-one correspondence between x and X. Hence, it is 
possible to describe the 'mapping' by the deformation gradient tensor F. That is, having two 
neighbouring particles in the initial configuration, located a t  X and at X t dX the distance 
in the current configuration is given by: 

ax 
dx=FéX; F = -  (2.11) ax 

lf there is no motion, then x = X and F = I. The deformation gradient tensor is not itself 
a suitable measure of deformation as it makes no distinction between rigid body motians and 
material straining. The latter is, hawever, decisive for the description of material behaviour. 
The deformation ean instead be deseribed by a pure bady rotation, followed by pure stretch of 
three orthogonal directions or vice versa. This is the sc-ealled polar decomposition theorem: 

F = V R  (2.12) 

where V is the symmetric left stretch tensor and R is an orthogonal rotation tensor. To be 
able to evaluate the straining of the material the streteh tensor must be isolated. This is most 
easily done by defining the strain tensor B and utiiiaing the properties of V and R. 

B = FF= = V R R ~ V  = vv (2.13) 

The principal stretches or stretch ratios h: - A: and hence h, h a  c m  be obtained along with 
the current principal directions n,, n2 and ni by solving the eigenvalue problem: 

[B - X~I] n = O (2.14) 
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For principal stretches of unity no straining aecurs. The left streteh tensor, which defines the 
straining in the current configuration, is given by: 

The stretch itself cm be seen as a measure of deformation ar 'strain'. It is, however, desirable 
to use a strain measure that produces zero strain when onlv rkid body motions ocriir. This . .. ~~~. 
rr<1iiirr!it~:i: :dn br. nd:iihe.i b\ iarerni rlilFcrr!i: i r r a : n  Ke39Lrer llinl air all h:i.cli i!.$ cl rte 
arrettn '1 hede f ~ r c t ~ o n s  nu$?,  I:nwe\~t.r, DG c.%rent.al so tl:a. tlir sirain inc:r;Ll. 3 .  r Ozrreares 
nunolonirdl) nitli 1l.e s l r ~ ~ r l .  and l i i n z ~  a iricue \.al"? ol sirair. fur a aivl,n 51re:ch 

Ohviausly, many strain functions are possible and the choice is merely a matter of con- 
venience and appra~iatenesi. However. the strsin funetion cannot be chosen arbitraril" as ~. ~ ~~ 

11.c stress and s:iain newuiza a:curr?irg to \lalverr :%9' >:IL,, be s rk roi.i~:a~r<l a i i  

refer to , h ?  same nn$,ur~t.~n ~'feritirr .r : irrel.1 whc n i t . , . - t i l : i l iv i  reln'ioiis arr i i ives~:.  
gz:rd The TOS! s:liplr aid u.id<:v  id s i r in  !i.rarLn :r rh, i i i t ~ r  I,i.g::.reriii~ ?:.u,. Tl..s 
measure is only useful when both strains and motions are small a s  products af displaeement 
derivatives are negleeted (Spencer 1980). Hence, a distinetion between reference and eurrent 
configuration becomes arbitrary and all stress and strain measures are wark conjugated in this 
case. In situation6 where the strains are aetually small, but large motians aceur the finite 
and non-linear Green's strain may be used. The Green's strain is computationally attractive 
as i t  can be deduced directly from the deformation gradient tensor without having to solve 
for principal stretches and directions (Spencer 1980, Crisfield 1991, Krenk 1993). The use of 
the Green's strain is nevertheless jmpeded by its m k  conjugated strezs measure, the second 
Piola-Kirchoff streses (Crisfield 1991, Krenk 1993). 

When dealing with plastic materials the smal1 strain sssumption is violated and both of 
the &bove strain measures become inappropriate. Consequently, the finite and non-linear 
logarithmic or natural strain measure is adopted. The use of the natural strain measure 
is from a eomputational point oi view troubiesome as it cannot be upressed in terms of 
the deformation gradient tensor. Instead the strain is caleulated from to the stretch tensor 
and principal stretches and directions must be determined. The inerement in natural strain, 
however, has the advantage of being work conjugated with the Cauchy stress measure (Cnsfield 
1991, ABAQUS 1995). The natural strain tensor is dehed  as: 

E11 E12 E13 

E = E m  622 €23 = -In (V) (2.16) 

€ 8 ,  €32 Es3 I i 
Due to symmetry only six of the nine strain campanents are independent. The independent 
components are more canveniently arranged on vectar form: 

= [ E l 1  622 E83 E23 E l ,  E12 ] 

The principal strains are directly obtained from the principal stretch: 

The definition implies that strain is positive in compression and corresponds to the sign con- 
vention usually adopted in geomechanics. The computations are, furthermore, complieated by 
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the fact that the principal directions generally ehange as the deformation takes place and it is 
seldom possible to calculate the total strain direetly (Malvern 1969, ABAQUS 1995). This 
obstacle is evaded by using an ineremental form of the polar deeomposition theorem: 

A F  = A V A R  (2.19) 

Thus, d l  quantities obtained from the previous increments are rotated to the current con- 
figuration and passed into the user defined material module together with the current strain 
increment: 

A r  = -In (AV) (2.20) 

It is essential that the increments are smal1 as A R  repreients the average rotation over the 
increment. This requirement is, however, in aceordance with the principles of rate dependent 
material modelling. Since the natural strain measure is consistently adopted in ABAQUS all 
user defined strain dependent material parmeters should be determined on this basis. In 
geotehieal  engineering the material behaviour is commonly studied by performing triexial 
and true triaiual tests. If these tests are performed under conditions that ensure a homogenous 
strain state during loding the total strain definition in 2.16 can be applied as the principal 
stretch directions remain undianged thrmghout the test. It is, furthermore, wmmon to refer 
to the volumetriestrain defined as the sum of the principal strains. An investigation of how the 
application of the naturd strain measure affects the analysis and prediction of the behaviour 
af geomaterials can be found in Praastrup, Jakobsen & Ibsen (1999). 
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3 THE SINGLE HARDENING MODEL 

The Single Hardening Model has been developed with the purpose of foming a model that is 
applicable for various frictional materids, such as sand, clay and concrete. The baekground 
for the model is a thorough investigation of data from experiments performed on various 
frictional materials. Thus, results from conventional triaxial tests as well as true triaxial tests 
have been put into use, in order to be able to provide a precise material description. Besides 
experimental observatians the model is based on the coneepts from ineremental elastoplastie 
theory 

The Single Hardening Model belongs to a eategary of relatively simple models where time 
dependent and anisotiapic behaviour are not ineorporated. T h i  means that the model is in- 
capable of capturing phenomena like ereep, swelling and material or stress indueed anisotropy. 
Aeeeptance of these limitations, however, makes the model more applicable to the praetical 
geatechnical engineer as it can be ealibrated from a limited number of conventional triaxial 
campression tests. Moreover, the simplifieations faeilitate the implementation of the model as 
i t  becames passible to express the governing funetions by use of stress invariants. 

The present ehapter deseribes the framework of the Single Hardening Model (Lade 1977, 
Kim & Lade 1988, Lade & Kim 1988a, Lade & Kim 1988b). It has been tried to follaw a 
logical developmental sequence by describing the governing funetions in the following order: 
Elastic deformations, failure criterion, plastic potential function, yield eriterion and work 
hardening and softening laws. The distinetion between plastic potential function and yield 
criterion imply the use of a so-called non-sssociated flow rule. The graphical presentation of 
the different functions is generally based on parameters determined from conventional triaxial 
campremion tests on Eastern Scheldt Sand (Jakobsen & Praastrup 1998) 

3.1 Elastic deformations 
Upon unloading and reloading of a material recoverable elastic stralns are produced. The 
elastic strains are ealnilated from an isotropic hypoelastie model where the elastic material 
eoefficients depend on the eurrent state of stress. Thus, the elastie strain must be expressed 
on m incremental fom: 

dc= = C - I ~ V  (3.1) 

in which C is the stress dependent isotropic elastie tangential stiffness tensor derived from 
Hooke's extended law. 

The dimensionlem parameters K m d  n are determined from unloading and reloading branches 
performed in triaxial tests a t  varying conlining pressure normaliied with the atmospherie 
pressure %. 
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Poisson's ratio u is assumed to be constant, whereas Young's modulus is assumed to vary with 
the minar principal effeetive stress as proposed by Janbu (1963): 
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3.2 Failure cn tenon  
The failure criterion bounds a domain of possible stress states and simply preseribec the 
maUmum load that the material ean withstand. Experimental ~esults  from tri-al and true 
tri-al tests an frietional materials show that the shear strength increases with increasing 
mean normal stress. 

Thz parameter i, dctirmiiic,~ !h? 'penin< annlc in !).c tri.uiu! :ilai.e cl  F i ~ ~ r c  3 11, ni.d :s 
conparable C O  rtic iR<.rrivt, ~ r i ~ t i o n  bnp,!e ol t i e  ii.a'erml ulzrr~as n. <!rtrriii:i.i,s .I.<. ciirvdrur. 
of i'ie f b l ~ ~ ?  FI~IIBI< in  p:u!:ea ~ontainini: rhe Iiv~lrosr.~tic iurr , H A  . ,\i! cxmuliple o! tr.itc6 
and cross sections of the failure ciiterion in the ( ~ r a a s t A ~ , l b s e n  & ~ a d e  1999) and 
the triaxial plane is given in Figure 3.1. 

ïigure 3.1: Characteesticr of the failtxre criterion in stress spaee. (a) Contours i n  the CO- 
plane. (h) %ces in the tnozial plane. 

The figure shows that the cross-sectional shapc of th? failure criteria in the CO-plane chaiiges 
from circular to trianguiar with smoathly rounded edges for increasing valurs of q, and constant 
values of n and 11. The traces of the failure criterion in the triaxial plane rcvcal tliat the 
formulatioii is not valid for materials with tensile strength as all the traces tend toivards the 
origin. 

Howeuei, it is possible to include the eflect of a rnatrriais tensile strength by a simple 
translation of the co-ordinate system along the hydrostatic axis. 

The oarameter a. which reflects the tencile streneth of the material is sirnolv added to the . " 
narm.al stresses before substitiitiori in equation 31.  The three material parameters may be 
determined from tiiaxial or true triaxial tests. 
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3.3 Flow w l e  ond plastic potentidfunetion 
The determination of the plastic deformations, within the domain of possible stress states, is 
based on a so-cailed Row rule. The Row rule is a stress path independent function that defines 
the magnitude and direction of the plastic strain inerement as the material is subjeeted 
to further plastic laading: 

The derivative of the plastic potential function O a t  the current state ol stress u determinen 
~~~~~ ~~~~. 

:,!e a!reri.on ol ~ , l . ~ ~ r i <  *:ran :nrreiiirni and dA, i.< A pioporr!onliiry iacrur i h :  ilelermires tiic 
i d  o t i t r .  Th? <i~tc iminar io~ <.f d>, ir dc8cr.hi.tl in Serr.oii 
1 1 I i i  rmrs wliere tl.,! p:ai ic  potrnti.li and yielil hinrrion ?.lier. r h c  niareriril ir $.u<! kllow 
a non-assoeiated Row rule. The plastic potential funetion is defined in terns of the stress 
invariants: 

The dimensionless material parameters $I, and i< are obtained from lahoratory tests, sueh 
as triaxial eornpression tests. The parameter $I is a weighting faetor that controls the two 
invariant term's iduence an the shape of the plastic potential lunetion in the actahedral 
plane. 11, can therefore onlv be exrierimentallv determined from true triaxial test. However. 
test results indicate that $I and the eurvature parameter m for the failure criterion are reiated 
(Kim & Lade 1988). 

The parameters $X and p cantrol the interseetion with the hydrostatie axis and the cuwsture 
of the meridians, respectively. A family of plastic potential surfaces for Eastem Sdiddt Sand 
is shown in Figure 3.2. It appears that the contaurs of the plastic potential function in the 
triaxial plane are similar. However, in the CO-plane the eontoue ehange shape from cireular 
ta  trianguiar as the function d u e ,  g, inereases. 

3.4 Yield en tedon  
The stress Space is, by the elastoplastie theory, divided into a purely elastic domain snd a 
domain in whieh the material exhibits elastic as well as plastic deformations. The transition 
between the domains is described by a yidd criterion, that defines a closed surface in stress 
space: 

The yield function f' is solely dependent on the current state of stress, whereas the rork 
hardening or softening term given by J" is stress path dependent as i t  depends an the total 
plastic work. If the current stress state lies on the yield surface, i.e. the stress state fulfills 
the condition f' = J", a hang8 in stresses leads to either elastie or elastoplastic deformations. 
The loading conditions are formally written: 

< O elastic unloding 

= O neutral loading 

> O elastoplastic loading 
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3.4.2 Hardening law 
Frictional materials generally harden as a consequenee of generated plastic strains. By adopt- 
ing the plastic work, which ineludes the effect of both plastic volurnetric and shear strains, as 
a state parameler it becomes possihle to use a single function for description af the materials 
hardening behaviour. 
The used hardening law is based on observations made from isotropic eornpression tests: 

D =  C 
( 2 7 h  + 3)' 

and 
P p = -  
h 

4, and h are identieal to the parameters determined for the yield funclion, whereas C and p 
must be deturnined from an isotropie eompression test. The plastie work W, is determined 
and continuously updated whenever plastic deformations occur. 

Figure 3.2: Chometenstics af the plastic potentialhnetion in stress space. (o) Contours in  the 
CO-plane. (b) Contours in  the triozial plane. (m = 0.2879, & = -3.1540 and g = 2.0611) 

A family of isotropie yield sudaees for Eastern Sdieldt Sand that fulfill the yield ciiterion is 
shown in Figure 3.3. 

where afjaa is the autward normal to the current yield surface. If the stress incr~ment leads 
to a stress state located inside the vield surface f' < f" onlv elastic deformations will occiir. . . "  
The condition where df equals zero is terrned neutral loading as the new stress state remains 
on the yield surface, but only elastic defarmations will be produced. lf the stress incrernent 

o wJp.=0.002 

200 

o eoo 400 600 so0 
bo.. kppol 

on the other hand points in the outward direction of the yield surface it corresponds to a state 
af elastoplastic laading. 

In case of elastoplastic loading the size of the yieid surface changes, i e .  the yield surface 
expands during hardening and contracts during saftening. To avoid inconsistency it is required 
that the new stress point is located on the curreot yield surface. Consistency is ensured by 
fulfiliment of the following condition: 

34.1 Yield funetion 
The yieid funetion is expressed in terrns of stress invarianm: 

The parameters 111 and h are material constants of which the former is given by Equation 3.8. 
q is a variable, that depends on a material constant n and the stress level S: 

Figure 3.3: Choraeteristics of the yield function in  stress space. (4 Contours in the CO-plane. 
(b) Contours in the trimiol plane. (m = 0.2879, 7, = 70.19, C = 1.2748. lo-', p = 1.6078, 
h = 0.6166 ond u = 0.5525) 

The stress level evolves from zero at the hydrostatic axis to unity at failure: 
The contours in the triaxialplane, corresponding to eonstmt plastic work, are seen to maintain 
their shape and merely expand as the plastie work ineremes. In the CO-plane the contours 
evolve from eireular to triangular as the plastic work and stress level inerease. 

(3.11 
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3.4.3 Softening law 
As the stress level reaches unity the material fails to withstand the load and starts to soften. 
Little information is available about the softening behaviour and for simplicity an isotropic 
softening law is applied. The softening law is desmibed by an exponential decay function wing 
the plastic work as a state parameter: 

in which 

and 

A aiid h ar<, borh positive (anr!ai.ri deri\,eil irom . + e  rlope of :he h.irden.n&: r.i:a. ar failcre 
The l o r n i ~ l a : : ~ ~  ii!:pl.ei r n h i  ihe .iii'ia: riop, of ihe \of!~niug is genncn. 12 [ h <  b l c x  O- 11.e 
hardening curve at  failure, but with the sign reversed. Thus, the madel prescribes an abrupt 
transition from hardening to  mftening as failu~e is ieached and the yield surface starts to 
diminish. 

'l'he govcri.in6 1unr::ons o!rie Sii.gle 1lardcnii.p; \:odcl h4\e berii lire-ei.rtd and rhe iiia: :rid 
vnrial>.t,, iderri:ieil TI.? maieriiil iir.nl.lcr will <I,,ptnc on c!.<. spr '~ i6c  i?.rzri;il ni.iI iiu'r "r 

calibrated to triarial or true triaxial tests in accordanee with the principles outlined in Lade 
( i g n ) ,  Kim & Lade (1988), Lade & Kim (19880) and Lade & c m  (1988b). The governing 
funetions and the corresponding material variables are listed below: 

Elastii properties: K, n, v 
Failure criterion: m, 71, a 
Plastic potentini function: $L, A, fi 
Yield function: h, cr 
Hardening and softening laws: C, P 
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4 IMPLEMENTATION OF THE SINGLE HARDENING MODEL 

As deseribed previously the solution of non-linear finite element problems usually consiste 
of a series of load steps, each involving iterations to establish equilibrium between internal 
and external forces at the new load level. Tbis global iteration proeess is entirely handled 
by the finite element program e.g. ABAQUS. However. the evaluation of the i n t e i d  forees ~. 
aru di~[>lwcrneiiIs user: i n  i t r  global irerationa, ir depcndent on rhe app!icd srrrsq-,tran 
rtlatio!. Tlie ( i r j o se  ,f rlir uasr iii:.'tr~31 n.~duIc' -h.& I T C I L ~ C  1t.e .~i.dle Ilnr<!eniiid llodcl, 
.q -1:ere:Or~ 1w~rn1tl 1':rstl) i r  i i i ~ ? r  provite an upd.ire ol ir-es for e\,aliiar.ai. L I  intonal 
forces and secoodly, a material stiffne6s for establishment of the global tangent stifinem matrix 
used for equilibrium iterations and estimation of the corresponding displaeement field. 

As ABAQUS "ses a Gauss integration scheme to establish the tangent stiffness matrix 
for each element i t  is only necessary to eonsider a single material point within an element. 
Whenever a new estimate of updated stresses and material stiffness is needed the user material 
module is ealled onee for each Gauss point. The determination of the updated quantities will 
essentially depend on the imposed strain increment, but as the material behaviour is of the 
path-dependent type howledge oi the stress and strain history is also required. The present 
chapter contains the derivation of the materid stiffness, also known as the elastoplastie stiffiess 
matrix. and the method for u~da t in r  of stress used in the orieinal version of the UMAT. The " " 
derived set of formulas presume the "se of a work hardening material model, as the Single 
Hardening Model, but is applicable to nonlinear stress-strain relations in general. 

1.1 Derivation of the elastoolostic stiffness mattiz 
The relations for the Single Hardening Model described in the previous chapter treat elastic 
and plastic strains separately. Practical computations with finite elements are, however, based 
on total strain increments and a re!ation between stress increments and total strain increment 
!s ilrra! >:P :.<>eded T1.c ii.crei!ici:ta' s'ress srrnii. rclatio:~ i, deri\od .n a jcnr ral ?oiii. (Cl.ei. 
h \I.zcno 1990, Kreiik y99.1 %,.d r i ?  Sin.le Hudenicg 1l.dcl i? final) iii.l>.~nenteiI .[.ad? & 
Nelson 1984). 

4.11 General stress strain relation 
The total strain increment is composed of an elastic and a plastic contribution: 

de = dee + dew (4.1) 

The plastic strain increment d@ is determined by the non-associated flow rule in (3.8). As 
the stress increment is common for both the elastic and plastic strain increment the general 
incremental stress-strain relation can be written as: 

The praportionality factor, dA,, is unknown and it must be erpressed by use of the consistency 
condition given by (3.13). The consistency condition is on a more general form given by: 

where fi is a haidening parameter, that samehow depends upon the plastic strains through 

AGEP R0201 JAKOBSEN 



APPLICATION OF THE SINGLE HARDENING MODEL APPLICATION OF THE SWGLE HARDENIWG MODEL 

and the derivatives of the stress invariants with respect to stresses a e :  

[: 1 
with the hardening modulus, H, defined as: 

The hardeningmodulus has the dimension of stress and solely describes the effect of hardening. 
The d u e  of the hardening modulus lies in the range O < H < m, where the iower limit 
corresponds to a perfect plastic materlai or state of failure and the upper limit corresponds to 
a state of vanishing plastie strain, ;.e. purely elastie behaviour. 

The proportionaiity factor, dh,, can be directly obtained from 4.2 and 4.4. However, to 
avoid dividing with the hardening modulus, whieh eventuaily will be zero, 4.2 is first multiplied 
by aflau and the sum of the two equations gives: 

I " ]  
ny inserting 4.6 and 3.6 into the ineremental stress-strain relation in 4.2 enables the atre- 
inerernent to be expressed in terms of the total strain increment: 

C* is the socalled elastoplastic stiffneu matrix. If the material point is in the elastic domain 
the plastic st ihess matrix, Gu, mishes  and C a p  and C becomes identical. It is noted that 
for non-sssociated flow W is asymmetric. 

Derivotives of the yieldfunetion 
The yield function, f', is given by (3 .12)  Using the ehain rule, ...* u,.,.,...,, 
functian ean be written as: 4.1.2 Elastoplastie stiffness matrix for the Single Hardening Model 

The elastoplastic stiffness matrix for the Single Hardening Model ean be established from the 
expression in 4.7. The elastic stiffness matrix is identical to the one given in Section 3.1, 
whereas the derivatives of the plastic patentid function and yield function must be derived 
for establishment of the plastic eonstitutive matrix. 

a f  af '  a f 'ar ,  a f 'ar ,  a f 'ar ,  -z-=-- au au ar, au +--+ ar, au ar, -- au 
in whidi the denvatives of the stress invariants, aI , /au,  aI, /av m d  aI,/av, =-O -;.zen by 
4.12-4.14. The derivatives of f' with respeet to the stress invariants are: 

Derivatives of the plastic potential function 
The plasticpatentialfunetion, g, isgiven by (3.7). As the plastic potential hnction isenpresed 
in terms of stress inveziants the diain rule must be applied: 

ag a g  al ,  a g  az2 ag ar, -=-- +--+-- a. ar, au a h  au ar, au 
af '  aq I; II h 
~ = j ' - - $ , ~  ar, (z) eQ 

It is recalled that the exponent q vaies with the actua! stress level as defined by (3.13) and 
(3.14). Thus, the derivatives of q with respect to the stress inwriants are: 

AGEP R0201 
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Hordening modulus 
The hardening modulus defined in 4.5 depends on the adopted hardening law. For the Single 
Hardening Model, which is of the work hardening type, the hardeningmodulus can be rewritten 
using the definition of plastic work and the flow mle. The hardening modulus is given by: 

The inerement of plastic wark, dW,, is derived from (3 .6 )  and (3 .18) :  

Substitution of 4.22 in 4.21 leads to the find formulation of the hardening modulus for work 
hardening: 

af  ag H = -o- = ?Lpg aw, au aw, (4 .23)  

The latter formulation appears by use of Euier's theorem for a homogeneom function g of 
order p. The derivative of the ~ i e l d  function with respeet to the plastic work depends on the 
s t r a s  history. The derivative is given far both the hardening and softening laws in (3 .15)  and 
(3.191,  respectively. 

WPk-l hardening 

aw, aw, softening 

4.2 Updating of stresses ond hardening pommeter 
The objeetive is to determine the updated state of stress and hardening parameter as a total 
strain increment is impased. A eommon med integration seheme for elastoplastic stress-stiain 
relations is the forward Eder  sdieme, which is also used in the original version of the UMAT. 
In the following i t  is presumed that the initial state of stress is loeated on a yield surface and 
that the next stress increment causes elastoplastic deformations. 

4.2.1 Forward E d e r  schemes 
In the forward Euler schemes the stresses are updated by replaeing the infinitesimal elasto- 
plastic stress-strain relation in 4.7 by a finite inerementd relation: 

where the elastoplastie onstitutive matrix is evaluated at the initial state of stress. As the 
elastaolastic constitutive matrix deoends on the stress and strain historv this linear approx- 
8rna:~~n > ~ s . n l ~  ;.c,:uruc, fcr ?,!..81. ,(!,ur. ~r.<r,::.@~.c~ 'Thc ?.t:l.c a :<.c! >e ~ ~ ? ! . t x !  by 
Geceui ie  .:gear ir!,Rr.,ti i,. ivl.. r. ihr brrain ir.ir,::i,,nr ir subiii d e 6  in, i < 1 t i 3 1 I ~ r  : L J . ? c ~ ~  

i:iri.ia '/.,,i.i<:,,uio h Tay!or 119. SI<>:. : lh' l Crii:iel.l 144: C m n  & \I.riinr 154) 

Ae 
SE = A T A E  = - (4 .26)  

m 

whwe ATis adimensionless time step af h e d  size and the finite stress increment is determined 
as the sum of the m stress subincrements, SV<, each evaluated as a forward Euler step: 

SV, = C w ( u 0  i A U ~ . , , K ~  + A s . , ) S c  ( 4 . 2 7 )  
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Sni = Sh, (-o +Auj.,, b + AK<. , ,  Se)  ( u 0  + A u < - , )  a9 
~ [ U O  + AU,-,I 

where 

,-L 
A,., = C 6 ~ j  

j=, 

The given change to the hardening parameter is >did  for wark hardming and is computed by 
use of 4.6 and 4 .23 ,  with derivatives evaluated a t  the stress state ( u o  + A u , , ) .  The f o m d  
Euler scheme has, as illustrated in Figure 4 . 1 ,  the advantage of being straight forward and 
easy to implement eompared with other schemes 

Ae 
Initial state q ,  rco, A c , S e  = - 

m 

Stmin inerements i = 1 , 2 ,  . . ,  m 

6 u ,  = =CeP ( u , - l ,  6~ 

a g  ~ X ; = S X ~ ( U , . , , ~ ~ , - ~ , ~ E ) U , . ~ -  
au,., 

u, = u;-, +SV< 

t% = 4 - 1  + sit; 

Stop stmin subincrementotion when i - 

Final state mi ,  iii, C" ( o ; ,  y )  

Figure 4.1: Subinerementol forward Euler seheme. 

However, the yield criterian is not necessarily fulfilled and the stress increments tend to drift 
away from the yieid surface, i.e. f ( u o  + A u ,  b + A h )  # O .  Even though the subdivision 
may reduce the yield surface drift the procedure may lead to unaeceptable results as the error 
accumulates duringsubsequent load steps (eg  Potts & Gem 1985, Sloan 1987, Crisfield 1991, 
Krenk 1993).  Moreover, the subincrementd form, which was used in the original EMAT, has 
the disadvantage that i t  "ses subincrements af equd size. This tums out to be computationally 
inefficient as the number af subinerements mmt be determined by trial an error so that the 
manimurn error is within some clase tolerance The problem is discussed further in Chapter 
5 .  
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5 IMPROVEMENT O F  THE SHM-MODULE 

Isi!ial.y . \ I IAQI 'S  v,ac ri ir  a i l  il.+, nr.g.nal virsisir of  :he urer onienu! :i.oiliilr nnd tnls rr- 
\,esled ihat a nlrnocr oire\,iiiorj wcr< nrcermr) Tbr priil>lein, diac~\ered weri. ri.;.i~.l) ralarci 
Lo i1.e li;u.<ilini: <.i clartic SIrri* ircrc.:iiini5 5cr , I I~L .hk grcral  >roredur? for ela,l.r>.&t.r 
stress updating were defective. The problems solved are listed beiow: 

1. Improper handling of the transition from the purely elastie to the elastoplastie region. 

2. Incorrect back-scaling of tlastic trial stresses when these are located autside the positive 
octant af stress Space. 

3. Lad< of fulfillment of the consistency condition in both the hardening and softening 
regime. 

Besides the numerieal improvement the SHM-modules predietion capabilities are enhanced by 
implementation of an alternative variation of Young's modulus and the possibility to control 
the material degradation in the softening regime. The nnmerical performance is furthermore 
improved by implementation of faster and more aeeurate integrations d e m e s  and the use of 
the cansistent tangent stiffness matrix instead of the normal elastoplastie constitutive matrix. 
Finally, the new SHM-module is capable of handling the effeet of preshearing an the material 
strength. 

5.1 Additional model features 
5.1.1 Alternative variation of Young's modulus 
Alternatively a more recent and reasanable relation proposed by Lade & Nelson (19871, that 
includes the effects of both mean effeetive stress and deviator stress ean be used: 

The dimensionless material parameter8 M and X can be determined from unloading and 
reloading branches performed in triaxial tests. 

generally exaggerates the material degradation after peak failure. It appeared from Seetion 
3.4.3 that the model presumes that the dope of the hardening and softening curves are nu- 
merieally identical at failure. A possible m y  to control the strength degradation is simply by 
changing the initial dope of the saftening curve. In piactice this is done by introduction of 
the softening parameter b that reduces the exponuit B in 3.21: 

The parameter b is greater than or equal to zero, where the larer limit corresponds to that of 
a perfect plastic material. 

APPLICATION OF THE SINGLE HARDENWG M O v u  

5.2 Initial interseetion of the yieid surfoee 
It has 80 far been presumed that the initialstress point is located on the yield surface and that 
any change in stresses would eause further elastaplastie laading. However, if a stress point 
changes from an elastic to an elastoplastic state, as i t  oecurs for presheared or overeansolidated 
materials it is necessary to determine the portion of the stress increment that causes purely 
elastic deformations (see Figure 5.1). 

Thus, the initial state of stress u* lies within the yield surface corresponding to: 

f (0.,nI= f. < 0 (5.3) 

where the hardening parameter K remains constant as only elastic deformations aceur. The 
elastic stress increment is ealculaied using Hooke's law: 

AuS = c (u.) AE (5.4) 

If the stress point changes from an elastic to an elastoplastic state the elastic trial stress 
ua + AuL may violate the yield eriterion: 

f (u, + Auc, h) = f  (,=bil(-) = fb > 0 (5.51 

It is therefore necessary to detemine a scalar n earrespanding to the portion of the stress 
increment that lies within the yieldsurfaee so that the stress state wc fulfills the yield criterian: 

f ( u a + n A # , n ) = f ( u , , & ) = f . = O  O < a < l  (5.61 

Explicit expressions for the scalar a a n  be derived only for simple types of yield functions. 
A fimt estimate may be determined by a simple linear interpolation in f (Sloan 1987, Chen 
& Mizuno 1990): 

a,= -L 
fa - Ja 

(5.7) 

The yield function is, hawever, hiihly nonlinear and the scalar estimate determined by 5.7 
will generally not satisfy the yield eriterian: 

f (ua + aoAue, n) = f ( a d i  4 = f d  5 0 (5.81 

A more accurate estimate for a may be obtained by a Taylor series expansion araund u. + 
aoA@: 

n=no- fd 
(5.9) 

( s (u .+%nP) )*~e  
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The original UMAT uses this estimate of the scalar oi to determine the elastic portion of the 
stress inerement. As for the forward Euler integration seheme this approach will be m u r a k  for 
small strain inuements only In arder to amid anv initial vield surface drift in the inteeration " 
sehemes and enhance the stress-strain relations prediction capabilities it is advisable to apply 
an iterative seheme (Sloan 1987). Using the Newton-Raphson technique, for example, u and 
a are updated as outlined in Figure 5.2. The iterative procedure is started by assuming 
CO =u. and using a, from equation 5.7. The procedure is terminated when the stress norm 
[/ui - ~ + . ~ l /  / llui.il is l e s  than a specified tolerance. The obtained elastic stress inerement 
nArY corresponds to a elastic strain increment of nAe and the strain inerement used in the 
integration of the elastoplastie stress-strain relation equals (1 - a) Ae. 

Initial state ro, K 

.f f (u0, U > O 
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that if the elsstie trial stresses correspond to one (ar more) negative or zero principal stresses, 
the stresses must be xaled back into the prewure octant, in order to facilitate the ealculation 
of the elastoplastic stress-strain response. In the original version this bad-scaling could re- 
sult in a change of direction for the elastic stress inciement, whereby erroneous r&ults were 
produced. The scaling procedure has therefore been modified, so that the original direction 
is maintained. The problem most likely occurs for large strain inerements and near failure in 
the extension region. 

5.4 Comction for yield surface drifi 
When using explieit integrations schemes, as the forward Euler scheme presented in Section 
42.1, far updatingofatresses thestress state predieted a t  the end of the elastoplastie increment 
of loadine mav not lie on the eurrent vield surface and the consistenev condition is violated. 

the yield surfaee during each inerement of loading. 
A method proposed by Potts & Gens (1985), that accounts for the changes in elastic strains 
which accompany any stress eorrection, is applied. The problem is illustrated schematieally in 
Figure 5.3 where the material is subjected to laading which causes elastoplastie deformation. 

Fimre 5.3: Illustration and eomet ion of  vield surface driit. /ol Initial estimote on updated 
Stop itemtion when I C ;  - u,.,l/ /jJu<.,II < r 

Final stote u, = u<,o, = e, 

- . "  . , ,  
honiening pommeter ond stresses uiusing yield surface drifi. (b)  Corrected uolues of hordenicg 
parameter and stresses located on the yield surfoee. 

Figure 5.2: Initial intersection of the yield surface 

5.2.1 Handling the effeet of preshearing on the rnaterial strength 
The numerieal problems that occur for presheared or over consolidated materials are generally 
handled by applying the procedure outlined in the previous section. However. in special cases 
the eurrent yield surface, that indieates a previously experienced load level, extends beyond 
the failure criterian and actudlv strendhens the material. Thus. the material should not " 
reach a state of failure until the yield surface is reached. This is numerically accomplished by 
calculating the intersection of the yield surface and subsequently by performing a check for 
failure. The stress level relative to failure, as defined by 3.14, wiil in such cases éxceed unity, 
but is for eonsistency put equal to unity. 

5.3 BocBscolrng of elastic trial stresses 
As a consequence of the fact that the Single Hardening Model is develaped for frictional mate- 
rids, only stress combinations in the pressure octant of stress space are aliowed. This implies 
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The material is at the initial state of stress u, located on the yield surface f = 0. 
Furthei loading involves elastoplastic deformation and a change in stresses as determined by 
the integration8 schemes. This new stress state os will due to the tendency for yield surface 
drift not neceasarily be located on the new yield surface f ( v , ~ )  = O and the ohjective is 
therefore to correct the stresses so that the yield criterion is fulfilled. During the eorrection 
pracess the total strain increment wiii remain eonstant which implies that any elastic strain 
change must be balanced by an equal and opposite change in plastic strain. These ehanges 
will a e c t  the stresses and hardening parameter as well, wherefore the new and updated 
elastoplastie stress s t ak  is denoted u. and K.. 

The requirement of an unaltered total strain increment thraughout the correction process 
ean be formulated as: 

The plastic strain increment is, moreover, proportionai riie gradirii* .he plastic potential: 
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~ h e r e  P is a scalar quantity The corrected stress state is obtained by substituting equation 
5.11 into equation 5.10 and solving for oc: 

4 o, = o b  - PC- aus 2) 

The change in plastic strains will also affect the hardening parameter: 

= i i a  + A n  3) 

where An for work hardening is given by: 

The eorreeted stress state must satisfy the yield criterion: 

A fimt order estimate af the scalar 0 ean he obtained by a Taylor series expansion around q :  

The above procedure may be of sufficient accuracy if the losding increment is small. How- 
ever, it must in general be checked that the corrected stress state fulfills the yield criterion 
f (rC;krc) =O to some close tolerance. Otherwise an iterative procedure as outlined in Figure 
5.4 must be applied. The iterative procedure is started by assuming r o  = o b  and Q = Ks- 

5.5 Stress updating 
In the original UMAT a simple forward Euler scheme wns used for updating of the stresses 
and the hardenine: parameter. The forward Euler scheme is, however, only accurate for smal1 -. 
strain increments. Alternatively, it is pcssible to refine the scheme by subdividing the strain 
inerement into a fixed number of subincrements. This approaeh will essentially improve the 
aecuracy, but turns out to be eomputationaliy enpensive (Sloan 1987). In order to improve 
the aecuracy and the eomputational efficiency of the SHM-module two new schemes have heen 
investigated and implemented. 

The mast widely used integration schemes used for elastoplastic stress-strain relations are 
of the backward and forward Euler type. The baekward Euler scheme is an elastic predictor 
and plastic corrector type of method and is attraetive because it does not require the initial 
intwsection of the yield surface to be computed if the stress point passes from an elastic to an 
elastoplastic state. The plastic eorrection is obtsined by solving a smal1 system of nonlinear 
eauatians (Crisfield 1991. Krenk 1993) bv an iterative procedure, which ensures that the . . 
consistency conditionmay be satisfied within a specified tolerance. The approach, hawever, has 
some major disadvantages. The establishment of the system of equations becomes laborious 
for more advanced models and eonvergence is not necessarily guaranteed. Furthermore many 
soil madels have a seoarate failure eriterion and the numerieal handling may be obstructed 
. r  i r l l s s h l r A l l r r n a : : \ e . y  .r.ir%ration 
6 t l  ,:t.es O! t t e  ~ : F O T C  F.llcr ?r Rucy,e-I<u.ta rype :har L.rs an rxl,lic.r ' i i n u l . 8 : n i i .  r a l  ,c 
uied 'l'l:i, :ype of % l e n e l  kav, r l i t  & d d \ t : ~ ~ ~ : r >  tl.a, rhe ii!ir.d ii:.ei:<i~ir:i r i i h  r i i  yic.<l 
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Ini t id  state a o , ~  

u If ( ~ O > Q ) I  > c  

Iterations i = 1,2,  ..., i,, 

t = s;., + A&i., 

Stop itemtion when I f (o*, q ) l  < e 

Final stote wc = -<,n, = ni 

Figure 5.4: Comt ion  for &eld surface drift 

surface must be camputed if a stress point passes from an elastie to an eiastoplastie state 
and they do not necessarily ensure that the consistency condition is fulfilled. The validity of 
this type of methods a n ,  howeve~, be enhanced and the disadvantages are balaneed by their 
robustness. 

On this basis it is found advisab!e to focus on two explicit integration schemes. This ineludes 
a refined subincremental version of the forward Eder scheme with active error contra1 and an 
enhanced Runee-Kutta scheme. u 

The methods are applicable ta nonlinear stress-strain relations in general, but the stress- 
strain relations given by the Single Haidening Model are applied as far as possible. The section 
is coneluded by an example where the capabilities af thedifferent methids are studied 

5.5.1 Modified forward Euler scheme with error eontrol 
In order to reduce the vieldaurface drift and comriutational costs of the forward Enler scheme a 
modified ~ u l e r  seheme-with active error eontrol c& beused (Sloan 1987, Slam &Booker 1992). 
Instead of using a h e d  number of subincrements of equal sise, the size of the subinerements is 
uaried throughout tbe integration procesc. Hence, the size af each subincrement is determined 
SO that the new stress state fulfills the yield criterian to some dose tolerance and only the 
absolutely necessary number of subdivisions are applied. 

The modified scheme "ses a pair of h t  and secand order Euler fornulas to estimate 
the error produeed by the standard forward Euler scheme at the end of a strain increment, 
68 = ATAS. The first estimate of the updated stresses and the work hardening parameter at 
the end of the strain increment is given by: 
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Initial stote so, KO, Ae, 6 ~ 0  = Ae, p = l 

Shain inerements i = 1,2, ..., n 

where 

60' = Cm (uoi 60)  6~ 

A more aceurste estimate of the updated stress state may be found by: 

1 
6=uo+- (6d+6un)  2 

where 

6u" = C" (uo + 6dr kro + 6n1) 6e 

The method is seen to employ two evaluatians of the elastoplastic constitutiue matrix in each 
subineiement. The difference between the stress states given by 5.17 and 5.21 can be seen as 
an estimate of the local error in u: 

6d-11 o u a - u = - 1 ( 6 ~ "  - 6d) (5.25) 
" 

This error estimate serves as a guide for seleeting the size of the next time step, AT, when 
integrating over the total strain increment AE. That is, the relative error for a subincrement 
is defined by the stress norm: 

,, ,, 

and the size of each step is continually adjusted until E is less than some speeified tolerance, 
f .  

The integration is started by dioosing a value of the dimensionless time step AT and 
computing 68, u, 6, 6 ,  k ,  6u1-" and E using 5.17-5.26. If < f the new and updated stresses 
and hardening pararneters a e  taken as 6 and k ,  otherwise it is neeessary to reduce AT and 
repeat the calculation. The size of the next dimensionless time step is generally given by locd 
extrapolation: 

AT = qAT (5.27) 

iJ & > c then q = max 0.9 - ,0.01 ; 6€i = q 6 ~ 1  [ ( 1  l 
where 

.,top strnin inerementotion when ~ O E ,  =, 
i=, 

Final stote e(, k., CaP (h,, k )  

The exponent 112 relates to the loeal truncation error O (AT2) of the first order formulae, 
wheieas the factor of 0.9 is introduced to reduce the number of subincrements that are likely 
to be rejected during the integration process. The size of the new increment is furthermore 
eonstrained as g must lie within the intervai: 

0.01 < q < 2 (5.29) 

The modified Euler scheme with active error eontrol is summarised in Figure 5.5. Figure 5.5: Modified Eder sehme with aetive error control. 
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5.5.2 The Rmge-Kutta-Dormand-Prinee scheme with error contra1 
Variations of the Runge-Kutta scheme is widely used for integration purposes. The classieal 
Runge-Kutta scheme "ses a fourth order integration scheme with only ane strain increment 
for s t res  updating. Several higher order schemes with subincrementation have been pioposed 
(e.g. England 1969, Fehlberg 1970, Dormand & Prince 1980, Sloan & Booker 1992). The 
Runge-Kutta scheme modiiied by Dormand & Prince (1980) is used in the following. The 
scheme uses a pair of fourth and fifth order formulas, where the eoefficients have been chosen 
to estimate and control the error as acnirately as poesible, to estimate the new updated 
stresses and work haidening parameter: 

where 

60'' = C" (d, d) 6, 

Even thaugh the integration proces requires six evaluations of tlie elastoplastie eonstitutive 
matrix, the scheme rapidly becomes competitive with the rnodified Euler scheme as the error 
toleranee is tightened. As for the modified Euler scheme the estimated relative error can be 
expressed as: 1 

K' = K O  + -6d 
5 

6u"' = C' (o", &Ii) 6e 

As the local truneation error in the fourth arder formulae is O (ATV the exponent in 5.28 is 
replaeed by 115 and the factor that cantrols the size of the next dimensionless time step is 
instead given by: 

3 9 
il" = 4 + - 6 d  + -6sn 

40 40 

JoIV = C m  o"' "' 6. ( but the constraints in 5.29 still apply The Runge-KuttaDormand-Prince scheme with aetive 
error control is summanzed in Figure 5.6. 

(5.41) 
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Initial state u 0 . ~ o , A c , 6 c o  =  AE,^ = l 

Stmin increments i = 1,2, ..,n 

6 ~ ,  = min q66,-,, A c  - x 6c, I 
Do 

Stress inerements m = I ,  I I ,  ... 

6 0 7  = C4 (ny-', K?-') 6ei 

ag 64" = 6Ap (U:-', &?-l, 6 ~ )  u7-1- au?-' 
Stop stress inerementation when j = V I  

i f &  > rthen q = max 0.9 - ,0.01 ; 6si = q 6 ~ .  

Until <S < e 

[ 1 
q = min k g  (')',2] 
Stop strain inenmentation when x 6e1 = Ar 

<=l 

Final stote et, k ,  Cep (e;, k) 

Figure 5.6: Runge-Kutta-Dormnnd-P~ince seheme uiith error eontml. 

5.5.3 Evaluation of integration schemes 
The effectiveness of the integration schemes presented in Sections 4.2.1, 5.5.1 and 5.5.2 is 
exmined in the following. A single material point undergoing a constant uolume compres- 
sion is considered. The compression is started from an anisatropie stress s t ak  of u: = 
[ 450 400 400 O O O 1. The resulting stress path is samewhat simple as it does not in- 
voive any rotation of principal axes, but even a relatively smal1 strain increment will never- 
theiess lead to a considerable change in the principal stiesses. The simulation is conducted by 
imposing a number of strain inciements of equal size AcT = IO-'. [ 5 -2.5 -2.5 O O O j 
and using the three integration schemes for determination of the eomponding change in 
stresses. The resulting stress path and development in hardening parameter, shown in Figure 
5.7, is composed af 40 sequential strain inerements of equal size. All the shown simulations 
are periormed withaut correetion for yield surfaee drift. The materiai pararneters used are 
identical to those used for the examples in Chapters 7 and 8. 

As seen in graph a and c lhe modified Euler and Runge-Kutt%Domand-Prmce integration 
sehemes yield similar results, whereas the forward Eder integration scheme devistes visibly 
for decreasing values of ca. Thi$ deviation beeomes les8 distinet on the linear part of the 
stress path, but the forward Euler scheme generally overestimates the final stress state con- 
siderahly The appiicsbility of the forward Euler scheme, hawever, improves as the number 
of subinerements in the integration process are increased. Hence, the diserepancy is more or 
less reduced by a factor of two as the number of subinerements in the integration proces are 
doubled. Similar ohservations hold for the develapment in the hardening parameter, W;, as 
indieated in Figure 5.7b. 
The observations above illustrate che effeet af rate dependent materid behaviour and a reduc- 
tian of the strain increment, Ae, may: 

1. Change the appearance of the stress path for all the methods and lead to results that 
are in better agreement with the 'coriect' solution. 

2. Reduce the diserepancy betwewi the integration schemes. 

3. Decrease in computational effieieney. 

The choice of the stiain increment will, therefore, essentially depend on the requiied aeeuracy 
af the elobal solution and the oumose of the inteeration schemes is merelv to orovide an " . . " . . 
accurate stress update for a given strain increment As already seen, it is possible to obtain 
similar results using the three different schemes, but so far no attempt was made to evaluate 
their computational efficiency. The computational eost is strongly related to the evaluation 
of the el&taplastic constitutive matrix ind M dewibed in seetions 4.2.1-5.5.2 the forward 
Euler, modified Eder and the Runge-Kutta-Dormand-Piinee schemes require one, two and 
six evaluations per subincrement, respeetively. The computational costs are evaluated by 
oerformine a nnmher af runs. where the uodated stresses must lie within some tolerance. e .  

increment for the different schemes can then be expressed as: 

and the average and maximum error along the stress path are given by: 
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w i w o l  

Figure 5.7: Variow integration sehemes used for detennination of constont uolume stress path. 
(a) Stress path in a8 - a, diogmm. (b)  Develapment of the hardening parameter, W,, with the ! 
majovprineipol stmin. (4 Segment of stress path. 

Em- = ,z! E; (5.50) 

The maimum number of subincrements within a single strain inciement and the accumulated 
relative CPU time required for fulfillment of a given error tolerance along the stress path in 
Figure 5.7 are listed in Table 5.1. The CPU time is a measure of the computational eosts 
due to the application af the user defined material modale. For the forward Euler scheme 
the number of subincrements is adiusted until the averape error etiuals the specified tolerance. 
'Tlr : ~ i ~ d i f ~ < I  Ei1.r: a!,. R ii.gc-Kurr.i-»armand-P:~rcescl,ciiies ,.ise t i c  si.eciiie.1 tolcra:.cr for 
ad.us:iiieni of rlie sire . f  tii. a.ib.ncremencr 1I.e r i n . u l ~ t . o ~ : s  lidyr ~ C I I  p~:form<d wlth and 
without earreetion for yield surfaee drift. 

As indicated in Table 5.1. the simulations reveal that the two hieher arder sehemes have 
n ~ r r r ~ l i z r c  <:r>? thh- ï u o b t ~ r t  d y  les5 c!.<ill ~u:nry uld al t  .drgi.y ~na-TC~:td by correLti,r 
%r Y I L C  s ~ r f a c ~  Howcvi>r, r:.( ~ o r h c t i o n  fat y i d d  si:nn<.. i l r i i  l,~<<ii:.c.< w r y  inipi,rrdn: whcn 

I 
1 

using the forward Euler scheme as it reduces the maximum and average error in stresses with 
at least 70%. Moreover, if the subdivision of the strain increment is insufficient the correetion 
for yield surface drift tends to diminish the overestimation of the h a l  stress state shom in 
Figure 5.7. 

As expected the forward Euler sdieme shows a more or less proportional growth in the 
rnaximum number of subincrements and relative CPU time with the tightening of the error 
tolerance. For the modified Euler scheme the maximum number of subincrements and relative 
CPU time grows slightly with the reduction of the error tolerance, whereas the Rung+Kutta- 
Dormand-Prince seheme is barely &cted. For all the sehemes the first few inerernents (where 
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the stress path is changing directian) are decisive for the maximum number of subincrements 
iieeded for fulfillment of a aven error tolerance Thus, for the two higher order schemes only 
a few of the irnposed strain increments are subjeeted to subincrementalization. 

T h e  fi iiigc-K i r rb  Ilormand-Prinit inregrat:oii ï .h rne  is in gererul f,und io br riipenar i3  

b >rh tne ii.odili*,il b:ulzr and '(19 fo:n.ara Cc'er sch~rnzi .n ieri:ii >f.ii, L ! n : ,  aiiil ccirpiirati>:.li 
c . a s  ar rhr error toI.ranre is r:gl!tci.t,d Evcn liir ~ : . ~ d ~ " e d  Culer srI.~iilt 15 o n y  cori.ortitiie 
for large errar tolerances. 
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6 COMMUNICATION WITH ABAQUS 

The finite element program ABAQUS provides an interface, whereby any eonstitutiue relation 
can be added to the material library. To ensure proper functioning ABAQUS defines an 
interface eantaining a list of formal argument8 for use with user defined material modules 
(ABAQUS 1995). The subroutine contsining the constitutive relation (SHM-madule) must, 
as already outlined in Chapter 4 and 5, provide information about the material behaviour at 
the end of each strain increment. The subroutine is called by ABAQUS at each Gauss point 
for ealeulation or updating of: 

1. Stresses 

2. Cansistent tangent s t ihess  matrix 

3. History information, i.e values of path dependent parameters. 

* An introduetion to the ABAQUS interface, the used syntax and some remarks on the call of 
0 s user defined material modules are given in the following. 

61 ABAQUS interface 
The communication with ABAQLS is aecomplished by use of a predefined interface written 
in FORTRAN 77 code: 

SUBROUTINE Un*T(Sn<ESS,STATEV,DDSDDE, SSE,SPD,SCD, 
iWL,DDSDDT,DWLDE,DWLDT, 
2STR*N.DSTRdN,TIKE.DTIHEHE~,DTENP,PRU)EF,DPRU),CW*NE, 
3M)I.NSHR,NTENS.NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT. 
4CELENT.DFGRDO.DFGRDl ,NOU.,NPT,LAER,KSPT,KSTEP,KINC) 

C 

CUAPACTERr8 CNAPIE 
DIMENSION STRESS(NTENS!,STA~V(NSTAW), 
lDDSDDE(NTENS,NTENS!, 
iDDSDOT(NTENS) ,DRPLDE(NTGNS), 
3STRdN(NTENS),DSTRAN(NTENS>,TIPIE(2),PREDEF(l),OPRED(1), 
4PROPS(NPROPS> ,COORDS(3),DRDT(3,3).DFGRD0(3,3) ,DFGRD1(3,3) 

For temperature and time independent relations the user cading must cdeulate and update 
the variables STRESS, DDSDDE and STATEV. A description of d l  the variables can be faund 
in the ABAQUS manual (ABAQUS 1995), whereas only the variables used in the present 
subroutine are described. 

The main input variables are: 

STRESS Stress state 
DSTRAN Totd strain increment 

PROPS Material and model properties 
NPROPS Numbei of material and model properties 
STATEV State varisbles 

NSTATV Number of state variables 
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The main output variables m: 

STRESS Updated stresses 

DDSDDE Consistent tangent s t iaess  matrix at the current state of stress 
STATEV Updated value of state variabh 

It should be noticed that the sequence of stress and strain diKer from the convention narmally 
used in eontinuum mechanics as the shear eomponents a e  interdanged (see Chapter 2). The 
stresses and the total strain inerement are given on vector form: 

J = [ u 1 ,  Q, m, 012 a,, ,,l 5.1) 

= [ AE,, AE, Ae3, AE,, AE,, AE,, ] (6.2) 

The material properties and variaus model eontrol parameters are given by the property array, 
whieh is composed as follows: 

PROPS(1) Parameter o of failure criterion 
PROPS(2) Parameter m af failure criterion 
PROPS(3) Parameter qi of failure eriterion 
PROPS(4) Parameter K or M for variation of Youngs hlodulus 
PROPS(5) Parameter n o r  X for variation of Youngs Modulus 
PROPS(6) Parameter u Poisson's ratio 

PROPS(7) Parameter <h 01 plastic potential function 
PROPS(8) Parameter p of plastic potential funetion 
PROPS(9) Parameter C of work hardening law 
PROPS(10) Parameter p of work hardening law 
PROPS(l1) Parameter h of yield function 
PROPS(l2) Parameter a of yield function 

PROPS(13) Parameter, p,, atmospheric pressure 
PROPS(14 Integration seheme: 

(1) Modified Eder scheme 

(2) Runge-Kutta-Dormand-Piince seheme 
(3) Forward Euler scheme 

PROPS(15) Parameter for integration scheme: 

Stress tolerance for the Runge-Kutta-Dormand-Prince and modified 
Euler sehemes 

Number of subdivisions in the forward Eder scheme 
PROPS(16) Variation oi Youngs modulus 

(1) Relation defined by Janbu (1963) 
(2) Relation defined by Lade & Nelson (1987) 

rirOPS(l7) Correction for yield surface drift 
(O) Deaetivated 
(1) Activated 
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PROPS(18) Tolerance on yield criterion 
PROPS(19) Maximum number of iteratians allowed far fuiiillment yield criterion 
PROPS(20) Initial dope of softening brancb 

l 

1 
A number of state variables are used for storage of the materials local stress-strain history. 
The state variable array is eompased as foliows: 

r 
STATEV(1) Current =lue of yield function, f< (c) 
STATEV(2) Current yield surfaee, i.e. value of hardening or softening law, f "  (W.) 
STATEV(3) Plastic work 

STATEV(4) Flag indicating failure 
STATEV(5) Value of softening parameter, A, detemined at failure 

STATEV(6) Value of softening parameter, B, determined at failure 

STATEV(7) Current stress level relative to failure, S. 

6.2 Syntaz for all of the SHM-module 
When using the SRM-module it is necessary to d e h e  an element set that uses the specific 
msterial definition. Rirthermore, the number o1 material and model properties, NPROPS, 
and the number of state variables, NSTATV, must be defined together with the material and 
model propertiffi. An example o1 a material definition in an ABAQUS input file is given below: 

*SOLID SECTION,~SET=SOIL,MTERIAL=SAND 
MATERIAL,NANE=SAND 
USER WTERIAL,IMSYHH,CONSTANTS=20 
O. ,O.2879,70.19,477.65,0.4142,0.20,-3.1375,1.9862, 
0.00013101,1.6188.0.6400,0.5548,101.4,3..100,2., 

1..1.D-4,2OO.,iDO 
DEPVAR 

7, 
USER SWROUTINE,INPUT=shm3d.for 

6.3 Initiolirotion of state variabies 
For use with geomaterials the ABAQUS input file is composed of at least sin parts: 

l. Initial geometry of the problem 

2. Type of elements used to approximate the displacement field 

3. Speeification of material model properties 

4. Boundary conditions, i.e. prffieribed displacements and pore pressure 

5 .  User defined geastatic stress field 

6. Load steps, i.e. loads and prescribed displacements 

On execution of the ABAQUS job i t  is initially checked that the user defined geastatic stress 
field is in equilibrium. Thus, tbe material module is eailed once for each material point 
for establishment of the global stiKness matrix and correction of the stresses. However, the 
state variables, STATEV, are initially set to zcro by ABAQUS and are not in accardance 
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with the geostatie stress state. When the SHM-module is entered for the very fint time the 7 VERIFICATION OF THE SHM-MODULES BY SINGLE ELEMENT TESTS 
state variables mus1 be initialized. This includes STATEV(l), STATEV(Z), STATEV(3) and 
STATEV(7) of which the first three must be greater than zera (see page 35). The remaining The SHM-modules ability to function is documented by performing numerous single element 
three state mraibles are presumed to be zero as failure is not allowed a t  the initial state of analyses. The validation of the 2 and 3D versions is performed by simulation of triaxial and 
stress. true triaxial, respectively The sinulations are performed in both the compression and exten- 

j sian regime, follawing various stress paths. As these types of tests imply homogeneous stress 
6.4 Routine o l l  with iem stmin increnent and strain states, i.e. the stresses and strains attain constant values a t  ail Gauss points, the 
At the beginning of eaeh new load inerement ABAQUS calls the SHM-module at each mate- simulations may seem superficiai. Nevertheless, these simple tests makes i t  easy to interpret 
rial point with a zera strain increment for establishment of an estimate of the global stiffness and validate the results. All simulations are performed with the basie material pararneters 
matrix. ABAQUS "ses the estimated stiffness to eome up with a firs1 guess on the correspond- listed in Table 7.1. The pararnetem are derived from conventional trianial compression tests 
ing displacement field and hence a new strain inerement. The SHM-module reeognizes being on Eastem Sdieldt Sand (Jakobsen & Praastrup 1998). 
ealled with a zero strain increment and interpret this as a request for tbe eurruit tangent 
stiffness only. In the present situation the direction of the next load increment is unknown 

Table 7.1: Matenalpommeters wed for testing o/ the SHM-module. 
and in order to avoid a gross exaggeration of the displacement field in case of unioading the 

Parameter Vdue ABAQUS unriable 
maximum stiffness is returned. 

i Failure eriterion 

n O PROPS(1) 
0.2879  PROPS(^ 
70.19 PROPS(3) 

Elastic parametem 
458.45 PROFS(4) 

At 0.4142 PROPS(5) 
u 0.20 PROPS(6) 

Plastic potential funetion 

$2 3.1540 PROPS(7) 
@ 2.0611 PROPS(8) 

Work hardeniug law 
C 1.2748.10-' PROPS(9) 

1.6078 PROPS(10) 

Yieid fuoetion 
a 0.6166 PROPS(11) 
h 0.5525 PROPS(12) 

Softening law 
l b* 0.5 PROPS(20) 

Notes: t Variation of Youngj modulus as defined by Lade & Nelson (1987) 
This parameter is varied from zero to unity in Section 7.1.1 

7.1 m a z i a l  tests 
All the triaxial simulations are performed with a 4 node axisymmetrie element - element type 
CAX4 During all simulations the nodes along the vertical symmetry line are h e d  in the 
radial direction, whereas the bottom nodes are fired in the vertical direction. A sketch of the 
used element and the principal directions are shown in Figure 7.1. 
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f" /-l 

Figure 7.1: Used element ond definition of principal dinetions. 

The conditions of the remaining two boundaries are given during the respective load steps. 
The following simulations are performed for validation of the SHM-module: 

. Variation af softening parameter 

Interseetion of yield surface 

Bad<-scaling of elwtic trial stresses 

Strengthming of a material due to preshearing 

71.1 Variation of softening parameter 
The effect of the softening parameter, b, is illustrated by simulation of several conventional 
drained triaxial compression tests. Each simulation eonsist of three load steps: 

Load step 1: Establishment of an initial isotropic stress field of 20kPa  Figure 7.2: Efeet of the softeningpammeter b on the matenal degmdotion after peok failun. 
(a) Stnss-stmin cunies. ( b )  Voiilmet?ie stmin uersus total anal strain. (c)  Size o/ yield 

Load step 2: Isotropic consolidation from 20 to 16OkPa surfoee ond plastic work versus total ozial stroin. (d) Magnification of post peak behauiour. 

Load step 3: Drained compression a t  a constant confining pressure of 16OkPa 7.12 Intersection af yield surface 
The numerieal procedure whieh deals with the inteaeetion of a yield surface when a stress 

The simulations are performed withvalues of b equal to 0,0.25,0.5 and 1. The first corresponds point ehanges from an elastie to an elastoplatie state is evaluated by simulation of a triaxial 
to a perfectly plastic material behaviour at failure, whereas the remaining three correspand to eompression test with eanstant axial stress. 
clrious degrees of strenglh degradation after peak failure. The results of the four simulations 
are given in Figure 7.2. Load step 1: Establishment of an initial isotropic stress iield of 20kPo  
As shown in the figure the %dalue af b affects hath the deviatar stress and volmetric strain 
after peak failure. Thus, both the deviator stress and the ~ a t e  of dilation decreases more Load step 2: Isatropic consolidation from 20 to 5OOkPa 

rapidly as b increases. Whereas the effeet on the stress-strain curues is distinct the effect on Load step 3: Drained compression a t  a eonstant axial pressure of 5OOkPa 
the uolumetrie behaviour is less pronounced. 

The effect of b is most easily pereeived by considering the d u e  of the gield function, which When load step 3 is started the material is subjeeted to an elastic loading. The material r i l l  
is shown in Figure 7.2~. The expansion of the yield surfaces during hardening is seen to be exhibit elastie behavioui as it passes through elastic stress space until it intersects the current 
identieal for the four simulations, but as failure is readied, and the saftening regime is entered, yield surface corresponding to the isotropic stress state applied in load step 2. The material 

the cumes s t a t s  to deviate as the yield surfaces diminish a t  different lates. Hawever, in case then subsequently yields throughout the simulation. The model behaviour is shown in Figure 
of no softening (b = 0) the rate of dilation and plastic work rate remains constant throughout 7.3, where the yield surface corresponding to the isotropic load step is indicated by f l .  
the simulation. As the softening parameter is increased the rate of dilation and plastic work The stresi-strain curue in F iyre  73a shows a pronounced change of stiffness when the yield 
rate decreases (see Figure 72d). surfaee is erossed. The stress level a t  which the stiffness change occurs coriesponds accurately 
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7.1.3 Baek-sealing of elastie trial stresses 
The risk of attaining zero or negative elastic trial stresses is naturally greatest if one of the 
principal stresses at the initial stress state are dose to zera. The  back-scaling procedure is 
therefoie verified by simulation of a triauial extension test where the axial stress attains quite 
smal1 values. The simulation is composed af the following three load steps. 

Load step 1: Establishment of an initial isotropie stress field of 20kPo 

Load step 2: Isotropic eompression from 20 to 16OkPa 

Load step 3: Drained extension a t  a constant axial pressure of 16OkPa 

The result of the simulation is show" in figure 7.4. The material will as shown in Figure 

O Z -4 -6 O 50 100 150 P00 
Figure 7.3: Interseetion of yield surface. (a) Stress~stmin eunie. (b) Stress poth. (ej Value of e, 1%) P' fip4 

yield criterion. (d) Size of yield surface and unlue of yzeld function. J id 

to the point of intersection between the stress path and the yield surface show" in 7.3b. The 
change in material stiffness is in 73c deteeted by the yield criterion, i.e. the condition f < O 
corresponds to elastic loading. 

The abruptnesi with which the stiffnesi change oceurs will essentially depend on the siie 
of the strain increment. The models handling of the initial elastic unloading and subsequent 
elastoplastic loading is fnrther illustrated in Figure 7.3d. During the isotropic loading step 
the values of the yield function and the hardening law are identical, i.e. the yield eriterion 
is iiilfilled. During load step 3 the yield function initially decreases as the elastic region o -2 4 -6 o 50 100 150 200 
is entered. As the stress point moves aiong the prescribed stress path and approaches the 

e, /%l P ' fipal 
current yield surface the yieid function increases, leading to s fulfillment of the yield criterion 
at the intersection point (elosed eircle) and the material subsequently yields throughout the 
simulation. However, as finite strain increments areused the current yield surface is intersected Figure 7.4: Simulation of eztension test. (a) Stress-stmin eunie. (bj Stress path. (c )  Vaiue of 

during an increment. The intersection is as outlined in Section 5.2 handled by performing a yield enterion. (d) Size of yield surface and voiue of yield funetion. 

Split into elastic and elastoplastic strain increments, but as only the final state is returned 
(open circle) the intersection point may not appear from the output. The interseetion point 7.4b,c and d exhibit elastie behaviour at the start of load step 3. Thus, the yield surface, 

can only be obtained from the output by redueing the siie af the strain inerement untii the denoted f;, is initially expanded due to the isotropie eompression in iaad step 2. The yield 
open and elosed circles coincide. surface maintains its size until it is intersected in the extensian regime. The interseetion and 

fulfillment of the yield criterion is as above-mentioned affeeted by the size of the impased 
strain inerement. 
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These considerations comply with the ohserved stress-strain behaviour shown in Figure 
74a. During the elastoplastic loading the elastic tr id stresses &re repeatedly iaeated outside 
the positive octant of stress Space. The trid stresses are, however, scaled bad< properly and 
the theoreticdly calculated failure stresses aie captured by the simulation. 

7.1.4 Strengthening of a material due to preshearing 
The problem of handling the increase in mateterid strength due to preshearing is comparable 
with handling the interseetion of the current yieid surface. However, in the present case the 
current yield surface extends beyand the failure eriterion and it must be ensured that failure 
is not detected before yielding occurs. The models eapability to handle this effect is tested by 
simulation of a triaxial compression test, following a multi-leg stress path. The simulation is 
eomposed of the load steps given below: 

Load step 1: Establishment of an initial isotrapie stress field of 2OkPa 

Load step 2: Isotropic cansolidation from 20 to 640kPa 
f' 1-1 

Load step 3: Anisotropic consolidation by appiieation af an axial stress of 2400kPa 

Load step 4: Unloading to an isotrapie stress af 640kPa 

Load step 5: Reduetion of confining pressure to 16OkPo 

Load step 6: Conventional drained compression at a constant eonfining presure af 16OkPo 

O Z 4 6 8 1 0 0  

the current yield surface, which is lacated above the original failure miterion, is reached and 
failure is findly deteeted. The original and the new state of failure are marked by open and Figure 7.5: Strengthening of materiol due to preshe~nng. [a)  Stnss-stmin cume ( b )  Stress 
elosed circles, respectively. The strengthening due to preshearing is distinct and the strength path. (e)  Value of ~ i e l d  cnlerion. (d) Volue o j  uield function. 
is increared from 592kPa to 912kPa corresponding to an inerease in the effeetive frietion angle 
from 40.4' to 47.8% 

7.2 P u e  tn&d tests 
The yield surface due to the preshearing has as shown in Figure 7.5b a characteristic bulge. All the true triaxial simulations ae performed 4 t h  a 8 node continuum element - element 

The bulge occurs as the stress level, S, is restricted to d u e s  between ïero and unity. Thus, a type C3D8. During all simulations the bottom nodes of the tube are fixed in the verticd 
d u e  of unity is obtained as the original failure cxiterion is fnifi11ed and the stress l e d  remains l direction. A sketch of the used element and the numbering of the three principal directions 
eonstant upon further loading. This affects the value of the yield function greatly as the rate are shawn in Figure 7.6. 
a t  which the the yield function changes with respeet to stresses decreases (see Figure U d ) .  

The conditions of the remaining five boundaries are given during the respective load steps. 
The following simulations are performed far validation of the 3D version af the SHM-module: 

Conventional triaxid compression test 

i Anisotropic cansolidation and plain strain comprwion test 
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Figure 7.6: Used element and definition of principal directions. 
0 2 4 6 8 1 0  

E, /w 
&W" /a, 

7.2.1 Conventional trianial compression test 
To validate the 3D version of the SHM-module a conventional tr iuial  eompression test similar 
to the one in Seetion 7.1.1 is performed. Henee, the simulation eonsist af three load steps: 

Load step 1: Establishment of an initial isotropic stress field of ZOlePa 

Load step 2: Isotropie consolidation from 20 to 16OkPa 

Load step 3: Drained eompression a t  a constant confining pressure of 16OkPa 

The results of the true triaxial eompreasion simulation, using the ful1 3D formulation are shown 
in Figure 7.7. The resuits are seen to be identical to the results from the conventional triaxial 
simulation based on axisymmetricai conditions given in Figure 7.2. 

7.2.2 Anisotropic consolidation and plain strsin compression 
The "se of the 3D version of the SHM-module is further iliustrated by simulation of a true Figure 7.7: %e tnoziol test. (a) Stress-stroin eunie. (b) Volumetnc strain versus total azial 
triaxial test, in which an anisotropic consolidation is followed by a piain strain compression. strain. (C) Sire of yield surf~ce ond plastic work versus total &al stmin. (d) Magni$cotion 

Load step 1: Establishment of an iritial isotropic stress field of 2OkPo ofpost pe& behouiour. 

Load step 2: Isatropic consolidation from 20 to 16OkPa than for the conventional triaxial test and the volume expansion is correspondingly reduced 

Load step 3: Anisotropic consolidation (see Figure 7.7). 
~h~ simuiatim is mmencally straight fmward m the material a t  ali times is subjected to 

Direetion 1: 160 to 480kPa elastoplastic loading and the ~hange from anisotro~ic consolidation to plain strain compression 
Direction 2: 160 to 240kPa is hardly naticeable. 

Direction 3: 16OkPa 

Load step 4: Plain strain compiession 

Direction 2: Fixed boundaries 

Direction 3: Constant axial stress of 16OkPa 

The development in directional stresses and strains, plastic work etc. are shown in Figure 
7.8. The stress-strain curves in Figure 78a  shows how the imposed plain strain condition in 
direction 2 leeds to an increase in stresses in both direction 1 and 2. The stresses subsequentiy 
decreases as failure is reaehed and the softening regime is entered. The eorresponding stress 
path and valumetric strain curve are shown ii Figure 7.8b and d. The material strength 
expressed in terms of the maximum stress difference, q,  is as expected substantially highei 
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8 CONCLUSIONS 

The present work explains the working priciples of elastoplastie madels and in partimlar 
addresses the problems invalved in the implementation of the advanced Single Hardening 
eonstitutive model. The shortcammings of an earlier version of the user defined material 
moduie, UMAT, for the commercial h i t e  element program ABAQUS a e  pinpointed. 

The calcdation strategy far a recoded wrsion of the user defined material module, denoted 
the SHM-moduie, is presented and discussed, ineiuding the initial inteneetion of the yidd 
surface, the techniques for updating of the stresses and hardening modulus, and eorrection for 
possible yield surfaee drift. Several integrations schemes are implemented in the module and 
their eapabilities in relation to the Single Hardening eonstitutive model a e  evaluated. The 
forward Eulu, modified Euler and Runge-Kutt8-Dormmd-P~inee integration schemes have 
been compared in view of error tolerances and computational efficieney The modified Eder 
and the Runge-KuttaDormand-Prinee schemes, which indudes aetive error control, posses the 
advantage of allowing greater strain inerements to be imposed as subincrementalization auto- 
matically is performed if needed for fulfillment of a s~ecific error tolerance. The traditional 
forward Enler schemes is, due to the principle of a fixed number of subincrements, not compet- 
itive with the higher order schemes, because too many subincrements are needed in arder to 
obtain the required aeniracy. However, the eapability of the forward Euler scheme c m  be im- 
proved by adopting an iterative scheme correeting for a possible yiled surface drift. It is found 
that the mast advantageous integration scheme for the model is the Runge-Kutta-Dormmd- 
Prince integration scheme as i t  is superior in terms of both aecuracy and computatianal costs. 
Eventually the SHM-modules ability to function is dacumented by performing numerous single 
element analyses. 

8.1 Further impiouernents 
The evaluation of the integration schemes illustrated how the use of finite strain increments 
deeted the updating of stresses. It turned out that the applieation of integration schemes 
subdividing the originally imposed strain increment led to improved accuraey. The explanation 
of this improvement follaws directly from the basis on which the elastoplastic stress-strain 
relation is derived. Thus, the relation is based on the assumption of idnitesimal inerements 
in stresses and strains for which reason the path dependency af the elastaplastic tangent 
stiffness matrix becomes immaterial. 

Both the original and the current versions of the user defined material modules returns 
the elastoplastic tangent stiffness evaluated from information at the end of the finite strain 
inerement. However, to improve the overall rate of convergenee of the overall equilibrium 
iterations the material or so-called eonsistent tangent stiffness matrix should be used (Simo 
& Taylor 1985, Crisfield 1991). Hence, the user defined material module should return a 

F i g m  7.8: Anisotropie consolidation ond plain stmin compression. (a) ~ t ~ ~ ~ . ~ t ~ i ~  curves, material stiffness consistent with the integration scheme used by ABAQUS for calculation of 
Stress Path i n  the p - q piane. (c) Size o/ yield surface ond piostic work versus m ~ o r  the non-linear finite strain increrrent. 

p n n c i p ~ l  $ h i n .  (d)  Deviator stress ond volurnetne .drnin major stroin. 
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A FLOW CHART FOR THE SHM-MODULES 

The implementation of the user defined material module must ensure that ABAQUS recieves 
updated stresses, state variables and elastoplatic tangent stiffness that eomply with the im- 
D O S ~ ~  strain inerement. 

The implementation of the SHM-madule is based on the techniques deseribed in Chapter 
4 and 5. The description has to a great entent been related to the Single Hardening Model. 
However, the algorithms used for deteetion of inteaeetion of the yield surface. correetion ior 
vield surface drift and the vmious methods for uodatine of stresses and hardenine oarametea " " .  
t.nvl::. cii:ci. d h < : r l m  . .I.  H :o .n fit,n<r.,l m o r e r  45 :!le 'iii.g:lr Hardeniiig \li,nc. :b ol t1.c 
u .  r.< I:ar<lci.ii.: 'yl>e thi. irrni t i iaxir .urr plastir uork i . L I P < ~  .I.  t1.e I o I I o u . ~ ~ ~  ! r ~CECIIP::OI. 
of the material hardening. 

The code for the SHM-module follows the flow chart in Figure A.l and A.2. The calculatian 
strategy is explained in the follawing. 

The initial state of stress, u,, the maximum plastic work, W,,O and the imposed strain 
increment, AE are used to calculate a stress increment assuming the strain increment to be 
entirely elastic (Step 1). The assumed elastie state of stress, u*, is used for calculation of 
f,(-.). beinr the value of the vield function carresriondine to the new state of stress. and . . . .  " 
r r n p - i ~ ?  n i t i .  11.c r1rrei.t yield faictioii II , ,  calrc:a:ni 'ron. the currcit  niu<iii .uiii  

p l ~ ~ r i ~  w.irk SI<-I> 2 . 11 cl:c difference is :e« ((.ni. or rqun: ' 2  /ei .>. j - J o. - /" Il* , .. 
thzn i l e  :.w Gtntr iatrtw ~ ~ l c c ~ l e ~ l  .ns.dt,.I.< utld surfact, .A,. l thc : n . i m ~ l  vra.~.  I,.< rcmcn: 
is indeed tmly elastie. Henee, the calcuiation for the strain increment is completed and the 
SHM-module returns with the new state of stress ua and the elastic tangent stihess, C (Step 
3a). 

If on the other hand f = f'(u.) - f"(W,,o) > O then the new stress state is outside 
the eurrent yield surfaee and a portion of the strain increment is plastic. In this case it is 
determined rhether the initial state of stress, uo is loeated inside or on the eurrent yield 
surface. The initial stress state is used for calculation of f<(uo) and comparcd with the 
previousiy caiculated f"(TVp,o) (Step 3b). If f = f'(vo) - f"(Wp,o) = 0, then the initial stress 
state is located on the yield surface and the elastic loading ratio, n is equal to zero (Step 4%). 

If f = ~ ' ( u o )  - f"(W,,,) < O then the stress state is initially located inside the yield 
surface (Step 3b) and it it necessary to determine the elmtie portion of the strain increment, 
expressed by the elastic loading ratio a (Step 4b). Having determined the eiastie loading 
ratio the stress state located on the yield surfaee, u<, and the remaining portion of the total 
strain increment are determined (Step 5) and used to update the stresses and the maximum 
plastic work (Step 61 bv one of the three imulemented intematian sehemes. 1: Forward Eder . . . .  - 
scheme with subiiicrementatian, 2: hlodified Euler scheme with error eontrol or 3: Runge- 
Kutta-Dormand-Prinee scheme with error control. 

The updated stresses and maximumplastic work, u< and W,,<, are used to calculate updated 
values for f'(u+) and ,f"(Wp,,) (Step 7). If the consisteney condition is fulfilled to some close 
tolerance, / f'(u,) - f"(W,,,)I < r, the SHM-module returns with the current updated stresses, 
u f ,  hardening parameter, M$, and elastoplastie tangent stiffness, C* (Step 8 4 .  Otherwise 
the newly updated stresses and hardnig pararneters must be correeted for yield surfxe drift 
and the SHhl-module ha l l y  returns with eorrected stresses, u,, hardening parameter, E;',, 
and elastoplastic tangent stihess, C" (Step ah). 
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Check foi violation of tbe wn~stoncy 
wnditian, ie. ealcuiate ~ i d d  ~ ~ i t m ~ ~ ,  
e(oo)a'(wvd 

Return r i t h  updatcd 
(3*) '"-l". .7~ and elastic 

Figure A l :  Flow chart for the SHM-module. 
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'er I (ab) / Return with correited stresser, l 

Figure A.2: Flow ehod for the SHM-module 
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B SOURCE CODE FOR T H E  2 D  SHM-MODULE 

SWROUTINE WT(ST8ESS,STA~V,DDSDDE,SSE,SPD,SCD, 
lRPL,DDSDDT,DRPWE,DRPWT, 
2STRAN,DSTR*N,TIME,DTIHE,TEMP,DTW,PREDEF ,DPRED,CNNAKE, 

IMPLICIT NONE 
INTEGER NPROPS,NSTATV,KSTEP,KINC,NOEL,NPT.NTENS.NDI,NSHR, 
ILAYER,KSPT 
ClTAUCTERI8 CMNAME 
REAL.8 STRESS(NTENS) .STATEV(NSTAN) ,DDSDDE(NTENS,NTENS), 
ISSE,SPD.SCD,RPL,DDSDDT(NTENS) ,DRPLDE(N~NS) ,DRPWT. 
~sTRLN(NTEN~),DSTR*N(NTENS>.TI~(~).DTINE,~,D~, 
3PREDEF,DPRED,PROPS(NPROps) ,COORDS(3) ,DROT(3,3) ,PNEWT,CELEU, 
4DFGWO(3,3) ,DFORD1(3,3) 

c nie following fo ede fin ad ABAQUS variables are used 
c i: input o: output io: in- and output 
C 
DDSDDE: 
D S m N :  
KINC: 
KSTEP: 
NPROPS: 
NTENS: 
NDI: 
NOEL: 
NPT: 
NSXR: 
NSTATV: 
PROPS: 
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stiffnesa matrix (a) 
Total strain incrament (i) 
Load increment (i) 
Load step (i) 
Number of user defined propertiar (i) 
Number of stress and strain eomponents (i) 
~umbar of directional stress and strain components (i) 
Element (i) 
Integation point (i) 
Number of shear stress and strain components (i) 
Number of state dependent variables (i) 
Material and/ar user defined properties (i) 

(l) Parameter a of failure criterion 
(2) Parameter m of failure criterion 
(3) parameter eta of failure criterion 
(4) Parameter K or M for variation of Youngs Modulus 
( 5 )  Parameter n or lambda for variation of Youngs Modulus 
( 6 )  Parameter nu, Poisson's ratio 
(7) Parameter psi2 of plastic potential function 
(8) Parmeter mu of plastic potential function 
(9) parameter C of uork hardening lav 
(10) parameter p af vork hardening la" 
(Il) Parameter h af yield function 
(12) Parameter alpha af yield function 
(13) Parameter, pa, athmosperic pressure 
(14) user defined integration scheme 
(14.1) Hodified Riler (m) 
(14.2) Runge-Kutta-Do-d-Priice (EDP) 
(14.3) Forward Euler scheme (FE) 
(15) Integration schame parameter 
(15.1) Stress tolerance for ME and EDP 
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C 
C 
C 
C STATEV: 
C 
C 

(15.2) Number of aubdivisians f m  FE 
(16) Variation of Youngs modulus 
(16.1) Relation given by 
(16.2) Relation giuen by Lade and Nelson 
(17) Activate correction for yield surface drift 
(17.0) No 
(17.1) Yes 
(18) Tolerance for yield surface drift 
(19) Harimm number of iterarions 
(20) Initial slope of softening curve 

Initial and final state dependenr. variables (io) 
(1) Current value of yield function 
(2) Current valne of hardeninglsoftening function 
(3) Current value of plastic vork 
(4) Failure flag 
(5) Parameter for softening function, A 
(6) Parameter for saftening function, B 
(7) Stress level relative to the failure functian 

Initial and final state  of stress (io) 

C Funcfion declarations 
REALt8 CHECKSTRESS,FAILURE,NORM,YIELD,DIUIRD.DSOFT,POT 

C CHECKSTRESS: Check for negative or nero principal stresse* 
C OHARD: Calculate erivative of hardening function 
C DSOFT: Calculate derivative of softening function 
C FAILURE: Calculôte stress level relative to failure 
C NORM: Calculare vector norm 
C POT: Calculate ualue af plastic potential funstion 
C YIELD: Calcalate value of yield functian 

C Definition of variables defined vithin the subroutine 
INTEGER ACTIVEDRIFT,EP,I,IIIAX,INTSTEP,ITRD,ITRI,J,M,METHDD, 
IRUIUCTION 

C ACTIYUIRIFT: Flag for correction for yield surface drift 
C (O) Off 
C (1) Dn 
C EP: Flag for elastic or elastoplastic loading 
C (0) Elastic 
C (1) Elastoplastic 
C I: Counter for loop over stress and strain arrays 
C IIUX: Maximm number of iteratians alloued for correction of yield 
C surface drift and initial intersection of the yield surface 
C INTSTEP: Number of subatep uosd in integration schema 
C ITm: Iterations perforned far correction for yield o n d a c e  drift 
C ITRI: Iterations parformed for determinatirni of yield surface interaection 
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C 
C 
C CE: 
C cp: 
C DF: 
C DFDW: 
C DG: 
C DINVAR: 
C D W Y :  
C DESTRESS: 

Caunter for loop over stress and strain arrays 
Number of subdivisions in forward Euler integration scheme 
Selector for integration scheme 
~odified Euler sith error control 
2) Runge-Kutta-Dormand-Priiie uith error cantrol 
3) Forvard Euler vith or uithaut rubincrements 
Elastic sonstitutiue matrix 
~iastic constit~ti~e matrix 
Derivative of yield function 
Derivative of hardening function 
~erivative of plastic potential function 
~eriuative of stress invariants 
Dummy variable 
  las tic stress incrament 

C DBPS: strain increment 
C EF: valne Of yield *unction based on the elastic tria1 siresa 
C EINVM(: stress inuariants based on the elastic trial atress 
C ES: Stress level based on the elastic trial stress 
C ESTRESS: 
C FTOL: 
C G: 
C INvAn: 
C NSTRESS: 
C RATIO: 
C 
C REDUCTION: 
C RDEPS: 
C STOL: 
C 
C TEKPSTRESS: 

Elastic trial stress 
Tolerance far yield surface dzift 
valne of   las tic ~ ~ t ~ ~ t i a i  surface 
Stress invarianfa 
N ~ F  stress state 
~atio of srrain increment ~ ~ ~ ~ i n g  purely elastic deformations 
or for rednction of elastic trial stress 
Number of corrections to sire of substeps in the integration schemes 
~lastopla~tic strain increment (RDEPS=DEPS for RATIO=l) 
stress tolerance used uith the modified Euler and the 
Runge-K~tta-Domd-Priice integration ochemes 
Temporary strea uector used far establishment of the 
material atiffness matrix 

C TEMPSTATEV: Temporary state dependent variable uector used for establishment 
of the material stiffneas matrir 

C hitialise user variables 
PIETHOD=IDNINT(PROPS(~~)) 
IF (NETHOD.LT.3) TREN 

ELSE 
M-IDNINT(PROPS(15)) 

END IF 
ACTIVEORIFT-IDNINT(PROPS(17)) 
FTOL=PROPS(~~) 
IHAX=IDNINT(PROPS(IS)) 

C change ~ i ~ n  on atresses and stra,,. 
DO 1.1.4 

NSTRESS(I)=-STRESS(I) 
DEPS(I)=-DSTR*N(I) 

END DO 
C check for plane stress condition 

IF (NDI.EQ.2) TMN 
~~~~(*,i)~rrrr****r*********** ABAQUS RUN IS TERMINATED', 
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WRITE(r,t)'A plane stress condition is not possible' 
STOP 

END IF 

MODEL 

C Add true cohesion (shift co-ordinat system) 
IF (PROPS(l).CT.O) THEN 

DO I=1.3 . ~ 

NSTRESS(I)=NSTRESS(I)+PROPS(l)rPROPS(13) 
END DO 

END IF 
CALL INV*RIANTS(INV*R,NSTRESS) 

C Check far zera strain increment. If zero ret- uith elaatic stiffness 
IF (NORH(DEPS,4,1.DO).EQ.O) TFEN 

CALL ELASTIC(DDSDDE,INV*R,PROP~,NPROPS) 
RETURN 

END IF 
C Check uhether state dependent variables have been initialised 

IF (STATEV(Z).EO.O) TEEN 
CALL INITIALISE(STATEV,INV*R,PROPS,NSTATY,NPROPS) 

END T F  .. 
CALL ELASTIC(DDSDDE,INV~,PROPS,NPROPS) 

C Perform elastic shooting 
DO I=1,4 

DESTREsS(I)=O 
DO J=1,4 

DESTRESS(I)=DESTRESS(I)+DDSDDE(I,J)-DEPSCJ) 
END DO 

END DO 
C Check that all principal stresses are positive 

R~TIO=CHECKSTRESS(NSTRE~S,DESTRESS) 
DO I=1,4 

ESTRESS(I)=NS~~ESS(II+RATIO*DESTRESS(I) 
END DO 
CALL INVARIANTS(EI~AR.ESTRESS) 
ES=FAILURE(EINVAR,PROPS,NPROPS) 
EF=YIELD(EINvAR,PROPS,ES,NPROPS) 
IF ((EF-STATEV(Z)).LT.-FTOL) THEN 

- -  - -.- 
NSTRESS(I)=ESTRESS(I) 

END DO 
STATEV(l)=EF 
STATEV(I)=ES 
EP=O 

ELSE 
C Check if the yield surface is crossed during loading 

EP=1 
ITRI-O 
R*TIO=O.DO 
IF ((EF-STATEV(1)) .GT.FTOL) THEN 

CALL INTERSECTION(NSTRESS,R*TIO,STATEV,DESTRESS, 
1 EF,PROPS,FTOL,In*X,ITRI,NSTAiY,NPROPS) 

IF (ITRI .DE .INAX) CALL DW(STATEV,NSTATV, I ,NSTRESS ,NOEL, 
1 NPT.KSTEP,KINC) 

ElID IF 
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EM) DO 
INTSTEP=O 

CALL HEULER(NSTR 
REDUCTION.NSTATl 

ELSE IF (HETXOD.EO.2) THEN 
CALL RKDP(NSTRESS,STbTEV, 

I REDUCTION,NSTATV,NPROPS) 
ELSE IF (KETXOD.EO.3) THEN 
CALL FEULER(NSTRESS, STATEV,DEPS,PROPS ,M,NSTAW.NPROPS) 

END IF 
IF (ACTIYEORIFT.EP. 1) THEN 

C The finite incremeatal f f m  vil1 generally c a s e  yield surface drift 
C compatibility iterations a r e  required 

IF ((ABS(STATEV(1)-STATEV(2))) .GT.FTOL) TIEN 
CALL INVARIANTS(INYAR.NSTRESS) 
CALL ELASTIC(CE,INY*R,PROPS,NPROPS) 
T ~ E "  . 
CALL DRIFT(NSTRBSS,STATEV,CE,PROPS,FTOL,IM*X.I~, 

I NSTATY,NPRDPS) 
IF (ITRO.GE.IMAX) CALL DW(STATEV,NSTATV,Z,STRESS.NOEL, 

END IF 
END IF 

C Calcnlate elastoplastic constitutive matrix 

CALL INV*RIANTS(INVAR,NSTRESS) 
CALL DIMIARIANTS(DINVAR,NSTRESS) 
G=POT(INV*R,PROPS,NPROPS) 
CALL DYIELD(DP,INVAR,DINVAR,PROPS,STATEV(~),STATE~(~) ,NPROPS) 
CALL DPOT(DG,I~AR,DI~AR,PRDPS.NPROPS) 
IF (STATEV(4) .EP.O) THEN 
DFDW=DH*RD(STATEV(~) ,PROPS,NPROPS) 

ELSE 
DFDW=DSOFT(STATEV(S) .STATEV(G) ,STATEV(3) ,PROPS(13)) 

END IF 

CALL ELASTIC(CE,IW*R,PROPS,NPRDPS) 
CALL PLASTIC(CP.DIM~,CE,DF,DG.G,DFDW,PROPS(~),DEFS) 

DO I=1,4 
DO J=1,4 

DDSDDE(I,J)=CE(I,J)-CP(I,J) 
END DO - 

END DO 
END IF 
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C Subtract an euantual added true sohesion (return to original co-ordinat system) 
IF (PROPS(l).GT.O) THEN 
DO 14.3 

NSmESS(Il=NSTRESS(I)-PROPS(l)*PROPS(13) 
END DO 

END IF 
C Change si- on stresses and strains 

DO I=1,4 
STRESS(I)=-NSTRESS(1) 

END DO 
END 

C SUBROUTINE INVARIANTS(inv,s) 
C Calculate stress invarianrs 
C 
C INPUT 
C s: Stresaes 1611 s22 a33 s121 
C 
C OUTPUT 
C inv: Stress invariants [Il I2 I3 J21 
C 

SUBROUTINE INV*RIANTS(inv. s) 
C Define primary variables 

IMPLICIT NONE 
REAL-8 s(4) ,inv(4) 
inv(l)=s(l)+s(2)+s(31 
inv(2)=s(4)**2.DO-(s(i)*s(2)+~(2)*s(3)+s(l)*s(3)) 
inv(3)-o(i)*st2)*s(3)-s(3)*s(4)**2.Do 
inv(4)=((s(l)-r(2))**2.DO+(s(2l-s(3))**2.D0+(s(3)-s(i))**2.D0)/6 
l+s(4)**2.D0 
END 

C SWROUTINE DINVARIANTS(dinv.s) 
C Calculate derivatives of stress invarianfo uith reapect to stresses. 
C 

C OUTPUT 
C dinv: Derivative of stress inuariants [d11 d12 d131 
C 

SUBROUTINE DINVARIANTS(dinv.s) 
C Define primary variables 

IMPLICIT NONE 
REAL-8 dinv(4.3) ,s(4) 

C Calculate derivative of the first stress invariant 
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dinu(l*l)=l.DO 
dinv(2,11=1.D0 
dinv(3,1)=l.DO 
dUiv(4,1)=0.D0 

C CalCulate derivative of the second stress invariant 
dinu(l,Z)=-(s(2)+~(3)) 
dinu(2,2)=-(~(3)+s(i)) 
dinv(3,2)--(o(l)+s(2)) 
dinv(4.2)=2.DO*a(4) 

C Côlculate derivative of the third stress invariant 
dinu(l,3)=s(Z)*s(3) 
dinu(2,3)=s(3)*a(i) 
dinv(3,3)=s(l)rs(2)-(~(4)**2.DO) 
dinv(4,3)=-2.DO*s(3)rs(41 
END 

C SUBROUTINE INITIALISE(ssar.invar,mat,nsv,np) 
C Initialise atate dependent variables. me material point is initially locared 
C on a yield surface, uherefore the valne of the stress term and hardening term 
C in the yield criterion are equal 
C 
C INPUT 
C invar: stress invariant= 
C mat: Naterial properties 
C np: Number of user defined properties 
C nev: Number of state dependent uariables 
C 
C OUTPUT 
C svar: State depaodent variables corresponding to the initial stress state 
C (1) Value of yield function 
C (2 )  Valne of hardening function 
C (3) Plastic vork 
C (7) Stress level relative to fai7.i-n 
C 

SUBROUTINE INITIbLISE(suar,inu,mat,n~~,np) 
C Define primary uariables 

IMPLICIT NONE 
INTEGER nav,np 
REALt8 svar(nsv),inv(41 ,mat(np) 

C Defina secondary uariables 
REAL*8 psi1,rho.d 

C hmction declarations 
mL.8 FIILURE.YIELO 

C Call failure function for initial mlue of stress level 
svar(7)=FAILURE(inv,matttp) 

C Cô11 yield function for initial va1ue 
s ~ a r ( i ) = Y I E L D ( i n ~ . m a t , s v a r ( 7 )  ,np) 
s.,ar(2)=suar(l) 

C Calculate dependent material pararneters for determination of equivalent plastic 
C uork 

AGEP R0201 JAKOBSEN 



€2' APPLICATION OF TRE SINGLE HARDENING MODEL 

psil-0.00155D0*mat(2)-t(-1.27~0) 
rhamat(iO)/mat(li) 
d-t(9)/(27*psi1+3)**rho 

C Calculats equiualant plastic pork 
svar(3)=maï(l3)*d*svar(2)**rho 
END 

C NNCTION HbRD(up,mat,np) 
C Calculate the v a u e  of the hardening function for the current state of stress 
C (Lade 1984, Lade k Kim 1988). 
C 
C INPUT 

, , C vp: Plastic vork 
C mat(?): Curvature parameter for failure criteria 

, . C matt9): Coefficient for determination of plastic "ark 
C mat(l0):Erponent for determination of plastic vork 

! C mat (12) :Hardening parameter 

, ,. C mat(l3) :Athmospheric pressure 

, , C np: Number of user defined properties 
, 0 .  n 

l 
, C OUTPUT 

. , : ,  C HULD: Value af tha hardening function 
C 
C REFERUICES 
C P.V. Lade (1984) "Failure criterion for friction materials", In xeehanics of 
C Engineering Materiala, C.S. Desai k R.H. Gallagher (eds), Wiley. 
C M . K .  Kim k P.V.  Lade (1988) "Single hardening constitutive model for frictional 
C materialo II. Yield criterion and plastic wozk contours", Computers and 
C Geotechnics, (e ) ,  pp. 13-29. C 

EVNCTION HARD(vp,mat,np) 
C Defina primary variables 

IMPLICIT NONE 
INTEGER np 
REAL*8 up,mai(np) ,H*m 

C Define secondary variables 
REAL-8 psii,rho,d 

C Carlculate dependent parameters 
psil=0.00155DO*mat(2)~r(-1.27D0) 
rho=mat(lO)/mat(ll) 
d=~at(9)/(27.DO1psi1+3.DO)*rrho 

C Calculate valne of hardening function 
H~~=(1.DO/d)**(l.DO/rho)~(up/mat(l3))r*(l.DO/rha) 
END 
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, C EVNCTION DHARD(up,mat.np) 
C cblcnlate the derivative of the hardening function vith respect to plastic "orh 
C at the current s t a t e  of stress 
C 
c r m  
C up: Plastic "ark 

c mat(2): Ruvature parameter for failure criteria 
c rnat(9): Coefficient for determination of plastic vork 
c mat(lO):Erponent far determination of plastic vork 
c mat (12) :Hardening parameter 
c mat(l3):Athmospheric pressure 
C np: ~umber of user dafined properties 
C 
C OUTPUT 
C DIURD: Derivative of the hardening function 

C 
C REFERENCES 
c P.V. Lade (1984) "Failure c~iterion for friction materias". In Mechanics af 

C Engi~eering Materials, C.S. Desai k R.H. Gallagher (eds), Uiley. 

c M.K. ~i~ & P.V. Lade (1988) "single hardening constitutive modal f m  frictional 
c materials II. Yiald criterion and plastic vork contours", Computers and 

NNCTION DX*RD(up,mat,ne) 
C Define primary variables 

IMPLICIT NONE 
INTEGER np 
REAL-8 up,mat (np) ,DHbRD 

C ~efine secondary variables 
REAL-8 psil,rho,d 

c calcaiate dependent paraneters 
pril-0.00155DO~mat(2)**(-1 ,2700) 
rho=mt(lo)/mat(ll) 
d-t(9)1(27.DO*psil+3.DO)*~]rho 

C calculate derivative of the bardening function 
DHARD=(1.DO/(rho~(drmat(13))**(l.DOlrho)))~up**(l.DO/rh0-1~ 
END 

C NNCTION SOFT(a,b,up.pa) 
C Calculate the valne of tha ~~ftening function for the current state of stress 
c after failure (Lade & Kim 1988). 
C 
C INPUT 
C a: Coefficient for softening function 
c b: Erponent for softening function 
C up: Plastic uork 
c pa: ~thmo~~heric pressure 
r< 
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C SOFT: Value of the aofrening function 
c c mat(2): curvature parameter for failure criteria 

C REFERENCES c =t(3): w i -  function value of failure criterion 
c n'x' Kim P'v. Lade (1988) "Single hardening consritutive modal for 

c mt(i3): Athmospheric presaure 

C C ~ m b a r  of user defined properties 
materials 11. Yield criterion and plastic uork cantouro,,, Coniputers and 

C Geotecbnics, (6). pp. 13-29. C C 
C OUTPUT 
C .: stress level relatire to failure 

FUNCTION SoFT(a,b,~p,~a) C 
C Define primary variables C REFERENCES 

IMPLICIT NONE c p,v, ~~d~ (1904) c m ~ ~ i l ~ e  <riterion for frictionmaterials", In Wechanico af 
~03.L-8 a.b,rp,pa,SOF~ c Enginearing narerials, C.S. ~esai k R.H. Gallagher (eds). Wiley. 

C calculate valne of softening function C 
SOFT=a*DExP(-b*(vp/pa)) 
END 

FUNCTION FAILURE(inv,mat ,n) 
C ~efine primary variables 

IMPLICIT NONE 
c FUNCTION DSOFT(a,b,rp,pa) INTEGER n 

C Calculate the derivative af the safrening functian at the 
state of stress REALIS inv(4) ,matin) ,FAILURE 

C (lade & ~ i m  1988). C calcuiate stress level relative to failure 
C PA~~~I((inu(l)**3.~0/inv(3)-27.~~)*(inu(l)/mat(~3))*~t~2)) 
C INPW l/mat(3) 
C a:  Caefficient far saftening functian C 1he stress level w s t  lie uithin the limits 0-1 
C b: Erponent far softening function IF (FAILURE.GT.I) m~ 
C q: Plastic uork FAILURE=I.D~ 
C pa: Athmospheric pressure ELSE IF (FAILURE.LT.O) THEN 
C FAILURE=O.DO 
C OUTPUT END IF 
C DSOFT: Valne of the derivative of the functian END 
C 
C REFERENCES 

c n.K. Kim P.v. Lade (1088) Single hardening constiturive far 
C II. Yield miterian and plastic uork and C ~ C T I O N  YIELD(~~V,~~.B) 
C Geotechnics, (6). p*. 13-29. C C Calculate the .,alue the ~ i ~ l d  funetion for the current state of atreas 

C (~ade 1984, Lade k Kim 1988). 
C 

FUNCTION DSOFT(a,b,up,pa) 
C INPUT 

C Define primary variables c in": stress invariant. II1 12 13 J21 
IMPLICIT NONE c maL(z): curVature parameter for failure criteria 
REAL-8 a,b,wp,pa,DSuFT c mat(3): narimm function value of failure criterion 

C Calculate "alue of the derivative the function c mat(i~):~uruature of the yield criterion 
DSOFT=-a*b/pa*DEXP(-br(T/pa)) C mat(i2):Hardening parameter 
END c mat(13):A~hmospheric pressure 

C S :  stress level relative to failure 
C np: ~umber of user defined properties 

C FUNCTION F A I L U R E ( ~ ~ V , ~ ~ ~ , ~ ~ )  C 
C Caculate the stress l e d  relative to the failure 

for the 
C OUTPUT 

c state of stress (Lade 1984). C YIELD: value of the yield function 

C Tbe stress level equals UnitY and zero at failure and at rhe hydrOhtatiC C 

C respectively. C REFERENCES 
c p,v, Lade (1984) m ~ ~ ~ i l ~ ~ ~  criterion for friction materias", In Hechanics 

C 
C INrn 

c Engineering ~ ~ t ~ ~ i ~ i ~ ,  C.S. Desai L R.H. Gallagher Uiley' 
c M,K, k P,v. Lade (1988;. bardening conetitutive model for 

C  in^: Stress invariante [II 12 13 JZ S31 
C 11. yield criterion and plastic uork contours". Computers 
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C Geotechnics, (61, pp. 13-29. C 

FUNCTION YIELD(inv,mat,s.np) 
C Define primary variables 

IMPLICIT NONE 
INTEDER np 
REALIS inv(4) ,s,mat(np) ,YIELD 

C Define secondary variables 
REAL.8 q,psii 

C Calculate dependent parameter 
q.mat(12)*s/(i.DO-(I.DO-mat(12))is) 
psil=0.00i5SDO*mt(2)**(-1.27DO) 

C Calculate value of yield function 
YIELD=@sii*inu(1)**3.DO/inv(3)-inv(l)**2.D0/inv(2))*(inv(l)/ 
imat (13))rrmat (ll)*DEXP(q) 
END 

C SWROUTINE DYIELD(df,inv.dinv,mat,s,f,np) 
C Calculate the derivative of the yield function at the curren+ n+.+- ni stress 
C (Lade 1984, Lade k Kim 1988). 
C 
C INPUT 
C in": Stress invariants [Il I2 I3 J21 
C dinv: Derivatives of stress invariante [d11 d12 d131 
C rnat(2): Curuatura parameter for failure criteria 
C mat(3): Marinnim function valne of failure criterion 
c rnat(1i):Curvature af the yield criterion 
C mat(l2):Xardening parameter 
C mat(l3):Athospheric pressure 
C o :  Stress level relative to failure 
C f: Value of yield function 
C np: Number af user defined properties 
C 
C OUTPUT 
C df: Derivative of the yield function 
C 
C REFERENCES 
C P.V. Lade (1984) "Failura criterion for friction materials", In Mechanics of 
C Engineering Materials, C.S. Deoai & R.H. Gallagher (eds). wiley. 
C M.K. Kim k P.V. Lade (1988) "Single hardening constitutiue model for frictional 
C materials II. Yield criterion and plastic vork contours", Computers and 
C Geatechoics, (6). pp. 13-29. C 

SUBROUTINE DYIUD(df,inu,dinv,mattttfffp) 
C Define primary variables 

INPLICIT NONE 
INTEGER np 
REAL-6 inv(4),dinv(4,3),mat(np),s,f,df(4) 

C Define secondary variables 
INTEGER i 
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REAL*8 q,psil,dqdIl,dqdI3,dfdIl,dfdI2,dfdI3 
C Calculate dependent parameters 

q.mat(l2)rs/(l.D0-(1.DOmat(12))*s) 
psi1=0.0015sDO*mat(2)*~(-1.27D0) 

C Deriuatiua of the erpanent q with respect to the first stress invariant 
dqdI1.mat(l2)/(mat(3)*(1.D0-(1.DO-~2))*s)*r2.DO)r(mat(2)*sr 
imat(3)/in"(l)+(3.DO*inv(l)**2.D0/inv(3))*(inu(l)/mt(13))**mt(2)) 

C Derivative of the exponent q uith reapacr to the third stress invariant 
dqdI3=-mat(i2)/(mat(3)r(i.D0-~1.DO-mat(12))rs)**2.DO)*inv(l)**3.DO 
l/inv(3)**2.DO*(inv(l)/mat(l3))r.mat(2) 

C Derivative of the ~ i ~ l d  function uith respect to the first stress invariant 
dfdIi=((3.DO+mat(11))/inu(1)+dqdIi)*f+inv(l)/inv(2)*(inu(1)/ 
lrnat(l3))*rmat(il)*0EXP(q) 

C Derivative of the yield functicn uith respect to the second stress invariant 
dfdI2=inu(l)*r2.DO/inv(2)rr2.DO*(inv(i)/mat(13))rmaf(ll)~DU(P(~) 

C Derivative of the ~ i ~ l d  funcrion with respect to the third stress invariant 
dfdI3-f*dqdI3-psi1*~(1)**3.DO/in<i(3)rr2.DO~(inv(l)/mt(13)) 
i*.mt(il)*DEXP(q) 

C The derivative of the ~ield function uith respect to stress is obtained by use 
C of the chain rule 

DO i=1,4 
df(i)=dfdIl*dinv(i,I)+dfdI2*dinu(i,2)+dfdI3*din~(i,3) 

END DO 
END 

C SUBROUTINE ELASTIC(C,inv,mat,np) 
C calculate the isotropic elastic stiffne~s matrix for the current stata of stress 
C (Janbu 1963, Lade P Nelson 1988). 
C 
C INPUT 
C in": Stress inuariants [I1 I2 I3 J21 
C mat(4): Curvature parameter for variation of Yaungo modulus 
C mat@): Coefficiant foi variation of younga modulus 
c mat(6): Poisoono ratio 
c mr(l3):Arhosperic pressure: mat(i3) 
c mat(16):User parameter detemiining the variation of Youngs moduls 
C (i) Variation given by Janbu (1963) 
C (2) Variation given by Lade & Nelson (1987) 

C np: ~umber of user defined properties 
C 
C OUTPUT 
C C: ~sotropic elastic stiffneoa mtrir 
C 
C REFERENCES 
c ~anbu, N. (1963) "soil compressibility as detemined by odeometer and triarial 
C tests" in Proceedings of suropean Confarence on Soil Mechanics and 
C Foundation Enginaering, Vol. 1, Viesbaden. pp. 19-25. 
c Lade, P.V. & R.B. Nelson (1987) "Hodelling the elastic behaviour of granular 
C materials",Intemtiiil Journal for Numerical and halytical Nethods in 
C Geomechaoico, 11, pp. 521-542. 
C 
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SUBROUTINE ELASTIC(C,inr,mat,np) 
C Define primary variables 

IMPLICIT NONE 
INTEGER np 
REAL-8 inv(4) ,mat (=p) ,C(4,4) 

C Define secondary sariables 
INTEGER i, j 
REAL18 E,R,lambda,mu,ps(3) 

C Calculate Toung's modulus at current state of stresa 
IF (mat(l6).EP.I) T m  

CALL PRINCE(ps,inv) 
E;rnat(4)*mat(13)*(~=(3)/matil3))**mat(5) 

ELSE 
R=6.DO*(i.DO+maf(6))/(1.DO-2.DO*mat(6)) 
E;rnat(4)lioat(i3)*((in.r(l)/mat(l3))**2.DO+~*inv(4)/maf(i3)*r 

l 2.DO)*tmat(S) 
END IF 

C Calculate Lames constanto 
lambda=E/(3.DO*(l.DO-2.DO+niat(6))) 
mu=E/(2.DO*(i.DOrmat(6))) 

C Assemble elastic stiffness matrix 
DO i=1,4 

DO j=1,4 
IF (i.EQ.j) THEN 

IF (i.LE.3) T m  
C(i, i)=lambda+Z .DO*mu 

ELSE 
C(i,i)=mu 

END IF 
ELSE IF ((i.LE.3).AND.(j.LE.3)) i- 

C(i,,)=lambda 
ELSE 

C(i,j>=O.DO 
END IF 

END DO 
EN0 DO 
END 

C SUBROUTINE PRINCE(ps,inu) 
C Calculate principal stresses 
C 
C INPUT 
C inT: Stress invariants [li I2 I3 J21 
II 

C OUTPUT 
C ps: Principal otresseo 
C 

SUBROUTINE PR1NCE(ps,inv) 
C Define primary variables 

IMPLICIT NONE 
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REAL.8 inu(4) .ps(3) 
C Define secondary variables 

REALt8 PI,y(3) .=(Z) .alpha 
INTEGeR j 
PI=4*DATAN(l.ODO) 
z(i)=-(inu(l)rr2.D0)/3.DO-inv(2) 
z(2)=-2.~0*(inr(i)rr3.D0)/27.DO-invii)*inu(2)/3.DO-inu(3) 
IF (z(1I.GE.O) THEN 

DO j=i,3 
y(j)=O.DO 

END DO 
ELSE 

alpha=(-~(~)/~.DO)/(DSQRT((-Z(~)/~.D~)**~.DO)) 
IF(alpha.GT.1.DO) alpha-1.00 
IF(*lpha.LT.-l.DO) alpha=-l.DO 
alpha=DACoS(alpha) 
y(l)=2.D0t(DSQRT(-z(1)/3.DO))~DCOS(alpha/3.DO) 
y(2)=-2 .DO*(DSQRT(-z(l)/3.D0) )*DCOS((alpha+PI)/3 .DO) 
y(3)=-2 .DO* (DSQRT(-z(i)/3.DO)) rDCOS((a1pha-PI)/3 .DO) 

END IF 
ps(l)-y(l)+inu(i)/3.D0 
ps(2)=y(2)+inv(1)/3.D0 
ps(3)=y(3)+inv(1)/3.D0 
E m  

C NNCTION CHECKSTRESS(s0,dse) 
C check far negative or rero principal stresses. If all principail stresses are 

c greater than zero the elastictrial stress is accepted. Otheruise, perforro 

C backscaling of stresses inta the positive octant. 

C INPUT 
C SO: Initial stress state 
C dse: Elastic streas increnent due to elastic shooting 
C 
C OUTPUT 
C ninratioBatia of elastic stress increment 
C 

FIMCTION CHECKSTRESS(SO,~SB) 
C Define primary variables 

IMPLICIT NONE 
REAL.8 s0(4),die(4),CHECKSTRESS 

C ~efine secondary varaibles 
INTEGER i 
REAL.8 se(4) ,ps(3) .pse(3) ,inv(4) ,ratio,minpoe,mi~atio 

c Calculate principal stresses f m  initial state of stress 
CALL INVARIANTS(~~V,SO) 
CALL PRINCECps, in") 

C Calculate principal stresses for stress state obtained by elastic shooting 
DO i=1,4 

se(i)=sO(i)+dse(i) 
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END DO 
CALL INVM.I*NTS(~~V,~~) 
CALL PRINCE(pse,inv) 

C Check for negative principal srresaes 
minnsa-1 r-. - 

DO i4.3 
IF (pseii) .LT.minpse) minpse=pse(i) 

END DO 
IF (minpse.GT.0) THEN 

C A11 principal stresses are positive. h i t  uith minratio equai to uiity 
CMCKSTRESS=l 

ELSE 
minratio=i 
DO i4,3 

ratio=ps(i)/(ps(i)-pse(i)) 
IF ((ratio.LT.CMCKSTRESS) .AND. (ratio.GT.0)) 

l minratio-ratio 
END DO 
CRECKSTRESS=0.9999*minr-*nr- ' Scaleback atresses to the firot octant 

END IF 
END 

C NNCTION POT(inu,mat,np) 
C Calculate the value of the plastic potential fuiction for the cwrent state of 
C stress (Lade 1984, Kim R Lade 1988). 

C INPUT 
C in": Stress invariant. [Il I2 I3 J2 S31 
C mat(2): Curvature parameter for failure criteria 
C mat(7): Plastic potential functions intersection vith the hydrostarir : 
C mat(8): Curuature parameter for plastic potential function 
C mat(l3) :Athmospheric pressure 
C np: Number of user defined properties 

C OUTPUT 
C POT: Valne af the plastic potential fnaction 

C REFERENCES 
C P.V. Lade (1984) "Failure criterion for friction materials", In Mechanico af 
C Engineering Materials, C.S. Desai k R.H. Gallagher (eds), Wiley. 
C M.K. Kim R P.V. Lade (1988) "Single hardening constitutive model for frictianal 
C materials I. Plastic potential fnamion", Cmpnters and Geotechnics. (5). 
C pp. 307-324. 

FUNCTION POT(inv,mat,np) 
C Define primary variables 

IMPLICIT NONE 
INTEGER np 
W L * 8  POT,inv(rl),mat(np) 

C Oefine secondary variables 
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REAL.8 psil 
C Calculate dependent material parameter 

psil=0.00155DOmiat(2)**(-1.2~0) 
C Calculate value the plastic potential function 

~0~=(~silrinv(l)**3.Do/inv(3)-inu(l)**2.DO/inv(2)tmat(7))r(inv(l) 
l/mat(l3))*.mat(8) 
END 

C SUBROUTINE DPOT(dg,inv,dinv,mat.np) 
C Calculate the derivative of the   las tic potential function 
C 
C INPUT 
C in": Stress invarianta [I1 I2 13 12 S31 
C dinv: ~ e r i ~ ~ t i ~ e o  of stress invariants [d11 d12 d131 
c mat(2): Curvature parameter for failure criteria 

c mar(7): plastic potential fnactians intersection uith the hydrostatic ari6 

c mat@): curvature parameter for plastic potential fuiction 

C mar(13):Athmospheric pressure 
C ~~~b~~ ~f user defined properties 

C 
C OUTPUT 
c dg: ueriuative of the plastic potential function 

C 
C REFERENCES 
c P.V. lade (1984) -Failure crirerion for friction materiale". In Elechaoics of 

c Engineering Materials, C.S. Desai R R.H. Gallagher (eds), Uiley. 
c M.K. ~ i m  R P.V. Lade (1988) "single hardening constitmiue model for frictional 

c materiais I. plastic function". Computers and Geotechnics, ( 5 ) ,  
C pp. 307-324. 

SWROUTINE DPOT(dg,inu,dinv,mat,np) 
C Define primary variables 

IHPLICIT NONE 
INTEGER np 
REAL.8 dg(4) ,ins(4),dinv(4,3) ,mat(np) 

C Define secondary variables 
INTEGER i 
REAL*8 psii,dgdIi,dgdI2,dgdI3 

C Calculate dependant materiai parameter 
psil=O .00155DO*nat<2)**(-1 .l7DO) 

C Derivative af the potential function vith respect to ths first stress invariant 
dgd~l=(psilr(mt(8)+3.~~)rinv(l)*r2.~0linu(3)-(mat(8)+2.DO)*inv(~) 
l/in~(2)+mat(8)rmat~7)linv(l))r(inv(l)/mat(i3))**roat(8) 

C Derivative of the ~otenti~l fnaction vith respect to tha second stress invariant 
dgd12~inu(1)**2.~~/inv(2)*l2.~0*(inu(i)/mat(13))*rmat(8) 

C ~erivative af the potential function uith respect to th. third stress invariant 
dgdI3=-psilrinv(l)**3.DO/inr(3)*~2.DO~(inu(l)/mat(13))*-t(8) 

C The derivative tha potential function "ith respect to stress is obtained by 

C "se of the chain n i l e  
DO i=1,4 
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dg(i)-dgdIl*dinv(i,l)+dgdI2*dinv(i,2)+dgd13rdinv(i,3) 
END DO 
END 

C SWROUTINE PLASTIC(Cp,dl,Ce.di,dg,ggdfdf,m,dep.) 
C Calculote the plastic stiffness matrix and rhe plastic proportionality factor. 
C 
C INPIPUT 
C Ce: Elastic constitutive matrix 
C df: Derivative of yield function with reapect to streoaes 
C dg: Derivative of the plastic potential funetion uith respect to atresses 
C g: Value of plastic potential function 

C dia: Derivative of hardening or softening laa uith respect to plastic uorh 
C nu: Exponent in plastic potential function 
C depo: Strainincrement 
C 
C OUTPUT 
C Cp: Plastic conatitutive matrix 
C dl: Plastic proportionality factor 
C 

SWROUTINE PLASTIC(Cp,dl,Ce,df ,dg,ggdfw,~,de~~) 
C Define pr-y variables 

IWLICIT NONE 
REAL*8 Cp(4,4).dLCe(4,4) ,df(4).dg(4),g,dfv,mu,deps(4) 

C Define aecondary variables 
INTEGER i,j 
REALM B,Cedg(4),Cedf(4) ,dfCedg.dfCedeps,Cedeps(4) 

C Calculate hardening moduius 
X=df"*nm.g 

C Calculate tensor product (Ce)(dg) 
DO i=1,4 

Cedg(i)=O.DO 
END DO 
DO i=i,4 

DO j=1,4 
Cedg(i)-Cedg(i)+Ce(i,j)*dg(j) 

END D0 
END DO 

C Calculate scalar (df) (Ce) (dg) 
dfCedg=O.DO 
DO i=1,4 

dfCedg=dfCedg+Cedg(i)*di(i) 
END DO 

C Calculate tensor product (Ce) (df) 
DO i=1,4 

Cedf(i)=O.DO 
END DO 
DO i=1,4 

DO j=1,4 
Cedf(i)=Cedi(i)+Ce(i.j)rdf(j) 
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END DO 
END D0 

C ~ssemble the plastic constitutise matrix 
DO i=1,4 

DO j.i.4 
cp(i, j)-Cedg(i)*Cedf(j)/(diCedgiH) 

m DO 
END DO 

C caicuiate t ~ o o r  product (Ce)(deps) 
DO i=1,4 

Cedeps(i)=O.DO 
END DO 
DO i=1,4 

DO j4.4 
cedep~(i)=Cedeps(i)+Ce(i,j)*depe(j) 

END DO 
END DO 

c Caiculate ocalar (df) (C=) (deps) 
dfCedeps=O.DO 
DO i4.4 

mCedepa=dfCadeps+Cedeps(i)*df (i) 
END DO 

C calculate ~iaatic proportionality factor 
dl=~wAx1 (O .DO ,df Cedeps/(dfCedg+X)) 
END 

C SUBROUTINE INTERSECTION(s,alphaaaaa,dse,fe,mat ,t- ns") 
C Determine ratio of strain increment causing purely elastic defomtioni, 
C vheneuer the =urrent ~ield surface is crossed during loading (sloan 1987, 
C Chen R H i m o  1990, Jeobsen 2001). 

C 
C INPUT 
C s v a r :  State dependent variables 
C (l) Curreni valne nf yieid function 
C (2) C ~ r r e n t  ~alue >f hardening or softening functian 

C (7) Stress level relative to failure 
C s: Initial stress state 
C dse: Elasric stress increment due to elasric shaating 
c fe: valne of yield funcrian after elastic shooting (initial value) 

C mat: Haterial properties 
C toi: Tolerance 
C k: Mari- iterations alloved 
C np: ~umber af user defined properries 
C ns": Number of ssate dependen% variables 
C 
C OUTPUT: 
C s: Fin& stress state 
c alpha: ~atio af srrain increment causing purely elasric deformation 
C svar: Updated valne$ of stat8 dependenr. variablen 
C (i): pinal "due of ~ ~ e i d  function (shis should equal suar(2)) 

C (7): Final stress level 
C i: Iteratians performed 
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C cbCk for failure, %his muld be the effect of preshearing 
C REFEPENCES: IF ((svar(7).EQ.l.DO).AND.(IDNINT(svar(4)).EQ.O)) TUEN 
c Sloan, S.W. (1987) "Substepping schemes for ths nunerica integation of svar(2)=ttARD(suar(3) ,mat .op) 
C elastoplastic stress-strain relations", 1nternational jownal for ~ ~ ~ ~ i ~ ~ l  sriar(4)=i.D0 
C methods in Engineering, 24, pp. 893-911. psil=0.~~155~~*mat (2)**(-1.2700) 
c men, W.F. k E. Mi-o (1990) "~on-linear &lysis in soil ~ ~ ~ h ~ i ~ ~ , , ,  rho=mat (lo)/mat (11) 
C Elsevier, New York. d-t(9)/(27 .DO*psilW)*rrho 

s.~(6)=mat(20)/rho*(l.DO/d)**(1 .DO/rho)*(~~~(3)/*t(13)) 
l *1(1.~O/~ho-l.DO)*l.D0/8var(2) 

s.ar(s)=svar(2)*~~~~(suar(6)*suar(3)/mat(13)) 
SUBRouTINE INTERSECTION(s,alpha,svar,dse,fe,mat ,tol,im,i.np,nav) 

C Define primary variables ENE IF 

IMPLICIT NONE 
INTEGER nsv.np,im,i 

REAL*8 s(4) .alpha,svar(nsv) ,sO(4) ,dse(4) ,fe,mat ,ro1 
C Define secondary variables 

INTEGER j c ~ ~ R O ~ I N E  ~ ~ ~ ~ ~ ( s , s v a r , ~ , m a t , t ~ l , h , i , n ~ v ~ n ~ )  

REAL-8 in~(4),dinv(4,3),dfds(4),dalpha,error,rho,psil,d, C Correction far yield surface drift. me functian "ses the correction method 
ldfdse,FAILuRE,YIELD,HULD c by cens (1985). ~hich is further described in Jarobsen (zoo1). 

C Calculate first estimate of elastic strain intrement 
alpha=-(svar(l)-svar(2))/(fe-suar(1)) C INPUT 

C Perfarm compatibility check for first estimat C S :  1niti.l stress s t a t e  
C svar: ~ ~ i t i a i  valne of state dependent variables 

sO(j)=s(j) (i) 1nitia1 valne of yield function 
s(j)=sO(jl+alphardse(j) (2) ~ ~ i t i a i  valne of hardening function 

(3) mitial plastic uork 
CALL INVARIANTS(inv,s) (4) ~ailure indicator 
svar(7)=FAILuRE(inv,mat ,np) (5-6) pararneters for softening lav 
svar(l)=YIELD(inv,mf, ovar(7) ,=P) (7) mitial stress level 
error=avar(l)-svar(2) C C: ~ l ~ s t i c  consritutive matrix 

C mat: xaterial properties 
C t01: Tolerance 

DO UHILE ((abs(error).GT.rol).AND.(i.lT.im)) C in: ~ ~ r m ~  =umber of iteiationa 
i=i+l C np: ~~b~~ of user defined pioperties 

C Calculate derivatives of stress invariants C ~ ~ b e r  of state dependent variables 
CALL DINVARIANTS(dinv.s) 

C Calculate derivatives of the yield functim uith re.pect to stresses C OUTPVT 
CALL D Y I E L D ( d f d s , i n ~ , d i n v , m a t , s v a r ( 7 ) , s v a r ( l ) , ~ ~ )  C  ina al stress state 

C Calculate uector product dfda dse c svar: updated state dependent variable* 
dfdae-0.00 (i)  ina al valne af yield function 

(2) ~ i n a  value of hardening function 
dfdse=dfdse+dfds(j)rdse(j) (3) Final plastic uork 

END DO (7)  ina al stress level 
dalpha=-error/dfdae C i:  tera af ions performed 
alpha=alpha+dalpha 

C Calculate updated stresses and perform tolerance check C REFERENCES: 
c PottS,  D.^. A. (1985) "A crifical assessement of methods af correcting 

s(j)=sO(j)+alpha*dse(j) C for drift frw the ~ i ~ i d  surface in elasto-plastic finit* element analysis", 
END DO C International JO-~I for ~ ~ ~ ~ i c a l  an halytical Methads in Geomechanics, 9. 
CALL INVARIAMS (inu, s) C pp. 149-159. 
~var(7)=FAILuRE(inv,mat,~~) c ]aroboen, K.P (2001) mm~pplicatian of the Single Hardening model in A8*QUS" 
suar(i)=YIELD(ins,mt,s~ar(7) ,np) C AGEPOOOO 
error=suar(l)-svar(2) 
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sirseoUTIw DRIFT(s,svar,C,inat,tol,im,i,ims~~~~) 
c Define primry variable6 

IMPLICIT NOHE 
INTEGER nsv,np,i,im 
REAL-8 s(4) .svar(nsv) .mat (np) ,rol,C(4.4) 

C Defins secondary variables 
INTEGER j ,r,cutback 
mlLr8 inv(4) ,dinv(4,3) ,ds(41 ,dfds(4) ,dgds(4) ,dfdv,betai. 
~bet~,errori ,errori,dup, Cdg(4) ,dfCdg,sdg,depsp(4) 

C Ruiction declarations 
REAL18 F~ILURE,YIELD,SOIT,HB~,DH~RD,DSOFT 

C Initialise local variables 
i=o 
cutback=O 
errorl=O.DO 
errorZ=O.Do 
CALL INVULIANTS(ini>.s) 
errorl=svar(l)-svar(2) 
DO WHILE ((abs(errori).GT.tol).AND.(i.LE.im)) 

i=i+1 
C Calculate derivatives of stress invariants 

CALL DINVkRIkNTS(dinv.o) 
C Calculate derivatives af yield and plastic potential function uith respect %o 
C stresses 

CALL DYIELD(dfdinv,dinv,mat,svar(7) ,siiar(l) ,=p) 
CALL DPOT(dgds,im,dinv,mat,np) 

C Calculate derivative af hardening or softening lam 
IF (IDNINI(svar(4l).GT.O) TXEN 

dfdv=DSOFI(avar(S) .suar(6) ,svar(% .inat(l3)) 
ELSE 

dfdv=DHARD(ovar(SI .mat .np) 
END IF 

C Calcuiate vector product (s dgds) 
ode0 .DO 
DO j4.4 

6dg=sdg+s(j)*dgds(j) 
END DU 

C Calculate tensor product (C dgds) 
DO j=1,4 

Cdg(j>=O.Do 
DO rs1.4 

Cdg(j)=Cdg(j)+C(j,r)*dgd 
END DO 

END DO 
c calculate v e n o r  product (dfds Cdg) 

dfCdg=O.DO 
DO j=i,4 

dfCdg-dfCdg+dfds(j) *Cdg(j) 
END DO 

C Galculate correction factor 
betai=errori/(dfCdgtdfdvrsdg) 

C Reduction af correction factor due to laek of convergence 
IF (((abs(error2)-abs(errorl)) .LT.O) .AND. ((abs(error2)) .GT.O) 
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i .AND.(cutback.Eq.O)) TUEN 
betal-(betal+beta2)/2 
cutback-1 

ELSEIF (cutback.EQ.11 'IREN 
batal-(betal+beta2)/2.DO 

END IF 
c update stresoeo and plastic "ark 

dvp=O.DO 

END Do 
svar(3)=svar(3)+dup 

C perfom ~ompatibility check 
CALL INvARIAuTS(inu,s) 
svar(7)=FAILuRE(inv,inat,a~) 
svar(1)=~~ELD(ins,mat.suar(7),n~) 
IF (IDNINT(svar(4)) .GT-0> 

svar(i)~~~~~(svar(5)israr(6) ,svar(3).mat(13)) 
ELSE 

svar(2)=HBm(svar(3) ,mat,np) . . .  
END IF 
betaZ=bstal 
errori=errorl 
errori=suar(i)-o~K(2) 

END DO 
END 

" &..' w. 

C S:  nitia al stress state 
c isyar: lnitialvaluea of state dependent variables 
c deps: Strain incranient 
C mat: Haterial properties 
C tol: Tolerance 
c nsv: ~umber of state dependent variables 
C ~ ~ ~ b e r  af user defined properties 
c 
C OUTPUT 
C s:  ina al stress stete 
c svar: updated values of state dependent variables 
C r: Number of substeps used for integation 
c j: Aumber of correctims to the substep size 
C 
C REFERENCES 
c sioan, S.W. (1987) mtsubstepping schemes for tue numerical integration of 

C elaStOpi.stic stress-strain relations", International Journal for Numerical 
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C nethads in hgineering, 24, pp. 893-911. 

Y C Jahobsen, K.P (2001) "Application of the Single Hardening model in ABAQUS" 

t. C AGEF'OOOO 
C 

SUBROUTINE HEULUL(s,srrar,isvar,deps,mat,tol,r,j,ns.r,np) 
C Define primary variables 

IMPLICIT NONE ~ - 

INTEGUL nsu,np,r,j 
REAL.8 s(4) ,r0(4) ,svar(nsv) ,isvar(nsv) ,deps(4) ,=%(np) ,to1 

C Define secondary variables 
INTEGER p,t 
REALIS q,dds(4,2) ,ddup(2) ,sumddeps(4) ,ddeps(4) ,error, 
linv(4) ,dind4,3) ,df(4) ,dg(4) ,g,dfdv,mindeps,resdepn(4). 
2dl.s1(41 ,ddepsp(4).dup,dd&(4),psil,rho.d, 
3Cp(4,4) ,Ce(4,4) 

C hinction declarations 
REAL-8 NORM,POT,YIEW,FAILURE,SOFT,HBRD,DH*RD,DSOFT 

C Initialise local uariables 
r=O 
j=O 
q=l .OD0 
DO p=1.4 

DO t=1,2 
dd8(p.t)=0.D0 

END DO 
sO(p)-o(p) 
sunddeps(p)=O.DO 
ddeps(p)=deps(p) 
reodeps(p)=depo(p) 

EN0 DO 
error=1 
DO HHILE (NORM(resdeps,4,1.0DO) .GT.o) 

===+l 
C Determined size of nert strain increment 

mindeps=Nom(ddeps,4,q) 
IF (NORn(resdeps,4,1.0DO) .LT.mindeps) TUEN 

DO 0=1.4 . . 
ddeps(p)=resdeps(p) 

END DO 
ELSE 

DO p=1,4 
ddeps(p)=qrddeps(p) 

END DO 
END IF 
Do MILE (srror.GT.to1) 

DO p=1,norr 
s~ar(p)=isvar(p) 

END DO 
C Calcnlate first estimate of stress increment 
C 
C First calculate derivatives of yield and plastic potential function 
C and value of potential function 
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CALL INvARIANTS(inv, so) 
CALL DINVARIANTS(~~~V,SO) 
CALL D Y I E L D ( d f i d i . 7  ,SV-(~) ,np) 
CALL DPD~(dg.in~,dinv,mat,np) 
g=POT(inu,rnat,np) 

C calculate derivative of hardening or softening lari 
I€ (IDNINT(rvar(4)) .EQ.O) TiEN 

dfd~DHARD(svar(3) ,mat.np) 
ELSE 

dfd~DSOFT(ouar(5) ,svar(61 .svar(3) ,mt(13)) 
END IF 
CALL ELASTIC(Ce,inv,mat .np) 
CALL pLASTIC(Cp,dl,Ce,df ,dg,gidfda,mat(8) ,ddeP) 

C calculate first estimate of stress increnient, plastic strain and plastic 
dd~(i).O.ODO 
DO p-1,4 

dds(p,i)=O.Do 
Do t=1,4 

dds(p,l)=dds(p,l)+(~e(p,t)-Cp(p,t))*dde~s(t) 
END DO 
ddepsp(p)=dl*dg(p) 
ddup(l)=ddup(l)+sO(p)*ddepsp(~) 
sl(~)=aO(~)+ddo(p.i) 

END DO 
c up&te sate ~ariables due to first estimate of stresr LYLIC-Y* 

CALL INvARIANTS(inv, sl) 
svar(7)=FAILURE(in~,mat.n~) 
svar(1)=YIELD(in~,mat.~uar(7) ,np) 

C calculate =econd estimate of stress increment 

C calcuiate derivatives of yield and plastic potential function 
CALL DINVARIANTS(dinu.sl) 
CAE DYIELD(~~ ,inv,dinr,mat, auar(7), svar(1) ,=P) 
CALL DPOT(dg,inv,dinv,nat,np) 
g=POT(inv,mat,np) 

C calculate derivative af hardening or softening lav 
IF (I~~lNT(ovar(4) ) .EQ.O) TiEN 

dfd~=~~~~~((svar(3)+ddvp(l)) ,mat ,np) 
ELSE 

dfdri.~SOF~(svar(S) .svar(6), (svar(3)+ddq(l)) ,mat(13)) 
END IF 
CALL ELASTIC(Ce,inv,mat,np) 
CAU ~I.As~~c(Cp,dl,Ce,df ,dg,g,dfdv,mat(8) ,ddepa) 
ddup(2)-O.OD0 
DO p=i,4 

dds(p,2)=0.D0 

END DO 

END DO 
dvp=0.5*(ddup(i)+ddvp(2)) 

AGEP R0201 
JAKOBSEN 

AGEP R0201 



ArPLICATION O F  THE SINGLE HARDENING MODEL 

srar(3)=svar(3)+dvp 
DO p-1.4 

ddds(p)=dds(p,2)-dda(p,l) 
END DO 
error=NOr<N(ddds,4,0.5DO)/NORH(s,4.1.ODo) 
IF (error.GT.to1) TEN 
q=DMBXl( (O. 9DO*DSQRT(tol/error)) ,001DO) 
DO p4.4 

ddeps(p)=ddeps (p)*¶ 
END DO 
j=j+i 

ELSE 
C Perform failure check and update state variables due to updated stresses 

CALL INVBRIdNTS(inv,s) 
svar(7)=PAILuRe(inv,matttp) 
svar(l)=YIELD(inu,mat,svar(7),np) 
IF ((svar(7).EP.l.DO).AND.(IDNINT(svar(4)).EQ.O)) Tmir 
svar(2)=HARD(svar(3) ,mat,np) 
BSK(~)=~ 
p~i1-0.00156DOmat(2)**(-1.27D0) 
=ha--t (l0)/mat (11) 
d-t (9)/(27.DO*poi1+3.DO)**rho 
svar(S)=ioat(20)/rho*(1 .DO/d)**(i.DO/rho)r(svar(3) 
/mat(l3))**(l.DO/rho-1.DO)*l.Do/svar(2) 
svar(5)=svar(2)*DEXP(svar(S)*svar(3)/mat(13)) 

END IF 
END IF 

m DO 
q=OflINi (0 .SDO*DSPRT(tol/error) ,2 .DO) 
error=1 
DO r~1.4 

resdeps(p)-deps(p)-~umddeps(~) 
END DO 

Frn n" 

svar(2)=SOPT(=uar(5) ,ssar(6) ,svar(3) ,mat(l3), 
END IF 
END 

c SUBROUTINE ~DP(s,suar,isvar,deps,mat,tol,r,j 
C Update stresses by the Runge-Kutta-Do-d-Priiie integration scheme (Dormand R 
C Printe 1980, Sloan R Booker 1992). The scheme i. furthemore described in 
C Jakobsen (2001) 
c 
C INPUT 
C s: Initial stress state 
C isvar: Initial values of atate dependent mibles 
C deps: Strain incremenf. 

JAKOBSEN 
AGEP R0201 

APPLICATION OF THE SINGLE HARDENING MODE1 

C mat: 
C to1: 
C nsu: 

C np: 
C 
C OUTPUT 
C a: 
C SV=: 
C r: 
c j: 
C 

materiel proparties 
Tolerance 
 der of state dependent variables 
~umber of user defined properties 

pinal stress a ta te  
updated values of o t a t e  dependent sariables 
~umber of substeps used for integation 
~ ~ m b e r  of corrections to the substep sire 

C REFERENCES 
C Dormand, J.R. k P . J .  P r i n t e  (1980) "A family of embedded Runge-Kutta formlae", 
C Journal of Computer Applied Mathematics. 6, pp. 19-26. 
c sloan, S.W. e J.n. Booker (1992) "Integration of Tresca amd Mom-Coulomb 
C canstitutive relations in plam sfrain elastaplasticity". International 
C Journal for Numerical Methods in Engineering, 33, pp. 163-196. 
c Jakobsen, X.P (2001) "Application of the Single Hardening model in ABAPUS" 
C AGEPOOOO 
C 

sirs~om~m m~(s,~~~r,i~var,deps,mat,tol,r,j,nsv,n~) 
C ~efine primary variables 

TNPI.ICIT NONE 
INTEGER nsu,np,r, j 
I(ULLI~ s(4) ,a0(4) . s ~ a ~ ( ~ s ~ )  ,i~~ar(~s~) ,depo(4) ,mat(np) .to1 

C Define secondary variables 
INTEGER i,p,t 
REAL*8 ddeps(4) ,ddepsp(4) ,sumddeps(4) ,resdeps(4) ,minddepa,q, 
lsl(4) ,s2(4) ,ds(4,6) ,dds(4) ,saei(4) ,inu(4) .dinu(4,3) ,error, 

. - 

C hinctim declarations 
RUL18 NOr<N.POT,YIELD,FAILURE,SOFT,HARD,O~RD,DS~FT 

C  nitia al ise local variables 
r=o 
j-O 
q=1.0DO 
DO p=1,4 

DO t=l,6 
ds(p,t)=O.DO 

END DO 
s0(p)=.(p) 
sumddeps(p)=O.DO 
ddeps (p)=deps(p) 
resdepo(p)=deps (p) 

END DO 
*rror=1 
DO WHILE (NORH(resdep~,4,i.ODO) .GT.O) 

==ri1 
C  ete er min ed size of nert strain increment 

minddeps=NORN(ddeps ,'+,q) 
IF (NORn(resdeps ,4,1 .ODO) .LT .roinddeps) THEN 
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coef(6)-0.D0 
ddeps(p)=resdeps (p) 

END IF 
c calculate stress increments and temporary ueighted update of stresses and plastic 
C vori 

DO p=1,4 
ddepe (P)-qrddepscpl 

suei(p)=sO(p) 
DO t=1,6 

DO WILE (errar.GT.to1) 
~vei(~l=nwei(~)+ds(~,t)*coef (t) 

DO p=l,nsu 
END DO 

svar(p)-isvar(p) 
EM) DO 
vpuai=svar(3) 

C Caleulate estimates of stress increments 1.6 
DO p=1,6 

vpuai=vpvei+ddup(p)*coef (p) 
END DO 

C F i m  establish caefficient vectors depending the stress increment C CBICYI~~O stress invarirns and derivatives of stress invariant= 
IF (i.EP.1) T M N  CALL INVARIANTS(~~~.~W~~) 

DO p=1,6 CALL DINvARIANTS(dinv,soei) 
coef(p)=o.Do C caiculate values of yield and plastic potential functians 

END DO svar(7)1FAILiiRE(inir,mat,np) 
ELSEIF (i.Eq.21 THEN óvar(i)=YIEUi(inv,mat,rvar(7),np) 

coef~ll=l.Do/5.~o g=~o~(inu,mat ,=p) 
coaf(2)=0.D0 C calculate derivatives of ~ i ~ l d ,    las tic potential and hardeniug functioli= 
coef (3)=O.D0 CALL D Y I E L D ( d f , i n v , d i r , t , s v a r 7 , ~ ~ a r ( l ) , n p )  
coef (4)=O.D0 CILL ~~o~(dg,inu,dinv,mat,n~) 
coef(sI=o.Do IF (IDNINT(svar(4)) .EP O) TEEN 
coef (ô)=o.DO dfdv=DHARD(upwei,mat,np) 

ELSEIF (i.EQ.3) THEN 
ELSE 

coef(l)=3.DO/40.D0 dfd~~so~~(svari5) ,sr>ar(ô) ,vpuei.mat(13)) 
coef(2)=9.D0/40,DO END IF 
coef(3)=0.D0 CALL ELASIIC(Ce,inv,mat,np) 
coef(4)=0.D0 CALL ~~~s11C(C~,dl,Ce,df,dg,g~dfdd,mat(8) ,ddeps) 
coef (5)=O.D0 ddup(i).O.DO 
coaf<6)=0.D0 

DO p=1,4 
ELSEIF (i.Eq.4) THEN d~(~,i)=o.DO 

caef(l)-3.DO/iO.D0 DO t=1,4 
coef (2)=-9.~0/10.~0 d~(~.i)=ds(~,i)+(ce(~,t)-C~(~,t))*ddeps(t) 
coef(3)=6.D0/5,DO END DO 
coef (4)=O.D0 ddepsp(p)=dl*dg(pl 
coef(5)=0.D0 ddvp(i)=ddvp(i)+iuei(p)*ddepsp(p) 
coef(6)=0.D0 

ELSEIF (i.EQ.5) T E N  
END DO 

END DO 
coef (1)=226.D0/729.~0 c weighto for first and second estimate of stresses 
coef(2)=-25.D0/27.~0 caefl(l)-31.D0/540.DO 
coef (3)=88O.D0/729.~0 

caef1(2)=0.D0 
caef (4)=55.00/729.~0 coef1(3)=190.D0/297.DO 
~ o e f  (5)=O.DO coef1(4)=-145.DO/l08.D0 
coef (ô)=o.Do coef1(5)=351.D0/220.DO 

ELSEIF (i .EQ. 6) THEN 
coefl(6)=1.DO/20.D0 

coef(l)=-18l.D0/270.~0 caef2(1)=19.D0/216.DO 
coef (2)=5.D0/2.D0 

coef2(2)=O.D0 
coef (3)=-266.~0/297.~0 caef2(3)=1000.D0/2079.DO 
coef (4)=-91.~0/27.~0 coef2(4)=-125.DO/216.D0 
coef (5)=189.~o/ss.~o coef2(5)=81.D0/88.DO 
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caef2(6)=5.D0/56.DO 
C Firat and second estimate of streoaes and plastic uork 

dq=O .DO 
DO p=1,4 

sl(p)=so(p) 
si(p)=s0(p) 
DO t4.6 

sl (p)=sl(p)Mo(p.t)*coefi(t)  
s2(p)=s2(p)+ds(p,t)*coef2(t) 

END DO 
dda(p)=s?(p)-sl(p) 

END DO 
DO p=1,6 

dwp=dvp+ddq(p)*coefZ(p) 
EM) DO 
svar(3)=svar(3)+dvp 
error=NORn(dds,4,1.DO)/UORn(s2,4,1.D0) 
IF (error.GT.to1) TXWI 

s=~~xl(~0.9D0*(tai/erroï)**(i.~o/5.DO)) ,o.oioo) 
DO p=i,4 

ddeps(p)=ddeps (p) q 
EKD DO 
j=j+i 

ELSE 
C Perform failure check and update state variables due to updated stresses 
C and plastic "ark. 

CALL INYARIANTS(~~P,SZ) 
ruar(7)=FAILURE(in~,mat,np) 
svar(l)=YIELD(inv,mat,suar(i) ,np) 
IF ((svar(7).EQ.l.DO).AND.(IDNINT(svar(4)).EQ.O)) THEN 

svar(Z)=H*RDisvar(3) ,mat,np) 
hvar(4)=1 
p~il=0.00155DO*mat(2)**(-1.27Do) 
rho=mat(iO)/mat(il) 
d=mat(9)1(27.DO*psil+3.DO)*~rho 
svar(6)--t(20)lrho*(l.DOld)*r(1.DO/rho)*(ovar(3) 
/mat~l3))**(l.DOlrho-l.D0)*l.DO/~~ar(2) 
svart5)=avart2)*DEXP(svar(6)*ovar(3)/maf(l3)) 

END IF 
END IF 

END DO 
~ = D M I N ~ ( O . ~ D O * ( ~ ~ ~ / ~ ~ ~ ~ ) * * ( ~ . D O / ~ . D O ) , ~ . D O )  
error=1 
CALL INVARIANTS(inv,sO) 
CALL DINVARIANTS(dinv,oO) 
CALL DFOT(dg,inv,dinv.mat,np) 
DO p=1,4 

ds~(~)=s2(~)-sO(~) 
sumddeps(p)=sumddeps(p)+ddeps (P) 
s0(p)-a2(p1 
resdeps(p)=depa(p)-~umdde~s(~) 

END DO 
END DO 
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IF (IDNINT(svar(4)).EQ.O) TEEN 
svar(2)=HBm(avar(3),mat,np) 

ELSE 
svar(2)=SOFT(svar(5) .svar(6),suar(3).mat(l3)) 

END IF 
DO p=1,4 

o(p)=s2(p) 
END DO 
END 

C SIIBRDUTINE FEULUL(o,suar,deps,mat,m.nss,np) 
C Update stresses by the foniard Eular scheme (Sloan 1987, Chen k Mizuna 1990. 
C Jahobsen 2001) 
C 
C INPUT 
C S: Initial stress state 
C s v a r :  Initial values af state dependent varibles 
C dl: Plastic multiplier 
C deps: Strain increment 
C mat: Haterial propeities 
C m: Number of subincraments 
C ns": Number of atate dependem variables 
C np: Numbei of user defined properties 
C 
C OUTPUT 
C 8: Fim1 StI'e85 State 
C svar: Updated values of state dependent variables 
C 
C REFERENCES 
C Sloan, 3.W. (1987) "Substepping schemes for fhe numerical intepation of 
C elastoplastic stress-strain relations". International Journol for Numerical 
C methods in Eneineerin.. 24. no. 893-911. -. . .. 
c men, U.F. & E. nizuno (1990) "Nan-linear Analysis in Soil Mechanics", 
C Elsevier, New York. 
C Jakobsen, X.P (2001) "hpplication of the Single Hardening model in ABAQUS" 
C hGEPO000 

SUBROUTINE FEam(s,svar,deps,mat,m,nsv,np) 
C Define primary variables 

IHPLICIT NONE 
INTEGER nsv,np,m 
REAL*6 s(4) ,svar(nsv) ,mat (=p) ,deps(4) ,dl 

C Functian declarations 
RF.AL*8 POT,YIELD,FhILIIRE, SOFT,HARD.DHARO,DSOFT 

C Define secondary variables 
INTEGER REAL*6 ddeps(4) i,p,t ,ddepsp(4), 

lsO(4) ,ds(4).inu(4) ,dinv(4.3), 
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C Calculate sire of aubincrements 
DO p-1.4 

ddsps(p)=deps(p)/D€LOAT(m) 
EN0 DO 
CALL INVARIANTS(inv,s) 
CALL ELASTIC(Ce,inu,mat ,np) 

C Perform m subincrements 
DO i=l,m 

C Define initial stress state for current substep 
DO p=1,4 
so(p)=s(p) 
END DO 

C Calculate stress invariants and derivative of stress invariants 
CILL INVARIANTS(inv,sO) 
CALL DINVARIANTS(dinv.sO) 

C Ca1c~lat.t~ derivatives of yield and palstic potential functions 
CALL DYIELD(df,inu,dinv,mat ,svar(7) ,svar(l) ,=p) 
CALL DPOT(dg,inv.dinv,mat,np) 

C calculate valne of potential function 
&=POT(i".",mat ,=p) 

C Ca1culai.e derivative of hardeniug or softening function 
I€ iIDNINT(svar(4)).EQ.O) TUEN 

dfdvrDHARD(nvar(3) ,mat ,=p) 
ELSE 

dfdv=DSO€T(suar(S) .svar(6) ,suar(3) ,mat (13)) 
END I€ 

C CALL ~~as~~c(ce,inv,mat,np) 
CALL FLASTIC(Cp,dl,Ce,df ,dg,g,dfdv,mat (8) ,ddeps) 
ddup=o. DO 
DO p=1,4 

ds(p)=O.DO 
DO t=1.4 

ds(p)=ds(p)+(Ce(p,t)-Cp(p.t))*ddeps(t) 
END D0 
~i~)=sO(~)+ds(~) 
ddapop(p)=dl*dg(p) 
ddvp=dd"p+so(p)*ddepsp(p) 

END DO 
svar(3)=svar(3)+ddvp 

C Perform failure check and update state variab,~~ 
CALL INVIRIANTS(inv,s) 
svar(7)=FAILUI(E(inv,mat ,np) 
s~ar(l)=YIELD(inv.mat, svar(7) ,np) 
I€ ((svar(7).EQ.i.DO).AND.(IONINT(svar(4)).Eq.O)) THEN 

suar(2)=mARD(svar(3) ,mat,np) 
suar(4)=1DO 
pail=0.00155DOlmat(2)**(-1.27DO) 
rho=mat(lO)Imat(li) 
d=mat(9)/(27.DO*pail+3.DO)**rho 
svar(6)=mat(20)/rho*(i.DO/d)**(i.DO/rho)r(svar(3)/mat(13)) 

l **(i.DO/rho-1.00)*l.DO/suar(2) 
avar(5)=svar(2)*DUF(svar(6)*svar(3)/mat(13)) 

END IF 
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END DO 
IF (IDNINT(svar(4)) .€Q. 0) THEN 

srar(Z)=HARD(svar(3) .mat,np) 
ELSE ~ - -  svar(2)=SOFT(svar(5),svar(6),~~~(3).mat(l3)) 

END IF 
END 

C niNCTION NORM(sec,n,q) 
C Calculate the norm of a vector 
C 
C INPUT 
C vec: vector 
C n: Nmbel of element= in vector 
C q; Scaiar multiplier 
C 

C OIITPUT 
C NORM: Norm of uector 
C 

FTNCTION NORll(~ec.n,~) 
C Define primary variables 

IMPLICIT NONE 
INTEGER n 
REAL18 vecin)  NORM 

C Define secondary variables 
INTEGER i 

C Calculate length 
NORll=O. O00 
DO i4,n 

NORM=NORn+q**2.Do~~ec(i)*~2,~0 
EN0 D0 
END 

C SUBROUTINE DW(suar,nsv.problem,~,el,~,n,i) 
C Temination of ABAWS in case of nmerical problems 
C 
C INPUT 
C s v a r :  State dependent sariables 
C ns": Nmber af state dependent sariables 
C prob1em:Problem identifier 
C (i) Problem enrountered during intersection of yiald surface 
C (2) Problem encountered during correction for yield surface drift 
C s: Current stress state 
C el: Element number 
C gp: Gauss point 
C n: Current load step 
C i: Increment in load step 
C 
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SUBROUTINE DW(svar,nsv,problemmmmel,gp,n,i) 
C Define primary variables 

IWLICII NONE 
INTEGER nov,problem,el.gp,n,i 
REAL.8 svar(nov).el4) . . . .  

C Define secondary variables 
1urecm j 
OPEN(is,file='sbm2d.dmpP ,~tatus='~e~') 
WRITE(*,*)'rr*rrrri*******~**** ABAQUS RUN IS TERMINATED ', 
l'******r.************~ 
IF (problem.Eq.1) THEN 

iiRITE(*,*)'Prablem encountered during imersection of yield ', 
1 'Surface' 
ELSE 

WRITE(t,*)'Problems encountered during correction for yield ', 
I 'surface drift' 
C m  ,F .. 
WRITE(15,lO) n 

lo FoRMAT(~ Load step: ',12) 
WRITE(lS.20) i 

20 FORMAT(' Increment in load step: '$14) 
WRITE(15,30) el 

30 FORMAT(' Element number: ,,IS) 
VRITE(15,40) gp 

40 FOMT(' Gauss point: ',Il) 
WRITE(IS,*) ' ' 
WRITE(1S,*)'Current state of stress 
DO j=1,4 

WRITE(ls,so) j , s ( j )  
END DO 

so FORMIT(' Stress cmpmpanent no. ',11,':',3024.16) 
iiRITE(lS,*) ' ' 
WRITE(lS,*)'Srate dependent variables at current s ta te  of stress' 

END DO 
60 FONT(' State dependent variable no. 3,11,>:',3D24.16) 

CLOSE(1S) 
CALL XIT 
END 
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