
AALBORG UNIVERSITY

'

&

$

%

The gRbase Package for Graphical

Modelling in R

by

Søren Højsgaard and Claus Dethlefsen

June 2004 R-2004-19

Department of Mathematical Sciences
Aalborg University

Fredrik Bajers Vej 7 G DK - 9220 Aalborg Øst Denmark
Phone: +45 96 35 80 80 Telefax: +45 98 15 81 29

URL: www.math.aau.dk/research/reports/reports.htm
e

ISSN 1399–2503 On-line version ISSN 1601–7811

The gRbase∗ Package for Graphical Modelling

in R

Søren Højsgaard†and Claus Dethlefsen‡

18th June 2004

Abstract

We have developed a package, called gRbase, consisting of a num-
ber of classes and associated methods to support the analysis of data
using graphical models. It is developed for the open source language,
R, and is available for several platforms. The package is intended to be
widely extendible and flexible so that package developers may imple-
ment further types of graphical models using the available methods.

gRbase contains methods for representing data, specification of
models using a formal language, and is linked to dynamicGraph, an
interactive graphical user interface for manipulating graphs. We show
how these building blocks can be combined and integrated with in-
ference engines in the special cases of hierarchical log–linear models
(undirected models).

1 Introduction

Graphical models in their modern form have now been around for nearly a
quarter of a century. In the present context, a graphical model is a class of
statistical models that can be represented by a graph which can be used to
identify conditional independence properties. For terminology and theoreti-
cal aspects of graphical models, see Lauritzen (1996). Some common exam-
ples of graphical models are Bayesian networks (directed graphical models),

∗Version 0.1
†Biometry Research Unit, Danish Institute of Agricultural Sciences, Research Centre

Foulum, DK–8830 Tjele, Denmark. E–mail: sorenh@agrsci.dk
‡Department of Mathematical Sciences, Aalborg University, DK–9220 Aalborg E, Den-

mark, E–mail: dethlef@math.aau.dk

1

log–linear models (undirected models), block-recursive graphical models, and
BUGS models.

Various computer programs for inference in graphical models have evolved at
different places around the world. A few examples are BUGS (Thomas, 1994),
CoCo (Badsberg, 2001), Digram (Klein, Keiding, and Kreiner, 1995), and MIM

(Edwards, 2000). Most such packages for graphical models are tailormade to
analyse a particular class of models, they have their own command language
and are not possible to extend since the code is not open source.

It is of interest to make some of these programs and ideas underlying them
go into a general purpose statistical package. The gR initiative (Lauritzen,
2002) is a project launched in 2002 for making facilities in R (R Development
Core Team, 2004) so graphical modelling becomes easily accessible and ex-
tendable. R is Free Software, Open Source, and runs on various platforms.
This facilitates extensions in the form of R packages which may rely on the
whole R system.

Recently, some of the existing programs have been made available in R. One
example is the mimR package (Højsgaard, 2003) which integrates the func-
tionality of the stand–alone program MIM into R. Other packages for graphical
modelling have been developed as packages for R, such as ggm (Marchetti
and Drton, 2003) and deal (Bøttcher and Dethlefsen, 2003).

The aim of gR is to provide users and package developers with a framework for
graphical modelling in R. The work is organized in three levels. A core group

works with defining data structures and standard methods, in particular
developing the packages gRbase, dynamicGraph (see Section 6), and gRaph

(not described here. It provides methods for representing and manipulating
graphs efficiently). The package developers use the work from the core group
to adapt or develop new packages for R that use a common user interface and
data structures. Finally, the group of endusers use the developed packages
in their work with data or model analysis.

In this paper we describe the elements of gRbase (available soon from cran.

r-project.org) and illustrate how to combine them to create facilities for
analysis of hierarchical log–linear models for discrete variables (undirected
models). We have chosen to implement in the S4 class system of R.

gmData objects: A fundamental element of gRbase is a common class for
representing data. No matter the actual representation of data, the important
characteristics are contained in a graphical metadata object (gmData). It
contains the abstraction of data into a meta data object including variable
names and types etc. However, the actual data might not be present or may

2

be represented by a reference to data, such as a database file. Also, it may be
possible to work without data, which may be valuable if the point of interest
is in the model alone. Separating the specification of the variables from data
has the benefit, that some properties of a model can be investigated without
any reference to data, for example decomposability and collapsibility. The
gmData class is described in Section 3.

gModel objects: A gModel object links a model to a gmData object. The
model may be specified by either a formula or using an interactive graphical
user interface. When defining a gModel object, no fitting is done. This is
an important difference between model in gRbase and e.g. linear models in
R. The idea is that a model may be interesting to analyse without any data
attached. The gModel class is described in Section 4.

Depending on the particular gModel, one may choose to fit the model, i.e.

combine the model and data using a specified engine. There may be several
engines available, depending on the methodology. For example models may
be analysed from either a Bayesian or Frequentist perspective. The result of
the fitting process is an object that can be post-processed and provide the
results from the analysis. Inference is described in Section 5.

Some features of gRbase will be illustrated in the present paper on the basis
of the rats dataset in the gRbase package. The rats dataset is from a hy-
pothetical drug trial, where the weight losses of male and female rats under
three different drug treatments have been measured after one and two weeks.
See Edwards (2000) for more details. The dataset is provided in the gR-

base package. We will also refer to the dataset HairEyeColor (Snee, 1974),
included in R.

2 A small sample session

Before describing the core elements of gRbase, we present a sample session
intended to give the reader a feel for how an enduser will use gRbase.

First, data are created as a gmData object from an existing table object.

> library(gRbase)

> data(HairEyeColor)

> gmd.hec <- as(HairEyeColor, "gmData")

> gmd.hec

3

Description:

varNames numberLevels latent varTypes

1 Hair 4 FALSE Discrete

2 Eye 4 FALSE Discrete

3 Sex 2 FALSE Discrete

To see the values of the factors use the 'valueLabels' function

To see the data use the 'observations' function

Then, the model with sex independent of hair- and eye-color is defined, fitted
with the loglm-engine and finally the output is analysed using the anova

procedure to test the model against the saturated model.

> sex.indp <- new("hllm", ~Hair:Eye +

+ Sex, gmd.hec)

> sex.indp <- fit(sex.indp, engine = "loglm")

> anova(getFit(sex.indp))

Call:

loglm(formula = loglm.formula, data = rawdata)

Statistics:

X^2 df P(> X^2)

Likelihood Ratio 29.34982 15 0.01449443

Pearson 28.99286 15 0.01611871

The enduser would likely display the models of interest using dynamicGraph

(see Section 6), and could interact with the graph to investigate properties
of the model or change the model. Also, the enduser could change engine

and for example use the same model, but analysed with a Gibbs sampling
algorithm, providing another type of output.

3 gmData class – graphical meta data

A gmData object by default contains information about variable names, vari-
able types, their labels, their levels (for the discrete variables), and whether
the variables are latent or not. Besides, a gmData object may contain data
or a reference to data, but need not do so.

4

3.1 Creating a gmData object manually

An object of class gmData may be created by the initialize method using the
new command. When an object is printed, only the summary of the variables
are printed. Data and value labels are not displayed, but may be accessed
separately.

> library(gRbase)

> gmd.rats.nodata <- new("gmData", varNames = c("Sex",

+ "Drug", "W1", "W2"), varTypes = c("Discrete",

+ "Discrete", "Continuous", "Continuous"),

+ numberLevels = c(2, 3, NA, NA), valueLabels = list(Sex = c("M",

+ "F"), Drug = c("D1", "D2", "D3")))

> gmd.rats.nodata

Description:

varNames numberLevels latent varTypes

1 Sex 2 FALSE Discrete

2 Drug 3 FALSE Discrete

3 W1 NA FALSE Continuous

4 W2 NA FALSE Continuous

To see the values of the factors use the 'valueLabels' function

To see the data use the 'observations' function

> observations(gmd.rats.nodata)

NULL

> valueLabels(gmd.rats.nodata)

$Sex

[1] "M" "F"

$Drug

[1] "D1" "D2" "D3"

The variable types must be from a vector predefined types which may be
inspected by the command validVarTypes(). The available types may be
extended by the package developers as demonstrated below. The types of
the variables are important for the way they are displayed using the package
dynamicGraph. The type is also important when the models are fitted to
data.

5

> oldtypes <- validVarTypes()

> validVartypes <- function() c(oldtypes, "MyVarType")

> validVartypes()

[1] "Discrete" "Ordinal" "Continuous" "MyVarType"

3.2 Creating a gmData object from a data frame or a

table

Typically one will create a gmData object (with data) from a data frame

> data(rats)

> class(rats)

[1] "data.frame"

> gmd.rats <- as(rats, "gmData")

> gmd.rats

Description:

varNames numberLevels latent varTypes

1 Sex 2 FALSE Discrete

2 Drug 3 FALSE Discrete

3 W1 NA FALSE Continuous

4 W2 NA FALSE Continuous

To see the values of the factors use the 'valueLabels' function

To see the data use the 'observations' function

Also, data from a table can be converted into a gmData object,

> data(HairEyeColor)

> class(HairEyeColor)

[1] "table"

> gmd.hec <- as(HairEyeColor, "gmData")

> gmd.hec

6

Description:

varNames numberLevels latent varTypes

1 Hair 4 FALSE Discrete

2 Eye 4 FALSE Discrete

3 Sex 2 FALSE Discrete

To see the values of the factors use the 'valueLabels' function

To see the data use the 'observations' function

It is also possible to write conversion methods for other data types, if needed.

3.3 Editing gmData objects

The information contained in a gmData object may be accessed or modified by
the methods: varTypes, varNames, numberLevels, latent, valueLabels,
and observations.

> observations(gmd.rats.nodata) <- rats

> valueLabels(gmd.rats.nodata)$Sex <- c("Male", "Female")

> valueLabels(gmd.rats.nodata)

$Sex

[1] "Male" "Female"

$Drug

[1] "D1" "D2" "D3"

It is possible to extend the variable description of a gmData object with more
information, here exemplified by a adding a “short name”.

> nVar <- nrow(description(gmd.rats.nodata))

> description(gmd.rats.nodata)$shortName <- letters[1:nVar]

> gmd.rats.nodata

Description:

varNames numberLevels latent varTypes shortName

1 Sex 2 FALSE Discrete a

2 Drug 3 FALSE Discrete b

3 W1 NA FALSE Continuous c

4 W2 NA FALSE Continuous d

To see the values of the factors use the 'valueLabels' function

To see the data use the 'observations' function

7

4 gModel class – graphical models

The general class gModel contains a formula object and a gmData object.
Implementations of different specific graphical model classes can inherit from
this class and provide methods for parsing the formula. Here, we illustrate
by implementation of a class for hierarchical log–linear models, hllm.

For a hierarchical log–linear model, we use the following formula language.
The right hand side of the formula is a list of the generators separated by
’+’. A generator is specified by variable names with separated by ’:’. Com-
monly used models have short hand notations: saturated model (~.^.), main
effects (~.^1), all kth order interactions (~.^k). By an optional argument,
marginal, it is possible to specify a subset of the variables from the gmData

object.

The saturated model

> m1 <- new("hllm", ~.^., gmd.hec)

> Formula(m1)

~Hair:Eye:Sex

The model where sex is independent of hair- and eye-color

> m2 <- new("hllm", ~Hair:Eye + Sex, gmd.hec)

The model with all main effects

> m3 <- new("hllm", ~.^1, gmd.hec)

> Formula(m3)

~Hair + Eye + Sex

The saturated model in the hair-eye marginal

> m4 <- new("hllm", ~.^., gmd.hec, marginal = c("Hair", "Eye"))

> Formula(m4)

~Hair:Eye

Also, the gModel class will have associated methods for making inference,
which will be treated in Section 5.

8

5 Inference

In gRbase we intend to exploit already existing software by letting these
packages do the actual calculations, much like the approach taken in mimR

which uses the the MIM stand alone program as an “inference engine”. Hi-
erarchical log–linear models can (when taking a frequentist perspective) be
fitted by e.g. loglm, CoCo, and MIM. The default inference engine is loglm

which is a part of R. In the future, we envision changing the default inference
engine to CoCo, because CoCo facilitates working with discrete and continu-
ous variables in a frequentist setting. However, graphical models can also be
analyzed in a Bayesian setting, and in this connection one can envision to
use BUGS or JAGS as inference engine, when these are available in R.

5.1 Model fitting

The fit procedure combines a model with an engine and produces an out-
put object that may be further post-processed to yield the results used for
inference. As the output objects may be very different, we have set the class
name to be a concatenation of the model class and the engine. For exam-
ple the output from fitting an hllm model with the loglm engine is of class
hllmloglm. This way, it is simple to extend with other engines and methods
for postprocessing the output.

The default engine for fitting objects of class hllm is the loglm procedure
contained in the MASS package.

> m2.f <- fit(m2, engine = "loglm")

> m2.f

An object of class "hllmloglm"

Slot "fit":

Call:

loglm(formula = loglm.formula, data = rawdata)

Statistics:

X^2 df P(> X^2)

Likelihood Ratio 29.34982 15 0.01449443

Pearson 28.99286 15 0.01611871

Slot "formula":

~Hair:Eye + Sex

9

Slot "gmData":

Description:

varNames numberLevels latent varTypes

1 Hair 4 FALSE Discrete

2 Eye 4 FALSE Discrete

3 Sex 2 FALSE Discrete

To see the values of the factors use the 'valueLabels' function

To see the data use the 'observations' function

To illustrate the fit procedure with another engine, we also show how the
engine loglin may be used. As loglm is a front-end to loglin, the output
from loglm is based on the output from loglin.

> fit(m2, engine = "loglin")

2 iterations: deviation 0

[1] "list"

An object of class "hllmloglin"

Slot "fit":

$lrt

[1] 29.34982

$pearson

[1] 28.99286

$df

[1] 15

$margin

$margin[[1]]

[1] "Hair" "Eye"

$margin[[2]]

[1] "Sex"

Slot "formula":

~Hair:Eye + Sex

10

Slot "gmData":

Description:

varNames numberLevels latent varTypes

1 Hair 4 FALSE Discrete

2 Eye 4 FALSE Discrete

3 Sex 2 FALSE Discrete

To see the values of the factors use the 'valueLabels' function

To see the data use the 'observations' function

5.2 Model summary

For each combination of model class and engine, methods for extracting in-
formation must be provided by the package developer.

A summary (including certain model properties) of a gModel can be achieved
using the summary() function. Here, the summary function for the loglm

output is used.

> summary(m2.f)

Formula:

~Hair:Eye + Sex

attr(,"variables")

list(Hair, Eye, Sex)

attr(,"factors")

Sex Hair:Eye

Hair 0 2

Eye 0 2

Sex 1 0

attr(,"term.labels")

[1] "Sex" "Hair:Eye"

attr(,"order")

[1] 1 2

attr(,"intercept")

[1] 1

attr(,"response")

[1] 0

attr(,".Environment")

<environment: 02F58138>

Statistics:

11

X^2 df P(> X^2)

Likelihood Ratio 29.34982 15 0.01449443

Pearson 28.99286 15 0.01611871

5.3 Model editing

One important aspect of graphical modelling is the ability to interact with
the model. Editing the model means e.g. that edges are added or removed
and the resulting model is further investigated. Using dynamicGraph, it
is possible to edit the model using a graphical user interface. The package
developer needs to provide the methods addEdge and dropEdge for his model
class.

> m5 <- addEdge(m2, "Hair", "Sex")

> Formula(m5)

~Hair:Eye + Hair:Sex

> m6 <- dropEdge(m5, "Hair", "Eye")

> Formula(m6)

~Hair:Sex + Eye

In addition, variables may be added or deleted from the model (and thus
the associated gmData object) by the methods dropVertex and addVertex,
which should also be provided by the package developer.

It is up to the package developer to define the body of these methods. The
output should be an object similar to the input object. If for example the
input object is a fitted object, the returned object should also be fitted with
the same engine.

6 Display and interaction with models

The package dynamicGraph (Badsberg, 2004) provides an implementation of
an interactive graphical user interface for manipulating graphs, using tcl/tk

(included in R). The enduser should be provided with a homogeneous user
interface no matter what type graphical model he is analysing. The pack-
age developer can provide methods that creates the interface with dynamic-

Graph. As an example, the graph for the log–linear model with only main
effects, may be displayed by the following command. The enduser can then
interactively insert an edge in the graph to obtain the display in Figure 1.

12

> library(dynamicGraph)

> Z <- DynamicGraph(names = as.character(varNames(gmd.hec)),

+ types = as.character(varTypes(gmd.hec)),

+ object = m2)

Figure 1: A display of the hierarchical log–linear model using dynamicGraph.
The enduser can manipulate the graph using a point and click interface.

The package developer can link procedures to items in the user menu, thus
providing functionality for easy access to frequently used procedures. The
following piece of code will add an item to the User Menu with the label “For-
ward search”. When selected, the procedure Forwardsearch will be called
with the current object as argument.

> UserMenus <- list(MainUser = list(label = "Forward search",

+ command = function(object,

+ ...) Forwardsearch(object,

+ ...)))

> Z <- DynamicGraph(names = as.character(varNames(gmd.hec)),

+ types = as.character(varTypes(gmd.hec)),

+ object = m2, UserMenus = UserMenus)

13

7 Discussion

In this paper we have described gRbase, a package that provides tools for
creating new packages for graphical models in R. We believe that creating
a common package for graphical modelling in R will not only help package
developers in mutual support, but will also benefit the group of endusers.
It is the intention that gRbase can serve as a common platform for future
developments of software for graphical modelling in R, such that new packages
will have a common interface, will use the gmData objects as basic data
objects etc. Packages should have similar user interfaces, both the command
interface and graphical user interface and it should not be too difficult to
switch between the different model classes.

The dynamicGraph package is a standalone package that enables an enduser
to manipulate graphs using a point and click interface. The package develop-
ers also have the benefit that it is possible to attach a graphical user interface
to existing or new packages. The gRbase package provides the structure for
a common representation of data, no matter the data source. This way fa-
cilitates working with models without/before data collection. Also, gRbase

defines how models should be structured in classes and which methods should
be associated by default. The gRaph package is planned to include methods
for graph computations, which will work as a library for package developers.

Acknowledgements

The members of the gR project are acknowledged for their inspiration.

References

Jens Henrik Badsberg. A guide to CoCo. Journal of statistical software, 6
(4), 2001.

Jens Henrik Badsberg. dynamicGraph: Interactive graphical tool for manip-
ulating graphs. URL: http://cran.r-project.org, 2004.

Susanne Bøttcher and Claus Dethlefsen. deal: A package for learning
Bayesian networks. Journal of Statistical Software, 8(20), 2003.

David Edwards. Introduction to Graphical Modelling. Springer-Verlag, 2nd
edition, 2000.

14

Søren Højsgaard. mimR – a package for graphical modelling in R. In
K. Hornik, F. Leisch, and A. Zeileis, editors, Proceedings of the 3rd inter-

national workshop on distributed statistical computing, 2003. ISSN 1609-
395X.

John P. Klein, Niels Keiding, and Svend Kreiner. Graphical models for panel
studies, illustrated on data from the Framingham heart study. Statistics

in Medicine, 14:1265–1290, 1995.

Steffen L. Lauritzen. Graphical Models. Oxford University Press, 1996.

Steffen L. Lauritzen. gRaphical models in R. R News, 2(2):39, 2002.

Giovanni Marchetti and Mathias Drton. ggm: an R package for Gaussian
graphical models. URL: http://cran.r-project.org, 2003.

R Development Core Team. R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria, 2004.
URL http://www.R-project.org. ISBN 3-900051-00-3.

R.D. Snee. Graphical display of two-way contingency tables. The American

Statistician, 28:9–12, 1974.

Andrew Thomas. BUGS: a statistical modelling package. RTA/BCS Modular
Languages Newsletter, 1994.

15

