
 

  

 

Aalborg Universitet

The Calderón problem with partial data for less smooth conductivities

Knudsen, Kim

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Knudsen, K. (2005). The Calderón problem with partial data for less smooth conductivities. Aalborg
Universitetsforlag. Research Report Series No. R-2005-07

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 22, 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60292238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://vbn.aau.dk/en/publications/409c7b20-9ee4-11da-917e-000ea68e967b


AALBORG UNIVERSITY

'

&

$

%

The Calderón problem with partial data for
less smooth conductivities

by

Kim Knudsen

R-2005-07 February 2005

Department of Mathematical Sciences
Aalborg University

Fredrik Bajers Vej 7G DK - 9220 Aalborg Øst Denmark
Phone: +45 96 35 80 80 Telefax: +45 98 15 81 29

URL: http://www.math.aau.dk e
ISSN 1399–2503 On-line version ISSN 1601–7811



THE CALDERÓN PROBLEM WITH PARTIAL DATA
FOR LESS SMOOTH CONDUCTIVITIES

KIM KNUDSEN

Abstract. In this paper we consider the inverse conductivity
problem with partial data. We prove that in dimensions n ≥ 3
knowledge of the Dirichlet-to-Neumann map measured on partic-
ular subsets of the boundary determines uniquely a conductivity
with 3/2 continuous derivatives.

1. Introduction

Let Ω ⊂ Rn, n ≥ 2 be a bounded domain with smooth boundary ∂Ω.
Let γ be a conductivity distribution in Ω that satisfies

γ ∈ L∞(Ω), γ > 0 and γ−1 ∈ L∞(Ω).

The Dirichlet to Neumann (or voltage to current) map Λγ is defined
by

(1) Λγf = γ∂νu|∂Ω,

where u is the electric potential given as the unique solution to

(2) ∇ · γ∇u = 0 in Ω, u = f on ∂Ω

and ν is the outer unit normal to ∂Ω.
The Calderón problem [Cal80] concerns the inversion of the map

γ 7→ Λγ, i.e. whether Λγ determines γ uniquely, and in that case
how to reconstruct γ from Λγ. For the higher dimensional problem
(n ≥ 3) uniqueness was proved for smooth conductivities by Sylvester
and Uhlmann in their foundational paper [SU87]. Generalizations to
less regular conductivities has been obtained by a number of authors
[NSU88, Ale88, Nac88, Cha90, Bro96, GLU03]. The sharpest unique-
ness results so far seem to require essentially 3/2 derivatives of the
conductivity to be continuous [PPU03] or to be in Lp, p > 2n [BT03].
The reconstruction issue for n ≥ 3 was solved in [Nac88] and [Nov88]
independently. In dimension two, Nachman solved both uniqueness and
reconstruction problems for conductivities γ ∈ W 2,p(Ω) with p > 2 in
[Nac96]. This result was improved in [BU97, KT04] for conductivities
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2 KIM KNUDSEN

having essentially one derivative. Recently Calderón’s problem in di-
mension two was settled in the affirmative for conductivities γ ∈ L∞(Ω)
by Astala and Päivärinta [AP03]

In recent years much attention has been devoted to the inverse prob-
lem, where only partial information about the Dirichlet to Neumann
map is given. Let Γ1, Γ2 ⊂ ∂Ω be open subsets, and define the local
Dirichlet to Neumann map Λ̃γ by

Λ̃γf = Λγf |Γ2

on functions f ∈ H1/2(∂Ω)∩E ′(Γ1). The inverse problem then concerns
the unique determination and computation of γ from Λ̃γ. It is an out-
standing open problem ([Isa98, Uhl98]), whether measurements taken
on Γ1 = Γ2 = Γ being any (possible very small) open subset of ∂Ω are
sufficient for uniqueness for the inverse problem.

When γ is real-analytic, then measurements taken on any part of
the boundary determine the conductivity [KV84], but beyond the real-
analytic category only little is known. Bukhgeim and Uhlmann [BU02]
showed that if Γ1 = ∂Ω and Γ2 is roughly speaking half of the boundary
then Λ̃γ determines γ in the class C2(Ω). Moreover, in a recent paper by
Kenig, Sjöstrand and Uhlmann [KSU04] it was shown roughly speaking
that taking Γ1 as any open subset of ∂Ω and then Γ2 ⊂ ∂Ω slightly
larger than the complement also gives uniqueness in the class C2(Ω).

The Caldéron problem arises in a number of practical problems, e.g.
the medical imaging technique called electrical impedance tomography
(EIT), see [CIN99]. The idea is to make current and voltage measure-
ments through electrodes attached to a persons skin and then from
these measurements compute features of the conductivity inside the
body. In some applications of EIT, measurements can only taken on
part of the body (see [CKK+01]), and hence the Calderón problem with
partial data is of great interest also from an applied point of view.

The aim of this paper is show that partial information on the Dirich-
let to Neumann map suffices for uniqueness also when γ is only in
C3/2(Ω). First we establish the notation. Let ξ ∈ Sn−1 and define the
subsets

∂Ω+(ξ) = {x ∈ Ω: ν(x) · ξ > 0},
∂Ω−(ξ) = {x ∈ Ω: ν(x) · ξ < 0}.

Define further for ε > 0 the subsets

∂Ω+,ε(ξ) = {x ∈ Ω: ν(x) · ξ > ε},
∂Ω−,ε(ξ) = {x ∈ Ω: ν(x) · ξ < ε}.
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Clearly ∂Ω+,ε(ξ) ∪ ∂Ω−,ε(ξ) = ∂Ω. The main theorem is the following:

Theorem 1.1. Let γ1, γ2 ∈ C3/2(Ω), Ω ⊂ Rn, n ≥ 3, with γ1|∂Ω+ =
γ2|∂Ω+ and ∂νγ1|∂Ω+ = ∂νγ2|∂Ω+ . Let ξ ∈ Sn−1 be fixed and suppose

Λγ1f |∂Ω−,ε(ξ) = Λγ2f |∂Ω−,ε(ξ) for any f ∈ H1/2(∂Ω).(3)

Then γ1 = γ2 in Ω.

This theorem is a generalization of [PPU03, Theorem 1.2] to the case
of partial data and a generalization of [BU02, Corollary 0.2] to the case
of less regular conductivities (note, however, that in [BU02, Corollary
0.2] no assumption on the normal derivative of the conductivitie at
the boundary are needed). By combining our approach with that of
[KSU04] it is expected that a generalization of [KSU04, Corollary 1.4]
can be found.

To prove Theorem 1.1 we will combine ideas from [BU02] and [PPU03].
We will briefly outline the method of proof: suppose γ ∈ C1(Ω) and
let u be a solution to (2). Then u satisfies

(−∆ + A · ∇)u = 0 in Ω,(4)

where

A = −∇ log(γ).(5)

The first step is to construct a suitable family of Complex Geometrical
Optics (CGO) solutions to this equation. Such solutions were con-
structed in [PPU03] for A given by (5), however, the solutions we find
here are slightly different. Also the method of proof is different. The
second step is then to use an identity relating the information on the
boundary to the Fourier transform of the conductivities. We will derive
an identity, which seems to be new. Since we only take measurements
on essentially half of the boundary, we will need to proof that the in-
formation on the remaining part of the boundary can be neglected. To
do so we will derive a suitable Carleman estimate with boundary terms
for a first order perturbation of the Laplacian.

The outline of the paper is the following. In Section 2 we derive Car-
leman estimates for first and zeroth order perturbations of the Lapla-
cian. Then in Section 3 we prove the existence of CGO solutions to
(4). Part of the argument uses the Carleman estimates. In Section 4
we derive the boundary identity, and finally in Section 5 we give the
proof of Theorem 1.1.
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2. Carleman estimate with first order term

In this section we will derive a Carleman estimate for the Laplacian
with a zeroth order perturbation and a small first order perturbation.
This estimate relies on the following proposition, which gives the esti-
mate for the Laplacian. This estimate is sharper than the one obtained
in [BU02], however a similar estimate can be found in [KSU04] in a
more general setting. We will need the intermediate calculations later,
so for the convenience of the reader we will give the proof.

Proposition 2.1. Let ξ ∈ Sn−1 and suppose u ∈ H1
0 (Ω)∩H2(Ω). Then

there exists a constant τ0 > 0 such that for τ ≥ τ0 we have the estimate

C
(
τ 2‖e−x·τξu‖2

L2(Ω) + ‖e−x·τξ∇u‖2
L2(Ω)

)
+ C ′τ

∫
∂Ω

(ν · ξ)
∣∣e−x·τξ∂νu

∣∣2 dS

≤ ‖e−x·τξ(−∆)u‖2
L2(Ω),

(6)

where C, C ′ > 0 depends only on τ0 and Ω.

Proof. For v ∈ H2(Ω) we write

e−x·τξ(−∆)(ex·τξv) = (−∆− τ 2)v − 2τ∂ξv,

where ∂ξ = ξ · ∇. Hence

(7) ‖e−x·τξ(−∆)(ex·τξv)‖2
L2(Ω)

= ‖(−∆− τ 2)v‖2
L2(Ω) + ‖2τ∂ξv‖2

L2(Ω) + 4τRe〈(∆ + τ 2)v, ∂ξv〉L2(Ω).

Note that

〈(−∆− τ 2)v, v〉L2(Ω) = ‖∇v‖2
L2(Ω) −

∫
∂Ω

∂νvvdS − τ 2‖v‖2
L2(Ω)

which together with the general estimate

|〈a, b〉L2(Ω)| ≤ ‖a‖L2(Ω)‖b‖L2(Ω) ≤
1

2
(‖a‖2

L2(Ω) + ‖b‖2
L2(Ω))

implies that

2‖∇v‖2
L2(Ω) − 2

∫
∂Ω

∂νvvdS − 2τ 2‖v‖2
L2(Ω) − ‖v‖2

L2(Ω) ≤ ‖(−∆− τ 2)v‖2
L2(Ω).

Furthermore the Poincaré inequality with boundary term implies that

C
τ 2

d2
‖v‖2

L2(Ω) − C ′τ 2

∫
∂Ω

|v|2dS ≤ ‖2τ∂ξv‖2
L2(Ω),
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where d is the diameter of Ω. Thus for d sufficiently small there is a
τ̃0 > 0 such that for τ ≥ τ̃0 we have the estimate

(8) C
(
τ 2‖v‖2

L2(Ω) + ‖∇v‖2
L2(Ω)

)
− C ′τ 2

∫
∂Ω

|v|2dS − C ′′
∫

∂Ω

∂νvvdS

≤ ‖(−∆− τ 2)v‖2
L2(Ω) + ‖2τ∂ξv‖2

L2(Ω).

A straightforward scaling argument then shows that for a general do-
main of arbitrary diameter there exists a constant τ0 > 0 such that (8)
holds for τ ≥ τ0.

Finally, a short calculation shows that

4τRe((∆ + τ 2)v∂ξv) = ∇ · (4τRe(∇v∂ξv)− 2τξ|∇v|2 + 2τ 3ξ|v|2),

which by the divergence theorem implies that

4τRe〈(∆ + τ 2)v, ∂ξv〉L2(Ω)

=

∫
Ω

∇ · (4τRe(∇v∂ξv)− 2τξ|∇v|2 + 2τ 3ξ|v|2)

=

∫
∂Ω

(
4τRe(∂νv∂ξv)− 2τ(ν · ξ)|∇v|2 + 2τ 3(ν · ξ)|v|2

)
dS(9)

Combining (7) with (8) and (9) gives the estimate

C
(
τ 2‖v‖2

L2(Ω) + ‖∇v‖2
L2(Ω)

)
− C ′τ 2

∫
∂Ω

|v|2dS − C ′′
∫

∂Ω

∂νvvdS

+

∫
∂Ω

(
4τRe(∂νv∂ξv)− 2τ(ν · ξ)|∇v|2 + 2τ 3(ν · ξ)|v|2

)
dS

≤ ‖e−x·τξ(−∆)(ex·τξv)‖2
L2(Ω)

(10)

To obtain (6) we substitute v = exp(−x · τξ)u in (10). Note that

‖∇(e−x·τξu)‖2
L2(Ω) ≥ ‖e−x·τξ∇u‖2

L2(Ω).

Then using the fact that v|∂Ω = u|∂Ω = 0 implies

∇v = ν∂νv, ∂ξv = (ν · ξ)∂νv

gives (6). �

In the following proposition we obtain a Carleman estimate for the
operator −∆+A ·∇+ q when the coefficient A is sufficiently small and
q is bounded.

Proposition 2.2. Suppose v ∈ H2(Ω) and q, A ∈ L∞(Ω). Let C be the
constant in (10) and let τ0 be given in the previous proposition. Then
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there exists constants A0 > 0 and τ̃0 > 0 satisfying

C1 := C − 4A2
0 > 0,

C2 := Cτ̃ 2
0 − 4‖q‖2

L∞(Ω) − 4‖A‖2
L∞(Ω) > 0,

such that for ‖A‖L∞(Ω) ≤ A0, τ ≥ τ̃0, and C = min(C1, C2) we have
the estimate

C
(
2τ 2‖v‖2

L2(Ω) + ‖∇v‖2
L2(Ω)

)
− C ′τ 2

∫
∂Ω

|v|2dS − C ′′
∫

∂Ω

∂νvvdS

+

∫
∂Ω

(
4τRe(∂νv∂ξv)− 2τ(ν · ξ)|∇v|2 + 2τ 3(ν · ξ)|v|2

)
dS

≤ ‖e−x·τξ(−∆ + A · ∇+ q)(ex·τξv)‖2
L2(Ω).

(11)

Proof. Since

| −∆ex·τξv|2 = |(−∆ + A · ∇+ q)(ex·τξv)− A · ∇(ex·τξv)− q(ex·τξv)|2

≤ 4|(−∆ + A · ∇+ q)(ex·τξv)|2

+ 4e2x·τξ‖A‖2
L∞(Ω)|∇v|2 + 4e2x·τξ(‖q‖2

L∞(Ω) + τ 2‖A‖2
L∞(Ω))|v|2,

the result follows from (10). �

Note that if in addition to the assumptions of Proposition 2.2 v
vanishes on the boundary then for u = exp(x · τξ)v, (11) simplifies to

C
(
τ 2‖e−x·τξu‖2

L2(Ω) + ‖e−x·τξ∇u‖2
L2(Ω)

)
+ C ′τ

∫
∂Ω

(ν · ξ)
∣∣e−x·τξ∂νu

∣∣2 dS

≤ ‖e−x·τξ(−∆ + A · ∇+ q)u‖2
L2(Ω),

which generalizes (6). We believe that this estimate will have applica-
tions in the analysis and solution of inverse boundary value problems
for equations involving first order perturbations of the Laplacian.

3. Construction of complex geometrical optics solutions

In this section we show how to construct CGO solutions to (4). A
general method for constructing such solutions for equations involving
a first order perturbation of the Laplacian was given by Nakamura, Sun
and Uhlmann [NSU95] (see also [Tol98] and [Sal04]); in case A has the
particular form (5) the method simplifies considerably.

The usual method for constructing CGO solutions to (2) and (4)
is to conjugate in the equation with γ1/2, i.e. if u satisfies (4) then
v = γ−1/2u satisfies

(−∆ + q)v = 0,
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where q = γ−1/2∆γ1/2. The idea is then to construct CGO solutions to
such an equation involving a zeroth order perturbation of the Lapla-
cian, which is well-known. However, this transformation requires more
smoothness than we assume here. We will proceed by introducing a
smooth approximation of γ and conjugate the equation with the ap-
proximation. By doing so we will obtain an equation involving a zeroth
order perturbation and a small first order perturbation of the Lapla-
cian, which can be handled.

Let Φ ∈ C∞
0 (Rn) be a nonnegative function with

∫
Rn Φ(x)dx =

1, supp(Φ) ⊂ B(0, 1) and Φ ≡ 1 near zero, and define the smooth
approximation of the delta distribution Φτ (x) = τnΦ(τx). Suppose
γ ∈ C1+s(Ω) is extended outside Ω such that γ ∈ C1+s(Rn) with γ = 1
outside a large ball. Then for

φ = log(γ)

we define

φτ = Φτ ∗ φ,

Aτ = Φτ ∗ A.

Note that Aτ = ∇φτ . In the following proposition we collect the de-
tailed convergence estimates for the approximations:

Proposition 3.1. Suppose γ ∈ C1+s(Ω), 0 ≤ s ≤ 1. Then

‖A− Aτ‖Cs(Ω) = o(1),(12)

‖∇ · Aτ‖Cs(Ω) = o(τ).(13)

Moreover,

‖φ− φτ‖L∞(Ω) = O(τ−1−s),(14)

‖A− Aτ‖L∞(Ω) = O(τ−s),(15)

‖∇ · Aτ‖L∞(Ω) = O(τ 1−s),(16)

and

‖(γ − eφτ )‖L∞(Ω) = O(τ−1−s),(17)

‖∇(γ − eφτ )‖L∞(Ω) = O(τ−s).(18)

Proof. For s = 0, 1 the estimates (12)–(13) are standard (see for in-
stance [Bur98]); for s fractional the result follow by interpolation.
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For a proof of (14)–(16) we refer to [Tay97]. To prove (17) we use
the series expansion of the exponential, which implies

γ − eφτ =
∞∑

n=1

1

n!
(log(γ)n − φn

τ )

=
∞∑

n=1

1

n!
(log(γ)− φτ )

n−1∑
k=0

(log(γ))kφn−1−k
τ .

Now ‖φτ‖L∞(Ω) ≤ C‖ log(γ)‖L∞(Ω) and (14) implies that

‖γ − eφτ‖L∞(Ω) ≤ ‖ log(γ)− φτ‖L∞(Ω)

∞∑
n=0

n

n!
‖ log(γ)‖n

L∞(Ω)

≤ ‖ log(γ)‖L∞(Ω)e
‖ log(γ)‖L∞(Ω)‖ log(γ)− φτ‖L∞(Ω)

= C‖φ− φτ‖L∞(Ω)

= O(τ−1−s),

which proves (17).
The estimate (18) follows from (15) and (17) by noting that

∇(γ − eφτ ) = γ∇(log(γ)−∇φτ ) + (γ − eφτ )∇φτ

= γ(A− Aτ ) + (γ − eφτ )∇φτ .

�

The CGO solutions to (4) we will construct are of the form

u(x, ρ) = e−φτ /2ex·ρ(1 + ω(x, ρ)),(19)

where ω tends to zero as ρ → ∞. Here the parameter ρ ∈ Cn \ {0}
satisfies ρ · ρ = 0, which implies that exp(x · ρ) is harmonic. We will
decompose

(−∆ + A · ∇) = (−∆ + (A− Aτ ) · ∇+ Aτ · ∇).

and use the fact that

(−∆ + Aτ · ∇)(e−φτ /2v) = e−φτ /2(−∆− 1

2
∇ · Aτ +

1

4
(Aτ )

2)v

since Aτ = ∇φτ . It follows that

(−∆ + A · ∇)e−φτ /2v = (−∆ + (A− Aτ ) · ∇+ Aτ · ∇)e−φτ /2v

= e−φτ /2(−∆ + (A− Aτ ) · ∇+ qτ )v,

where

qτ = −1

2
∇Aτ −

1

4
(Aτ )

2 − 1

2
A · Aτ .
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Hence the equation for ω is

(−∆ρ + (A− Aτ ) · ∇ρ + qτ )ω = (A− Aτ ) · ρ + qτ ,(20)

where

∆ρ = e−x·ρ∆ex·ρ = ∆ + 2ρ · ∇,

∇ρ = e−x·ρ∇ex·ρ = (∇+ ρ).

The equation

∆ρv = f(21)

plays an important role in solving (20). It is a well known fact that
(∆ρ) has a bounded inverse in certain weighted L2-spaces on Rn with
norm decaying like |ρ|−1, see [SU87]. The following proposition contains
results concerning the solution of (21) in a bounded domain:

Proposition 3.2. Let s ≥ 0 and suppose f ∈ Hs(Ω). Let ξ ∈ Sn−1

and suppose ρ ∈ Cn \ {0} with ρ · ρ = 0 and Re(ρ) = τξ. Then for τ
sufficiently large the equation (21) has a solution v1 ∈ Hs+1(Ω) which
satisfies

‖v1‖Hs+t(Ω) = Cτ−1+t‖f‖Hs(Ω), 0 ≤ t ≤ 1.(22)

v1|∂Ω−(ξ) = 0.(23)

Furthermore, for τ sufficiently large the equation (21) has a solution
v2 ∈ Hs+2(Ω) which satisfies

‖v2‖Hs+t(Ω) = Cτ−1+t‖f‖Hs(Ω), 0 ≤ t ≤ 2.(24)

Proof. The existence of a solution satisfying (22) and (23) can be
proved as in [BU02, ] using the Carleman estimate (6) and the Hahn-
Banach theorem. Furthermore, the existence of a solution satisfying
(24) follows by using the inverse in the weighted L2-space composed
with an extension operator to the right and a restriction operator to
the left. �

Note the difference between the solutions v1 and v2 : v1 seems to be
less regular than v2, but on the other hand we have explicit knowledge
of v1 on part of the boundary. We will need both types of solutions
below. We will in the sequel abuse notation and denote by (−∆ρ)

−1

any of the two solution operators to for the equation (21).
We now have the necessary ingredients for proving the existence of

CGO solutions to (4):

Lemma 3.3. Suppose A ∈ Cs(Ω), 0 ≤ s ≤ 1, is of the form (5). Let
ξ ∈ Sn−1 and suppose ρ ∈ Cn with Re(ρ) = τξ and ρ · ρ = 0. Then for



10 KIM KNUDSEN

τ sufficiently large (4) has a solution u1 ∈ H1+s(Ω) of the form (19)
with

‖ω1‖Hs+t(Ω) = o(τ t), 0 ≤ t ≤ 1,(25)

ω|∂Ω−(ξ) = 0.(26)

Moreover, (4) has a solution u2 ∈ Hs+2(Ω) of the form (19), which
satisfies

‖ω2‖Hs+t(Ω) = o(τ t), 0 ≤ t ≤ 2.(27)

Proof. The equation (20) for ω is equivalent to

(I − ((A− Aτ ) · ∇ρ(−∆ρ)
−1) + qτ (−∆ρ)

−1))(−∆ρ)ω = (A− Aτ ) · ρ + qτ .

Then ∇ρ(∆ρ)
−1 is bounded in Hs(Ω) with norm independent of τ, and

we have by (12) and (13) that

‖(A− Aτ ) · ∇ρ(−∆ρ)
−1‖B(Hs(Ω)) = o(1),

‖qτ (−∆ρ)
−1‖B(Hs(Ω)) = o(1),

as τ →∞. Hence by fixing τ0 sufficiently large, the operator (I− ((A−
Aτ ) · ∇ρ + qτ )(−∆ρ)

−1) has for τ ≥ τ0 an inverse in Hs(Ω) given by a
convergent Neumann series with norm independent of τ.

Since

‖(A− Aτ ) · ρ + qτ‖Hs(Ω) = o(τ)

we conclude that

(−∆ρ)ω = ((I − (A− Aτ ) · ∇ρ + qτ )(−∆ρ)
−1)−1((A− Aτ ) · ρ + qτ )

= o(τ).

It follows now from Proposition 3.2 that this equation has a solution
ω1 satisfying (25) – (26) as well as a solution ω2 satisfying (27). �

4. A boundary integral identity

In this section we derive a useful boundary integral identity.

Lemma 4.1. Suppose γj ∈ C1(Ω), j = 1, 2 and suppose ũ1, u2 ∈
H1(Ω) satisfy ∇· γj∇uj = 0 in Ω with ũ1 = u2 on ∂Ω. Suppose further
that u1 ∈ H1(Ω) satisfies ∇ · γ1∇u1 = 0. Then∫

Ω

(
γ

1/2
1 ∇(γ

1/2
2 )− γ

1/2
2 ∇(γ

1/2
1 )
)
· ∇(u2u1)dx =

∫
∂Ω

γ1∂ν(ũ1 − u2)u1dS,

where the integral is understood in the sense of the dual pairing between
H1/2(∂Ω) and H−1/2(∂Ω).
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Proof. Let h = γ
−1/2
1 γ

1/2
2 and define

I =

∫
Ω

∇ · γ1∇(ũ1 − hu2)u1dx.

Integrating by parts twice gives

I =

∫
Ω

(ũ1 − hu2)∇ · (γ1∇u1)dx +

∫
∂Ω

γ1∂ν(ũ1 − hu2)u1dS

=

∫
∂Ω

γ1∂ν(ũ1 − u2)u1dS −
∫

∂Ω

γ1∂ν(h)u1u2dS.(28)

On the other hand

I = −
∫

Ω

(
∇ · γ1∇(hu2)u1 −∇ · γ2∇(u2)h

−1u1

)
dx

=

∫
Ω

(γ1∇(hu2) · ∇u1 − γ1∇u2 · ∇(h−1u1))dx

−
∫

∂Ω

(γ1∂ν(hu2)u1 − γ2∂ν(u2)h
−1u1)dS

=

∫
Ω

(
(γ1∇(h) · u2∇u1 − γ2∇(h−1) · u1∇u2) + (γ1h− γ2h

−1)∇u2 · ∇u1

)
dx

−
∫

∂Ω

(
(γ1h− γ2h

−1)∂ν(u2)u1 + γ1∂ν(h)u1u2

)
dS.

Now since

γ1∇h = −γ2∇(h−1) = γ
1/2
1 ∇(γ

1/2
2 )− γ

1/2
2 ∇(γ

1/2
1 )

γ1h− γ2h
−1 = 0

we conclude that

I =

∫
Ω

(
γ

1/2
1 ∇(γ

1/2
2 )− γ

1/2
2 ∇(γ

1/2
1 )
)
· ∇(u1u2)dx−

∫
∂Ω

γ1∂ν(h)u2u1dS.

(29)

The result now follows from (28) and (29). �

5. The uniqueness proof

In this section we will prove the uniqueness result Theorem 1.1.
Note that from the assumption (3) it follows by [SU88] that γ1|∂Ω− =

γ2|∂Ω− and ∂ν(γ1)|∂Ω− = ∂(γ2)|∂Ω− . Since these boundary values also
agree on the ∂Ω+ by assumption, we have γ1|∂Ω = γ2|∂Ω and ∂ν(γ1)|∂Ω =
∂(γ2)|∂Ω.

Fix k ∈ Rn with k · ξ = 0. Chose l ∈ Rn with l · ξ = l · k = 0 such
that ρ2 = τξ + ik+l

2
satisfies ρ2 · ρ2 = 0. This is possible since n ≥ 3.

Let u2 = ex·ρ2e−φ2τ /2(1 + ω2) be a CGO solution to ∇ · γ2∇u2 = 0,
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which satisfies (27), and define ũ1 as the solution to ∇ · γ1∇ũ1 = 0
with ũ1 = u2 on ∂Ω.

Take ρ1 = −τξ+ik−l
2

and note that ρ1·ρ1 = 0. Let u1 = ex·ρ1e−φ1τ /2(1+
ω1) be a CGO solution to ∇· γ1∇u = 0 with ω1 = 0 on ∂Ω+, (cf. (25)–
(26) where we have substituded −ξ for ξ). Then

∫
Ω

(γ
1/2
1 ∇γ

1/2
2 − γ

1/2
2 ∇γ

1/2
1 ) · ∇(u2u1)dx =

∫
∂Ω

γ1∂ν(ũ1 − u2)u1dS.

(30)

We will first prove that the right hand side converges to zero as
τ →∞ :

Lemma 5.1. Suppose the assumptions of Theorem 1.1 hold and define
ũ1, u2 and u1 as above. Then∫

∂Ω

γ1∂ν(ũ1 − u2)u1dS = o(1)(31)

as τ →∞.

Proof. The assumption γ1|∂Ω = γ2|∂Ω and (3) implies ∂ν(ũ1 − u2) = 0
on ∂Ω−,ε and hence

∣∣∣∣∫
∂Ω

γ1∂ν(ũ1 − u2)u1dS

∣∣∣∣ ≤ C

∫
∂Ω+,ε

e−x·τξ|∂ν(ũ1 − u2)||1 + ω1|dS

≤ C

∫
∂Ω+,ε

e−x·τξ|∂ν(ũ1 − u2)|dS.(32)

To estimate (32) we will use (11), however, it seems impossible to
obtain a useful estimate directly. Thus we introduce the function

u = eφ1τ /2ũ1 − eφ2τ /2u2 = u0 + δu

where

u0 = eφ1τ /2(ũ1 − u2),

δu = (eφ1τ /2 − eφ2τ /2)u2.
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Since φ1τ is uniformly bounded from below by a positive constant
for large τ, it follows that∫

∂Ω+,ε

e−x·τξ|∂ν(ũ1 − u2)|dS

≤
∫

∂Ω+,ε

e−x·τξ|∂ν(u0)|dS

≤ C

(∫
∂Ω+,ε

e−x·τξ|∂ν(δu)|dS +

∫
∂Ω+,ε

e−x·τξ|∂ν(u)|dS

)

≤ C

(∫
∂Ω+,ε

e−2x·τξ|∂ν(δu)|2dS1/2 +

∫
∂Ω+,ε

e−2x·τξ|∂ν(u)|2dS1/2

)
.

(33)

Since γ1|∂Ω = γ2|∂Ω, ∂νγ1|∂Ω = ∂νγ2|∂Ω it follows from (17) and (18)
that

‖(eφ1τ /2 − eφ2τ /2)‖L∞(∂Ω) ≤ O(τ−3/2),(34)

‖∇(eφ1τ /2 − eφ2τ /2)‖L∞(∂Ω) ≤ O(τ−1/2).(35)

Further using (27) we easily find the estimates

‖e−x·τξu2‖L2(∂Ω) ≤ C‖1 + ω2‖L2(∂Ω) ≤ C‖1 + ω2‖H1(Ω) ≤ o(τ 1/2),(36)

‖e−x·τξ∇u2‖L2(∂Ω) ≤ C(‖ω2‖H2(Ω) + τ‖1 + ω2‖H1(Ω)) ≤ o(τ 3/2),

(37)

and hence ∫
∂Ω

e−2x·τξ|∂ν(δu)|2dS = o(1).(38)

To estimate the second term in (33) we note that ∂νu0 = 0 on ∂Ω−,ε.
This and the fact that 0 < ε < (ν · ξ) on ∂Ω+,ε implies that∫

∂Ω+,ε

e−2x·τξ|∂ν(u)|2dS

≤ C

∫
∂Ω+,ε

(ν · ξ)e−2x·τξ|∂ν(u)|2dS

≤ C

(∫
∂Ω

(ν · ξ)e−2x·τξ|∂ν(u)|2dS −
∫

∂Ω−,ε

(ν · ξ)e−2x·τξ|∂ν(δu)|2dS

)

≤ C

∫
∂Ω

(ν · ξ)e−2x·τξ|∂ν(u)|2dS + o(1),
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where we have used (38). To estimate the remaining term we apply
the Carleman estimate (11) to the function

v = e−x·τξu2

with A = (A1 − A1τ ) and q = q1τ . By (34), (35), (36) and (37) it is
straightforward to establish the estimates∫

∂Ω

|v|2dS = τ−1 o(1),(39) ∫
∂Ω

∂νvvdS =

∫
∂Ω

(ν · ξ)e−2x·τξ|∂νu|2dS1/2 + o(1),(40) ∫
∂Ω

(4τRe(∂νv∂ξv) − 2τ(ν · ξ)|∇v|2 + 2τ 3(ν · ξ)|v|2
)
dS

= τ

∫
∂Ω

(ν · ξ)e−2x·τξ|∂νu|2dS + o(τ).(41)

Hence (11) and (39)–(41) implies as τ →∞ that∫
∂Ω

(ν · ξ)e−2x·τξ|∂νu|2dS

≤ Cτ−1

∫
Ω

e−2τx·ξ|(−∆ + (A1 − A1τ ) · ∇+ q1τ )u|2dx + o(1)

≤ Cτ−1

∫
Ω

e−2τx·ξ|(−∆ + (A1 − A1τ ) · ∇+ q1τ )e
φ2τ /2u2|2dx + o(1)

≤ Cτ−1

∫
Ω

e−2τx·ξ|(((A2 − A2τ )− (A1 − A1τ )) · ∇)(ex·ρ2(1 + ω2))

+ (q2τ − q1τ )(e
x·ρ2(1 + ω2))|2dx + o(1),

since

(−∆ + (Aj − Ajτ ) · ∇+ qjτ )(e
−φjτ /2uj) = 0, j = 1, 2.

It follows now from the decay estimates (15)–(16) for Ajτ , qjτ and (27)
that

‖e−τx·ξ(((A2 − A2τ )− (A1 − A1τ )) · ∇+ q2τ − q1τ )(e
x·ρ(1 + ω2))‖2

L2(Ω) = o(τ).

This shows that ∫
∂Ω

(ν · ξ)e−2x·τξ|∂νu|2dS = o(1).(42)

By combining (32), (33), (38) and (42) we obtain (31). �

We remark here that since the estimates (36) and (37) are not op-
timal, the conclusion of the lemma remains to be valid even for less
regular conductivities. We will not need the refined estimates below.
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Going back to (30) we note that the decay estimate (25) and (27)
shows that

u2u1 = eix·kγ
−1/2
1 γ

−1/2
2 + o(1)

in H1/2(Ω) and therefore

∇(u2u1) = ∇(eix·kγ
−1/2
1 γ

−1/2
2 ) + o(1)

in H−1/2(Ω) = (H
1/2
0 (Ω))∗, where H

1/2
0 (Ω) is the completion of C∞

0 (Ω)

in H1/2(Ω). Since γ
1/2
1 ∇γ

1/2
2 − γ

1/2
2 ∇γ

1/2
1 H

1/2
0 (Ω) it follows that∫

Ω

(γ
1/2
1 ∇γ

1/2
2 − γ

1/2
2 ∇γ

1/2
1 ) · ∇(u2u1)dx

=

∫
Ω

(γ
1/2
1 ∇γ

1/2
2 − γ

1/2
2 ∇γ

1/2
1 ) · ∇(eix·kγ

−1/2
1 γ

−1/2
2 )dx + o(1)

= o(1),

which by taking τ →∞ implies∫
Ω

eix·k
(
−ik

2
· (∇ log γ1 − log γ2)) +

1

4
((∇ log(γ1))

2 − (∇ log(γ2))
2)

)
dx = 0

for k ⊥ ξ. Changing ξ in a small conic neighborhood shows that

(
1

2
∆(log γ1 − log γ2) +

1

4
((∇ log(γ1))

2 − (∇ log(γ2))
2))̂(k) = 0

in an open region and by analyticity vanishes everywhere. Therefore

1

2
∆(log γ1 − log γ2) +

1

4
∇(log γ1 + log γ2) · ∇(log γ1 − log γ2) = 0,

and since log γ1 = log γ2 on ∂Ω, uniqueness for the boundary value
problem proves that log γ1 = log γ2.

Acknowledgment

The author is supported by the Carlsberg Foundation. This research
was done while visiting Professor Gunther Uhlmann at the Department
of Mathematics, University of Washington. I am deeply indebted to
Professor Uhlmann for his support and valuable discussions. Also, I
would like to thank the department for great hospitality and providing
a friendly environment.



16 KIM KNUDSEN

References

[Ale88] Giovanni Alessandrini. Stable determination of conductivity by bound-
ary measurements. Appl. Anal., 27(1-3):153–172, 1988.
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