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SHARP REGULARITY RESULTS FOR MANY-ELECTRON
WAVE FUNCTIONS

SOREN FOURNAIS, MARIA HOFFMANN-OSTENHOF, THOMAS
HOFFMANN-OSTENHOF AND THOMAS OSTERGAARD SORENSEN

ABSTRACT. We show that electronic wave functions v of atoms and molecules
have a representation ) = F¢, where F is an explicit universal factor, locally
Lipschitz, and independent of the eigenvalue and the solution ¥ itself, and
¢ has locally bounded second derivatives. This representation turns out to
be optimal as can already be demonstrated with the help of hydrogenic wave
functions. The proofs of these results are, in an essential way, based on a new
elliptic regularity result which is of independent interest. Some identities that
can be interpreted as cusp conditions for second order derivatives of i are
derived.

1. INTRODUCTION

1.1. Motivation and results. The non-relativistic quantum mechanical Hamil-
tonian of an N-electron molecule with L fixed nuclei is given by

Hy 1 (X,Z)=-A+V(X,Z) +U(X,Z),

where V', the Coulombic potential, is given by

(1.1) VzV(X,Z):*ZZm_mJ\ 2 ifﬂy

— X
1<i<j<N

and the internuclear repulsion U by

ZyZy
rXB= 2 K
1<k<t<L

The latter is merely an additive term that will be neglected in the sequel and we
will henceforth consider

(1.2) H = Hy . (X,Z) - U(X,Z).

Above, X = (z1,22,...,7x) € R3Y denotes the positions of the N electrons, with
z; = (Tj1,252,%53) € R? the position of the j* electron. The positions of the
L nuclei with the postive charges Z = (Z1,Z5...,Z1) € RL are denoted by X =
(X1, Xa,...,X1) € R* where X; = (Xy.1, X1,2, Xi.3) € R? is the (fixed) position
of the k™ nucleus with charge Zj, and it is assumed that X, # X}, for ¢ # k.
The Laplacian corresponding to the j electron is A; = Z? 1 852 > and so the

Laplacian on R3" is given by A = Zjvzl Aj. We also introduce the 3/N-dimensional
gradient by V = (Vy,...,Vn).

© 2003 BY THE AUTHORS. THIS ARTICLE MAY BE REPRODUCED IN ITS
ENTIRETY FOR NON-COMMERCIAL PURPOSES.
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2 S. FOURNAIS AND M. & T. HOFFMANN-OSTENHOF AND T. @. SORENSEN

The operator H is selfadjoint on L?(R*Y) with operator domain D(H) = W22(R3Y)
[14], and it depends parametrically on X and Z. In the case of an N-electron atom
with (one) nucleus of charge Z fixed at the origin 0 € R3, (1.2) becomes

(1.3) H=Hy(Z) = -A+V
N
Z 1
S (-a -2 )+ _r
;( ! Ile) 1§Z}SN|~”'3z'*39j|

Generations of chemists and physicists have devoted a good part of their research
to the analysis of various problems related to Hy (X,Z). Most of the present
day understanding of atoms and molecules is based on the analysis of problems
directly related to this operator, see any textbook in atomic and molecular quantum
mechanics.

One of the central problems is the eigenvalue problem
(1.4) Hy = Ey, E€R, ¢ € L*(R3Y).

Since the electrons are Fermions the N-electron wave function ¢ has to satisfy the
Pauli Principle. This can be achieved in a spinless formulation by requiring that
transforms according to certain irreducible representations of the symmetric group
&Y. Our present work will not require any symmetry assumptions on . More
precisely, we will consider local properties of distributional solutions (locally L') in
a domain Q C R3N to H1 = E1) where E can be any real number.

Within mathematics and mathematical physics Schrodinger operators as (1.2) are
studied mostly from an operator theoretical point of view, see the textbooks [1],
[14], [17], and [21] as well as the recent survey [20].

The PDE-aspects of (1.4) have been studied in relatively few works. We first note
the following: Let ¥(X) denote the set of points in R?*Y where the potential V'
defined in (1.1) is singular. The function V is real analytic in R3V \ ¥(X) and
hence by classical results (see [11, Section 7.5, pp. 177-180]), so is 1.

Therefore a basic question is how to characterize the effect of the singularities of V'
on the local behaviour of a solution 9 of (1.4).

In 1957 Kato [13] showed that a solution ¢ satisfying (1.4) is continuous in all
of R3N with locally bounded first derivatives, i.e., 1 is locally Lipschitz. He also
analyzed how 1 behaves near the so-called two-particle coalescence points, i.e.,
those points in 3(X) where exactly one term in the sums representing V (see (1.1))
is unbounded.

Generalizations with new insights for those points in R3*Y where more than one
term in (1.1) is singular were obtained in [10] and more recently in [9]. We mention
that the present authors in [5], [6], and [4] studied the smoothness of the electron
density, a question related to the present investigation; we shall not discuss this
further here.

Suppose we have a solution ¢ to HyY = Ev, E € R, with H as in (1.2) or (1.3). We
want to find a representation for v

V(X1, .o @) = F(X1,e oy n) O(X1, ..o, Tp)

such that ¢ is as smooth as possible and F is a universal (i.e., not depending on
or E) positive factor reflecting the behaviour of the potential V' near ¥ (X). This
means that for any two solutions 7,9 of a fixed Schrodinger operator (1.2) (or
(1.3)) the function F will be the same, i.e.,

Y1 = Fo1, Y2 = Fea.
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Since it is already known from one-electron atoms that v is just locally Lipschitz,
F cannot be smoother than that. We shall see that by choosing F in a special way
one can say a lot more. Let us first recall some of the ideas developed in [9].
Suppose ¥ is a solution to (—A + V)i = Erp in Q C R3N. Set ¢ = ef'¢, then ¢
satisfies

(1.5) A¢p+2VF -Vé+ (AF+ |VEP +(E-V))¢p =

Now assume H = —A + V is given by (1.2). The specific nature of the Coulomb
potential makes it possible to find an explicit F' such that AF =V, namely

Fix) = F %ZZZAX@ Bt 3 bl

1<i<j<N
We have given F' an index 2 to indicate that Fj is a sum of functions each only
depending on the coordinates of two particles. If we insert F» into (1.5) we obtain

Ay + VE, - Vo + ([VE|* + E) ¢y = 0,

where we have also given ¢ an index 2 to show that it is associated with F,. The
regularity properties of ¢ are now determined by the regularity of V Fs, respec-
tively, |[VF,|2. Since VF; is locally bounded, standard elliptic regularity theory
(see Section 2) gives us that

(1.6) o € CH(Q)  for a€(0,1).

(For the definition of the Holder-spaces C*, see Definition 2.1). Since VF is just
bounded and not continuous, one cannot in general expect anything better than
(1.6). Note that since ¥ = e2 ¢y we have

(1.7) Vi — (VE)yY € C*(Q) for «€(0,1).

This is a general formulation of Kato’s cusp condition [13] which plays an important
role in the numerical treatment of (1.4). (Here, and in the sequel, by a ‘cusp
condition’ we understand a condition a solution 1 has to satisfy at a point in the
singular set X(X)).

We are now ready to state our main result about the regularity of .

Theorem 1.1. Suppose 1) is a solution to Hip = E1p in Q C R3N where H is given
by (1.2). Definey; ¢ =z — Xp, i €{1,... , N}, £ € {1,...,L}. Let

(1.8) F = ef2ths
with
1 1
(1.9) Fy(x) = §ZZZZ|ZJM|+Z Z |xi_$j|7
/=1 i=1 1<i<j<N
L
(1.10) Fy(x)=Co Yy Zy (yie - yi0) W (Jyael® + [y;.0%)),
1=11<i<j<N
where Cy = 215—::
Then
(1.11) = Fes
with

(1.12) b3 € CHH(Q).
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Furthermore this representation is optimal in the following sense: There is no other
function F depending only on on X,Z and on N, but not on ¢ or E itself, such
that 1 = F¢ with ¢ having more regularity than CH1(Q).

Remark 1.2.

(i) Of course one can consider more general Hamiltonians, for instance molecular
Hamiltonians where the nuclei are allowed to move. Kato [13] considered this
case. Our results, suitably modified, extend to this situation. We concentrate
on the model with fized nuclei since this is the ‘standard model’ in molecular
physics.

(ii) For the proof of Theorem 1.1 a special reqularity result (see Theorem 2.6) for
solutions of the Poisson equation Au = g will be vital. Roughly speaking, if
g € L™ has a certain multiplicative structure, we can show that u € C*', and
not only u € CH* « € (0,1) as in general (see Proposition 2.2). This result
is of independent interest.

(iii) Note that each term in the sum F» is either a term involving the coordinates

of one electron and one nucleus, or the coordinates of two electrons, whereas
the terms in F3 involve the coordinates of two electrons and one nucleus. In
the representation (1.10) of F3 mo terms involving the coordinates of three
electrons occur; see Section 3 for details.
The fact that no terms involving the coordinates of four and more particles
show up in F3 stems from the fact that in the summands contributing to |V Fy|?
only terms involving at most three particle coordinates occur (again, see Sec-
tion 3 for details).

(iv) An immediate consequence of Theorem 1.1 is the following sharpening of
(1.7):

Vi —p(VE, + VE;) € COH(Q).

(v) Attempts to approximate many-particle wave functions by a product as in
(1.11) are common in computational chemistry and physics. There, such an
F is usually called a ‘Jastrow factor’.

It is also interesting to consider the regularity of 1) near the zero-set N'(¢)) = {x €
R3N |4 = 0} of 1. A simple argument shows that Theorem 1.1 actually implies that
V4 : N(3p) — R3N is locally Lipschitz, whereas V) is just bounded in ¥ (X)\N ().
By ‘locally Lipschitz’ we here mean the following: For all closed balls K C R3",
there is a constant C' = C(K) such that |Vi(x) — Vi(y)| < C(K)|x — y| for all
x,y € N) N K. Indeed, writing Vi = ¢V (Fy + F3) + exp(Fy + F3)V3, we
get, for x € N(v), that Vip(x) = exp(Fa(x) + F3(x))Vs3(x) since V(Fy + F3) is
bounded. The assertion follows, since both exp(F; + F3) and V¢3 are Lipschitz in
R3V,

In [8] it was shown for a wide class of potentials that at their zero-sets real valued
distributional solutions (which for these potentials are then actually continuous
functions) to (—A + V)u = 0 are, roughly speaking, by one degree smoother than
away from their zero sets. So the observation above extends these results to the
Coulombic case. The potentials considered in [8] were of Kato type, K™%, where n
is the dimension (in our case, n = 3N) and § € (0,2); see [18] for definitions and
many far-reaching results concerning these potentials. In [18] (see also [19]) it was
shown that solutions are locally C? for § < 1 and C'°~! for § € (1,2). However,
since the Coulomb potential V in (1.1) is in K3N for all § < 1, but not in K3N:!
these results are not sharp and actually weaker than Kato’s result.

It is not surprising that logarithms occur in (1.10). Such terms have been considered
in classical work by Fock [3] for the atomic case; see Morgan [16] for an analysis
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of these ‘Fock-expansions’ for two-electron atoms. That paper also contains many
references to earlier work on such expansions.

Proof of the optimality of the representation (1.11): It suffices to find a simple
example. Consider the one electron atom whose Hamiltonian is given on R? by

VA4
H:—A—m . &= (r1,20,73) € R
With ¢ (z) = e~ %17l and Yo = mle*%m we have
Hpp=—Z ¢,  Hipg=—Z 4.

Write ¢ = FoM) and ¢ = F¢p?. Now 1 > 0 and if we had an F which would
allow more regularity of the ¢(9’s, then

¢(2) _ 1;[]2 o Z g
(1.13) S =g = me
would be better behaved than just C''. But near the origin the right hand side
of (1.13) behaves like 21 (1 + Z|z|) and this is just C1}, i.e., the second derivatives

are bounded but not continuous. O

The results in Theorem 1.1 are not well suited for obtaining a priori estimates. In

particular neither F» nor F3 stay bounded as |x| tends to infinity so that if, say,
¥ € L2(R3N) then ¢3 is not necessarily in L2(R3Y). These shortcomings will be
dealt with below in a similar way as in [9].

Definition 1.3. Let x € C§°(R), 0 < x < 1, with

1 for|z| <1
(1.14) x(x) =
0 forlz|>2.
We define
(115) Fcut = F2,cut + F3,Cut7
where
LA
(1.16) FQ cut §ZZZ£X |yzf| |yzf|
=1 i=1
1
+7 Do Xl —agl) o -,
1<i<j<N

(1.17) F5 ous(x) =

L
Cod > ZexUvie)x(yse) Wi - ys0) n (Jyiel* + lysel®)),

(=1 1<i<j<N

and where Cy is the constant from (1.10). We also introduce ¢g cur by
(1.18) Y = efentg .

Theorem 1.4. Suppose v is a solution to Hy = E1 in R3N. Then for all 0 <
R < R’ there exists a constant C(R, R'), not depending on 1 nor xo € R*N | such
that for any second order derivative,
2 0
=—— 4,j=1,2,...,N, k{=1,23,
8$i7k8$]‘7¢ b

the following estimate holds:
(119) ”82¢ - ¢ 62FCutHL°°(BSN(X0~,R)) < O(R’ R/)||wHLO°(BBN(XO7R/))'
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Remark 1.5. Theorem 1.4 strengthens results obtained in [9]. More precisely, to
prove Theorem 1.4 we will show that

(1.20) [3,cutllora (Ban (x0.R)) < C(Ry R)||93,cutll Lo (Ba (xo,R7))-

The estimate (1.19) is then a trivial consequence of (1.20). (On the other hand,
(1.19) and (1.21) imply (1.20)).

The estimate (1.20) is a strengthening of Proposition 1.6 below to « = 1. We state

and prove the proposition here, since we need it in the proof of (1.20). It essentially
follows from ideas in [9].

Proposition 1.6. Suppose v is a solution to Hi = Ev in R3N. Then for all
0 <R < R and all « € (0,1) there exists a constant C(a, R, R'), not depending on
¥ nor xo € R3N | such that, with ¢3 cur defined as above,

(1.21) [¢3,cutllcr(Bsn (x0,R) < Cll@s,cutll o (Bsn (x0,R)-

Proof of Proposition 1.6: Note first that with ¢ = ef2<w ¢y .y, (1.5) and AFy =V
gives

(122) A(ZSQ,Cut + 2VF2,Cut : v¢2,out
+ (A(Facut — Fo) + |V cut]® + E) d2,cut = 0.

It follows from the form of Fy oy and Fy (see (1.16), (1.14), and (1.9)) that the
coefficients in (1.22) above are uniformly bounded in R3N . Therefore, (1.21), with
®2,cut instead of @3 cut, follows from Proposition 2.2. To get (1.21) with ¢3 cut, note
that ¢3 cuy = €~ I3t dg oy, and that Fs ey € CH(R3N) and has compact support
(see (1.17) and (1.14)). O

We point out some consequences of Theorem 1.4 which can be viewed as cusp
conditions for second order derivatives of ¥. Indeed, we can relate the singularities
of the second order derivatives of F.,; with those of the second order derivatives
of ¢ in a precise way, thereby obtaining certain identities. Here we only explicitly
state some representative cases.

Corollary 1.7. Let 9 be a solution to Hy = Ev in R*N with H given by (1.2).

(i) Let 1 <i<j <N, and fix any point zg = (21,...,2n) € R¥N with z; = z; =
2.
Then

1
1.23 lim H T — ;| Vi Vi) + =z H —0.
( ) R0 (‘ % ]‘ % 37/’) 21/’( 0) Lo By (20, R))
(i) Let 1 <i < N, 1< /(¢ <L, and fir any point zo = (z1,...,2n) € RN with
Z :Xfuzj 7é vaj 757’
Then

1.24 lim H 2 — Xo| At + Zo (2 H —0
a2t (e - )+ Zevtan|,

Proof: In order to show (1.23) we first show that

(1.25) T Ji 2] ViV P (%) = .
It suffices to consider the limits for |z; — x;| V; - V,;F5 and |z; — x| V,; - V;F3. An
easy calculation shows that

lim |z; —2;|V; - V; Fa(x) = —%.

X—Z0
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If z # X, for all £ then V; -V, F3 is smooth near zg. We therefore only need to
consider the case z = X,. We have

Vi -V;F3 =
CoZeVi - Vi{((ws = Xe) - (x5 — Xo)) In (Joi — Xof* + |z — Xel?) }
=3CyZp In (|1‘z — X@|2 + |l‘j — Xg|2) +n,
where 7 is bounded in a neighbourhood of zy. Noting that
s — 2| < V2 (jas = Xal? + |z = Xef2) ',

we see that
lim ‘331' - J,‘jl Vz . Vng(X) = 0.

X—Z(
Using the triangle inequality we obtain
1
[ 12 = 23l (V- V) + 50020)|

LOO(BSN(ZO,R))

< H|x1 -zl ((Vz‘ V) = (V- VjFC“t)w) HL‘X’(BsN(ZOaR))

ol = 51 (9 95 P + 50(20)|

| j| ( cﬂ:)q/} 7/} Lo (Ban (20, R))
This, (1.19), and (1.25) imply (1.23).

The proof of (1.24) is similar. Just note that

'xf‘XﬂAiFF‘Z”'wi‘Xf'(Zz\x — ] Z\x x|)
i J % k2t % k

1.2. Organisation of the paper. For simplicity we shall only give the proofs of
Theorems 1.1 and 1.4 for the atomic case (i.e., £ = 1,X; = 0 and Z; = Z, see
(1.3)). Indeed, no additional complications arise for molecules. Also, we only give
the proof of Theorem 1.1 in the case Q@ = R3V.

In subsection 1.3 we define some notation to be used in the entire paper. Section 2
contains standard elliptic regularity results in subsection 2.1. Subsection 2.2 con-
tains in particular the elliptic regularity result Theorem 2.6, which is proved in
subsection 2.3. Theorem 2.6 is the essential new mathematical input necessary for
the proofs of Theorems 1.1 and 1.4. These proofs are given in Section 3—the proof
of Theorem 1.1 in subsection 3.1 and that of Theorem 1.4 in subsection 3.2. The
Appendices A, B, and C contain the construction of solutions to certain Poisson
equations. These solutions is another important ingredient for the proofs of the
main theorems.

1.3. Notation. Throughout the paper, constants occuring in inequalities will be
denoted by the symbol C, although their actual value might change from line to
line.
For x € R™ (n > 2) we write = rw, with r = |z|, w = z/|z| € S"~!, the unit
sphere in R™. Denote by By, (z,r) the open ball of radius r > 0 around .
We denote by Y, (w) the normalised (in L?(S"~!)) real valued spherical harmonics
of degree I,1 € Ny, with m =1,...,h(l) — 1, where
2l+n—-2)(l4+n-3)!

(n—=2)11!

(1.26) h(l) =
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Then {Y] m }i.m constitutes an orthonormal basis in L?(S"~1).
The Y} ,,’s are the eigenfunctions for £2, the Laplace-Beltrami operator on S"~1:
LY =11+ 1 —2)Ym,

where — %2 is the angular part of the Laplacian in R", so

2 n-10 L?
A= gET e T
We define 77[(;2 to be the orthogonal projection in L2(S"~1) on Y}
(P =Yinle) [ Vin@i@)do . feI¥E™),
and
h(l)—1

(1.27) P =3 P
m=0

We denote b = Ran(P™).

By abuse of notation, for a function f : R" — C we write f(rw) = f(z), and,
whenever f(rg-):S""! — C is in L?(S"~1) for some rg € (0, 00), we write

(PEF) (o) = Yim(@) |~ Vi (@) (r0) der = fium(ro) Viom ().

2. ELLIPTIC REGULARITY

In this section we collect results on regularity of solutions to second order elliptic
equations needed for the proof of Theorems 1.1. and 1.4. The results fall in two
parts, known ones (in subsection 2.1) and new ones, developed for our purpose,
and of interest in themselves. The latter are in subsection 2.2. The result of main
interest is Theorem 2.6, which is proved in subsection 2.3.

2.1. Known results.

We start by recalling the definition of Holder continuity:

Definition 2.1. Let Q be a domain in R, k € N, and a € (0,1]. We say that
a function u belongs to C*(Q) whenever u € C*(Q), and for all 3 € N" with
|8 =k, and all open balls By, (xo,r) with By, (xg,r) C 2, we have

p  1D%ula) = Du(y)

2y€Ba(wor),azy 1T~ YI°

< C(zg, 7).

For any domain ', with ' CC Q, we define the following norms:

lullero@y = Y 1D ull Loy + [ulka0r,
|B]<k

DB _ DB
ke = 3 sup |DPu(x) ) u(y)|
18l=k z,yeQ, £y |.23 - y|

For k = 0 we use the notation C*(Q) = C**(Q) and [u]a,0 = [u]0,a,0 -
Furthermore, for a function u € C*(R™\ {0}) we define

(2.1) ulloagn-1y = sup ul + [u]a,gn-1,

u(z) — u(y
(U] gn—1 = sup 7| () i )|
cyesn—t, oty 1T =Y
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We will need the following result on elliptic regularity in order to conclude that
the solutions of elliptic second order equations with bounded coefficients are O,
The proposition is a reformulation of Corollary 8.36 in Gilbarg and Trudinger [7],
adapted for our purposes:

Proposition 2.2. Let Qg be a bounded domain in R™ and suppose u € WH2(y)
is a weak solution of Au+ Z?:l bjDju+ Wu = g in Qo, where bj,L/V, g€ LjO(QO),
Then u € CH%(Qq) for all a € (0,1) and for any domains ', Q, ¥ C Q, Q C Q
we have
[ullcrey < C(sup |u| + sup|g|)
Q Q
for C = C(a,n, M, dist(, 00)), with

maX{Lj:Hll%?fn 16511 ), Wl oo (s 19l e () } < M.

We further need results concerning the regularity of solutions of the Poisson equa-
tion. These regularity properties are based on the regularity properties of the
Newton potential of the inhomogeneity. For our further considerations we recall
here the properties of this function.

Let g € L>®(Q) for Q a bounded domain in R™, n > 2. The Newton potential of g
is the function w defined on R™ by

(2.2) w(z) = / I'(z — y)g(y)dy

with

L n(|z|) n=2
T(z) = 2T | ) . )

From [15, Theorem 10.2 and 10.3] we have
Proposition 2.3. Let Q C R™,n > 2, be a bounded domain, then:

(i) If g € L>=(Q), then w € CH*(Q) for all a € (0,1), and Aw = g in Q holds in
the distributional sense.
(i) If g € C*%(Q) for some k € N and some o € (0,1), then w € CkT2(Q).

Since every solution to the Poisson equation can be written as a sum of the New-
ton potential of the inhomogeneity and a harmonic function, the above implies in
particular the following well-known result:

Proposition 2.4. Let g € C*%(Qy) for some k € N and some o € (0,1), and
assume u is a weak solution to Au = g in .

Then u € C**2%(Qq). Furthermore, for any domains Q',Q, @ C Q, Q C Qy, we
have

(2.3) l[ullgrsz.any < C(S?Zp lul + llgllore @)

with C = C(n, k, a, dist(Q,09)).

The next lemma, which is taken from Gilbarg and Trudinger [7, Lemma 4.2], is
essential for the proof of the main regularity result in subsection 2.2.

Lemma 2.5. Let Q be a bounded domain in R™, n > 2 and let g € C*(Q)NL>®(Q)
for some a € (0,1].
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Then the Newton potential w of g (given in (2.2)) satifies, for x € Q and i,j =
1,2,...,n,

Dijuw(r) = i DTz —y)(g(y) — g(z)) dy

(2.4) —g(z) D'z — y)v;(y) do(y).
Qg

Here, Qg is any bounded domain containing Q0 for which the divergence theorem
holds, and g is extended to vanish outside ). In the last integral, do denotes the
surface measure of 08y, and v; the j-th coordinate of its (outwards directed) normal
vector.

2.2. New results.

We here collect a number of more explicit regularity results needed in the proof of
Theorems 1.1 and 1.4.

The following result shows that one can push the C1® « € (0, 1), in Proposition 2.2
to C1! in certain cases.

Theorem 2.6. Let g € L¥(R¥), k > 2, be a homogencous function of degree 0

which has the properties g € C*(R* \ {0}) and g|sk—1 is orthogonal to hgk) (the
subspace of L*(S*~1) spanned by the spherical harmonics of degree 2). Let f €
C*(RY) for some d > 0 and let u € CH*(RFT?) be a weak solution of the equation

(2.5) Au(a’,2") = g(2') f(2")
where ' € RF, 2/ e R4, A = Ay + Ay,

Then u € Wlifo (R™), n =k +d, and the following a priori estimate holds:
For all balls By (z, R) and By (z,Ry) in R™ where 0 < R < Ry, z € R,

sup |Djul <C ( sup : |ul + (S;Jg 191) 1 flce (raB(2,m0))
.

Bn(z,R) Bn(z,R1

(2.6) + (s |11 lglle @ )

WdBn(Z,Rl)
with C = C(n,a, R, Ry). Here mq(2',2") = 2" for ' € R, 2" € R? for d > 0; for
d=0,m4(z") =0.

Remark 2.7.

(i) The case d = 0 means that f is a constant and the terms in (2.6) with f then
equal this constant.

(ii) The reason for the condition k > 2 will become clear in the proof of the
theorem, when Lemma 2.5 is applied.

(iii) Note that if k = 0,d > 2, one has stronger conclusions: Equation (2.5) be-
comes Au(y) = f(y) with f € C%(RY), so by Proposition 2.4, u € C**(R%).
The a priori estimate analogous to (2.6) is then a consequence of Hélder-
estimates for u (see e. g., [7, Corollary 6.3]).

(iv) Using the standard fact (|2, Theorem 4 in 5.8]) that Wi’coo(R”) = C’IIO’CI(R”)
(with equivalent norms) we may replace the termsupp, (. gy |Dijul by [ul1 1,8, (z.r)
on the left hand side in (2.6).

(v) For the special solution to (2.5) given by the Newton potential of gf, the
estimate (2.6) holds without the term supg (. g, |u| on the right hand side

(see (2.16)).



SHARP REGULARITY FOR WAVE FUNCTIONS 11

Since the proof of Theorem 2.6 is a bit lenghty we present it separately in subsec-
tion 2.3.

The following proposition, on solutions to Poisson’s equation, when the inhomo-
geneity f in Au = f is a homogeneous function, is needed often in the paper.

Proposition 2.8. Assume that the function g satisfies
g(rw) = r*G(w) with G € L>(S"~!) and P,Ei)zG =0.
Then there exists a solution u to

(2.7 Au=g on B,(0,R) CR",

satisfying u(rw) = r**2U (w) with U € C»*(S"~1) for all a € (0,1).

Proof: Let
gim(r) = / g(rw)Y m(w) dw = rk Gw)Ym(w)dw = rkgl,m.
sn—1 sn—1
Then (see (1.26) for h(1))

o h(l)-

g(rw) =" Z Z qi, val m

1=0,l#k+2 m=0
since gg+2.m = 0 for all m.
Now define

o h(l)—

(2.8) Uw) = Y m(w)

1=0,l#£k+2 m=0

with b;(n, k) = (k+ 2)((k +2) +n —2) — (I + n — 2). Note that b;(n,k)) # 0 for
I # k+2. Since 32 g1.mYi,m € L*(S"71) (since G € L®(S"™")) the sum (2.8)
therefore converges in L#(S"~1).

Make the ‘Ansatz’ u(rw) = r*+2U(w), and denote for N € N

R(l)—1

gN(’f’(U): Z Z gi,m7T Y—lm )

1=0,l#£k+2 m=0
N h()-

uy (rw) = rk+? Z Z bl m (W)

1=0,l#£k+2 m=0

Now let ¢ € C§° (Bn(O, R)), then, using that £2Y] ,, = (I +n — 2)Y] m,

@9 [ su-gdi= [ (@ou-undet [ oo - g)da.

By, (0,R) B (0,R) B (0,R)
Since u —uy — 0,9 — gy — 0 (in L? - sense) for N — 0, the RHS of 2.9 tends to
zero for N — 0. Hence u = r*+2U(w) solves 2.7 in the distributional sense. With
w the Newton potential corresponding to g (see 2.2), we have w € C%(B,(0, R))
due to Proposition 2.3, and u — w is harmonic, so u € C1*(B,, (0, R)). This implies
that U € Cho(S"~1). O

We prove the following useful lemma:
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Lemma 2.9. Let G : U — R"™ for U C R*™™ q neighbourhood of a point (0,yo) €
R™ x R™. Assume G(0,y) =0 for all y such that (0,y) € U. Let

fla ={ TG 270

Then, for a € (0,1],
(2.10) G € CO*(U;R") = f € CO(U).
Furthermore, || f||ce @y < 2||Gllco@)-

Proof: Let a € (0,1]. We need to estimate m;(iym

Suppose first that x5 = 0. Then f(z2,y2) = 0 and we get

%'G(%ayl)‘

|f(z1,91) — f(0,32)] < 1 .|G(~T1,yl)\
(@1, 91) = (0, 92)|* — 1| |21 ||
< |Gllgewy,

since G € C*(U;R™) and G(0,y,) = 0.
Next, suppose 0 < |x2| < |z1]. By the triangle inequality:

x
|f(z1,01) = f(22,92)] < ‘ﬁ (G(21,p1) — G(xz,yz))‘
4 ‘( T T2
Using that G is C® and that G(0,y2) = 0, we get
|f($1,y1) - f($27y2)|
T i)

< Gllca @) (|($1,y1) — (z2,12)|" + ‘(— - —)) |x2|0‘> )

T T2y g, o)
ol ) Gl

ESUREeRY
To control the last term—divided by |(x17 ) — (x2, yg)’a—we first derive a lower
bound on |(=’El,y1) - (5U2,2/2)|a:

2
[(z1,51) = (w2, 92)|” > |1 — 2a|?

2 T To \2 T To \2
= (o1l = laal)” + fon ) (o = 20 ) 2 o] ol (o = o)
lz1] |22l 1

Therefore, using the assumption 0 < |za| < |z1],

[(z1,51) — (w2, 92)|" > |a2|®
This finishes the proof of the lemma. (I

The following obvious lemma is used repeatedly throughout the paper:

Lemma 2.10. Assume f(rw) = r?G(w) with G € CH1(R™\ {0}) N L= (R™). Then
f € CHL(RM).

Proof: The first derivatives of f trivially exist and are continuous. Therefore it
suffices to show that all derivatives of f of second order belong to LS. (R™); the
result then follows from Remark 2.7 (iv).

9% f oG oG\  , G
axjaxk = 2(5j’kG(CU) + 2(.%]67% + xk%) +7r axjaxk S LIOC(R ),

since G € CH1(R™ \ {0}). This proves the lemma. O
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Note that better regularity cannot be expected without assuming continuity of G
at £ = 0. On the other hand, if G only depends on w € S"~!, and G is continuous
at x = 0, then G is a constant.

2.3. Proof of Theorem 2.6.

We first investigate, for zo € B, (2, R1), the behaviour of the Newton potential w
as given in (2.2), namely

(2.11) (o) = / I'(zo — )9 [ (") dy
B, (z,R1)
with y = (¢/,y") € RFtd = R",

Since u and w are C*® - solutions of (2.5) in B,(z, R1) (see Proposition 2.2),
h = u — w is harmonic. Any harmonic function h in a bounded domain € satisfies
the following a priori estimate (see [7, Theorem 2.10]):

C(n)
52

with K compact, K C @ C R”, and ¢ = dist(K, 09). So, by (2.11) and (2.12), for
xo € By (2, R) (recall that h = u — w)

(2.12) sup |D;jh| < sup|h| , 4,7€{l,...,n},
K )

C(n)
Diu(zg)| < ——m—— su U
|Dyjulo)] <R1—RV<BM£;J'
+C(n R (sup lgl) ( swp|f]))
Sk—1 maBn(z,R1)
(213) + |D”w(x0)\

Therefore to prove that u € W, >°(R™) and that u satisfies (2.6) it obviously remains
to show that w satisfies the a priori estimate (2.6). This will be done via Lemma
2.5 and will finish the proof of Theorem 2.6.

We proceed as follows: Define N = {(2/,2”) € R" | 2/ = 0} and note that |[N| =0
(IN| denotes n-dimensional Lebesgue measure of N) and that for every ball B,, C
R™, B, \ N is still a domain. For this the assumption & > 2 is vital (see also
Remark 2.7 (ii)). Note also that (still with ¢ € B, (z, R1)) w can be written as

(2.14) w@mL(RﬂymmmwﬂMMy

Taking into account the Holder continuity assumptions on g and f it is easily seen
that for every domain Q C R", gf € C*(Q2\ N). Hence (2.14) and Proposition 2.4
implies that w € C%*(B,(z, R1) \ N).

Now we are ready to apply Lemma 2.5: Pick Q = B,,(z, R;)\ N and Qo = By, (z, Ra)
with Ry < Ra, then we obtain from (2.4), for xg € B, (z, R1) \ N, that

&w@d:/ DT (0 — v) () () — (9)(x0)) dy
By (z,R2)

—mﬁm@/’ DiT (0 — y)v;(y) do ()

8Bn(Z,R2)
(2.15) = I(z0) + J(x0).

Here as before gf is extended by zero outside B, (z, R1) \ N. Noting again that
|N| =0, we can use this integral representation to derive the a priori estimates on
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D;jw. We want to show that for 0 < R < R;

(2.16) sup |Dj;w|
B, (z,R)

< Ca| (510 191) Iflloo (ram ey + ( sup Ifl) lgllcase-1)

wqBn(z,
where Cy = Co(n,a, Ry — R, R/R1). Inequality (2.16) together with inequality
(2.13) will yield the desired a prioriestimate (2.6) and implies in particular that v €
W2 (RF+4). So to finish the proof of Theorem 2.6 it remains to prove inequality
(2.16). For this we have to estimate the integrals I(zg) and J(zo) in (2.15). We state
the estimates in the following lemma (Lemma 2.11), which we then apply to prove

inequality (2.16). The proof of Lemma 2.11 is given afterwards. For convenience we
shall henceforth use the following notation: B = B,(z, R), B; = By(2, R;),j = 1,2.

Lemma 2.11. With I(x¢) and J(xo) as in (2.15) we have the estimates

o)l < ) (72) (sulal) (sup 1)

+ C(n,a) (R — R)*( Suip 1) [f]a,del

(2.17) +C(n, a) (bup 1F1) llgllce g1y,
n—1
(2.18) [T(ao)| < Clm) sup_ o] ()"

for xo € By(z,R)\ N.

Combining the inequalities (2.17) and (2.18) with (2.15) leads to the a priori esti-
mate

(2.19) sup  |D;jw(zo)
z0€By(2,R)
R2 n R2 n—1 )
= C(”){(Rl “n) * (R2 —R) }(;1{2 1)  sup 1)

+C(n, ) [(Rl — R)*(sup lg]) [f], .5 + (sup [f]) \Ig\lcwk—l)}-
Sk—1 ’ maB1
Finally we pick Ry = 2R; and obtain, with C' = C(n, o, R, R1),

(2.20) sup |Dijul < C [(suplol) 1/ llowram,

B, (z,R
+ (sup 1f1) lgllen @) |

mqB1
This finishes the proof of (2.16) and according to our previous considerations the
proof of Theorem 2.6. It remains to prove the estimates in Lemma 2.11.
Proof of Lemma 2.11: We start by proving the estimate (2.18) on J(zp). For
y € 0By and zg € B, (2, R) \ N we have |zg — y| > R — R. This, and
C(n)

Dil'(xg —y)| £ —— ",
Do =9)) < 1=

yields
|J(zo)| < [(9f)(20)] I/ |Dil’ (0 — y) v;(y) do(y)|

<cm) sw ol (m22)"
B, (z,R) R - R
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verifying (2.18).

It remains to prove the estimate (2.17) on I(z). This is more involved. With
R'= Ry — Rand Q = B,(z,R2) \ N, write

(2.21) I(xo) = Il(xo,R/) +IQ($0,RI)

with

L(20, ') = / Dy (0 — 1) (0 W) — (af) (o)) dy,

\By, (z0,R’)

I(xo, R') = /B Di; (0 — 1) ((0f)w) — (af)(x0)) dy.

n(x()aR/)

Clearly we have (since gf =0 on By \ B; and ¢ is homogeneous)
Do B < 2(swplafl) [ |DyT(eo —y)ldy
Bl Q\Bn(

xo,R’)

(2.22) < C(n)(sup lgl) ( sup If\)(%)n~

TI'dBl
The estimate for I3(zg, R") will be more involved and we need several steps.

First notice that

(2.23) (DiI)(x) =

where P, is a homogeneous harmonic polynomial of degree 2 (which clearly depends
on the indices 4, j; we suppress these for simplicity). Use polar coordinates x =
rw, r = |z|, w = z/|z|, and obtain (using [, , Py(w)dw = 0, and (2.23)) that

(2.24) I(zo,R') = C’(n)/o /Sni1 r ' Py(w)(gf) (zo + rw) dw dr.

Denote € R™ by 2 = (2/,2") = rw = r(w’,w") where o’ € R*, " € R? (s0 that
|w|? 4+ |w”|? = 1; when d = 0,w” = 0). With this, write

R/

(2.25) Iy(z0, R') = C(n) / r (IS (o, 1) + 15 (o, 1)) dr
0

with (I{" = 0 when d = 0)

157 wo,r) = [ Pa(w) gty r) (f (o + ) = S (a) deo

I (xo,7) = f(2f) | Pa(w) g(ah + rw’) dw.
Snfl

We need to estimate \Iél)| and |IQ(2)| such that we gain a suitable r-behaviour for
small, respectively, large r which will enable us to estimate |I3(zg, R')|.

Firstly, due to Lemma 2.5, (gf)(y) is defined to be zero for y € B\ By in I(x) and
formula (2.15) holds for 2o € By \ N. Using this formula just for g € B, (z, R)\ N
we have g + rw € By for all r with 0 <r < R’ = Ry — R and therefore (up to the
zero set N U OB;) we can make use of the Holder continuity properties of g and f
for the points x¢ and xg + rw in the integrals above.
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Using the Holder continuity of f and the homogeneity of g we obtain
1" (o, 7)|

:Ta

" "y _ "
/ |w”|aP2(w) g(x’0+rw’) f(xo +rw ) f(fo) dw
Snfl

,roc|wl/|o¢
S C(n) TQ(SS;];R ‘g|> [f]oc, mqB1

(for [fla, nyB, see Definition 2.1). Hence

C( )

/

(2.26) /R r NI (o, )| dr <

To estimate the second term in (2.25), we write in the following z{, = |z(|n with
n € S¥~1 and define s by r = |z{|s. Then

(R/) (SBR |9|) [f]a,ﬂdBr

(2.27) ’/ *11(2 (zo,7) dr‘

R/
3>|\ [ [ patiatla+red) dwds]

|‘/|w0‘ _1/S” W)y (77+sw)dwds’

where we used that g is homogeneous of degree zero and |zj| # 0. Because of
the s~!-term in the s-integral we have to control the w-integral for s — 0 and for
|zg| — 0.

Define, for 0 < 57 < s9 < o0,

(2.28) K(s1,$2) / -1 / Pay(w)g(n + sw') dw ds.
Sn—1

The behaviour of K for different regimes of s; and s5 is expressed in Lemma 2.12 be-
low. Applying it, we get that (for all [z{| € (0,00)) |K (0, R'/|z(|)| < C(n, @) ||gllcege-1)
(for [|g||ce(sk-1), see Definition 2.1).

Since due to (2.27)

‘/ r P (o, 1) d?" = |f (o)l [K (0, R'/|x])|

we obtain

(2.29) ‘/ rt, 2) (o, dr’ < C(n,a) ( sup 1F1) lgll o 1)

maB1

Further via (2.25), (2.26) and (2.29) lead to
(o0, )| < Clrs0) (B)" (510 o)) (1],

(2.30) +C(n,a) ( sup 1F1) lgll o 1)

mqB1
The estimate (2.17) now follows from (2.21), (2.22), and (2.30).
Proving Lemma 2.12 below will finish the proof of Lemma 2.11. O

Lemma 2.12. With K as in (2.28) we have:
(i) 81 =0,82 <1/2:
(2.31) |K(0,52)] < C(n,a)[glase-
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(11) 1/2 <51 <89 < 4:

(2.32) |K(s1,52)] < C(n) sup lgl-
Sk—1

(iii) 4 < 81 and sg — c0:

(233) ‘K(Sla 82)‘ < C(”v a) [g] a,Sk—1 + C(’I’L) SS;J;]% |g|

Proof of Lemma 2.12:

(i): Since [, , Py(w)dw = 0 and g is homogeneous of degree 0 we have

_ 77—|—8w
K(0, 1 dw ds.
= [Tt [ Pea(fy) ) dvds

Note that | + sw’| > 1 — s > 1/2. Since g € C*(S¥~1) we obtain

S2 !
1|+ sw o
K (0, <C WL -_== ds.
O L N A
This, and
n+sw ’§s+|1—|77+5>w’|\S 25 . 25 s
I+ sw’| I+ sw’| n+sw| = 1-s

implies (2.31).
(ii): This follows directly from the definition of K (see (2.28)).
(iii): This is the most involved case. We write the unit sphere S"~! as the union of

(2.34) S(s)={weS" sl <Vs}={we S| < %}

and its complement Y(s)¢ (when d = 0,3(s) = () for s > 1) and write K (s1,s2) =
Ay + As + Az where (when d = 0, A; =0 for 51 > 1)

= / -1 / g(n+sw') — g(sw')) dwds,
s1 3(s)e
Ap = / st Py(w) (g(n+ sw') — g(sw')) dw ds,
s1 3(s)
Az = / st Py(w) g(sw') dw ds.
s1 §n—1

The estimate (2.33) is a direct consequence of the following lemma. Proving it will
finish the proof of Lemma 2.12. O

Lemma 2.13. We have

(2.35) A1 < C(n,@)[g],, g
(2.36) |A2| < C(n) sup |g|,

Sk—l
(2.37) A3 =0.

Proof: Aj : Note first that since s|w’| > 2 and |n + sw’| > 1 in X(s)¢ we obtain,
using the homogeneity of degree zero of g and the Holder continuity of g on S¥~1,

that
|A1‘ <C a,Sk— 1/ _1/
c(s)

nt s sw’ | dw ds.

I+ 5w Jso]
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Then by using the triangle inequality and that s|w’| > /s > 2, we get

/

14| [s0'| = |n + sw'||
I+ sw'|
< 2 < 2 4
Shtsw] T Vi1 s

1+ sw’ sw

[+ s Jso|

which leads to

‘A1| < C(nv a) [g}a, sk—151 2 < C(n,a) [g] ,

verifying (2.35).

Ao : For d =0, Ay = 0. For d > 0, the estimate (2.36) is a consequence of the
following lemma, which is not hard to prove using polar coordinates in R™ (we omit
the proof):

Lemma 2.14. Let |X(s)| denote the n — 1-dimensional surface measure of X(s).
Then

(2.38) |2(s)] < C(n)s™ /2.
From (2.38) we immediately get (2.36):
A < ([ 57 20)]ds) € sup gl < CCo) sup Il
4 Sk—1 Sk—1
A3 : We have
(2.39) A3 =0

as a consequence of the lemma below (when d = 0, (2.39) is trivially true, due

to the assumptions on g), since, by assumption, g|sx-1 is orthogonal to bgk) (the
subspace of L2(S¥~1) spanned by the spherical harmonics of degree 2).

Lemma 2.15. Let 0 < k < n and suppose ¢ € L*>(S¥~1) is orthogonal to hgk).

Let é denote the following ‘natural’ extension of ¢:

)y (&) forlsl #0,
¢Wa%)to) for [z = 0.

Then ¢ € L2(S" 1Y) and 6 is orthogonal to f)gn).

Proof: Since ¢ can be expanded in the natural basis of L2(S¥~1) it suffices to con-
sider a ¢ which is the restriction to SF=1 of a harmonic, homogeneous polynomial
P, of degree s # 2. Then Ps(z,y) = Ps(z) for (z,y) € R™ is a harmonic homoge-

neous polynomial in R™ of degree s # 2. Therefore ¢, being the restriction of Py to
S"~1 is orthogonal in L?(S"1) to f)(zn). O

This finishes the proof of Lemma 2.13, and therefore finally the proof of Theo-
rem 2.6. (]

3. PROOFS OF THEOREMS 1.1 AND 1.4

We recall that for notational simplicity we shall give the proofs of Theorems 1.1
and 1.4 only for the atomic case.
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3.1. Proof of Theorem 1.1. Let v satisfy (H — V)i = 0 in R*V, with V as in
(1.1), and let Fy and F5 be given as in (1.9) and (1.10). Define ¢3 by the equation
Y = ef2tF3 s Recall that AF, = V. We now make use of Lemma 3.1 below which,
together with Theorem 2.6, is the main ingredient in the proof of Theorem 1.1. Due

to this lemma, there exists a function K3 : R*N — R such that AK3 = —|VFy|?,
and G3 = K3 — I3 € Cl’l(RSN). Define <3 by
(3.1) ¢ = et

that is, (3 = e~ %2 ¢3. Since Gz € C1(R3Y), it remains to prove Lemma 3.1 below
and that (3 € CVH(R3Y), then ¢35 € CVH(R3Y) will follow.

Lemma 3.1. There ezists a function Gz : R*N — R, G3 € CLVY(R3YN) such that
the function

Kg(X) :K3($U1,...7$N) = 2(21;7:-) Z (x] xk)ln(m?-i-xi)

1<j<k<N

(3.2) + G3(x)
solves the equation AK3 = —|VFy|?, with Fy as in (1.9).

Remark 3.2. Note that the function (z -y) In(z? + y?) belongs to C*(R®) for all
a € (0,1), but not to CH1(RS).

Proof: Note that

(33) VB=-2(D o) (Z@:ih me_%)

‘xl‘ xN—x]|
so that
NZ> N(N-1)\ Z
2 - .
VI _( FETC )_4 Z 72(@5 k)
1<j<k<N
1
+3 Z Va(xj, 2p, 1)
1<j<k<I<N
(34) = Fl —+ FQ(X) —+ Fg(x),
with (2,7, z € R?)
roy\ T—yY
3.5 Yo(z,y :<———>~7,
B5) 2@ =g~ ) oy
Wg(xy@:x—y_x—z y—xr y—=z z—x zZ—y
e 2=yl Jz—z |y—a| ly—z] |z—z[ |z—y

Therefore it is natural to make the ’Ansatz’
Ks =i+ i+,
and look for ji, R, 7 solving

Ai=-T, , Ak=-Ty , Ap=-Ts.

First, it is easily seen that with pu(z) = |2|?,2 € R3, the function

N 2
9=~ (S Zonta) + X qones - m),

j=1 1<j<k<N

satisfies Afi = —T'1, i € C®(R3Y).
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Further, it suffices to find functions x and v such that

s,y = 2 (@) log(a? +47) + i), m € CVI(R'),
(36)  with (At Ay(ry) = 1(ny),
and v € CH1(RY) with
(3.7 (Ba+ 8y + Au(w,5,2) = 20(5,4, ),

since letting
0 =2 Y k) . ) =—x S v, )
R(x) = 1. k(zj,xE) , P(x)= 4 v(zTj, Tk, T
1<j<k<N 1<j<k<I<N
gives (A =370 A))
. A
ARG =2 ST (A + M) (g, x) = ~Ta(x),

1<j<k<N
. 1
Ab(x) = —3 S (A + A+ M) (g, o, 1) = —Ts(x).
1<j<k<I<N

The functions k and v are constructed in Appendices A and B. Lemma 3.1 then
follows from Lemma A.1 and Lemma B.1. O

Remark 3.3. Summarizing, one can say that only those points where the coor-
dinates of (at least) 2 electrons coincide with that of the nucleus (x; = z; = 0)
give rise to the logarithmic terms in Ks. These terms stem from the function k
and are due to the type of singularity of the vyo-terms in [VFy|2. There is no such
contribution from the function v, i.e., from the y3-terms in |V Fy|?. This is due to
the permutational symmetry of v with respect to the electron coordinates as will be
seen from the proof of Lemma B.1.

To finish the proof of Theorem 1.1 it remains to prove that (3 € C11(R3V).

Using (H — E)i = 0 and H = —A +V, we get the following equation for (3 (see
(1.5) and (3.1); set F' = Fy + K3 and ¢ = (3)

(3.8) AG +2V(Fy + K3) - Vi
+ (A(Fz + K3) +|V(F2 + K3)|> + (E — v)><3 —o.
Using AFy =V and AK3 = —|VFy|?, this reduces to the equation
(3.9) AG + 2V (Fy + K3) - V(s
+ (IVK3[* + 2VF, - VK3 + E)(3 = 0.

This eliminated one of the terms in the equation for (3 that was only in L>(R3Y),
and not continuous, namely |V Fy|%.

To deal with the two remaining ones (containing V Fy), re-arrange the equation (3.9):
(810)  AG+VE- (296 +26VE;)
+ (IVEsl? + )G + 2V K - Vs = 0.

Define ¥ = (Uy,...,¥Uy) : RN — R3N by
(3.11) U(xy,...,2n) =2V (3 + 2V Ks.
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That iS, \Ifj = (\I’jJ, \Ifj72,\11j73) : RBN — RS with

9¢s 0K3 . ‘

12 V=2 23—, L,...,N}, 1,2,3}.
(3.12) 5o = 2 g~ T € b ie{l,2,3}
Then
(3.13) VF, - (2V(3+2(3VK3) = VF, - 0.

Since K3,(3 € CH(R3Y) for all a € (0,1), we have ¥;; € C*(R3N) for all j €
{1,...,N},i€{1,2,3} and «« € (0,1).

Next, let ¥, ; : R3V =1 — R be defined by

(314) \I/j,i(acl, ey L1, L4y - 73;‘]\]) = \Ifj’i(.’L'l, sy L1, O,LL'jJrh PN ,{,CN)7
that is, by setting x; equal to zero in ¥; ;.

Furthermore, define, for j < k, j,k € {1,..., N}, the functions ®(; ) : R — R3
by

(315) (I)(j,k)(xla e ,ZL’N) =
Ui(@1,. s @1, 5 (%) + Tk), Tjg1s - -+ The1, 5 (T + Th), Tt - - - TN)
\I/k(xh s X, %(aﬁj + mk),x]qrh ey Th—1, %(a:‘] + Stl‘k),karl, . ,QTN).

The proof of Theorem 1.1 will follow from the following two lemmas:

Lemma 3.4. Let \ilj,i,é(j,k)ﬂ- be defined according to (3.12), (3.14) and (3.15).
Assume the functions uj;,v(; k), solve the equations

2 XTii =
3.16 Auj; = =22 0,
( ) u]y 2 ‘IJ| Js
1x ji — LTk
(3.17) Avryi= — 77— Pk

IR
Then w;j i, v k), € CLL(R3N).

Lemma 3.5. Let \ilj,(I)(j}k) be defined according to (3.12), (3.14) and (3.15). Then
the functions

1z —

(3.18) P {(‘I’a —Uy) — ‘b(yyk)}v
Z .’Ej ES

(3.19) T (v — ;)

all belong to C(R3N) for all a € (0,1).

Let us first finish the proof of Theorem 1.1, using the two lemmas.

Let the function U : R*Y — R be defined by
3 N 3
(3.20) U=2.2 watd, D, v
i=1 j=1 i=11<j<k<N
with the functions w;, v xy,; solving the equations (3.16) and (3.17). Then
Z x;i - 1 x; —xp
3.21 AU = ==L - -1,
(3.21) 2 2 |yl 1<Z dfa; — ] O
<J<k<N

and, due to Lemma 3.4, U € CL1(R3Y).
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Let W = (5 — U, then due to (3.10), (3.21), and the form of VF; (see (3.3))

N
A A
AW = Z—giﬂ j—\Ilj)—<|VK3|2+E)§3—2VK3-VC3
|z ]
1 x T
(3.22) - Z Zm.{(\lfﬁ%)*é(m}.
1<j<k<N

Using the fact that K3,(3 € CH*(R3*V), and Lemma 3.5, we conclude that the
RHS in (3.22) belongs to C*(R3*Y) for all a € (0,1) . Due to Proposition 2.4, W €
C?(R3N) for all a € (0,1), and so (3 = W+U € CHHR3YN) (since U € CH1(R3Y)
as mentioned above).

This finishes the proof that (3 € C11(R3Y), and therefore ¢3 = e“3(3 € CH1(R3N),
since G3 € CL1(R3Y).

To finish the proof of Theorem 1.1, it therefore remains to prove Lemma 3.4 and
Lemma 3.5.

Proof of Lemma 3.4: Firstly, for u;;, this is a straightforward application of The-
orem 2.6, with k =3,d = 3(N — 1) and

Lji

g T r' =x; € R?,
j

T "o 3(N-1
\I/jﬂ‘ , X :(a:l,...,xj_l,xj+1,...,xN)GR( )

NN T

f

It has already been noted that ¥;, € C*(R3Y) for all a € (0,1) and therefore
(see (3.14)) also ¥, € C*(R3WV=1) for all @ € (0,1). Clearly, & € C(R3\

£
{0}) c C*(R3\ {0}), and 7)(3) (J“aj l) = 0, due to the anti-symmetry of the function

Tj,i

Ik Therefore, all assumptions of Theorem 2.6 are fullfilled and it follows that
Ujq € Cl’l(RgN).

Secondly, for v(; 1), we make an orthogonal change of coordinates: a = %(xj —
xE),b = f(x] + x), the other coordinates remaining unchanged. Due to the

specific definition of ®; 1) ;, this brings us to a setup exactly as the one above for
u; ;. Since the orthogonal change of coordinates does not change the regularity, the
conclusion follows as before.

This finishes the proof of Lemma 3.4. O

Proof of Lemma 3.5: First, note that the function G; = ¥, — U, satisfies G; €
C*(R3N) for all a € (0,1), and
Gj(l‘h sy Lj—1,T5 = O,xj_H,. .. ,JJN) =0
for all (z1,...,2j-1,%j41,...,2ZN) € R3WV-D),

Therefore, due to Lemma 2.9,

7 xj -

S5 (W~ ) € C*(R¥N) forall € (0,1).

2 |a|
Secondly, for the function

1 Tj — Tk
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the same orthogonal change of coordinates as in the proof of Lemma 3.4 brings us
in the same situation as the above, again due to the specific definition of ®; ).
The conclusion follows as above.

This finishes the proof of Lemma 3.5. (]

This finishes the proof of Theorem 1.1. O

3.2. Proof of Theorem 1.4. By Remark 1.5 is suffices to prove that (1.20) holds.
We proceed similarly to the proof of Theorem 1.1, but here we need to estimate
carefully all the involved quantities uniformly (i.e., independently of xo € R3V).
For notational simplicity, we will prove (1.20) only in the case R’ = 2R.

For the proof we need the following regularised version of Lemma 3.1.

Lemma 3.1°. There ezists a function G cu : R3N — R, G3 cur € CHL(R3Y), such
that the function

2—m
K3 cut(x) =Z Z (zj - zi)x(lzi ) x(|zx]) ln(CU? + xi)
1<j<k<N
(3'23) + GS,Cut (X) = F3,cut (X) + G3,Cut (X)

(for Fs3 cut, see (1.17)) solves the equation
A[(?),(:ut = _|VF2,Cut|2 + Tcut,

with Fy cuy as defined in (1.16) and rey, € C*(R3*Y) for all a € (0,1). Furthermore,
G3,cut can be chosen such that for all p > 0 the following estimate holds:

(3.24) 1G3.cutllcr1 (Ban (xo,0)) T [Tcutllca(Ban (x0.0)) < C

for some constant C = C(p) > 0 independent of xg € R3*V.

Proof: The proof of Lemma 3.1’ is analogous to that of Lemma 3.1. Instead of
u,k, v we will use functions picyt, Keut and veyt to be defined presently. With x
being the function defined in (1.14) we define

(3.25) e () = (e Dpx) = x(lal)lal?,
(3.26) Keut (2, y) = x(|z))x(|yl)r(z, y)
1 9T Y
= Xl = x(le) (loP )
1 o T Y
= XD (1 = xh) (o)
= (Do) 25 () e +4) + ().

(Note that &1 cut(z,y) # x(z))x(Jy))k1(z,y)). Let vey, be as in Lemma B.2, we
then have

(3.27) Aveyt = ¥3 + hy,y
[Veutllo1:2.(Bo (wo,0,20).0) F 1wl o (Bo((w0,30,20).00) < €
with 3 as in (3.5) and with C independent of (z¢,yo, 20) € R? and p > 0.
For picyt, note that
(3.28) Attent = Alaf? + Aljicus — af?)
=6 — A((1 = x(|2]))[z[*) = 6 — Ry,
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where obviously,

(3.29) Hﬂcut”Cl‘l(Bs(wo,p)) + HhuHca(Bg(xo,p)) <0,
with C independent of zyp € R and p > 0.

For Keut, using Ak = 2 (see (3.5) and (3.6)), that A, (|Jy|? L) =

IIHyI and the

support properties of x, we have that Rk
Akicus =72 — {1 = x(lzD)x(ly) } (1 = xBlz]) = x(3[y]) 72
= {6l (1 xCla) + X3 (0~ x9D) } (2 + 1)
+ Ry + Ry + R,
(3.30) =y — Hys — (72+‘ || |)+R1+RQ+33,
where
Ry = x(lyl)rAsx([z]) + x(ly)2Vax(|z]) - Vor
+ x(lz))rAyx(y]) + x(12)2Vyx(y]) - V5,

Ro— ix(S\ymm?ﬁ A= (i) )

[t

-1 yX(3|yD)|y|2% (- X(m)'%)
1

= 5 (Tux ) - 9 (0= X)) ).

and where R3 is R, with x and y interchanged.

,.;;

Using that k € C1%(R®) for all a € (0,1), and the support properties of , it is
easily seen that

(3.31) 1R;jllc (Bs((zom0).0)) < Cs

with a constant C' independent of (zg, o)) € R® and p > 0.

Since for all (z,y) € RS,

8v2

|z -y

]V72\<6\f(| i |) ‘V v2 + )‘g

| ||y|
we get, using the support properties of H and G, that

||HV’72||L°°(]R6) < c ) ||gV(')/2 + |$HZ|)||L<>Q(R6) < C.
Again using the support properties of H and G, this implies that
(3.32) IH 2l o1 (Bo (0,000 < C
z-y
16 Gz + i) lcos acaomorn < €
with a constant C' independent of (z¢, o) € R and p > 0.
From (3.30), (3.31), and (3.32) we get
(3.33) Alcut =72+l [[helloe(Bs((@o,w0)0)) < €
with a constant C independent of (zg,y0) € R and p > 0. Note that (see (3.26)
and (A.2))

rena(.9) = X)) (@2 + )G (22 |, e 01,

Therefore, due to the compact support of y,

(334) Hﬂl,cut||Clvl(B5((wo,yo),p)) S O
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with C independent of (zg,%0) € R and p > 0.

Observe that
(3.35) \VE|? = |[VFeut|* + V(2 — Facut) - V(F2 4 Focut)
and that

V(F2 = Facut) - V(F2 + F cut)

N
:ZVJ(F2 Fycut) - Vi (Fo + Fa cut)

Jj=1
N
NG T oo T
= j i (4,k) T )
; |z ] : lzj —
j=1 1<j<k<N

where

- Z S
b=~ 2 {0 ey + X Dl } (343 ).

1=1,l#j

1
By = 1{1+ XCy = al) + X' (25 — 2Dl — @l x

N N
x (ﬁj—ﬁiﬁ > dgn - a(k,n)’
1=1,1#] 1=1,I#k

& = =5 {1 xm) = Xl } 2.

. 1 T — X
) = 31 (= g = D) =X (g = bl — el =
Clearly (using the support properties of x), for all 3 € N3V,
(3.36) ||8’85j“Loc(RSN) + ”aﬁg(j,k)”LOO(R?'N) <C(B).
Define
1 & T
Grow = 5 Z - (Jz51? J|) x(Ja5))
1 - Tj— Tk |2 T; — Tk
+4 B - (|2 L) Xy — ).
4 1<j<k<N ( \/5 |Ij 717[6‘)

Then, due to (3.36) and the support properties of ¥,
(3.37) G1,cutllerr By xo,) < €

for some constant C' = C(p) > 0 independent of xo € R3",

Using A(|z;]? |$") = “z—‘ and A(|zj_;’“ 2 \ZZZI) = 4;’__;6 , we see that

(3.38) AGyent = V(Fa — Faeut) - V(Fa + Faent) + R,

25
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with

1
2
_|_} Z A(X(|x'—$k|)g(-k)) ) (‘wg — Tk |2 T — X )
J Js R
41§j<k<N V2 |zj — @kl

1 . o 2 — i
+§szj(>‘(‘%’—kabu,k)»i) 'Vj(‘xj\/;k‘ — )

|75 — x|

_|_

- Tj—x
> bum- E— _xk| (1= x(fz; — ).
1<j<k<N 3Tk

From (3.36) and the support properties of x, we see that
(3.39) [1Bllcor (Ban (xo0.0)) < C

for some constant C independent of xq € R* and p > 0.
Define

(3.40) G3,cut = G1cut + Gocut
with

G2,Cut = ficut + K1,cut + Veut,
N 2

() = —5 (3 Ttonle) + D Sopenlas — ).

j=1 1<j<k<N

"%l,cut<x) = Z Z Kl,cut(xj;ajk:)y

1<j<k<N

X 1
Dent(X) = =2 D> Veur(xj, T, 1)
1<j<k<I<N

Then, with K3 ¢, defined as in (3.23), we have, using (3.38), (3.27), (3.33), (3.28),
(3.35), (3.4)

AK3 cup = |VF2‘2 - ‘VF2,cut|2 =TIy =Ty —T'z + 7eus
(3.41) = —|VFcut|” + reut,
where, due to (3.27), (3.33), (3.39), (3.29),
(3.42) 7 cut|co (Bsn (x0,0)) < C,
for some constant C = C(p) > 0 independent of x € R3V.
Also, using (3.40), (3.27), (3.29), (3.37) and (3.34),

(343) ||G37cut||01~1(B3N(x0,p)) < Ca

for some constant C' independent of xo € R3" and p > 0. Now, (3.24) follows from
(3.42) and (3.43). This finishes the proof of Lemma 3.1°. O
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Let K3yt be the function constructed in Lemma 3.1° above. Define (see (3.23),
(1.15), and (1.18))

(3.44) (3,cut = e~ Frour=Kacury)) — 67G3’““t¢37cut.
Since for all p > 0 (using Lemma 3.1°)
[1F5,cut — K3,cutllora By (xo.0)) = 1G3.cutl| 011 (Bsn (x0,0))
is bounded independently of x¢, to prove (1.20) is equivalent to proving
(3.45) G cutllcrt (Bsn (x0, 7)) < C(R)]|G3,cutll Lo (Bsw (x0,2R)) -

Using that (3 cut = €~ 3<ut g3 ., the estimate (3.24) (twice), and the bound (1.21),
we get, for all 0 < p < p,

(3.46) 1G3.cutllctia (B (x0,0)) < ClIC3.cutll Lo (Bs (x0,0))5
with C' = C(p, p'). Proving (3.45) is improving (3.46) to a = 1.
The function (3,cut satisfies the equation
Al eut + 2(VFscut + VEscut) - Vs cut
+ (AP cut + AKs cut + [VF cut + VEs cut|* + (E = V) (3.0t = 0.
We can rewrite this as
(3.47) AC3 cut + 2V Ey - (VCS,cut + CS,cutVKS,cut)
+ T1cut © VG3,cut + 72,cut(3,cut = 0,
with (since AFy =V and AK3 eyt = — |V cut)® + Teut)
T1,cut = 2V K3 cut,
72 cut = AF% cut + Tout + ‘VK?),Cut'Q +(E-V)
= A(Fyeut — F2) + reus + [VEs cuel + E.

By the construction of F» and Fj oy (see (1.9), (1.14), and (1.16)) it is clear that
for all p > 0

IAF: cut — F2)|loo(Bsy (x0,0)) < Cs

with C = C(p) independent of xo € R*¥. Due to Lemma 3.1’ (see also (1.14)),
VK3.cut is C¢, and we have for all p > 0

(3.48) VK3 cutlloe By (x0.0)) < C,
with C = C(p) independent of xq € R3N. This, together with (3.24), means that
(349) ”Tj,cut”CQ(BgN(xO,p)) < Ca .7 = 1127

where C' = C(p) is independent of xo € R3V.

In order to finish the proof, we introduce a localisation. Let f : R - R,0< f <1,
be decreasing and such that f(¢t) =1 for t < 0 and f(¢) = 0 for ¢ > 1, and define,
for p>0,A>1,

(3.50) 0(x) = O, (2) = f(2 (=2l — 1)),

(So 8(x) =1 on Bsn(xo, p) and 8(x) = 0 outside Bsn(zg, Ap)).

Clearly the derivatives of 6 are bounded independently of xy. Below, all constants
C = C(p) also depend on A > 1; we omit this dependence in the notation. On the
set Ban (X0, p)), 0C3 cut satisfies the following equation:

(351) A(6C3,cut) + 2VF2,cut . (V(HC?),cut) + (HCS,cut)VKS,Cut)
+ T1,cut * V(GC&Cut) + T2, cut (0C3,cut) =0.
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Using (3.51) we will deduce that

(3'52) ||€R,\/§ CS,Cut”Cl*l(BsN(xo,R)) < C(R)HC3,0ut||L°°(B3N(X0,QR))7

from which (3.45) clearly follows (since § = 1 on Bsn(xg,R)). To prove Theo-

rem 1.4, it therefore remains to prove (3.52).

Proof of (3.52): Let W;,; .yt be defined as ¥;, was in (3.12) but with (3, K3

replaced by 0(3 cut, K3 cut, that is (j € {1,..., N}, i € {1,2,3}),

A(0Gs,cut) K3 cut
aﬁj,i 8a:j,i

(Here, 0 = QR)\@). We define \i/j,,-@ut, D (j,k),i,cut analogously to \i'j,i, () 1),i defined
in (3.14) and (3.15). Using (3.48) and (3.46) we get that for all 0 < p < p/,

(353) \Ijj,i,cut =2 + 2(9<3A,cut)

(3.54) 1.0t l| o By 0.y < C OO cutllcra (Ban (xo0)

< C(p, P/, R)HCB,cut||L°°(33N(x07p'))'
We then have the following result, similar to Lemma 3.4:
Lemma 3.4°. Let wj; cut, V(jk),i,cus b€ the solutions to the equations (3.16), (3.17)
(with W; i, @ 1),i replaced by W;; cus, Pjryicut) given by the Newton potential on
B3y (%0, V2R).

Then, for all p < /2R < p', there exists a constant C = C(p, p', R) (independent
of xo € R3N) such that

(3.55) s il (Bsy (xo,p)) < ClIC3.cutll Lo (Bsn (x0,0'))5
(3-56) ”U(j,k),i

CL1(Byn (x0,0)) < CllGaicutl Lo (Byw (x0,07))-

Proof: Using Theorem 2.6 and Remark 2.7 (iv) and (v), we get the a priori estimate

Tiil . o
||uj’i’cut||Cl’1(BSN(x07P)) S ¢ sup ]7,7‘ ||\Ijj*i7CUtHCO’ maN—3Ban (x0,V2R
|| ( ( )
R T
()25 )
m3N—sBsn (x0,V2R)) J (8?)

(3.57)
Using (3.53) and (3.48) we have

”\I/jvi’CUt”C"‘(ﬂ'stsBSN(xo,\/iR)) < H\Iljvi’cut”C"‘((ﬂ’zz\rfsBSN(xo,\@R))XRS)
< CHGC?;,cut”Cl»a((WSN,3B3N(XO,\/§R))><]R3)'
This, the compact support of 6, and (3.57) implies the estimate

(3.58) ), .cutllor1(Ban (xo.0)) < CllCs.cutllona(pyn (x0,v2R))-

Combining (3.58) and (3.46), we arrive at (3.55). This finishes the proof of the
estimate (3.55) for w; ; cut.

The analogous estimate (3.56) for v(;,x),i,cus is proved in the same manner using the
same coordinate transformation as in the proof of Lemma 3.4 (see also the proof of
Lemma 3.5’ below). We omit the details. O

Lemma 3.5°. Let U, ; cu be defined by (3.53) and let \iljﬂv,cut and P r)icut be
defined by (3.14) and (3.15) (with ¥;, replaced by ¥;; cut). Then the functions
defined by (3.18) and (3.19) (again, with an extra index ‘cut’) belong to C(R3N)
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for all o € (0,1). Furthermore, for any p < V2R < p', their C®-norms on the ball
Bsn(xq, p) are bounded by

(3.59) Cl1G3,cut [l oo (B3~ (x0,0"))

with C = C(p, p', R) independent of xo € R3N.

Proof: That the functions belong to C*(R3Y) for all a € (0,1) follows like in the
proof of Lemma 3.5.

To prove the bounds on the norms it suffices, by Lemma 2.9 and the triangle
inequality, to prove them for

H\I}k!i7CUtHC‘)‘(B;;N(xo,p)) and [ x),i.cut)] Co(Bsn (x0,p))"
For Wy, ; cut, the estimate follows from (3.54).

To bound @ ; ) i,cut, denote by ;4 : R3N — R3N the linear transformation (see
also (3.15)),

tik(x) =
(1,0 w50, %(ffj +TE), Tjr1, s T, %(xj + k), Ty 1y TN),

so that

D@ k) ieut (X) = Wi cut(t,6(X) — Yhicut (£5,5(X))-

Then, since |t} (z)| < |z,

|D ()00t (X) = @) iseut ()] < |5 .cut (£5.6(%)) = Wi cut (5,1 (y))|
Ix —yl|* B [t,6(x) — e (y)|*
| Wit (t,6(X)) = Whyicut (t6(y))]
Itjr(x) =tk (y)]™
Due to the localisation 6 in the definition of Uy ; .yt (see (3.53)), both of the terms
on the RHS of (3.60) are bounded by

(3.60)

C(p) ||C3,cut ||Clva(B3N(XD,\/§R))'

The bound (3.59) for ®; ) ;.cut now follows using (3.46). This finishes the proof of
the bound (3.59) for the functions (¥ ; cut — Wricut) — P, k),i,cut-

The proof for the functions ¥, ; cut — Vjicus is similar (see also the proof of
Lemma 3.4’ above), so we omit the details. (|

To finish the proof of Theorem 1.4, define Uy, analogously to (3.20), using the
functions u;; cut, V(jk),i,cut from Lemma 3.4’. Then, by Lemma 3.4°, for any p <

V2R </,

N
Z x; = 1 z; —xp
3.61 AUsi =S 220 G, — ST B s
( ) t Z 2 |x]| J,cut Z 4 |xj *$k| (4,k),cut
j=1 1<j<k<N
(3.62) [Ueutllcr2 (Ban (x0.0)) < Cll¢3.cutll Lo (Bsn (x0,0)) -

Define (0 = 05 s5)

(363) Wcut = 9<3,cut - Ucut;
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then, using (3.51), (3.53), (3.61), and the form of VF» (see (3.3)), we get the
following equation for Weyy:

z X o
_ J ) .
AWy = — 5;21: o .{q/],cut \Ifa,cut}

Z u . {(\Iljput - \Ilk,CUt) - (I)(j7k)7cut}

1<j<k<N |2 — @il

e

(364) - {Tl,cut . V(eg?),cut) + T2,cut (9C37cut)} = A
Here, A belongs to C* for all « € (0,1), and, for all p < V2R < p/,

(365) ||A||CQ(BSN(x01P)) < C”C&Cut ||L°°(B3N(Xo-,[1’))

with C' = C(p, p/, R) independent of xg € R3V. For the first two terms in (3.64) this
follows from Lemma 3.5’. For the third term, it follows using the form of Fy — F5 oyt
(see (1.9), (1.14), and (1.16)) and (3.54). For the last term we use (3.49) and (3.46).

By Proposition 2.4 this means that W,y belongs to C>®, and we have the estimate
(3.66) [Weutllor1(Bsn (xo,R)) < IWeutlloz.e (Bsn (xo,R)

< C(R)(IWeutll Lo By (xo, ¥2R)) F Ml o By (x0, ¥2)))-
Using (3.63), the triangle inequality, and then (3.62) (with p = v/2R and p’ = 2R),

we have
vavcut||LQQ(BSN(XO7 %R)) S C(R)||C3,CutHLoC(BSN(xo,2R)).
This, (3.66), and (3.65) with p = /2R and p’ = 2R, gives the estimate

(3.67) [Weutllor1 (Bon (x0,8)) < C(R)|IG3,cutll oo (Bsn (x0,2R))-

Using 6¢3.cut = Weut + Ucut, (3.62) (with p = R and p’ = 2R) and (3.67), the
estimate (3.52) follows. O
This finishes the proof of Theorem 1.4. U

APPENDIX A. CONSTRUCTION OF THE FUNCTION K

In this appendix we construct the function x that gives rise to the terms of order
r?1In(r) in the function K3 solving AK3 = —|VFy|? (see the previous section,
Remark 3.3 in particular). Therefore, s is responsable for the Ct“-singularities in
the wavefunction .

More precisely, we prove the following:

Lemma A.1. Let the function v, : RS — R be given by

z Y r—y 3
Al zy)=(——=)-—= , z,yeR’
. ) = (5~ ) ey
Then there exists a function k : RS — R of the form

2—m ($7y)
_ 1 2, .2 242G,
K(z,y) = —— (z-y)log(z” +y7) + (2" +¢7) G 1(|(x7y)|)

(A2) = k(I,y) + Hl(zay) ) Gf-il € Cl’l(SS)

satisfying Ak = 7.
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Remark A.2. Note that by Lemma 2.10, k; € CHH(RS).

Proof. Recall that [)56) = Ran(Pz(G)) is given by the linear span of the harmonic,
homogeneous polynomials of degree 2 in RS restricted to S°.

By Lemma C.1 we have that

(6) B x-y _16(2—m)
(Py "72)(rw) = Clm A= T
where r? = 22 + y*, w = (2,y)/r € S°. Let k(z,y) = $(z - y)log(z® + y?). Then
-y 6
(B0 + D) k(w,9) = e1 5 15 = (PY92) (1)

Letting k1 = xk—Fk this reduces the problem (of finding  such that (A, +Ay)k = 72)
to finding k1 such that

with
« xr-y
(A4) ’72 = 72 — Clm.

Due to the above,
(P5*42)(rw) = 0.

Therefore, by Proposition 2.8, there exists a solution x; to (A.3) such that k1 (rw) =
r?G,(w), with G,;, € C1(S%) for all a € (0,1).

To verify (A.2) we need to prove that in fact G,, € C11(S®). We will do this by
proving that k1 € CH1(R®\ {0}), since then G, = k1 /r?€ C11(SP).

To prove r1 € CHH(RO\ {0}), we analyze the equation (A.3) for k1 in the vicinity of
singular points of the function 4, on the sphere S®. There are two types of singular
points: (a) (xg,z0) € S®, (b) (0,70) € S® (resp. (z0,0) € S5). The function & is
C™ in a neighbourhood of all other points on S® due to Proposition 2.4 (since, for
r >0, 42 is C*° away from points of type (a) and (b), see (A.1) and (A.4)).

(a): Let U, C RY be a neighbourhood of a point (zg,zo) € S° (i.e. 2|zg|> = 1) such
that for some ¢ > 0, |z| > ¢, |y| > ¢ for (z,y) € U,. Choose new coordinates: Let

(z1,22) =t(w,y) = (v —y, 7 +y).

Then
T

(720t71)($1,$2) = (

*@'

Tr1 — To 1+ X2 > 1
— - Gqlx1,
|301 —.Z'2| |.’L‘1 —|—.’132| a( 1, 2)

|71
with G, € C*(t(U,)). Since Gq(0,22) = 0 for 3 # 0 (that is, for x = y # 0
in the original coordinates), we have, by Lemma 2.9, that y2 o t=! € C%(¢(U,)),
and therefore v € C%(U,) C C*(U,) for all « € (0,1). Since (z -y)/(z* +y?) €
C>(U,), we have (see (A.4)) 42 € C*(U,) for all « € (0,1). By Proposition 2.4 we
get from (A.3) that k; € C%(U,).

(b): Let U, C R® be a neighbourhood of a point (0,y0) € S° (i.e. |yo| = 1) such
that for some ¢ > 0, |y| > ¢, |z —y| > ¢ for (z,y) € Up. Then
oz, y) = (ﬁ _ i) Ty
TR Wl e
roy T ( Y y—x ) y Ty
_— = + _ = - — ) - = —
[yl f2l Nyl ly =2l Jyl e -yl
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Note that
_y . r7y
lyl |z —yl

S Coo(Ub)

and that

x — X X
A )
| Nyl ly—=|/ o]

with Gy € C*(Uy), Gp(0,y) = 0 for y # 0. Therefore, by Lemma 2.9 and (A.4),
Y

v (.Y 0,1 e
Aoz, y) ( 7] |y|) € C”(Up) C C¥(Up) for all a € (0,1).

Let xo be such that

(Aw+Ay)“2: - =

Ty

[ fyl
The existence of such a function is ensured by Theorem 2.6, since y # 0 for (z,y) €
Uy, and ’PQ(B) (%) = 0 due to the anti-symmetry of .

|| ||

Then (see (A.3)) k3 = K1 — K2 solves

Ko € Cl’l(Ub).

(Ag + Ay ks = Aa(z,y) — (— % : %) € C°(U,) for all a € (0,1),
so by elliptic regularity k3 € C%*(U,) C C11(U,). Since ko € CH1(U,), this proves
K1 = kg + k3 € CHY(Uy). Together with k1 € C%%(U,) from above, this implies
Gy, = k1/r? € CVY(S?), and so Ky = r2 G, € CLL(RS).

This finishes the proof of the existence of k solving (3.6), and having the form (A.2),
with G = G,,. g

APPENDIX B. CONSTRUCTION OF THE FUNCTION v

In this appendix we construct a function v solving (3.7).
Lemma B.1. There exists a solution v = v(x,y, z) to the equation (3.7) satisfying

(i) v is invariant under cyclic permutation, i.e., v(x,y,z) = (v oo)(x,y,z) for
all o, y, 2z € R, where o(x,y,2) = (2,2,7).
(i) v € CHH(RY).

The idea is to change coordinates, to the centre-of-mass frame for (z,y, z). In these
new coordinates, the problem of solving (3.7) turns out to reduce to a problem
in 6 variables only. By an extra symmetry of the function 3 (see (3.5)), namely
permutation of the three electron-coordinates x,y, and z, the logarithmic term
that occured in the function k (see (A.2)) does not occur here. This is because the

projection on f)gﬁ) of 43 (the function that 73 transforms into in the new coordinates,
see (B.2) below) vanishes, due to this extra symmetry.

Proof: Make the following change of coordinates (each entry below is a diagonal
3 X 3-matrix with the listed number in the diagonal; we will use this notation
repeatedly; here, x,y, 2z € R3)

1 0 2
(B.l) y =T T2 = % % —% T2
z T3 L 1 _ 1 T3

V3 V2 NG
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Then

(B.2) ('yg o ’T) (z1,22,23) =
2.1324-\/3% E.IQ—\/&ES_IQ+\/§I3'I2—\/§CE3
|w2| |wo +VBxs| |22 |wa —VBxs|  |wa 4+ VBzs| |ry — V3as

= J3(x1, w2, x3).

That 73 is independent of x; is the fact that 3 only depends on the inter-electron
coordinates (x—y, y—z, z—a respectively), and not on the centre-of-mass coordinate
(Tem = %(w +y+2z) =z1).

The function ~y3 is invariant under cyclic permutation of the electron-coordinates
z,y and z, that is, (73 oo) (z,y,2) = v3(z,y, 2) for all z,y, z € R with o(z,y,2) =
(z,x,y). This gives that

(B.3) (% o R) (z1, 20, 23) = F3(x1, 22, x3) for all z1, o, x3 € R3,

with R the orthogonal transformation given by R = 7! o o o 7, that is by the
9 x 9-matrix (again, each entry is a diagonal 3 x 3-matrix)

1 0 0
R=10 co§(2—” sin(i?”)
0 —sin(5) cos(%)

Note that R is a rotation of (z3,23) by 2% around z; (all in R?), that is, R® = Iy,
where Iy is the identity on R?.

Define the function 73 by
(B.4) F3(z2, z3) = A3(x1, T2, 23) , (r2,23) € RS
(since 43 is independent of x1, this is well defined). Then, due to (B.3),
(B.5) (93 © R) (2, 23) = Y3(x2, x3) for all x5, 25 € R3,
with (each entry still being a diagonal 3 x 3-matrix)
= -1 ¥ cos(2r sin( 2™
(B.6) R(Zg f% ><—sir(1( x) COSE%; >
Observe that if 7 = v(xq, z3) solves (for 43, see (B.2) and (B.4))
(B.7) (Auy + Agy) 7 = 7,
then trivially the function o defined by o(z1, z2, x3) = v(x2, x3) solves
(Dpy + Duy + Day )7 = 3.

Since T is orthogonal, the function v = 7 o 7! will then solve (recall that ¥3 =
v30T) (Aw +A, +Az)y = 73, that is, (3.7). The problem of solving (3.7) therefore
reduces to solving (B.7).

Observe next that (see (B.2) and (B.4))
’73(0:22,0583) = ’_}/3(562,{133) for all O € SO(S),I‘Q,.Tg € R3.

This and (B.5) gives, by (iii) of Lemma C.2, that 772(6)%, = 0 . Therefore, by
Proposition 2.8, there exists a solution 7 to (B.7) with

(z2,73) )
(z2,23)] )’
Gy €0 (SP) for all a € (0,1).

D(xg,fg) = (Ig + l’g) Gp <
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We proceed to prove that in fact G, € C%*(S°) for all & € (0,1). We do this by
showing that 7 € C%(RS \ {0}), using (B.7) and elliptic regularity (Proposition
2.4).

Note that there are two kinds of singular points of 43 on S°: (a) 23 = 0 (and so
x3 # 0), (b) 2o = V3x3 (and s0 29 # 0 # x3) (resp. 2o = —v/323). The function
v (and therefore, G;) is C* in a neighbourhood of all other points on S° due to
elliptic regularity (Proposition 2.4).

(a): Let U, C R® be a neighbourhood of a point (0,29) € S° (i.e., 2§ # 0), such
that for some ¢ > 0, |zo + \/§x3| > ¢, |z — V/3x3| > ¢ for (z2,13) € U,. Note that

So(x x)iilfz 1’2+\/§$3+12*\/§$3
3(T2,T3) = —— -
w2\ |22+ V3as|  |za — V3as)
To +V3z3 w2 — V313
(B.8) - - .
|22+ V3z3| |12 — V33
Write
3 - V3
EENY ECRRE + 2 Vizg = 2 Gy(wn,as)
|z2] |zo + \/§$3| |ze — \/§$3| |22
where G, € C*(U,), G4(0,z3) = 0. Furthermore,
3 -3
T +V3z3 w2 — V313 € C=(U).

|22 +V3Bas| |z2 — V3

Therefore, due to Lemma 2.9, 43 € C%1(U,) C C%(U,) for all a € (0,1), and so,
by (B.7) and elliptic regularity (Proposition 2.4), 7 € C%(U,).

(b): Let Uy be a neighbourhood of a point (29,23) € S° with 25 = /323 (i.e.,
29 # 0 # x9), such that for some ¢ > 0, |z3| > ¢, |x2 + v/3x3| > ¢ for (z2,x3) € Uy,
Choose new coordinates: Let

(u,v) = 7(x2, x3) = (3 — V3x3, T2 + V3x3).
Then

(‘ 0771)(u v):£~ utv v Jriu—l—v .Y
& T Jurol o) T Juto] ol

We proceed as above. Write

u.(quv v>:|u'Gb(u’v)

lul \Ju+o|  |ol u|

where G, € C°°(7(Up)) (since v # 0,u +v # 0 in 7(Up)), Go(0,v) = 0 for v # 0.
Furthermore,

u+v v
c= € C(Us).
juto] ol @)
Lemma 2.9 implies that 73 0 71 € C%(7(U})), and so 73 € CO(U,) € C*(Us)
for all a € (0,1). By (B.7) and elliptic regularity (Proposition 2.4) follows that
NS 02’Q(Ub).

0

Singular points of the form z§ = —/329 are treated analogously.

From the above follows that 7 € C%%(R% \ {0}), and therefore G, € C?2(S%), for
all a € (0,1).
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This finishes the construction of a function 7 € C11(IR®) that solves (B.7), and has
the form

(B.9) 7(xa,23) = (23 +23) Gy ((35271’3)>’

|(z2, 23)]
Gy €C*(SP) for all a € (0,1).

As discussed above 7 defines a function v solving the equation (3.7). Clearly, since
v € CH1(RY), we get v € CL1(R?). The solution v constructed in this manner does
not necessarily satisfy the invariance property (i). In order to force this invariance,
we consider

3
1 .
Vsyrn = g Z(V o UJ)(x7y) Z)
Jj=1
Since the Laplace operator commutes with o, and 73 is invariant under o, veym
satisfies the conclusion of Lemma B.1. O

With the notation from the proof of Lemma B.1, we define
Vet (22, 23) = x (5 + 23) U(x2, x3),

with y as in (1.14), and Deyt(21, T2, 23) = Veut(x2,z3) (as already defined). As
discussed above (for v) the function 7., defines a function veyy = Peur © 7! :
R? — R (by the linear transformation 7 in (B.1)). We then get:

Lemma B.2. The function vey satisfies
AVeyt = Y3 + h,

with 3 as in (3.5) and h € C*(R?) for all a € (0,1). Furthermore, we have the
estimate

(B.lO) HVCU‘E”Cl’l(Bg((Io,yo,Zo),R)) + ”h”C"‘(Bg((Io,yo,Zo),R)) <G,
with C independent of (zo, Yo, 20) € R and R > 0.

Proof: We calculate, using (B.7),
(Azl + A, + Azg)ﬂcut = (AIZ + AZS)fcut = AVcyt
=73 + { (A7 +2Vx - VI} — (1 - x)7s
=793+ h.
Using (B.8) and (B.9) we see that the term in {-} is C* and has compact support.

The function (1 — x)¥5 is C“ (this was proved in the proof of Lemma B.1) and
homogeneous of degree zero outside Bg(0,2). Therefore,

||il||Ca(Bg((zg’,z2,x§),R)) <0,

with C' independent of (29,29,23) € R? and R > 0. Since x has compact support,
and 7 € CL1(R®), we have

Peutlen (o (a8 25,09),m) < €,
with C' independent of (z9,29,29) € R® and R > 0.

Since 7 is an orthogonal transformation, (B.10) follows. This finishes the proof of
the lemma. g
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6
APPENDIX C. COMPUTATION OF 7?2( )"}/2

In this appendix we compute 7)2(6)’}/27 the singular part of the two-particle terms
in [VFy|?, see (3.4) and (3.5). This is Lemma C.1 below. It follows from general
results on 732(6)77 when 7 has certain symmetry-properties (Lemma C.2). The latter
is also responsable for the non-occurence of terms of order 72 In(r) (of regularity
C1 only) in the function v constructed in the previous appendix; see Lemma B.1.

Lemma C.1. Let

x Y T—y 3 3
C.1 Yy =(——=)- , (z,y) e R x R”.
Then
16(2—m) z-y

(PS5 (2, y) = (z,y) € R® x R®.

3r a2+ y?’

Proof: This will follow from Lemma C.2 and Lemma C.3 below. Namely, by (i) and
(ii) in Lemma C.2 we get that, due to symmetry,

(732(6)72)(%@ = for some ¢; € R,

a;‘ .
that is, only the function x -y (restricted to S%) contributes to the projection onto
56) of the function 72 in (C.1). That ¢; = % is the result of Lemma C.3

(which is merely two computations). O
Lemma C.2. Assume n € L?(S®) satisfies
(C.2) n(Ox, Oy) = n(x,y)

for all © € SO(3) and almost all (z,y) € S® C R3 x R3. Let Q1 be the orthogonal
projection (in L?(S®)) onto

Span{Pl‘ss ) P2|ss} )
and Qo the orthogonal projection onto
Span { Pi[gs}
where Py (x,y) =z -y, Py(z,y) = 22 — 92, (z,y) € R3 x R3.
Then

(i) Psn = Qun.
(ii) Let n satisfy

(C.3) n(z,y) = n(y,x) for almost all (z,y) € S* C R® x R3.

Then 732(6)77 = Qo).
(iii) Let R be as in (B.6). Assume n satisfies

(C.4) n(R(z,y)) = n(z,y) for almost all (z,y) € S* C R® x R3.

Then Py = 0.
Proof of Lemma C.2: Suppose (i) is proven then the proofs of (ii) and (iii) are
simple:

Proof of (ii): Due to (i) we only need to prove that

/ (e y)(@? — ) dw = 0.
S5
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This follows using the symmetry (C.3) of n (which preserves the measure dw of S°):

/ n(z,y)P(z,y) dw = %/ n(z,y) (P(y, ) + P(x,y)) dw,
S5 S5

and when P(z,y) = Py(z,y) = 2% — y?, then P(y,r) + P(x,y) = 0. This proves
(if). O

Proof of (iii) : Using (i) and (C.4) it is enough to show that
P(x,y) + P(ﬁ'(xvy)) + P(ﬁ?(l’,y)) =0,
when P(x,y) = x -y or 22 — y? (since R preserves the measure dw of S®). This

follows by direct calculation. O
It remains to prove (i):
Proof of (i): Recall that [)56) = Ran(P2(6)). Define b2 iny by

D2 inw = Span{f € héG) ’f((?x,(’)y) = f(x,y) for all O € SO(3)}.

Note that 732(6)77 € B2 iny because of (C.2). We need to prove that
h2,inv - Span{P1|§5 5 P2|§5} .

Since every function in b ;. can be written as a finite sum of spherical harmonics of
degree 2 it suffices to consider a real, harmonic polynomial P which is homogeneous
of degree 2, and which is invariant under the action of SO(3):

(C.5) P(Ox,0y) = P(x,y) for all O € SO(3).

Identifying P with a quadratic form on R®, there exist real symmetric matrices
A, B, and C, such that

(C.6) P(x,y)=x-Ax+y-By+z-Cy.

The condition of harmonicity of P becomes Tr[A + B] = 0. We prove that A, B,
and C have to be multiples of the identity matrix I3 on R3. To do so, let us first
restrict to = 0. Using (C.5) and (C.6) we get

y- By = P(0,y) = P(00,0y) = Oy - BOy,

for all O € SO(3). Let A be a (real) eigenvalue of B, with corresponding eigenvector
v: Bv = A\v. Let y be any vector in R3. Then there exists an O, € SO(3) such that
Oyy = pyv for some p, € R, and therefore y - By = O,y - BO,y = A|y||?. Since
this is true for all y € R3, we get B = AI3. A similar argument (with y = 0, and
letting « vary) shows that also A is a multiple of the identity. Finally, the condition
of harmonicity, Tr[A + B] = 0, implies that A = —B = —\Is.

Finally the term x-Cy. This will be treated similarly. Due to the above (see (C.6)),
z-Cy= P(x,y) — AN(y* — 2?). Therefore, (C.5) implies

z-Cy=0zx-COy forall Oec SO(3).

By arguments similar to the above, we find that C' is also a multiple of the identity
I3. Since P(z,y) = A(z? — y?) + = - Cy, this finishes the proof of (i). O

This finishes the proof of Lemma C.2. O
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Lemma C.3. Let Qo be the orthogonal projection (in L*(S°)) onto

Span{P1|S5} ’ Pl(l’,y):Iy ’ (I7y)ER3XR37
and let
z Yy r—Yy
Yo (z,y) = (|x| - y|) ‘ H , (z,y) e R* x R®.
Then
B x-y 162 —m)
(C.7) Qv =01 a0 AT T g

Proof: Note that, with
Y(W) - P1|55(OJ) (fﬂ,y)

we have ||Y||z2(s5) = 1, and so

(C8)  Qmw)=Yw) [ Y(@hn(w)dw
SS
! / Pilgs (@) ya(w) deo § - 2V
= . 1 a5 (W) Y2 (w) dw » - .
H P1|S5 iz(ss) S5 s $2 + y2

We need to compute the two integrals in the brackets.

Since P; is homogeneous of order 2 and v, of order 0 (as functions on R®), we have

Py (2, y)v2(,y) de dy = 7/ Pygs (w) 72 (w) dw
Bs(0,R)
Therefore,
(C9) | Pl ) do =5 [Pyt dody
§5 Bg(0,1)

Choose coordinates (|z|, |y|, |z —yl, Q) for R® (with © three necessary angles). Note
that

Pl(x7y):$y: (|{E|2+|y|2—|1’—y|2) ’ (.’E,y)GR?)XR?),

DN =

and

|z + [yl (1 Pyl = e -yl
|z =y 2[lyl
Then (see Hylleraas [12, (45d)]; let s = |z|, ¢ = |y|, 7 = |z — y|)

1
/ Pi(z,y)v2(2,y) dedy = Z(/ dQ)x
Be(0,1)

V1=s2 s+t
// / (s> + 12 —r?) (s +t)(2st — (s* + > —r?)) drdtds

ls—t|

i/
(C10) = [ e
Using (C.9) and (C.10) this means that

(C.11) / Pilgs (w) 72 (w

Yo (z,y) = ) , (z,y) e R® x R®.




SHARP REGULARITY FOR WAVE FUNCTIONS 39
Next, observe that, again due to homogeneity, we have

R 2
2 _
/BG(O,R)(x.y) drdy =5 121l 12 os)

and so
(C.12) 1Pl 2oy = 10/ (2 ) do dy.
Bg(0,1)

Since z -y = 1 (|z|? + [y[* — |z — y[?) we get (using coordinates as above)

(- y)* de dy
Bg(0,1)
1 1 pV1—52 ps+t 5
= 7</d§2)/ / / (52+t2—r2) srtdrdtds
4 _
0 Jo |s—t]
L
1280
This means (see (C.12)) that
2 T
(C.13) (| P1 | HLZ(SS) = H8/czQ.
Now (C.7) follows from (C.8), (C.11), and (C.13). This finishes the proof of
Lemma C.3. O
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