
AALBORG UNIVERSITY

'

&

$

%

Prediction of the Insulin Sensitivity

Index using Bayesian Network

by

Susanne G. Bøttcher and Claus Dethlefsen

May 2004 R-2004-14

Department of Mathematical Sciences
Aalborg University

Fredrik Bajers Vej 7G DK - 9220 Aalborg Øst Denmark
Phone: +45 96 35 80 80 Telefax: +45 98 15 81 29

URL: www.math.aau.dk/research/reports/reports.htm

ISSN 1399–2503 On-line version ISSN 1601–7811



Prediction of the Insulin Sensitivity

Index using Bayesian Networks

Susanne G. Bøttcher and Claus Dethlefsen
Department of Mathematical Sciences

Aalborg University
Fr. Bajers Vej 7G
9220 Aalborg East

Denmark

Abstract

The insulin sensitivity index (SI) can be used in assessing the risk
of developing type 2 diabetes. An intravenous study is used to de-
termine SI using Bergmans minimal model. However, an intravenous
study is time consuming and expensive and therefore not suitable for
large scale epidemiological studies. In this paper we learn the parame-
ters and structure of several Bayesian networks relating measurements
from an oral glucose tolerance test to the insulin sensitivity index de-
termined from an intravenous study on the same individuals. The
networks can then be used in prediction of SI from an oral glucose
tolerance test instead of an intravenous study. The methodology is
applied to a dataset with 187 patients. We find that the SI values
from this study are highly correlated to the SI values determined
from the intravenous study.

1 Introduction

Type 2 diabetes is a clinical syndrome that can result from several disorders
that interfere with insulin secretion and/or the ability of the target tissues
to respond to insulin. Martin, Warram, Krolewski, Bergman, Soeldner and
Kahn (1992) found evidence in a 25 year follow-up study that the insulin
sensitivity index (SI) can be used to predict the development of type 2 di-
abetes up to a decade before diagnosis. Assessment of SI is by Bergmans
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minimal model, see Bergman, Ider, Bowden and Cobelli (1979), which is
based on data from an intravenous glucose tolerance test (IVGTT). In the
minimal model, the glucose and insulin kinetics are separately described by
two sets of differential equations. The parameters in the model are tradition-
ally estimated by a non-linear weighted least squares estimation technique,
see for example Pacini and Bergman (1986). From these parameters, SI can
be determined.

However, an IVGTT is time consuming and expensive and therefore not suit-
able for large scale epidemiological studies. Interest is therefore in developing
a method to assess the insulin sensitivity index from an oral glucose tolerance
test (OGTT).

In Drivsholm, Hansen, Urhammer, Palacios, Vølund, Borch-Johnsen and
Pedersen (2003), multiple linear regression is used to derive predictive values
of SI from measurements from an OGTT. These are compared with the val-
ues of SI obtained from an IVGTT and calculated using Bergmans minimal
model. The results show that it is possible to predict estimates of SI , which
are highly correlated to IVGTT-derived SI for subjects with normal glucose
tolerance.

In this paper, we express the relation between the observed variables in a
Bayesian network. We try different approaches of establishing a Bayesian
network, which can be used to predict SI from measurements from an OGTT.
We learn the parameters and structure of a Bayesian network from a train-
ing data set, where all patients underwent both an IVGTT and an OGTT.
Bergmans minimal model were used to determine SI from the IVGTT. We
then calculate the predictive value of SI from the Bayesian network and
compare it with the value of SI obtained from the IVGTT.

Like the multiple linear regression approach, the Bayesian network approach
gives predictions of SI that are highly correlated to IVGTT-derived SI for
subjects with normal glucose tolerance. In addition, the complex depen-
dency structure between the variables is modeled adequately. Further, using
Bayesian networks makes it possible to incorporate any prior information
available, e.g. the physiological understanding of the problem or results from
previous studies.

2 Data

In this paper we consider 187 non-diabetic glucose tolerant subjects, with
one parent having diabetes. All the subjects underwent a 75 gram frequently
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sampled OGTT. In such a test, the subject drinks 75 gram fluent glucose,
after a 12 hour overnight fast. Venous blood samples are then drawn at 10, 5
and 0 minutes before the OGTT and after the start of the OGTT, at 10, 20,
30, 40, 50, 60, 75, 90, 105, 120, 140, 160, 180, 210 and 240 minutes. From
these blood samples, the glucose and insulin concentrations are determined.

Within one week after the OGTT examination, all subjects underwent a
tolbutamide modified frequently sampled IVGTT. In an IVGTT, glucose is
injected directly into the venous. Blood samples are drawn at 10, 5 and 0
minutes before the injection and frequently up until 180 minutes after the
injection. At 20 minutes, a bolus of tolbutamide is injected to elicit secondary
pancreatic beta cell response. In the time between the two examinations, the
subjects were asked not to change their lifestyle. The insulin sensitivity index
(SI) was for each subject calculated from the observations in the IVGTT
using Bergmans minimal model and estimated by a non-linear weighted least
squares estimation technique, as described in Pacini and Bergman (1986).

Other variables in the study are age, sex, weight, height, waist circumference,
hip circumference, fat mass and information on physical activity. From the
weight and height, the body mass index (BMI) can be calculated.

3 Bayesian Networks

We perform the analysis using Bayesian networks for discrete and continuous
variables in which the joint distribution of all the variables are conditional
Gaussian (CG), see Lauritzen (1992).

3.1 Bayesian Networks with Mixed Variables

Let D = (V,E) be a Directed Acyclic Graph (DAG), where V is a finite
set of nodes and E is a finite set of directed edges (arrows) between the
nodes. The DAG defines the structure of the Bayesian network. To each
node v ∈ V in the graph corresponds a random variable Xv. The set of
variables associated with the graph D is then X = (Xv)v∈V . Often, we do
not distinguish between a variable Xv and the corresponding node v. To
each node v with parents pa(v), a local probability distribution, p(xv|xpa(v))
is attached. The set of local probability distributions for all variables in the
network is P . A Bayesian network for a set of random variables X is then
the pair (D,P).
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The possible lack of directed edges in D encodes conditional independen-
cies between the random variables X through the factorization of the joint
probability distribution,

p(x) =
∏

v∈V

p
(

xv|xpa(v)
)

. (1)

Here, we allow Bayesian networks with both discrete and continuous vari-
ables, as treated in Lauritzen (1992), so the set of nodes V is given by
V = ∆ ∪ Γ, where ∆ and Γ are the sets of discrete and continuous nodes,
respectively. The set of variables X can then be denoted X = (Xv)v∈V =
(I, Y ) = ((Iδ)δ∈∆, (Yγ)γ∈Γ), where I and Y are the sets of discrete and con-
tinuous variables, respectively. For a discrete variable, δ, we let Iδ denote
the set of levels.

To ensure availability of exact local computation methods, we do not allow
discrete variables to have continuous parents. The joint probability distribu-
tion then factorizes into a discrete part and a mixed part, so

p(x) = p(i, y) =
∏

δ∈∆

p
(

iδ|ipa(δ)
)

∏

γ∈Γ

p
(

yγ|ypa(γ), ipa(γ)
)

.

A method for estimating the parameters and learning the dependency struc-
ture of a conditional Gaussian networks with mixed variables is presented in
Bøttcher (2001) and implemented in the software package deal, see Bøttcher
and Dethlefsen (2003).

3.2 Parameter and Structure Learning

To estimate the parameters in the network and to find the structure of the
network, we use a Bayesian approach. So, considering the parameters, we
encode our uncertainty about θ in a prior distribution p(θ), use data d to
update this distribution, i.e. learn the parameters, and hereby obtain the
posterior distribution p(θ|d) by using Bayes’ theorem,

p(θ|d) =
p(d|θ)p(θ)

p(d)
, θ ∈ Θ. (2)

Here, Θ is the parameter space, d is a random sample of size n from the
probability distribution p(x|θ) and p(d|θ) is the joint probability distribution
of d, also called the likelihood of θ. As prior parameter distributions we use



3 Bayesian Networks 5

the Dirichlet distribution for the discrete variables and the Gaussian inverse-
Gamma distribution for the continuous variables. These distributions are
conjugate to observations from the respective distributions and this ensures
simple calculations of the posterior distributions.

Now, to learn the structure of the network, we calculate the posterior prob-
ability of the DAG, p(D|d), which from Bayes’ theorem is given by

p(D|d) =
p(d|D)p(D)

p(d)
,

where p(d|D) is the likelihood of D and p(D) is the prior probability of D.
As the normalizing constant p(d) does not depend upon structure, another
measure, which gives the relative probability, is

p(D, d) = p(d|D)p(D).

We use the above measure and refer to it as the network score. For simplicity,
we choose to let p(D) be the same for all DAGs, so we are only interested in
calculating the likelihood p(d|D). It is given as

p(d|D) =

∫

θ∈Θ

p(d|θ,D)p(θ|D)dθ,

and we see that it, besides the likelihood of the parameters, also involves the
prior distribution over the parameters, p(θ|D). This means that we for each
possible DAG have to specify a prior distribution for the parameters. In the
papers Heckerman, Geiger and Chickering (1995) and Geiger and Heckerman
(1994) an automated method for doing this in respectively the purely discrete
and the purely Gaussian case is developed. In Bøttcher (2001) this method
is extended to the mixed case. With this method, the parameter priors for
all possible networks can be deduced from one joint parameter prior, called
a master prior. To specify this master prior, we only have to specify a prior
Bayesian network, i.e. a prior DAG and a prior probability distribution,
together with a measure of how confident we are in the prior network. With
a few assumptions, the network score is obtainable in closed form.

If many DAGs are possible, it is computational infeasible to calculate the
network score for all DAGs. In this situation it is necessary to use some kind
of search strategy to find the DAG with the highest score, see e.g. Cooper
and Herskovits (1992). In this paper we use a search strategy called greedy
search. In greedy search we compare DAGs that differ only by a single arrow,
either added, removed or reversed. The change that increases the network
score the most is selected and the search is continued from this new DAG.
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4 Inference

Having established a Bayesian network for a set of random variables, this
represents the knowledge we, at this stage, have about these variables. When
information on some or all of the variables becomes available, we can use this
“knowledge base” to make inference about the unobserved variables in the
network.

Inference in Bayesian networks is performed using Bayes’ theorem. Consider
a network for a set of random variables X and assume that some of the
variables, B, are observed and the rest, A, are not. We can then, by using
Bayes’ theorem, calculate the conditional distribution of A given B as

p(A|B) ∝ p(B|A)p(A).

Thus p(A) is the prior distribution of A, i.e. the distribution of A before we
observe B, p(B|A) is the likelihood of A and p(A|B) is the posterior distri-
bution of A, i.e. the distribution of A, when we have observed B. Generally,
finding these distributions is computationally demanding as it involves cal-
culating huge joint distributions, especially if there are many variables in the
network. Therefore efficient methods of implementing Bayes’ theorem are
being used. These implementations uses the fact that the the joint probabil-
ity distribution of all the variables in a network factorizes according to (1).
The marginal or conditional distributions of interest can then be found by a
series of local computations, involving only some of the variables at a time,
see e.g. Cowell, Dawid, Lauritzen and Spiegelhalter (1999) for a thorough
treatment of these methods.

So having observed some of the variables in a network, we can use this new
evidence to calculate the posterior distribution of any unobserved variable
Xv, given the evidence. Notice that we do not need to observe all the other
variables before calculating the posterior distribution, as we can update the
prior distribution of Xv with any information available. Of course, the more
information we have, the better the posterior distribution is determined.
However, not all information will have an impact on the posterior distribution
of a variable Xv. Consider the following result. A node v is conditional
independent on the rest of the nodes in the network, given theMarkov blanket

of v, bl(v), i.e.
v ⊥⊥ V \v|bl(v).

The Markov blanket of v is the set of v’s parents, children and children’s
parents, i.e.

bl(v) = pa(v) ∪ ch(v) ∪ {w : ch(w) ∩ ch(v) 6= ∅},
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where pa(v) is the parents of v and ch(v) is the children of v, see Cowell et
al. (1999). So if all the variables in the Markov blanket are observed, we do
not get further information about the distribution of Xv by observing the
variables outside the Markov blanket. But if we have not observed all the
variables in the Markov blanket, then observing some variable outside the
Markov blanket, can influence the posterior distribution of Xv.

5 Results

We will now present the results obtained.

5.1 Preliminaries

In the present study, 187 subjects without known diabetes underwent both
an OGTT and an IVGTT. In the OGTT, measurements were recorded of
plasma glucose (G) and serum insulin levels (I) at time points 10, 5 and 0
minutes before intake of 75 gram glucose and at 10, 20, 30, 40, 50, 60, 75,
90, 105, 120, 140, 160, 180, 210 and 240 minutes after the intake.

In this analysis, the observations to time 10, 5 and 0 minutes before the
glucose intake are, for both insulin and glucose, averaged and represented by
the corresponding observation to time 0. Further, based on previous results,
see Drivsholm et al. (2003), we use the logarithm of the insulin sensitivity
index log SI instead of SI and we also include the sex of the patient and
the body mass index (BMI) in the models. Sex is a binary variable, but
we choose to treat it as a continuous variable. This has the effect that the
variance is assumed equal for male and female observations, whereas the
means can differ. If sex is treated as a discrete variable, the data is split into
two groups with a parameter set for each group. and we have found that we
do not have enough data to support this. Consider for example the simple
case, where the only parent to log SI is sex. If sex is treated as a continuous
variable, the distribution of log SI is given as

(log SI |sex) ∼ N (m+ βsex, σ2).

None of the parameters m, β and σ2 depend on sex, but the mean is m if
sex is 0 and m + β if sex is 1. If sex is treated as a discrete variable, the
distribution of log SI is

(log SI |sex) ∼ N (msex, σ
2
sex),
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i.e. both the mean and the variance depends on sex.

In the following we will try different ways of establishing a Bayesian network,
which can be used to predict log SI from measurements from an OGTT and
from BMI and sex. So the networks we will consider in the following, only
contain continuous variables. Notice that, when using the theory presented
for mixed networks on networks with only continuous variables, it coincides
with theory developed for purely continuous networks, see Bøttcher (2001).
To learn the parameters and structure of a Bayesian network, we use the
software package deal, see Bøttcher and Dethlefsen (2003). The package is
written for R, see R Development Core Team (2004).

To validate the models, we split the dataset into a subset with 140 subjects,
used as training data, and a subset with 47 subjects, used as validation data.
For each model, we use deal with the training data to learn the parameters
and structure of the Bayesian network. The posterior parameter distribution
of log SI is used to derive point estimates of the parameters. For the Gaussian
parameters, we use the mean of the posterior and for the gamma distributed
parameter, we use the mode of the posterior. These point estimates are then
transfered to Hugin (www.hugin.com). For each subject in both the training
data and the validation data, the conditional distribution of log SI is calcu-
lated given the observations from the OGTT using Hugin. In the following,
we call this distribution the predictive distribution of log SI . Notice, however,
that if a fully Bayesian approach had been used, the predictive distribution
for one subject is

p(log SI |d) =

∫

θ∈Θ

p(log SI |d, θ)p(θ)dθ,

where d denotes the subjects OGTT measurements and θ are the parameters.
This distribution is a t distribution with degrees of freedom increasing with,
among other numbers, the number of subjects in the training dataset. In
this study we have 140 subjects and we find that the error using a Gaussian
distribution instead, is very small.

The predictive distribution is then, for each subject, compared with the cor-
responding log SI value determined from the IVGTT in the following way.
For each subject we use the predictive distribution to calculate the 95%’s
credibility intervals µ ± 1.96 · σ, where 1.96 is the 97.5%’s quantile in the
Gaussian distribution. So if a Bayesian network can predict the value of
log SI , we expect that 95% of the corresponding log SI values found in the
IVGTT study, will lie within this interval. If this is the case, we say that the
predictive distribution of log SI is well calibrated, see Dawid (1982).
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Further, we perform an ordinary linear regression of the IVGTT obtained SI

on the predicted SI and calculate the residual standard deviation, SD, and
the correlation coefficient, R2, obtained from this regression. To show that
there is no systematic bias in these regressions, we report the intercept and
slope of these regressions lines.

5.2 The Different Models

In the following we will present different approaches for finding a Bayesian
network, that can model the dependency relations between the variables in
the problem. Further, we will present the results of a previous approach,
where multiple linear regression is used and also the results of using the
leaps and bounds algorithm for best subset selection.

Bayesian regression network

Previous results have shown that predictions of log SI from a multiple re-
gression on OGTT plasma glucose and serum insulin levels, BMI and sex,
are highly correlated to the corresponding IVGTT-derived SI estimates, see
e.g. Drivsholm et al. (2003). We will therefore learn the parameters and the
structure of a network, where log SI can depend on these variables, and these
variables are marginally independent, i.e. the only arrows that are allowed
in the model, are arrows into log SI . This network represents a regression
model, so we will refer to it as the Bayesian regression network.

To learn this network, we need to specify a prior network, i.e. a prior DAG
and a prior probability distribution. As prior DAG we use, for simplicity,
the empty DAG, i.e. the one without any arrows. This DAG represents that
all the variables are independent, so the local probability distribution for
each node only depends on the node itself. To specify the prior probability
distribution, we use the sample mean and the sample variance as an initial
estimate of the mean and variance. As a measure of our confidence in this
network, we use N = 100 for the size of the imaginary database.

Figure 1 shows the result of the structural learning procedure. We see that
log SI depends on almost all of the insulin measurements, except for I10, and
a few of the glucose measurements.
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Figure 1: The result of the structural learning procedure for the Bayesian
regression network.

Bayesian network with empty prior network

In situations where not all the variables are observed, information is gained
by modeling the possible correlations between the explanatory variables. So
we will now learn a network, where these correlations are allowed. We restrict
us to networks, where arrows between the glucose and insulin measurements
point forward in time, where BMI and sex can not have any parents and
where log SI can not have any children. Again we use the empty DAG as prior
DAG, the sample mean and sample variance to specify the prior probability
distribution and N = 100 as a measure of our confidence in this network. The
result of the structural learning procedure reveals a complicated dependency
structure between the variables, see Figure 2.

Figure 2: The Bayesian network with the empty network as prior.

The Markov blanket for log SI in this network, is the same as the Bayesian
regression network, see Figure 1. The reason for this is that log SI , in both
networks, is not allowed to have any children and because we in both ap-
proaches have used the same prior network. So when all the variables in the
Markov blanket is observed, as it is in our study, the prediction results are
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exactly the same as for the Bayesian regression network.

Bayesian network with physiological prior network

In the previous two networks, we have for simplicity used the empty DAG as
prior DAG. We will now use a prior DAG, called the physiological network,
where the knowledge we have about the physiological relations between the
variables is incorporated.

Figure 3: The physiological network.

In this network, insulin measurements and glucose measurements are as-
sumed to be Markov processes. They are coupled so that the current glucose
measurement depends on the previous insulin measurement and the current
insulin measurement depends on the current glucose measurement, see Fig-
ure 3. This structure is consistent with the physiological model used in
Bergmans minimal model to determine SI from an IVGTT. In addition, we
let the initial glucose and insulin measurements depend on BMI and sex.

Figure 4: The Bayesian network with the physiological network as prior.

Like before, we estimate the prior probability distribution from data. How-
ever, contrary to the empty network, the variables in the physiological net-
work depends on other variables, so we perform a linear regression on the
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parents and use the sample mean and sample variance from these regressions
as the mean and variance in the local prior probability distributions. Again
we use N = 100 and we only consider networks where arrows between the
glucose and insulin measurements point forward in time, where BMI and sex
can not have any parents and where log SI can not have any children.

The result of the structural learning procedure is shown in Figure 4. As
before, we see a complicated dependency structure between the variables.

Figure 5: The Markov blanket for the Bayesian network with the physiolog-
ical network as prior.

In Figure 5, the Markov blanket of log SI is shown and we see that is quite
different than with the empty prior, shown in Figure 1. Only 6 of the insulin
measurements and 5 of the glucose measurements are included in the present
blanket.

Results using multiple linear regression

In Drivsholm et al. (2003), multiple linear regression is used to derive pre-
dictive equations of log SI using OGTT plasma glucose and serum insulin
levels, BMI and gender. To limit the amount of blood samples drawn from
the patients, they constrain the models to include glucose and insulin obser-
vations to the same time point. By a combination of backwards elimination
and forward selection, they find the optimal model to be with sample time
points 0, 30, 60, 105, 180, and 240. Notice, though, that they have found
their model on the basis of a different training dataset than ours, as the par-
tition of the dataset into training data and validation data is done randomly
in both cases.
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Results using the leaps and bound algorithm

Further, we have tried the leaps and bound algorithm by Furnival and Wilson
(1974), using the Bayesian information criteria to find the best subset of the
explanatory variables. With this approach, the optimal model is with I50,
I90, G160, BMI and sex as explanatory variables. In theory, when the size of
the database approaches infinity, using the Bayesian information criteria will
result in the same subset of explanatory variables as when using the network
score as selection criteria, see Haughton (1988).

5.3 Evaluation

To compare the different models, we first consider the network score. Notice
that we can only compare network scores for networks that are learned using
the same prior network. To be able to evaluate all models using the network
score, we have also calculated the log scores for the results found in the
multiple linear regression approach and the leaps and bounds approach. This
is done by formulating these results as Bayesian networks and calculating the
log scores using respectively the empty network and the physiological network
as prior network. Likewise, for the Bayesian regression network found by
using the empty network as prior network, we have calculated the log score
using the physiological network as prior network.

Model Empty prior Physiological prior

BR −17878.30 −17848.33

BN −16528.39 −14851.44

MLR −17886.17 −17849.06

L&B −17894.95 −17846.12

Table 1: Network scores for the different models.

The results are reported in Table 1. The Bayesian network model (BN) has
the lowest log score, i.e. the highest network score, both when the empty
network and the physiological network are used as prior network. This is
obvious as the BN is selected using the network score as selection criteria and
because the Bayesian regression (BR), the multiple linear regression (MLR)
and the leaps and bounds (L&B) networks are included in the search space,
when searching for the BN with the highest score. So unless we have only
found a local maximum, instead of a global maximum, the score for the BN
must be higher than the score for the other networks.



5 Results 14

When comparing the scores found using the empty prior, we see that the
network scores for the BR network, the MLR network and the L&B network
are almost all the same. The network score for the BN is over a thousand
times higher than for any of the other networks, indicating that the BN
provides a much better fit to data. Recall, however, that the Markov blanket
for the BR network and the BN are the same, so when all the variables in
the Markov blanket are observed, the BR network and the BN will predict
the same log SI values. So the higher network score is not important when
data are complete, but can have an impact when data are incomplete.

When using the physiological network as prior network, we see almost the
same result. The network score for the BR, MLR and L&B networks are
almost all the same, whereas the network score for the BN is over 3000 times
higher than for any of the other networks.

Model Tr. data R2(SD) Val. data R2(SD) Tr. outside Val. outside

BR with empty prior 0.76(0.31) 0.73(0.35) 1(1%) 1(2%)

BN with empty prior 0.76(0.31) 0.73(0.35) 1(1%) 1(2%)

BN with phys. prior 0.77(0.30) 0.73(0.36) 7(5%) 3(6%)

MLR 0.76(0.31) 0.66(0.40) 3(2%) 3(6%)

L&B 0.75(0.31) 0.73(0.36) 6(4%) 4(9%)

Table 2: The table lists the R2 and SD values from the linear regressions
of the IVGTT obtained log SI on the predicted log SI for both the
training dataset and the validation dataset. Also listed are how
many log SI values that fall outside the credibility interval µ±1.96·σ.

In Table 2 the R2 and SD values from the linear regression of the IVGTT
obtained log SI on the predicted log SI are reported. The R

2 and SD values
are for all five models acceptable and they are almost the same for all models,
except for the multiple regression model, which on the validation dataset does
not perform as well as the others.

Table 3 shows the intercept and slope of the estimated regression lines and
there are no evidence of any systematic bias. We therefore conclude that an
OGTT can be used to determine the insulin sensitivity index.

In Table 2 we have also listed how many log SI values that fall outside the
credibility interval µ ± 1.96 · σ. Approximatively 5% of these predictions
should lie outside and 95% inside the interval for the predictive distributions
to be well calibrated. This is clearly fulfilled for the BN with the physio-
logical network as prior network, so the predictive distribution for log SI is,
when using this network, well calibrated. With the MLR approach and the
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Model Tr. data (intercept, slope) Val. data (intercept, slope)

BR empty prior (−0.19, 1.09) (−0.05, 1.01)

BN empty prior (−0.03, 1.01) (0.25, 0.87)

BN phsy. prior (−0.06, 1.03) (0.14, 0.92)

MLR (0, 1) (0.06, 0.96)

L&B (0, 1) (0.11, 0.93)

Table 3: The intercept and slope of the regressions lines from the regressions
of the IVGTT obtained SI on the predicted SI . Reported to show
that there is no evidence of systematic bias.

L&B approach it is almost fulfilled that 5% of the predictions lie outside the
intervals. We will therefore conclude that the predictive distributions are
also well calibrated in these cases. For the BR and the BN with the empty
network as prior network, very few values lie outside the intervals, indicating
that the variance is probably estimated to large.

Figure 6 shows the predicted log SI values and the intervals for the BN with
the empty prior and for the BN with the physiological prior. We see that
for the two models, the predicted log SI values are almost the same, but the
intervals are much wider for the BN with the empty prior, meaning that the
variance in this model is larger.

So to summarize, all the models give adequate predictions of the log SI values.
Evaluating the models using the different validation approaches all together,
the BN with the physiological prior model gives a more precise predictive
distribution of log SI compared to the other models. We therefore suggest
that this model should be used to derive the predictive values of log SI .

6 Discussion

We have established a promising way of determining the insulin sensitivity
index from an oral glucose tolerance test rather than from an intravenous
glucose tolerance test. All approaches give adequate predictions of SI . The
Bayesian network with the physiological prior estimates the most precise
predictive distribution of SI , so we claim that this is the best model. There
are also other advantages by using a Bayesian network instead of an ordinary
regression model. In a Bayesian network, we can use any prior knowledge
available from e.g. previous studies or from the physiological understanding
of the problem. Further, we can calculate the predictive distribution of log SI
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Figure 6: The predicted log SI values and the credibility intervals for the
Bayesian network with empty prior (dark and disks) versus the
Bayesian network with physiological prior (light and triangles).

in situations, where some of the observations are missing. This can be used
when a single or a few observations are missing for a specific subject. It can
also be used when certain time points are not observed at all, which could be
the case if a dataset from another study, using fewer time points, is analyzed.
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