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ON THE EQUIVALENCE OF BRUSHLET AND WAVELET BASES

LASSE BORUP AND MORTEN NIELSEN†

Abstract. We prove that the Meyer wavelet basis and a class of brushlet systems asso-
ciated with exponential type partitions of the frequency axis form a family of equivalent
(unconditional) bases for the Besov and Triebel-Lizorkin function spaces. This equiva-
lence is then used to obtain new results on nonlinear approximation with brushlets in
Triebel-Lizorkin spaces.

1. Introduction

Wavelet bases for L2 := L2(R) provide stable bases for many of the classical function
spaces such as Besov and Triebel-Lizorkin spaces, and such systems correspond to dyadic
Littlewood-Paley type partitions of the frequency axis. Brushlet bases were introduced
by Coifmann and Meyer [13] as a tool for image compression, and brushlets also provide
orthonormal bases for L2, but with a more flexible decomposition of the time-frequency
axis. In fact, one can adapt a brushlet basis to any reasonable partition of the frequency
axis.

For partitions of exponential type, e.g, {±[rj, rj+1)}j∈Z for a fixed r > 1, brushlet bases
share many properties with wavelet bases. The authors proved in [4] that such brushlet
bases form unconditional bases for Triebel-Lizorkin spaces (in particular for Lp, 1 < p <
∞) and Besov spaces. So a brushlet system of exponential type seems very similar to a
wavelet basis, but are the systems actually equivalent bases in other spaces than L2? We
recall that two bases {fn}n and {gn}n for a Banach space X are called equivalent if there
exists an isomorphism T : X → X satisfying Tfn = gn.

It is well known that almost any pair of wavelet bases are equivalent bases in Lp, 1 <
p < ∞. In fact, Wojtaszczyk proved in [16] that whenever a wavelet system satisfy a
minimal decay condition it is equivalent to the Haar wavelet system. A pair of sufficiently
smooth wavelet systems are also equivalent in the Besov and Triebel-Lizorkin spaces,
see e.g. [14]. The equivalence of pairs of nice wavelet bases can also be deduced using
the powerful ϕ-transform machinery of Frazier-Jawerth [9]. In [9] the function systems
considered are formed by dyadic dilation of a single atom, and the function system is
therefore naturally associated with a dyadic decomposition of the frequency axis just as
for wavelet bases. So it seems only natural that brushlet bases associated with a partition
such as {±[2j, 2j+1)}j∈Z should be equivalent to a wavelet system, and this can in fact
be deduced from the results in [9]. But it is less obvious what happens for more general
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brushlet systems associated with partitions such as e.g. {±[2j/2, 2(j+1)/2)}j∈Z. Are such
systems also equivalent with wavelet bases associated with the standard dyadic dilation?

The purpose of the present paper is to prove that wavelet and a family of brushlet bases
of exponential type are in fact equivalent (unconditional) bases for the Besov and Triebel-
Lizorkin spaces. The proof will be achieved by constructing the isomorphism T explicitly
for the Meyer wavelet/brushlet system. Care has to be taken when defining T - even
though the wavelet and brushlets are (unconditional) bases in the respective function
spaces, they are far from being symmetric bases so the ordering of the bases is crucial.

Some of the most useful Triebel-Lizorkin and Besov spaces are not Banach spaces, but
only quasi Banach spaces. For example, Lp and the Hardy spaces Hp are quasi-Banach
spaces for 0 < p < 1, but they still play an important role in, e.g., nonlinear approxi-
mation theory with wavelets [11, 5]. For such spaces, we no longer have the notion
of an unconditional basis, but we can still study the operator T that takes the wave-
let system to the brushlet system, and we will show that T is an isomorphism on the
Besov/Triebel-Lizorkin scales. This will still lead to a characterization of the quasi-norm
for a given Besov/Triebel-Lizorkin space X in terms of brushlet coefficients in the sense
that there exists a corresponding sequence space Xd, a bounded brushlet analysis opera-
tor A : X → Xd, and a brushlet synthesis operator S : Xd → X for which S ◦ A = IdX
(with IdX the identity operator on X). As an application of the wavelet/brushlet system
equivalence, we deduce new results on nonlinear approximation with brushlet systems in
Triebel-Lizorkin spaces, generalizing the results in [4].

The structure of the paper is as follows. In Section 2 we define the brushlet system, and
the restricted class of exponential partitions that will be considered. In Section 3 we
study the equivalence of brushlets and the Meyer wavelet system. First we prove that
the systems are equivalent in the Besov spaces Ḃs

p,q, 1 < p, q < ∞, even for brushlets
associated with very general exponential partitions. Then we prove the equivalence in Lp,
1 < p < ∞, for a more restricted class of brushlet systems. The idea is to associate an
integral kernel to the map T and then decompose the kernel into a finite sum of (modified)
Calderón-Zygmund kernels. We conclude Section 3 by considering the brushlet/wavelet
equivalence on the full scale of Triebel-Lizorkin spaces. For this, we use the Frazier-
Jawerth theory of almost diagonal matrices [9] to study the properties of the mapping
T . Some of the technical lemmas needed for the proofs of the results in Section 3 can
be found in Appendix A. In the final section, Section 4, we consider an application
of the results to nonlinear approximation with brushlet systems, where we measure the
approximation error using the Triebel-Lizorkin (semi)quasi-norms. The idea is to use the
results on nonlinear approximation with nice wavelet systems and then “translate” the
results to the brushlet system using the mapping T .

2. Brushlet systems

A brushlet basis is associated with a partition of the frequency axis. The partition can be
chosen with almost no restrictions, but in order to have good properties of the associated
basis we need to impose some growth conditions on the partition. We introduce the
following definition of exponential coverings of the frequency axis, where we leave out the
origin since we want to study homogeneous function spaces later.
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Definition 2.1. A family I of intervals is called a disjoint covering of R \ {0} if it
consists of a countable set of pairwise disjoint half-open intervals I = [αI , α

′
I), αI < α′

I ,
such that ∪I∈II = R \ {0}. If, furthermore, each interval in I has a unique adjacent
interval in I to the left and to the right, and there exist two constants 1 < λ ≤ Λ < ∞
such that

(2.1) λ ≤
|I|

|I ′|
≤ Λ for all adjacent I, I ′ ∈ I,

with |α′
I | < |αI |, we call I an exponential covering of R.

Below we will often use the following (non-unique) enumeration of such a disjoint covering
I. We number the intervals in I such that I = I0 ∪ I1 = {I0

m}m∈Z ∪ {I
1
m}m∈Z, with

I0
m ⊂ (−∞, 0) and I1

m ⊂ (0,∞) for m ∈ Z. Furthermore, we require that I1
m+1 is the

neighbor to the right of I1
m for m ∈ Z, and I0

m is the neighbor to the right of I0
m+1 for

m ∈ Z.

Given a exponential disjoint covering I of R, assign to each interval I = [αI , α
′
I) ∈ I a

left and right cutoff radius εI , ε
′
I > 0, satisfying

(2.2)











(i) ε′I = εI′ whenever α′
I = αI′

(ii) εI + ε′I ≤ |I|

(iii) εI ≥ c|I|,

with c > 0 independent of I.

Example 2.2. If we let εI = 1
2Λ
|I| and ε′I be given by (i) in (2.2) then (ii) and (iii) are

clearly satisfied.

We are now ready to define the brushlet system. For each I ∈ I, we will construct a
smooth bell function localized in a neighborhood of this interval. Take a non-negative
ramp function ρ ∈ Cr(R) for some r ≥ 1, satisfying

(2.3) ρ(ξ) =

{

0 for ξ ≤ −1,
1 for ξ ≥ 1,

with the property that

(2.4) ρ(ξ)2 + ρ(−ξ)2 = 1 for all ξ ∈ R.

Define for each I = [αI , α
′
I) ∈ I the bell function

(2.5) bI(ξ) := ρ

(

ξ − αI
εI

)

ρ

(

α′
I − ξ

ε′I

)

.

Notice that supp(bI) ⊂ [αI − εI , α
′
I + ε′I ] and bI(ξ) = 1 for ξ ∈ [αI + εI , α

′
I − ε

′
I ]. Now the

set of local cosine functions

(2.6) ŵI,n(ξ) =

√

2

|I|
bI(ξ) cos

(

π(n+ 1
2
)

|I|
(ξ − αI)

)

, n ∈ N0, I ∈ I,
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constitute an orthonormal basis for L2, see e.g. [1]. We call the collection {wI,n}I∈I,n∈N0
a

brushlet system. The brushlets also have an explicit representation in the time domain.
Define the set of central bell functions {gI}I∈I by

(2.7) ĝI(ξ) := ρ

(

|I|

εI
ξ

)

ρ

(

|I|

ε′I
(1− ξ)

)

,

such that bI(ξ) = ĝI
(

|I|−1(ξ − αI)
)

, and let for notational convenience

eI,n :=
π
(

n+ 1
2

)

|I|
, I ∈ I, n ∈ N0.

Then, wI,n(x) = w+
I,n(x) + w−

I,n(x), with

(2.8) w±
I,n(x) =

√

|I|

2
eiαIxgI

(

|I|(x± eI,n)
)

.

Thus a brushlet wI,n essentially consists of two “humps” at ±eI,n.

We should remark that our definition of brushlets is slightly different from the definition
given by Coifman and Meyer in [13] and more similar to the system considered by Laeng
[12].

By a straight forward calculation it can be verified (see [4]) that there exists a constant
C <∞ independent of I ∈ I, such that

(2.9) |gI(x)| ≤ C(1 + |x|)−r,

with r ≥ 1 given by the smoothness of the ramp function. We say that the brushlet basis
is r-localized if (2.9) is satisfied.

We want to study brushlet systems as bases for homogeneous Triebel-Lizorkin and Besov
spaces, so let us first briefly recall the definition of these spaces (see also, e.g. [15]). Let
{φj}j∈Z be a collection of functions in S(R) with supp(φj) ⊂ {x | 2

j ≤ |x| ≤ 2j+1}, and
let P be the family of polynomials on R. Then

• For 0 < p ≤ ∞, s ∈ R, and 0 < q ≤ ∞, we define the Besov semi-norm for
f ∈ S ′(R),

‖f‖Ḃs
p,q

:=

(

∑

j∈Z

2jsq‖F−1φjFf‖
q
Lp

)1/q

,

with the appropriate modification when q =∞. The homogeneous Besov space is
defined as

Ḃs
p,q :=

{

f : f ∈ S ′(R)/P , ‖f‖Ḃs
p,q
<∞

}

.

• For 0 < p <∞, s ∈ R, and 0 < q ≤ ∞, we define the Triebel-Lizorkin semi-norm
for f ∈ S ′(R),

‖f‖Ḟ s
p,q

:=

∥

∥

∥

∥

(

∑

j∈Z

2jsq|F−1φjFf(·)|q
)1/q∥

∥

∥

∥

Lp

,

with the appropriate modification when q = ∞, and the homogeneous Triebel-
Lizorkin space is defined as

Ḟ s
p,q :=

{

f : f ∈ S ′(R)/P , ‖f‖Ḟ s
p,q
<∞

}

.
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As usual, we identify distributions that differ by a polynomial to make ‖ ·‖Ḟ s
p,q

and ‖ ·‖Ḃs
p,q

into (quasi-)norms. It is well-known that for 1 < p < ∞, Ḟ 0
p,2 ≈ Lp, and for 0 < p ≤ 1,

Ḟ 0
p,2 ≈ Hp.

Let us also recall the definition of the sequence spaces ḟ sp,q and ḃsp,q. A complex-valued

sequence d = {dj,k} is said to belong to ḟ sp,q for s ∈ R, 0 < p <∞, and 0 < q ≤ ∞, if

‖d‖ḟs
p,q

:=

∥

∥

∥

∥

∑

j∈Z

(

∑

k∈Z

(

2j(s+1/2)|dj,k|χ[2j ,2j+1]

)q
)1/q∥

∥

∥

∥

Lp

<∞,

with the appropriate modification when q = ∞. Similarly, d ∈ ḃsp,q for s ∈ R, and
0 < p, q ≤ ∞, if

‖d‖ḟs
p,q

:=

(

∑

j∈Z

2jq(s+1/2−1/p)
(

∑

k∈Z

|dj,k|
p
)q/p

)1/q

<∞,

with the appropriate modification when p =∞ or q =∞.

Using the φ-transform it was proved in [9] and [8] that Ḟ s
p,q is a retract of ḟ sp,q for s ∈ R,

0 < p < ∞, and 0 < q ≤ ∞, i.e., there exists an analysis operator A : Ḟ s
p,q → ḟ sp,q and a

synthesis operator S : ḟ sp,q → Ḟ s
p,q such that IdḞ s

p,q
= S ◦ A. Similarly Ḃs

p,q is a retract of

ḃsp,q for s ∈ R, and 0 < p, q ≤ ∞.

A special example of the function used in the theory of φ-transform is the Meyer wavelet.
Let ψ denote the Meyer wavelet and let ψj,k(x) := 2j/2ψ(2jx − k). Define the analysis
operator Aψ : L2 → ℓ2 by Aψf = {〈f, ψj,k〉}, and the synthesis operator Sψ : ℓ2 → L2 by
Sψd =

∑

j,k dj,kψj,k. Since the Meyer wavelet fits into the theory of the φ-transform, we
have the following commuting diagram.

Ḟ s
p,q

[

Ḃs
p,q

]

Aψ

Ḟ s
p,q

[

Ḃs
p,q

]

Sψ

ḟ sp,q
[

ḃsp,q
]

IdḞ s
p,q

[

IdḂs
p,q

]

In particular, we have the wavelet characterization

(2.10) ‖f‖Ḟ s
p,q
≍

∥

∥

∥

∥

(

∑

j∈Z

∑

k∈Z

2j(s+
1

2
)τ |〈f, ψj,k〉|

τχ[2j ,2j+1]

)1/τ∥
∥

∥

∥

Lp

.

Given a brushlet system {wI,n}, define the analysis operator Ab : L2 → ℓ2 by Abf =
{〈f, wI,n〉}, and the synthesis operator Sb : ℓ2 → L2 by Sbd =

∑

I,n dj,kwI,n. One of the
purposes of this paper is to show that if the brushlet system is sufficiently nice, the
operators Ab and Sb defines similar retracts as shown in the above diagram.
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3. Equivalent brushlet-wavelet systems in the Besov and

Triebel-Lizorkin spaces

In this section we will identify a family of brushlet bases that are equivalent to the Meyer
wavelet basis in Lp, or more generally in the Triebel-Lizorkin spaces Ḟα

p,q and in the Besov

spaces Ḃα
p,q. We choose to work with the Meyer wavelet basis since it is equivalent in the

Triebel-Lizorkin/Besov spaces to any other wavelet basis with sufficient smoothness and
decay. First we will give a result in Ḃα

p,q for a rather large class of brushlet systems, but
for the restricted case 1 < p, q <∞. Then we consider the equivalence in Lp, 1 < p <∞.

Finally, we give a more technical result for the general function spaces Ḟα
p,q and Ḃα

p,q.

The proof of the result in Ḟα
p,q (and Ḃα

p,q) is more elaborate, we analyze the matrix of
a certain decomposition of T in the Meyer wavelet basis and use the Frazier-Jawerth
theory of almost diagonal matrices to reach the conclusion. The proof in Lp is more
straightforward and consists of a careful analysis of the kernel for the isomorphism T that
will be defined below.

3.1. Wavelet-brushlet equivalence on the Besov Scale. In this section we will iden-
tify a family of brushlet bases that are equivalent to the Meyer wavelet bases in the Besov
spaces Ḃα

p,q for α ∈ R and 1 < p, q <∞. Compared with the techniques used in Section 3.4
below this is a much easier task than showing the equivalence in the Triebel-Lizorkin
spaces. Suppose that Λ < 2. For j ∈ Z and ε ∈ {0, 1} define sj,ε ∈ Z by 2j ∈ Iεsj,ε

(sj,ε can

be shown to be unique, since Λ < 2), Iεsj,ε
∈ Iε, and let pj,ε := sj+1,ε − sj,ε. Notice that

1 ≤ pj,ε ≤ 1/ log2(λ). To keep notation simple we will introduce the indices Γ ∈ Z × Z

and Υ ∈ Z× N0. Γ will be used as the index for the wavelets and Υ will be the index of
the brushlets. For j ∈ Z, k ∈ N0, δ, ε ∈ {0, 1}, and 0 ≤ m < pj,ε we define

Γ := Γj,k,m,δ,ε := (j, (−1)δ(2pj,εk + 2m+ ε)− δ)

and

Υ := Υj,k,m,δ,ε := (sj,ε +m, 2k + δ).

Notice that there exist constants 0 < c ≤ C < ∞ such that c2j < |Isj,ε+m| < C2j for all
j ∈ Z. Define the operator T : L2 → L2 by

(3.1) TψΓ = wεΥ.

It is clear that T is an isomorphism on L2 since Γ and Υ (considered as functions)
injectively run through all of Z× Z and Z× N0, respectively.

We can now state the main result regarding the equivalence on the Besov scale Ḃα
p,q for

1 < p, q <∞.

Proposition 3.1. The map T defined by (3.1) extends to an isomorphism on Ḃα
p,q, α ∈ R,

1 < p, q <∞. In particular, {wn,I}I∈I,n∈N0
and the Meyer wavelet system are equivalent

unconditional bases for Ḃα
p,q.
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Proof. Take any f ∈ Ḃα
p,q. Then we have

‖f‖Ḃα
p,q
≍

(

∑

j∈Z

(

∑

k∈Z

(

2j(α+1/2−1/p)|〈f, ψj,k〉|
)p

)q/p)1/q

=

(

∑

j∈Z

(

∑

k∈Z

∑

ε,δ∈{0,1}

pj,ε
∑

m=0

(

2j(α+1/2−1/p)|〈f, ψΓ〉|
)p

)q/p)1/q

≍

(

∑

j∈Z

∑

ε,δ∈{0,1}

pj,ε
∑

m=0

(

∑

k∈Z

(

2j(α+1/2−1/p)|〈f, ψΓ〉|
)p

)q/p)1/q

,

Where we have used that the sum over ε, δ, and m is finite. Also, using the Brushlet
characterization of the norm on Ḃα

p,q (see [4]), we get

‖Tf‖Ḃα
p,q
≍

(

∑

j∈Z

∑

ε∈{0,1}

pj,ε
∑

m=0

(

∑

k∈Z

(

|Isj,ε+m|
(α+1/2−1/p)|〈f, ψΓ〉|

)p
)q/p)1/q

≍

(

∑

j∈Z

∑

ε∈{0,1}

pj,ε
∑

m=0

(

∑

k∈Z

(

2j(α+1/2−1/p)|〈f, ψΓ〉|
)p

)q/p)1/q

Hence, it follows that ‖f‖Ḃα
p,q
≍ ‖Tf‖Ḃα

p,q
. �

3.2. (a/b)-regular exponential partition. Let us now specify the family of brushlet
bases that will be considered in the following two sections. For technical reasons we
cannot handle general exponential partitions. Suppose that

(3.2)
|Iεm+1|

|Iεm|
= 2a/b, m ∈ Z, ε ∈ {0, 1}

for some b, a ∈ N with gcd(b, a) = 1. We say that such a partition is an (a/b)-regular
exponential partition. For notational convenience, let wIε

m,n
= wεm,n.

We want to make an bijective mapping of the Meyer wavelet system to the brushlet
system. In the following we will focus on the situation where a < b but the results can
easily be obtained for a ≥ b as well, using the same techniques as below (see Section 3.5).
Again, to keep notation simple we will introduce the indicies Γ ∈ Z× Z and Υ ∈ Z× N0

as follows. For ℓ ∈ {0, 1, . . . , a − 1} let sℓ := ⌊ℓ · b/a⌋ and pℓ := sℓ+1 − sℓ (with sa := b).
Notice that 1 ≤ pℓ ≤ ⌈b/a⌉. For j ∈ Z, k ∈ N0, δ, ε ∈ {0, 1}, 0 ≤ ℓ < a, and 0 ≤ m < pℓ
we define

Γ := Γj,k,ℓ,m,δ,ε := (aj + ℓ, (−1)δ(2pℓk + 2m+ ε)− δ)(3.3)

and

Υ := Υj,k,ℓ,m,δ := (bj + sℓ +m, 2k + δ).(3.4)

It is not hard to check that Γ and Υ (considered as functions) are onto Z×Z and Z×N0,
respectively, and they are injective on their respective domains. The main justification
for introducing these seemingly cumbersome indices is that the length of the interval
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Iεbj+sℓ+m
∈ Iε is approximately equal to 2aj+ℓ up to a constant depending only on ℓ, m

and ε. More precisely, define for 0 ≤ ℓ < a, 0 ≤ m < pℓ, and ε ∈ {0, 1} the constant
qℓ,m,ε := |Iεsℓ+m

|2−ℓ, and observe that

|Iεbj+sℓ+m
| = qℓ,m,ε2

aj+ℓ, for all j ∈ Z.

We now want to define the operator T : L2 → L2. The idea behind the definition of T is
very simple, we map a given wavelet onto a brushlet with the same “frequency content”
taking care that the mapping is injective and onto. We define

(3.5) TψΓ = wεΥ.

It is clear that T is an isomorphism on L2 since Γ and Υ injectively run through all of
Z× Z and Z× N0, respectively.

3.3. The equivalence in Lp. For a brushlet system associated with an (a/b)-regular
exponential partition, the operator kernel associated to T defined by (3.5) is given by

K(x, y) =
∑

j∈Z

∑

k∈N0

a−1
∑

ℓ=0

pℓ
∑

m=0

∑

δ,ε∈{0,1}

ψΓ(y)wεΥ(x).

In this section we study T in Lp, 1 < p <∞, by analyzing the associated kernel K(x, y).

Proposition 3.2. Let {wn,I}I∈I,n∈N0
be a 2-localized brushlet system associated with an

(a/b)-regular exponential partitioning I, a < b, and define T : L2 → L2 by (3.5). Then
T extends to an isomorphism on Lp, 1 < p < ∞. In particular, {wn,I}I∈I,n∈N0

and the
Meyer wavelet system are equivalent unconditional bases for Lp, 1 < p <∞.

Proof. It is not hard to verify that K(x, y) is not a Calderón-Zygmund kernel, but the

idea of the proof is to decompose K(x, y) into a finite number of kernels Kε,δ
ℓ,m(x, y) that

are slightly modified Calderón-Zygmund kernels. We split K(x, y) as follows.

K(x, y) =
∑

δ,ε∈{0,1}

a−1
∑

ℓ=0

pℓ
∑

m=0

Kε,δ
ℓ,m(x, y),

where

Kε,δ
ℓ,m(x, y) :=

∑

j∈Z

∑

k∈N0

ψΓ(y)wεΥ(x).

Since the wavelet and brushlet system are orthonormal bases for L2, it is easy to verify
that the operator T ε,δℓ,m associated with Kε,δ

ℓ,m(x, y) is bounded on L2. By lemma A.1 in
Appendix A, we have that there exist constants 0 < C <∞ and η > 0 such that

|Kε,δ
ℓ,m(x, y)| ≤ C

∣

∣

∣

∣

(−1)δp−1
ℓ y −

qℓ,m,ε
π

x

∣

∣

∣

∣

−1

,

|Kε,δ
ℓ,m(x, y)−Kε,δ

ℓ,m(x′, y)| ≤ C|x− x′|η
∣

∣

∣

∣

(−1)δp−1
ℓ y −

qℓ,m,ε
π

x

∣

∣

∣

∣

−1−η

,
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if |x− x′| ≤ 1
2

∣

∣

(−1)δπ
qℓ,m,εpℓ

y − x
∣

∣, and

|Kε,δ
ℓ,m(x, y)−Kε,δ

ℓ,m(x, y′)| ≤ C|y − y′|η
∣

∣

∣

∣

(−1)δp−1
ℓ y −

qℓ,m,ε
π

x

∣

∣

∣

∣

−1−η

,

if |y − y′| ≤ 1
2

∣

∣y −
(−1)δqℓ,m,εpℓ

π
x
∣

∣.

Notice that Kε,δ
ℓ,m(x, y) is not a standard Calderón-Zygmund kernel since it has the sin-

gularity on the line y =
(−1)δpℓqℓ,m,ε

π
x. However, this is not a serious problem. Let Du

be the dilation operator defined by Duf(x) = f(ux). Consider the operator T̃ ε,δℓ,m :=

Dπ/qℓ,m,ε
T ε,δℓ,mD(−1)δp−1

ℓ
. Clearly, T̃ ε,δℓ,m is bounded on L2 since Du is bounded on L2. Moreo-

ver, we see that T̃ ε,δℓ,m has kernel

K̃ε,δ
ℓ,m(x, y) = Kε,δ

ℓ,m

(

π

qℓ,m,ε
x, (−1)δpℓy

)

.

By the above estimates on the kernel Kε,δ
ℓ,m(x, y), T̃ ε,δℓ,m is a Calderón-Zygmund operator.

Therefore T̃ ε,δℓ,m is bounded on Lp, 1 < p <∞, and it follows that T ε,δℓ,m = Dqℓ,m,ε/πT̃
ε,δ
ℓ,mD(−1)δpℓ

is bounded on Lp since Du is bounded on Lp, 1 < p <∞. Now, T can be decomposed as

a finite sum T =
∑

ℓ,m,ε,δ T
ε,δ
ℓ,m, so we may conclude that T is bounded on Lp, 1 < p <∞.

We can estimate T−1 = T ∗, which has kernel K(y, x), using an analogue approach to
conclude that T−1 is bounded on Lp, 1 < p <∞, and hence T is an isometry on Lp. �

3.4. The equivalence in Ḟα
p,q. In order to extend the isometry to general homogeneous

Triebel-Lizorkin spaces, we need the theory of almost diagonal matrices. Let M be the
change of basis matrix from the Meyer wavelet basis to the brushlet system, given by

(3.6) M := [〈Tψj,k, ψj′,k′ ]j,j′,k,k′∈Z,

with T given by (3.5). Notice that, M is an isometry on ℓ2 and M−1 = M ∗. Let
Ab : L2 → ℓ2 and Sb : ℓ2 → L2 denote respectively the analysis and synthesis operator
associated with the brushlet system, i.e. Abf = {〈f, wI,n〉}, and Sbd =

∑

I,n dI,nwI,n.
Since both the wavelet and brushlet system are orthonormal bases, we have the relation

(3.7) Ab = M ◦ Aψ, and Sb = Sψ ◦M
∗.

We would like to extend Ab and Sb to bounded operators on the Triebel-Lizorkin spaces
Ḟ s
p,q and ḟ sp,q, respectively. According to the relation in (3.7) this is equivalent to the

property that M and M ∗ are bounded operators on ḟ sp,q.

The strategy is to decompose the operator T into a finite sum of the form

T =
∑

u

Du(Sψ ◦Mu ◦Aψ),

where each Mu is a bounded operator on ḟ sp,q.

Let us define the subclass of brushlet systems that we will consider below.
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Definition 3.3. Given N ∈ N and γ > 0. We say that a brushlet system {wI,n}I∈I,n∈N0
is

of class (A) if it is (N+γ+2)-localized and associated with an (a/b)-regular exponential
partitioning I, a < b.

We begin with the observation that the mapping given by ψΓ → w±
Υ has a sparse wavelet

representation. A proof of the following lemma is given in Appendix A.

Lemma 3.4. Suppose the brushlet system {wI,n}I∈I,n∈N0
is of class (A). Let Γ and Υ be

the indicies defined by (3.3) and (3.4). Then for j ≥ j′ we have

|〈D π
pℓqℓ,m,ε

w±
Υ, ψΓ′〉| ≤

C2−(a(j−j′)+ℓ−ℓ′)(N+1/2)

(

1 +
∣

∣κ′ ± 2a(j′−j)+ℓ′−ℓ|κ|
∣

∣

)γ ,

and for j < j′

|〈D π
pℓqℓ,m,ε

w±
Υ, ψΓ′〉| ≤

C2−(a(j′−j)+ℓ′−ℓ)(N+1/2)

(

1 +
∣

∣2a(j−j′)+ℓ−ℓ′κ′ ± |κ|
∣

∣

)γ ,

where κ := (−1)δ(2pℓk + 2m+ ε+ δ), κ′ := (−1)δ
′

(2pℓ′k
′ + 2m′ + ε′ + δ′), Υ = (bj + sℓ +

m, 2k + δ) and Γ′ = (aj′ + ℓ′, κ′).

The two inequalities in Lemma 3.4 bear some resemblance with the concept of almost
diagonal matrices. In order to use the result on the operator T we need to write it as the
sum of two operators T = T+ + T−, using the relation wI,n = w+

I,n + w−
I,n.

Define the two operators P+ and P− by P±wj,n = w±
j,n. It is easy to see that the

L2-norm of the compound operator D π
pℓqℓ,m,ε

P± is bounded by the ℓ2-norm of the se-

quence {〈Dπ/(pℓqℓ,m,ε)w
±
Υ, ψΓ′〉}Υ,Γ′ . Since this value is finite according to the estimates in

Lemma 3.4, D π
pℓqℓ,m,ε

P± is bounded on L2. But this means that P± itself is a bounded

operator on L2 since the dilation operator is bounded on L2.

As a result of Lemma 3.4, we have the following corollary based on the theory of almost
diagonal matrices.

Corollary 3.5. Suppose the brushlet system {wI,n}I∈I,n∈N0
is of class (A). Let Sε,δℓ,m,± :=

D π
pℓqℓ,m,ε

P±T
ε,δ
ℓ,m. Then for i, i′, κ, κ′ ∈ Z we have

|〈Sε,δℓ,m,±ψi,κ, ψi′,κ′〉| ≤
C2−|i−i′|(N+1/2)

(

1 + min{2i, 2i′}
∣

∣2−i′κ′ ± 2−i(−1)δκ
∣

∣

)γ .(3.8)

Moreover, Sε,δℓ,m,± extends to a bounded operator on the Triebel-Lizorkin spaces Ḟ s
p,q, for

parameters s ∈ R, 0 < p < ∞, 0 < q < ∞, satisfying 1/min(1, p, q) < γ and
max{s, 1/min(1, p, q)− 1− s} < N .

Proof. The inequality (3.8) is an immediate consequences of Lemma 3.4. In order to
conclude the boundedness result we define two operators Q−1 and Q1 by Qζψj,k := ψj,ζk.
From the wavelet characterization of the Triebel-Lizorkin spaces (see (2.10)) it is easy
to see that Qζ , is a bounded operator on these spaces. Let ζ = ∓(−1)δ, and define

the matrix M ε,δ
ℓ,m,± := [〈Sε,δℓ,m,±Qζψi,κ, ψi′,κ′〉]i,i′,κ,κ′∈Z. This is an almost diagonal matrix

for ḟ sp,q as defined by Frazier and Jawerth in [9], and thus bounded on ḟ sp,q, provided
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1/min(1, p, q) < γ and max{s, 1/min(1, p, q)− 1− s} < N , see Theorem 3.3 in [9]. The

corollary now follows, since Sε,δℓ,m,± = Sψ ◦M
ε,δ
ℓ,m,± ◦ Aψ ◦Qζ . �

Notice that T ε,δℓ,m = D pℓqℓ,m,ε
π

(Sε,δℓ,m,+ + Sε,δℓ,m,−). Thus, we can use the result in Corollary 3.5

to analyze the boundedness of the operator T ε,δℓ,m, and since T is given by a finite linear

combination of T ε,δℓ,m we can obtain boundedness results for T as well. We have the following
proposition.

Proposition 3.6. Suppose the brushlet system {wI,n}I∈I,n∈N0
is of class (A). Then the

operator T defined by (3.5) is an isomorphism on Ḟ s
p,q for parameters s ∈ R, 0 < p <∞,

0 < q ≤ ∞ satisfying 1/min(1, p, q) < γ and max{s, 1/min(1, p, q) − s − 1} < N .

Equivalently, M and M ∗ defined by (3.6) extend to bounded operators on ḟ sp,q, for s, p and
q in the same range.

Proof. We recall that T has the finite decomposition

T =
∑

T ε,δℓ,m =
∑

D pℓqℓ,m,ε
π

(Sε,δℓ,m,+ + Sε,δℓ,m,−).

Corollary 3.5 shows that Sε,δℓ,m,± are bounded on Ḟ s
p,q, and the dilation D pℓqℓ,m,ε

π

is also

bounded on Ḟ s
p,q, so it follows that T ε,δℓ,m is bounded on Ḟ s

p,q. Therefore T is bounded on

Ḟ s
p,q, and M is consequently bounded on ḟ sp,q.

We now consider T ∗ = T−1 (in the L2-sense). We have

T ∗ =
∑

(T ε,δℓ,m)∗ =
∑

(

(Sε,δℓ,m,+)∗ + (Sε,δℓ,m,−)∗
)

D∗
pℓqℓ,m,ε

π

.

Using the same notation as in the proof of Corollary 3.5, we notice that (Sε,δℓ,m,±)∗ =

Qζ ◦ Sψ ◦ (M ε,δ
ℓ,m,±)∗ ◦ Aψ. The estimate of the matrix elements given by Corollary 3.5 is

symmetric in (i, κ) and (i′, κ′) so we deduce that (M ε,δ
ℓ,m,±)∗ = [〈ψi,κ, S

ε,δ
ℓ,m,±Qζψi′,κ′〉]i,i′,κ,κ′∈Z

is an almost diagonal matrix for ḟ sp,q. Therefore, (Sε,δℓ,m,±)∗ extend to bounded operators

on Ḟ s
p,q, and then from the relation D∗

u = u−1Du−1, it follows that T ∗ also extends to a

bounded operator on Ḟ s
p,q. However, since T ∗ = T−1 on L2 and, e.g., S(R) is dense in

both L2 and Ḟ s
p,q, we conclude that T−1 is bounded on Ḟ s

p,q. This implies that the matrix

representation M ∗ of T ∗ extends to a bounded operator on ḟ sp,q. �

Remark 3.7. Recall that IdḞ s
p,q

= Sψ ◦ Aψ. Since M and its inverse are bounded on ḟ sp,q
we also have

IdḞ s
p,q

= Sψ ◦M
∗ ◦M ◦ Aψ.

But M ◦ Aψ and Sψ ◦ M
∗ are in fact respectively the analysis and synthesis operator

associated with the brushlet system, so the brushlet system defines a retract of Ḟ s
p,q

through the sequence space ḟ sp,q. We illustrate this by the following commuting diagram.
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Ḟ s
p,q

Ab

Ḟ s
p,q

Sb

ḟ sp,q

IdḞ s
p,q

According to Theorem 6.20 in [10] we have a similar result for the homogeneous Besov
spaces.

Proposition 3.8. Suppose the brushlet system {wI,n}I∈I,n∈N0
is of class (A). Then the

operator T defined by (3.5) is an isomorphism on Ḃs
p,q for parameters s ∈ R, 0 < p, q ≤ ∞,

satisfying 1/min(1, p) < γ and max{s, 1/min(1, p)− s− 1} < N . Moreover, the brushlet

system defines a retract of Ḃs
p,q through the sequence space ḃsp,q for s, p and q in the same

range.

3.5. Other types of partitions I. In all the calculations in the previous two sections, we
have assumed that the brushlet system is based on an (a/b)-regular exponential partition
I where b, a ∈ N with a < b and gcd(b, a) = 1. In this case we have been able to construct
an isomorphism between the brushlet system and the Meyer system in the homogeneous
Besov and Triebel-Lizorkin spaces. What happens if we have another type of partition I?

The first situation we consider is when I is an (a/b)-regular exponential partition with
a > b. In this case we can construct a wavelet to brushlet mapping very similar to the
one considered in the previous section. For ℓ ∈ {0, 1, . . . , b − 1} let sℓ := ⌊ℓ · a/b⌋ and
pℓ := sℓ+1 − sℓ (with sb := a). Then, for j ∈ Z, k ∈ N0, δ, ε ∈ {0, 1}, ℓ ∈ {0, 1, . . . , b− 1},
and m ∈ {0, 1, . . . , pℓ − 1} we define

Γ := Γj,k,ℓ,m,δ,ε := (aj + sℓ +m, (−1)δ(2k + ε)− δ)

and
Υ := Υj,k,ℓ,m,δ := (bj + ℓ, 2pℓk + 2m+ δ).

Using the same techniques as in the previous section, it can be verified that the map
T : L2 → L2 defined by

TψΓ = wεΥ,

is an isomorphism on the Besov and Triebel-Lizorkin spaces provided the brushlet is
sufficiently regular.

The (a/b)-regular exponential partition condition can be slightly generalized by using
more than one rational parameter a/b. For example, suppose the quotient in (3.2) equals
a1/b1 for even m and a2/b2 for odd m. Then it can be proven, along the same line as
above, that we can construct a brushlet system based on this partition that is equivalent
to the Meyer wavelet. But, the indicies Γ and Υ used to obtain the isomorphism will
be even messier looking than in the previous construction. We leave the details for the
reader.

Finally, let us mention that it is an open problem whether a brushlet system based on
an irrational regular exponential partition (or a more general exponential partition) is
equivalent in Lp to a wavelet system. Unfortunately, the technique used in this paper
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fails in that case. In particular, it is not possible to decompose the operator T into a
finite sum of modified Calderón-Zygmund operators.

4. Approximation with brushlet systems

In this final section we use the results of Section 3 to study nonlinear approximation
with brushlet systems, where we measure the approximation error in a general Triebel-
Lizorkin semi-(quasi-)norm. The Triebel-Lizorkin norm is the “natural” measure of the
approximation error when it comes to nonlinear approximation with wavelet type systems,
see e.g. [11].

The method used below to obtain results about approximation with brushlets is simple,
we use the equivalence of the brushlet system and the Meyer wavelet system to “translate”
already known results on approximation with wavelet systems to the brushlet case. Let
us first introduce the needed notation.

We consider the following brushlet dictionary

Db := {wI,n | I ∈ I, n ∈ N0},

associated with an exponential type partitioning I, and the Meyer wavelet dictionary

DM := {ψ(2j · −k)|j, k ∈ Z},

The associated nonlinear manifold of all possible m-term expansions by elements from
D ∈ {Db,DM} is given by

Σm(D) =

{

S : S =

m
∑

j=1

ajgj, with aj ∈ C, gj ∈ D

}

.

The error in Ḟ β
p,t of the best m-term approximation from Σm(D) is given by

σm(f,D)Ḟβ
p,t

:= inf
S∈Σm(D)

|f − S|Ḟβ
p,t
.

We let Aαs (Ḟ
β
p,t,D), α > 0, 0 < s ≤ ∞, denote the approximation space of all functions f

such that

|f |Aα
s (Ḟβ

p,t,D) :=

( ∞
∑

m=1

(

mασm(f,D)Ḟβ
p,t

)s 1

m

)1/s

<∞,

with the following standard modification when s =∞:

|f |Aα
∞

(X,D) := sup
m∈N

mασm(f,D)Ḟβ
p,t
<∞.

Now the fundamental question is whether it is possible to characterize Aαs (X,Db) in terms
of well known spaces. In [4], the special case X = Ḟ 0

p,2 ≈ Lp was considered, and it was
proven that Aαs (Lp,Db) can be identified by (essentially) a Besov space.

It is well known that the main tool in the characterization of Aαs (X,D) comes from the
link between approximation theory and interpolation theory (see e.g. [7, 3]). Let Y be an

abelian group with semi-(quasi-)norm | · |Y continuously embedded in Ḟ β
p,t. Given γ > 0,

the Jackson inequality

σm(f,D)Ḟβ
p,t
≤ Cm−γ|f |Y , ∀f ∈ Y, ∀m ∈ N(4.1)
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and the Bernstein inequality

|S|Y ≤ C ′mγ|S|Ḟβ
p,t
, ∀S ∈ Σm(D)(4.2)

(with some constants C and C ′ independent of f , S and m) imply, respectively, the
continuous embedding

(

Ḟ β
p,t, Y

)

α/γ,s
→֒ Aαs (Ḟ

β
p,t,D)

and the converse embedding

(

Ḟ β
p,t, Y

)

α/γ,s
←֓ Aαs (Ḟ

β
p,t,D)

for all 0 < α < γ and s ∈ (0,∞]. Here (X,Y )θ,q denotes the interpolation space between
X and Y obtained using the real method. We refer the reader to [2] for the definition of
the real method of interpolation. The following is known about DM , see e.g. [11] and [6].

Theorem 4.1. Let 0 < p < ∞, 0 < t ≤ ∞, β < γ, and τ be defined by 1/τ :=
(γ − β) + 1/p. The following Jackson inequality holds

σm(f,DM )Ḟβ
p,t
≤ Cm−(γ−β)|f |Ḃγ

τ,τ
, ∀f ∈ Ḃγ

τ,τ , ∀m ∈ N,

and the following Bernstein inequality holds

|S|Ḃγ
τ,τ
≤ Cm(γ−β)‖S‖Ḟβ

p,t
, ∀S ∈ Σm(DM),m ∈ N.

We conclude the paper by Proposition 4.2 below on nonlinear approximation with brushlet
systems. The proposition will be deduced from Theorem 4.1. Notice that Proposition
3.6 and Proposition 3.8 provide a class of brushlet systems for which the hypotheses of
Proposition 4.2 are satisfied.

Proposition 4.2. Given 0 < p < ∞, 0 < t ≤ ∞, β < γ, and τ satisfying 1/τ :=
(γ − β) + 1/p. Suppose Db is a brushlet dictionary equivalent to the Meyer wavelet basis

in both Ḟ β
p,t and Ḃγ

τ,τ . Then the following Jackson inequality holds

σm(f,Db)Ḟβ
p,t
≤ Cm−(γ−β)|f |Ḃγ

τ,τ
, ∀f ∈ Ḃγ

τ,τ , ∀m ∈ N,

and the following Bernstein inequality holds

|S|Ḃγ
τ,τ
≤ Cm(γ−β)‖S‖Ḟβ

p,t
, ∀S ∈ Σm(Db),m ∈ N.

Moreover,

Aαs (Ḟ
β
p,t,Db) =

(

Ḟ β
p,t, Ḃ

γ
τ,τ

)

α
γ−β

,s
,

for 0 < α < γ − β and s ∈ (0,∞].

Proof. Let T be the mapping giving the equivalence of Db and the Meyer wavelet basis.
Let us prove that there is a Bernstein inequality for the brushlet system. Notice that for
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S ∈ Σm(Db) we have T−1S ∈ Σm(DM). Hence,

|S|Ḃγ
τ,τ
≤ C|T−1S|Ḃγ

τ,τ

≤ C ′m(γ−β)|T−1S|Ḟβ
p,t

≤ C ′′m(γ−β)|S|Ḟβ
p,t
,

with C ′′ independent of S and m. Next we consider the Jackson estimate. Let f ∈ Ḃγ
τ,τ .

Then T−1f ∈ Ḃγ
τ,τ , and we let gm ∈ Σm(DM), m ≥ 1, be a sequence for which

|T−1f − gm|Ḟβ
p,t
≤ 2σm(T−1f,DM)Ḟβ

p,t
.

Then,

σm(f,Db)Ḟβ
p,t
≤ |T (T−1f − gm)|Ḟβ

p,t

≤ C|T−1f − gm|Ḟβ
p,t

≤ 2Cσm(T−1f,DM )Ḟβ
p,t

≤ C ′m−(γ−β)|T−1f |Ḃγ
τ,τ

≤ C ′′m−(γ−β)|f |Ḃγ
τ,τ
,

with C ′′ independent of m and f . The fact that

Aαs (Ḟ
β
p,t,Db) =

(

Ḟ β
p,t, Ḃ

γ
τ,τ

)

α
γ−β

,s

is a direct consequence of the above Bernstein and Jackson inequalities. �

Appendix A. Proof of some technical lemmas

In this appendix, we prove some technical lemmas used in this paper. First we prove the
following result which was used in the proof of Proposition 3.2.

Lemma A.1. The Kernel given in the proof of Proposition 3.2 satisfies

|Kε,δ
ℓ,m(x, y)| ≤ C

∣

∣

∣

∣

(−1)δp−1
ℓ y −

qℓ,m,ε
π

x

∣

∣

∣

∣

−1

,

|Kε,δ
ℓ,m(x, y)−Kε,δ

ℓ,m(x′, y)| ≤ C|x− x′|η
∣

∣

∣

∣

(−1)δp−1
ℓ y −

qℓ,m,ε
π

x

∣

∣

∣

∣

−1−η

if |x− x′| ≤
1

2

∣

∣

∣

∣

(−1)δπ

qℓ,m,εpℓ
y − x

∣

∣

∣

∣

,

and

|Kε,δ
ℓ,m(x, y)−Kε,δ

ℓ,m(x, y′)| ≤ C|y − y′|η
∣

∣

∣

∣

(−1)δp−1
ℓ y −

qℓ,m,ε
π

x

∣

∣

∣

∣

−1−η

,

if |y − y′| ≤
1

2

∣

∣

∣

∣

y −
(−1)δqℓ,m,εpℓ

π
x

∣

∣

∣

∣

,

for some η > 0.
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Proof. We use |Iεbj+sℓ+m
| = qℓ,m,ε2

aj+ℓ, (2.9), (2.8), and ψ ∈ S(R), to obtain

|Kε,δ
ℓ,m(x, y)| ≤ C

∑

j∈Z

∑

k∈N0

2aj+lq
1/2
ℓ,m,ε(1 + |2aj+ℓy − (−1)δ(2pℓk + 2m+ ε) + δ|)−1−γ

· (1 + ||Iεbj+sℓ+m
|x− π(2k + δ + 1/2)|)−1−γ

≤ C ′
∑

j∈Z

∑

k∈N0

2aj+l(1 + |2aj+ℓy − (−1)δ2pℓk|)
−1−γ(1 + ||Iεbj+sℓ+m

|x− 2πk|)−1−γ

= C ′
∑

j∈Z

∑

k∈N0

2aj+l(1 + |2aj+ℓy − (−1)δ2pℓk|)
−1−γ(1 + |2aj+ℓqℓ,m,εx− 2πk|)−1−γ

≤ C ′′
∑

j∈Z

2aj+ℓ(1 + |2aj+ℓ(−1)δp−1
ℓ y − 2aj+ℓqℓ,m,επ

−1x|)−1−γ

≤ C ′′′

∣

∣

∣

∣

(−1)δp−1
ℓ y −

qℓ,m,ε
π

x

∣

∣

∣

∣

−1

.

Next we estimate the smoothness of the kernel Kε,δ
ℓ,m(x, y) in each variable separately. Let

us consider the x variable first. Given η ∈ (0, 1) we have

|Kε,δ
ℓ,m(x, y)−Kε,δ

ℓ,m(x′, y)| ≤
∑

j∈Z

∑

k∈N0

|wεΥ(x)− wεΥ(x′)|η|wεΥ(x)|1−η|ψΓ(y)|

+
∑

j∈Z

∑

k∈N0

|wεΥ(x)− wεΥ(x′)|η|wεΥ(x′)|1−η|ψΓ(y)|

:= J1 + J2.

The functions gI are uniformly smooth (analytic, actually) so we have

|gI(x)− gI(x
′)| ≤ C|x− x′|α for all I ∈ I.

Assuming that η ≤ γ
2(1+α+γ)

, we obtain

J1 ≤ C
∑

j,k

2(aj+ℓ)(1+αη)|x− x′|αη(1 + |2aj+ℓqℓ,m,εx− 2πk|)−(1+γ)(1−η)

· (1 + |2aj+ℓy − (−1)δ2pℓk|)
−1−γ

≤ C|x− x′|αη
∑

j

2(aj+ℓ)(1+αη)(1 + |2aj+ℓ(−1)δp−1
ℓ y − 2aj+ℓqℓ,m,επ

−1x|)−(1+γ)(1−η)

≤ C|x− x′|αη
∣

∣(−1)δp−1
ℓ y −

qℓ,m,ε
π

x
∣

∣

−1−αη
.

Similar estimates give the bound on J2

J2 ≤ C|x− x′|αη
∣

∣(−1)δp−1
ℓ y −

qℓ,m,ε
π

x′
∣

∣

−1−αη
.

Hence, if we assume |x− x′| ≤ 1
2
| (−1)δπ

qℓ,m,εp
−1

ℓ

y − x|, the triangle inequality gives

|Kε,δ
ℓ,m(x, y)−Kε,δ

ℓ,m(x′, y)| ≤ C|x− x′|αη
∣

∣(−1)δp−1
ℓ y −

qℓ,m,ε
π

x
∣

∣

−1−αη
.
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Likewise, applying the same technique to the variable y, we get

|Kε,δ
ℓ,m(x, y)−Kε,δ

ℓ,m(x, y′)| ≤ C|y − y′|αη
∣

∣(−1)δp−1
ℓ y −

qℓ,m,ε
π

x
∣

∣

−1−αη
.

�

A.1. Proof of Lemma 3.4. Here we give a proof of Lemma 3.4. We refer to Section 3
for the statement of the lemma.

Proof of Lemma 3.4. Observe that

〈Dπ/(pℓqℓ,m,ε)w
±
Υ, ψΓ′〉 = q

1/2
ℓ,m,ε2

(a(j+j′)+ℓ+ℓ′)/2

∫

e
i

αε
j,ℓ,mπ

pℓqℓ,m,ε
y
g(2aj+ℓ π

pℓ
y ± π(2k + δ + 1/2))

· ψ
(

2aj
′+ℓ′y − κ′

)

dy

= q
1/2
ℓ,m,ε2

(a(j−j′)+ℓ−ℓ′)/2

∫

eiβ(y)g(2a(j−j
′)+ℓ−ℓ′ π

pℓ
(y − x±))ψ(y) dy,

where αεj,ℓ,m = αIε
bj+sℓ+m

,

x± = −(κ′ ± 2a(j
′−j)+ℓ′−ℓpℓ(2k + δ + 1/2)),

and β(y) :=
αε

j,ℓ,mπ

pℓqℓ,m,ε
2−(aj′+ℓ′)(y + κ′). Fix a z ∈ R. Since the brushlets have N vanishing

moments for any N ∈ N and ψ ∈ S(R), a Taylor expansion of ψ around z yields
∣

∣

∣

∣

∫

eiβ(y)g(2a(j−j
′)+ℓ−ℓ′ π

pℓ
(y − z))ψ(y) dy

∣

∣

∣

∣

≤ C

(
∫

|y−z|≤|z|/2

+

∫

|y−z|>|z|/2

)

|g(2a(j−j
′)+ℓ−ℓ′ π

pℓ
(y − z))||y − z|NE(z, y) dy

= I1 + I2,

where

E(z, y) := sup
t∈(0,1)

∣

∣

dN

dxN ψ(z + t(y − z))
∣

∣/N !.

Notice that E(z, y) ≤ C(1 + |z|)−γ for |y − z| ≤ |z|/2. Since the brushlet system is
γ-localized we obtain

I1 ≤ C
( π

pℓ

)−N

(1 + |z|)−γ
∫

(1 + 2a(j−j
′)+ℓ−ℓ′|y|)−N−2|y|N dy

≤ C ′2−(a(j−j′)+ℓ−ℓ′)(N+1)(1 + |z|)−γ .

Moreover, since E is bounded, the γ-localization of the brushlet system gives

I2 ≤ C

∫

|y−z|>|z|/2

(

1 + 2a(j−j
′)+ℓ−ℓ′ π

pℓ
|y − z|

)−N−2
|y − z|N dy

≤ C ′2−(a(j−j′)+ℓ−ℓ′)(N+1)(1 + |z|)−γ .
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The bounds on the two integrals I1 and I2 yields the following bound on the inner product,

|〈Dπ/(pℓqℓ,m,ε)w
±
Υ, ψΓ′〉|

≤ C2−(a(j−j′)+ℓ−ℓ′)(N+1/2)
(

1 + |κ′ ± 2a(j
′−j)+ℓ′−ℓpℓ(2k + δ + 1/2)|

)−γ

= C2−(a(j−j′)+ℓ−ℓ′)(N+1/2)
(

1 +
∣

∣κ′ ± 2a(j
′−j)+ℓ′−ℓ(|κ|+ d)

∣

∣

)−γ
,

where d := pℓ(δ + 1/2)− (−1)δ(2m+ ε + δ). Now, using the fact that (a + |x − d|)−1 ≤
a−1(a+ |d|)(a+ |x|)−1 for a > 0, and x, d ∈ R, we obtain the first inequality in the lemma.
Using similar estimates, we obtain the second inequality. �
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