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NONLINEAR APPROXIMATION WITH GENERAL WAVE PACKETS

LASSE BORUP AND MORTEN NIELSEN

ABSTRACT. We study nonlinear approximation in the Triebel-Lizorkin
spaces with dictionaries formed by dilating and translating one single
function g. A general Jackson inequality is derived for best m-term ap-
proximation with such dictionaries. In some special cases where g has a
special structure, a complete characterization of the approximation spaces
is derived.

1. INTRODUCTION

The purpose of this paper is to study the approximation properties of sys-
tems with a structure similar to wavelet systems such as wavelet frames
and more general systems.
Wavelets and wavelet frames have a common structure, they are generated
by dilating and translating a finite number of functions,

D = {2jd/2ψi(2j · −k)}j,k, i = 1, 2, . . . , L,

and D forms a stable system in L2(Rd), i.e., D is a frame for L2 or better.
The nonlinear approximation properties of wavelet systems have been stud-
ied extensively [8, 7], and recently the same properties for wavelet frames
have been investigated [4, 12]. It turns out that the results for such systems
have the same flavor, the approximation spaces associated with best m-
term approximation in Lp are essentially Besov spaces. One might expect
this to be a consequence of a combination of the following facts:

(1) The systems have the same structure, i.e., each system is generated
by dilating and translating a finite number of functions.

(2) Each generator of the system has a number of vanishing moments.
(3) Each system is stable in L2, i.e, it forms a frame.

The main point of this paper is to show that for the purpose of nonlinear
approximation, items (2) and (3) above are not really important. It is not the
fact that the functions form a frame for the classical function spaces, or the
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2 L. BORUP AND M. NIELSEN

vanishing moments of the generator, but rather the general structure of the
function system that is important. Consequently, many of the approxima-
tion results hold true for a much larger class of generators than just wavelet
and tight wavelet frames. Support for this fact can be found in the work of
Frazier-Jawerth [10] and Petrushev-Kyriazis [17, 15]. Frazier and Jawerth
study expansions of functions with wavelet like systems generated by a
smooth function with a prescribed number of vanishing moments, while
Petrushev and Kyriazis consider approximation with wavelet systems gen-
erated by a smooth function with non-zero integral such as the Gaussian.
However, many interesting functions do have a few vanishing moments.
For example, one type of function often encountered in applications is one
that is very smooth, but with a comparatively small number of vanishing
moments. Often generators of wavelet frames will have these characteris-
tics, see e.g. [5, 6]. In this paper we extend the results in [15] to cover more
general functions, including generators of wavelet frames. The idea is the
same as in [15], namely to build nice wave packets from the initial func-
tion, but the technique is different; we utilize more directly the powerful
machinery build by Frazier and Jawerth.
The structure of the paper is as follows. In Section 2 we give the definition
of an approximation space associated with best m-term approximation in
a semi-(quasi-)normed abelian group with a general dictionary. We are
particularly interested in measuring the approximation error in a homoge-
neous Triebel-Lizorkin space. We also discuss the Jackson and Bernstein
inequalities necessary in order to characterize the approximation space.
In Section 3 we review some of the results on the φ-transform given by
Frazier and Jawerth. More precisely, we state sufficient conditions for a
function g, such that dilations and translations of g give wavelet type ex-
pansions of homogeneous Besov- and Triebel-Lizorkin spaces. In Section 4
we show that we can get rid of some of the conditions used by Frazier and
Jawerth. In particular, we show that the number of vanishing moments of
the generator is not important.
Finally, in the last two sections we study non-linear approximation given
by (oversampled) wavelet-type dictionariesDg generated by the quite gen-
eral functions g studied in Section 4. Section 5 is devoted to proving a Jack-
son inequality for best m-term approximation with Dg in a homogeneous
Triebel-Lizorkin space, while in the final section of the paper, Section 6, we
give a Bernstein inequality in Lp for m-term approximation with Dg when
g is associated to an MRA. For such a dictionary we thus have a complete
characterization of the approximation spaces associated with best m-term
approximation in Lp.
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2. NON-LINEAR APPROXIMATION ON ABELIAN GROUPS

In this section we introduce the notation and results from approximation
theory needed to state the main results more precisely. We study approxi-
mation of smooth functions with m-term approximants formed by dilating
and translating a single function g ∈ L2(Rd), where we measure the ap-
proximation error in a general Triebel-Lizorkin semi-(quasi-)norm. That
is, given a function g ∈ L2(Rd), we consider the following dictionaries of
dilations and translations of g:

DR
g := {g(2j · −k/R)|j ∈ Z, k ∈ Zd},

and

Dg := {g(a · −b)|a ∈ R+, b ∈ Rd},

where R ≥ 1 is an “oversampling ratio”. For a given dictionary, D = DR
g ,

R ≥ 1, or D = Dg, we consider the associated nonlinear manifold of all
possible m-term expansions by elements from D given by

Σm(D) =

{

S : S =
m

∑
j=1

ajgj, with aj ∈ C, gj ∈ D

}

.

The error of the best m-term approximation from Σm(D) of a function f
from a semi-(quasi-)normed abelian group X ⊂ S ′(Rd), with D ⊂ X, is
given by

σm( f ,D)X := inf
S∈Σm(D)

| f − S|X.

We let Aγ
q (X,D), γ > 0, 0 < q ≤ ∞, denote the approximation space of all

functions f such that

| f |Aγ
q (X,D) :=

( ∞

∑
m=1

(

mγσm( f ,D)X
)q 1

m

)1/q
< ∞,

with the following standard modification when q = ∞:

| f |Aγ
∞(X,D) := sup

m∈N
mγσm( f ,D) < ∞.

Now the fundamental question is whether it is possible to characterize
A

γ
q (X,D) in terms of well known spaces. The answer clearly depends on

the properties of g and the semi-(quasi-)norm on X.

It is well known that the main tool in the characterization of Aα
q(X,D)

comes from the link between approximation theory and interpolation the-
ory (see e.g. [9, 2]). Let Y be an abelian group with semi-(quasi-)norm | · |Y
continuously embedded in X. Given α > 0, the Jackson inequality

σm( f ,D)X ≤ Cm−α| f |Y, ∀ f ∈ Y, ∀m ∈ N(2.1)
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and the Bernstein inequality

|S|Y ≤ C′mα|S|X, ∀S ∈ Σm(D)(2.2)

(with some constants C and C′ independent of f , S and m) imply, respec-
tively, the continuous embedding

(X, Y)β/α,q ↪→ A
β
q (X,D)

and the converse embedding

(X, Y)β/α,q ←↩ A
β
q (X,D)

for all 0 < β < α and q ∈ (0, ∞]. Here (X, Y)θ,q denotes the interpolation
space between X and Y obtained using the real method. We refer the reader
to [1] for the definition of the real method of interpolation.

Whenever g is an orthonormal wavelet and X = Lp, 1 < p < ∞, it is known
thatAβ

q (Lp,D1
g) is essentially a Besov space [8]. Kyriazis and Petrushev [15]

considered the problem of (partially) characterizing Aγ
q (Lp,Dg) in [15] for

more general functions g. For r ∈ N, they obtained the Jackson embedding
(for the definition of Ḃs

τ(Lτ), see below)

Ḃs
τ(Lτ) ↪→ A

γ
∞(Lp,Dg),

with 0 < s < r, 0 < p < ∞, and 1/τ := s/d + 1/p, provided that the
function g satisfies

• g ∈ Cr+1(Rd)

• |g(α)(x)| ≤ C(1 + |x|)−d−r−ε, for some ε > 0 and |α| ≤ r + 1
•

∫

Rd g(x) dx = 1.

For the case d = 1 and H(x) = (1 + x2)−N there is a complete characteriza-
tion

A
γ
q (Lp,DH) =

(

Lp, Ḃs
τ(Lτ)

)

γ/s,q, 1/τ = s + 1/p,

where the inverse Bernstein estimate needed to get the characterization can
be derived directly from the work of Pekarskii [16].

We will consider approximation in a more general space X, and not only
X = Lp. Let us briefly recall the definition of the homogeneous Triebel-
Lizorkin and Besov spaces (see also, e.g. [18]).

Let {φj}j∈Z be a collection of functions in S(Rd) with supp(φj) ⊂ {x | 2j ≤

|x| ≤ 2j+1}. Then

• For 0 < p ≤ ∞, s ∈ R, and 0 < q ≤ ∞, we define the Besov semi-
norm for f ∈ S ′(Rd),

| f |Ḃs
q(Lp(Rd)) :=

(

∑
j∈Z

2jsq‖F−1φjF f ‖q
Lp(Rd)

)1/q
,
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with the appropriate modification when q = ∞, and the homoge-
neous Besov is defined as

Ḃs
q(Lp(Rd)) :=

{

f : f ∈ S ′(Rd), | f |Ḃs
q(Lp(Rd)) < ∞

}

.

• For 0 < p < ∞, s ∈ R, and 0 < q ≤ ∞, we define the Triebel-
Lizorkin semi-norm for f ∈ S ′(Rd),

| f |Ḟs
q (Lp(Rd)) :=

∥

∥

∥

∥

(

∑
j∈Z

2jsq|F−1φjF f (·)|q
)1/q∥

∥

∥

∥

Lp(Rd)

,

with the appropriate modification when q = ∞, and the homoge-
neous Triebel-Lizorkin space is defined as

Ḟs
q (Lp(Rd)) :=

{

f : f ∈ S ′(Rd), | f |Ḟs
q (Lp(Rd)) < ∞

}

.

One can check that the kernel of the semi-(quasi-)norm on Ḟβ
t (Lp) and

Ḃβ
t (Lp), respectively, is exactly the space of polynomials P on Rd. It is also

well-known that for 1 < p < ∞, Ḟ0
2 (Lp) ≈ Lp(Rd) (the spaces are identical

modulo P), and for 0 < p ≤ 1, Ḟ0
2 (Lp) ≈ Hp(Rd). We will therefor measure

the error of the best m-term approximation in X = Ḟβ
t (Lp) since it covers

the “classical” case X = Lp as well. The main candidates to characterize
A

γ
q (Ḟβ

t (Lp),DR
g ) and Aγ

q (Ḟβ
t (Lp),Dg) are (essentially) homogeneous Besov

spaces. However, it is only for functions g with a special structure we can
address the problem of getting a characterization of Aγ

q (Ḟβ
t (Lp),DR

g ). The
main obstacle is the lack of a Bernstein inequality for a general Dg. The
conditions on g to ensure the existence of such an inequality is an open
and likely very hard problem.
The main focus in the first part of the present paper is to obtain Jackson
estimates for Dg for fairly general g that have some smoothness and decay.
The main tool is to create functions that can be used in the Frazier-Jawerth
theory of φ-transforms. In section 3 we introduce the basic results of the φ-
transform, and we show how to create “wave-packets” from Dg that form
decompositions of the Triebel-Lizorkin spaces Ḟβ

t (Lp). In section 5 we use
the decompositions from Section 3 to prove the following Jackson estimate:
For γ > β and 1/τ := (γ− β)/d + 1/p, there exists a finite constant C such
that

σm( f ,Dg)Ḟβ
t (Lp)

≤ Cm−(γ−β)/d| f |Ḃγ
τ (Lτ), ∀m ∈ N, f ∈ Ḃγ

τ (Lτ),

which is valid for a large class of functions g with some smoothness and
decay.
In section 6 we study a more restricted class of functions g on R. For
functions g based on a refinable function much more can be said about
A

γ
q (Ḟβ

t (Lp),DR
g ). In fact, a complete characterization ofAγ

q (Lp,D2K
g ) is given

for fairly general functions g based on a refinable function for large values
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of K, i.e., for a sufficiently high oversampling ratio 2K. The characterization
is based on a Bernstein inequality forD2K

g which we also prove in Section 6.
For an even more restricted class of functions g, based on a refinable func-
tion, we derive a characterization ofAγ

q (Lp,D2
g). This result is also derived

in Section 6.

3. THE φ-TRANSFORM OF FRAZIER AND JAWERTH

The main tool we use to obtain a general Jackson inequality in Section 4 is
the φ-transform of Frazier and Jawerth. In this section we will recall some
well known results about the φ-transform. Let D denote the set of dyadic
cubes Q = Qνk = 2−ν([0, 1]d + k), ν ∈ Z, k ∈ Zd. We will use two index
notations in this paper. For Q = Qνk we let φQ(x) := 2−νd/2φ(2νx − k),
while {φQ}Q∈D just denotes a sequence indexed by the dyadic cubes, but
not necessarily given by dilates and translates of a single function.

Let us briefly recall the definition of the discrete Besov and Triebel-Lizorkin
spaces.

For α ∈ R and 0 < p, q ≤ ∞ we let ḃα
q (Lp) be the collection of all complex-

valued sequences s = {sQ}Q∈D such that

‖s‖ḃα
q (Lp) :=

(

∑
ν∈Z

2νq(α+ d
2−

d
p )

(

∑
Q∈D : |Q|=2−νd

|sQ|
p
)

q
p
)

1
q

< ∞,

with the usual changes when p = ∞ or q = ∞. Likewise, for α ∈ R,
0 < p < ∞ and 0 < q ≤ ∞ we define the space ḟ α

q (Lp) by

‖s‖ ḟ α
q (Lp)

:=
∥

∥

∥

(

∑
Q∈D

(|Q|−
α
d−

1
2 |sQ|χQ)q

)
1
q
∥

∥

∥

Lp
< ∞,

again with the usual change when q = ∞.

The following theorem from [11, Theorem 6.16] shows the connection be-
tween the sequence spaces ḃα

q (Lp) and ḟ α
q (Lp) and the classical Besov and

Triebel-Lizorkin spaces. For notational convenience we only consider the
Triebel-Lizorkin spaces and corresponding sequence space ḟ α

q (Lp), but a
similar result holds for the correspondence between Besov spaces and the
sequence spaces ḃα

q (Lp).

Theorem 3.1 ([11]). Given α ∈ R, 0 < q ≤ ∞, 0 < p < ∞. Suppose φ ∈ S(Rd)
satisfies

supp φ̂ ⊆ {ξ ∈ Rd : 1
2 ≤ |ξ| ≤ 2},(3.1)

|φ̂(ξ)| ≥ c > 0 if 3
5 ≤ |ξ| ≤

5
3 .(3.2)
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Then there exists φ̃ ∈ S(Rd) satisfying the same conditions as φ such that each
f ∈ Ḟα

q (Lp) can be decomposed as

f = ∑
ν∈Z

∑
Q∈Dν

〈 f , φQ〉φ̃Q,

with ‖{〈 f , φQ〉}‖ ḟ α
q (Lp)

≤ c| f |Ḟα
q (Lp) for some constant c independent of f . More-

over, for any sequence s = {sQ}Q∈D, we have
∣

∣ ∑
Q∈D

sQφ̃Q
∣

∣

Ḟα
q (Lp)

≤ c‖s‖ ḟ α
q (Lp)

.

Remark 3.2. The result in Theorem 3.1 holds true for Besov spaces too, even
for p = ∞.

The result can be generalized to a larger class of atoms by a mapping of
the nice functions φ and φ̃. We only need to ensure that the corresponding
matrix is almost diagonal.

Definition 3.3. The infinite matrix A = {aQQ′}Q,Q′∈D is said to be almost diag-
onal on ḟ α

q (Lp) or ḃα
q (Lp) if there exist constants ε, c > 0 such that,

|aQQ′ | ≤ c2(ν′−ν)α

(

1 +
|2−νk− 2−ν′k′|

2−min(ν,ν′)

)−J−ε

min
(

2
(ν′−ν)(d+ε)

2 , 2(ν−ν′)( ε−d
2 +J)

)

,

With Q = Qνk and Q′ = Q′ν′k′ , where J = d/ min(1, p, q) for ḟ α
q (Lp) and

J = d/ min(1, p) for ḃα
q (Lp).

We denote by adα
p,q the family of almost diagonal matrices on ḟ α

q (Lp) or
ḃα

q (Lp). The following result from [11] shows why these matrices are of
particular interest.

Theorem 3.4 ([11]). Suppose α ∈ R, 0 < p, q ≤ ∞, and A ∈ adα
p,q. Then A is

bounded on ḃα
q (Lp) and, if p < ∞, on ḟ α

q (Lp).

Definition 3.5. Let φ ∈ S(Rd) be a function satisfying (3.1) and (3.2). We say
that a collection of functions {vQ}Q∈D is an adα

p,q-family if the bi-infinite matrix
{〈vQ, φQ′〉}Q,Q′∈D belongs to adα

p,q.

It can be verified that the definition is independent of the choice of φ. Using
the notion of almost diagonal operators we can give a result like in Theo-
rem 3.1 for a larger class of atoms. We recall the following result given by
Frazier and Jawerth in [10]. Again, we only state the result for the Triebel-
Lizorkin spaces, but the result holds true for Besov spaces too, see Remark
3.7. For x ∈ R we let bxc denote the integer satisfying x− 1 < bxc ≤ x.

Theorem 3.6 ([10]). Let α ≥ 0, 0 < q ≤ ∞, 0 < p < ∞, J = d/ min(1, p, q),
and N = max(bJ − d − αc,−1). Suppose δ satisfies α − bαc < δ ≤ 1, and
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suppose M > J. Let u be a function satisfying the four conditions:

|û(ξ)| ≥ c > 0 if 2−1 ≤ |ξ| ≤ 2,(3.3)
∫

xγu(x) dx = 0 if |γ| ≤ N,(3.4)

|∂γu(x)| ≤ cγ(1 + |x|)−M if |γ| ≤ bα + 1c,(3.5)

|∂γu(x)− ∂γu(y)| ≤ sup
|z|≤|y−x|

|x− y|δ

(1 + |x− z|)M if |γ| = bα + 1c.(3.6)

Given K ∈ Z, let ψ(x) = 2Kdu(2Kx). Then there is a K0 ≤ 0 with the property
that if K ≤ K0, there exists a family of functions {ψ̃Q}Q∈D, such that for all
f ∈ Ḟα

q (Lp), we have

f = ∑
Q∈D
〈 f , ψ̃Q〉ψQ,

with ‖{〈 f , ψ̃Q〉}‖ ḟ α
q (Lp) ≤ c| f |Ḟα

q (Lp), and for any sequence s = {sQ}Q∈D, we
have

∣

∣

∣ ∑
Q∈D

sQψQ

∣

∣

∣

Ḟα
q (Lp)

≤ c‖s‖ ḟ α
q (Lp).

If, in addition, u satisfies
∫

xγu(x) dx = 0 if |γ| ≤ bα− 1c,(3.7)

and

|u(x)− u(y)| ≤ sup
|z|≤|y−x|

|x− y|ρ

(1 + |x− z|)max(M,M+d+α−J) ,(3.8)

then {ψQ}Q∈D is an adα
p,q-family.

Remark 3.7. If J = d/ min(1, p) the result in Theorem 3.6 holds true for
Besov spaces too, even for p = ∞.

We notice that (3.5) and (3.6) basically means that u ∈ Cα+1(Rd) and that
the partial derivatives decay like |x|−M as |x| → ∞.

4. GENERAL WAVE PACKET BASES

Theorem 3.6 gives sufficent conditions for a function ψ to generate an atomic
decomposition of the Triebel-Lizorkin spaces. However, many interesting
functions do not have a lot of vanishing moments or they may fail to sat-
isfy condition (3.3). For example, generators of tight wavelet frames can
have few vanishing mements compared to their smoothness. We can apply
Theorem 3.6 directly to such functions, but we will only get atomic decom-
positions valid for a more restricted range af smoothness parameters than
one would expect from the smoothness of the generator. Here we extend
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the results in [15] to cover more general functions, including generators of
wavelet frames using the powerful Theorem 3.6.

Proposition 4.1. Suppose g ∈ L2(Rd) and ĝ satisfies a Lipschitz condition of
some order β ∈ (0, 1]. Suppose, furthermore, there exist constants 0 ≤ a < b <

∞ such that

(4.1)
∫ b

a
ĝ(tξ) dt 6= 0 if ξ ∈ A,

where A = {ξ ∈ Rd : 1/2 ≤ |ξ| ≤ 2}. Then for any N ∈ N, there exists a
finite set of coefficients {ai, bi, ci} ⊂ R+ × Rd × R such that the function u =
∑i cig(ai · −bi) has N vanishing moments and satisfies (3.3).

Proof. Let h(ξ) :=
∫ b

a ĝ(tξ) dt for ξ ∈ A. Clearly, h is a continuous function
on A, and thus bounded away from zero on A. Define for any n ∈ N the
Riemann sums

Sn(ξ) =
b− a

n

n−1

∑
k=0

ĝ(tkξ), tk = a +
k
n

(b− a).

Then Sn(ξ) → h(ξ) for each ξ ∈ A as n → ∞. Moreover, since ĝ satisfies a
Lipschitz condition of order β ∈ (0, 1], we have for any ξ, ξ ′ ∈ A

|Sn(ξ′)− Sn(ξ)| ≤
b− a

n

n−1

∑
k=0
|ĝ(tkξ′)− ĝ(tkξ)|

≤ C
b− a

n

n−1

∑
k=0
|tkξ′ − tkξ|β

= C|ξ′ − ξ|β
b− a

n

n−1

∑
k=0

tβ
k ≤ C|ξ′ − ξ|β(b− a)1+β.

That is to say, the family of functions {Sn}n∈N is equicontinuous. Now,
by the Arzela-Ascoli theorem there exists a subsequence which converges
uniformly on A. The limit of the subsequence is the function h, so in par-
ticular, there exists an n0 ∈ N such that Sn0(ξ) 6= 0 for all ξ ∈ A, since h is
bounded away from zero. Hence we have a function

ũ = F−1Sn0 =
b− a

n0

n0−1

∑
k=0

t−d
k g(x/tk)

given by a finite linear combination of dilates of g, which satisfies (3.3).

Now, in order to obtain N ∈ N vanishing moments, we simply apply a
high-pass filter which has a zero of order N at ξ = 0 and no zeros on A.
For example, let

u =
(

d

∑
j=1

(∆ej + ∆−ej)
)Nũ,
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where ∆e is the difference operator in the direction e ∈ Rd, ∆e f (x) = f (x +
e)− f (x), and ej is a unit vector in the j-th direction. Then it is easy to see
that u satisfies (3.4), and since F (∆ej + ∆−ej) f (ξ) = 2(cos(ξ · ej)− 1) f̂ and
|∑d

j=1 cos(ξ · ej) − 1| ≥ 1 − cos(1/2) on A, we have that u satisfies (3.3)
too. Now, since u is given by a finite linear combination (at most (2N + 1)d

terms) of (integer) translates of ũ, the result follows. �

Notice that if ĝ is continuous, the condition
∫ ∞

0
ĝ(te)dt 6= 0

for all unit vectors e ∈ Rd, implies (4.1). For a real-valued univariate func-
tion this can always be achieved by translating the initial function g 6≡ 0.
Thus, we have the following corollary of Proposition 4.1.

Corollary 4.2. Suppose g ∈ L2(R) is a nontrivial real-valued function with ĝ
satisfying a Lipschitz condition of some order β ∈ (0, 1]. Then for any N ∈ N,
there exists a finite set of coefficients {ai, bi, ci} ⊂ R+ × R × R such that the
function u = ∑i cig(ai · −bi) has N vanishing moments and satisfies (3.3).

Suppose there exists a cone C ⊂ Rd with vertex at the origin, such that
ĝ(ξ) = 0 for all ξ ∈ C. Now, since this implies that eib·ξ ĝ(aξ) = 0 for all
ξ ∈ C, b ∈ Rd and a ∈ R, functions with support intersecting C cannot
be approximated by linear combinations of translated and dilated versions
of g. Thus, (4.1) is close to being a necessary condition. One way to get
rid of this condition is to allow linear combinations of modulations and/or
rotations of g.
In [15], Kyriazis and Petrushev considered atoms with

∫

Rd g(x) dx 6= 0 and
decay properties like (3.5). In particular, they obtained expansions of the
Besov and Triebel-Lizorkin spaces like in Theorem 3.6 using an (oversam-
pled) dictionary DR

g . This can also be deduced from the following result.

Proposition 4.3. Let g ∈ L1(Rd) ∩ L2(Rd). Suppose there exists a constant
δ > 0 such that |ĝ(ξ)| > 0 for all 0 < |ξ| < δ. Then there exists an integer
K0 ∈ Z such that for any K ≥ K0 and any N ∈ N there exists a finite set of
coefficients {ki, ci} ⊂ Zd × R such that the function u = ∑i cig(2K(· − ki)) has
N vanishing moments and satisfies (3.3).

Proof. By the assumptions, there exists K0 ∈ Z such that if K ≥ K0 we have
|ĝ(2−Kξ)| ≥ c > 0 for 1/2 ≤ |ξ| ≤ 2. Now, an application of the high-pass
filter defined in the proof of Proposition 4.1 gives the desired function. �

Recall that for a compactly supported function g the Fourier transform ĝ
is a restriction of an analytic function. Since the zero-set of a (nontrivial)
univariate analytic function is discrete, we have the following corollary of
Proposition 4.3.
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Corollary 4.4. Suppose g is a (nontrivial) univariate compactly supported func-
tion. Then there exists a constant K0 ∈ Z such that for any K ≥ K0 and any
N ∈ N there exists a finite set of coefficients {ki , ci} ⊂ Z × R such that the
function u = ∑i cig(2K(· − ki)) has N vanishing moments and satisfies (3.3).

5. JACKSON INEQUALITIES FOR GENERAL WAVE PACKET DICTIONARIES

According to Theorem 3.6 the results in the previous section can be used
to obtain expansions of functions in the homogeneous Triebel-Lizorkin or
Besov spaces using quite general generators g. In this section we will con-
sider Jackson inequalities for m-term approximation in Ḟγ

p (Lq) with either
Dg or DR

g for some R ≥ 1, where g ∈ Ḟγ
p (Lq) satisfies the criteria given in

the previous section.

Proposition 5.1. Suppose 0 < p < ∞, 0 < t ≤ ∞ and 0 ≤ β < ∞. Let
g ∈ Ḟβ

t (Lp) be a function satisfying (3.5), (3.6) and (3.8) and the condition
∫ b

a
ĝ(tξ) dt 6= 0 if 1/2 ≤ |ξ| ≤ 2

for some constants 0 ≤ a < b < ∞. Suppose γ > β, and define 1/τ :=
(γ− β)/d + 1/p. Then there exists a finite constant C such that

σm( f ,Dg)Ḟβ
t (Lp)

≤ Cm−(γ−β)/d| f |Ḃγ
τ (Lτ), ∀m ∈ N, f ∈ Ḃγ

τ (Lτ).

Proof. By Proposition 4.1, we can construct a system {ψQ} ⊂ ΣK(Dg) for
some finite K, such that

f = ∑
Q∈D
〈 f , ψ̃Q〉ψQ,

for every f ∈ Ḃγ
τ (Lτ), with ‖{〈 f , ψ̃Q〉}‖ḃγ

τ,τ
≤ c| f |Ḃγ

τ (Lτ). Fix f ∈ Ḃγ
τ (Lτ),

and let η be one of the 2d− 1 orthonormal Meyer wavelets on Rd. We notice
that the function f̃ := ∑Q∈D〈 f , ψ̃Q〉ηQ belongs to Ḃγ

τ (Lτ) with | f̃ |Ḃγ
τ (Lτ) ≤

C| f |Ḃγ
τ (Lτ) for some constant C independent of f . From [14], we have

(5.1) σm( f̃ , {ηQ})Ḟβ
t (Lp)

≤ Cm−(γ−β)/d| f̃ |Ḃγ
τ (Lτ).

Let f̃m ∈ Σm({ηQ}) be a sequence that realizes (5.1) up to the relaxed con-
stant 2C. We want to map f̃m to an element of Σm({ψQ}). To accomplish
this, we consider the operator T with kernel

K(x, y) := ∑
Q∈D

ψQ(x)ηQ(y).

The matrix of this operator in the Meyer wavelet basis is M = [〈ψP, ηQ〉]P,Q∈D.
It is easy to verify that M ∈ adβ

p,t. We notice that T f̃m = fm ∈ Σm({ψQ}) ⊂
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ΣKm(Dg), and moreover, f − fm = T( f̃ − f̃m). However, the matrix repre-
sentation of T shows that T is bounded on Ḟβ

t (Lp) so

| f − fm|Ḟβ
t (Lp)

≤ C1| f̃ − f̃m|Ḟβ
τ (Lτ)

≤ 2C1Cm−(γ−β)/d| f̃ |Ḃγ
τ (Lτ)

≤ C′m−(γ−β)/d| f |Ḃγ
τ (Lτ).

Hence, we have the wanted Jackson inequality for the dictionary {ψQ} ⊂

ΣK(Dg), and then of course there is also a Jackson inequality for the dictio-
nary Dg. �

Notice that Proposition 5.1 is a generalization of the Jackson inequality ob-
tained in [15].
Using Corollary 4.4 we have the following stronger result for d = 1, based
on the same arguments as given in the proof of Proposition 5.1.

Proposition 5.2. Suppose 0 < p < ∞, 0 < t ≤ ∞ and 0 ≤ β < ∞. Let g ∈
Ḟβ

t (Lp(R)) ∩ Cβ+1(R) be a (nontrivial) compactly supported function. Suppose
γ > β, and define 1/τ := (γ− β) + 1/p. Then there exists a constant K0 ∈ N0
such that for each K ≥ K0 there exists a finite constant C such that

σm( f ,D2K

g )
Ḟβ

t (Lp)
≤ Cm−(γ−β)| f |Ḃγ

τ (Lτ), ∀m ∈ N, f ∈ Ḃγ
τ (Lτ).

6. REFINABLE FUNCTIONS

So far we have studied Jackson estimates for Dg and DR
g for a general

smooth function g. For functions g based on a refinable function much
more can be said about the approximation properties in Lp of the dictio-
nary DR

g for sufficiently large R ≥ 1.

Recall that φ is called a scaling function for a multiresolution analysis (MRA),
{Vj}j∈Z, of L2(Rd), if {φ(x− k)}k∈Zd is a Riesz basis for V0.

It is well known that if φ ∈ L2(R) satisfies

(1) {φ(x− k)}k∈Z is a Riesz basis in L2(R)
(2) φ(x/2) = ∑k akφ(x− k) with convergence in L2(R)
(3) |φ̂(ξ)| is continuous at 0 and φ̂(0) 6= 0,

then φ is a scaling function for the MRA

Vj := span{φ(2j · −k)}k∈Z .

A classical example of a scaling function is a B-spline function.
Given an MRA {Vj}j∈Z. The following proposition states that for some
functions g ∈ V1 it is possible to give a complete characterization of the
approximation space Aγ

q (Lp(R),D2
g) for the twice oversampled dictionary

D2
g.
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Proposition 6.1. Let φ ∈ Ws(L∞(R)), s > 0, be a compactly supported scaling
function for an MRA of L2(R) generated by the low-pass filter m0(ξ), and let g
be defined by

ĝ(2ξ) = m(ξ)φ̂(ξ),

with m(ξ) such that R(ξ) := m(ξ)/m0(ξ + π) has an extension to a Laurent
polynomial with no zeroes on the unit circle.

Then, for each K ≥ 1,

A
γ
q (Lp(R),D2K

g ) =
(

Lp(R), Bα
τ(Lτ(R)

)

γ,q,

for 1 < p < ∞, 0 < α < s, and 1/τ = α + 1/p.

Proof. Let ψ̂(2ξ) = e−iξm0(ξ + π)φ̂(ξ) be the standard wavelet associated
to φ. Notice that ĝ(2ξ) = P(ξ)ψ̂(2ξ) with P(ξ) = eiξ R(ξ). The Fourier co-
efficients of P(ξ) decay exponentially since P(ξ) has an extension to a Lau-
rent polynomial with no poles on the unit circle. Hence, g has an expansion
in {ψ(· − k/2)}k with coefficients with exponential decay. It follows from
[3, Corollary 7.8] that for any K ≥ 1 the Jackson inequality

σm( f ,D2K

g )Lp ≤ σm( f ,D2
g)Lp ≤ Cm−α| f |Ḃα

τ (Lτ), ∀m ∈ N, f ∈ Ḃα
τ(Lτ),

is satisfied for 1 < p < ∞, α < s, and 1/τ := α + 1/p.

By the result of Jia [13], for each 0 < α < s the Bernstein inequality

|S|Ḃα
τ (Lτ(Rd)) ≤ Cmα/d‖S‖Lp(Rd), ∀S ∈ Σm(D1

φ),

1/τ := α/d + 1/p, 0 < p ≤ ∞, holds true for the system

D1
φ = {φ(2jx− k)}j∈Z,k∈Zd .

By assumption there is a finite mask {bk}k such that

g(x) = ∑
`∈Zd

b`φ(2x− `),

and since φ is compactly supported and refinable there is another finite
mask {ak} such that

φ(x) = ∑
`∈Zd

a`φ(2x− `).
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For j ∈ Z and k ∈ Zd, we have

g(2jx− k/2K)

= ∑
`1∈Zd

b`1φ
(

2j+1x− k/2K−1 − `1
)

= ∑
`1,`2∈Zd

b`1 a`2 φ
(

2j+2x− k/2K−2 − 2`1 − `2
)

...

= ∑
`1,`2,...,`K∈Zd

b`1 a`2 · · · a`K φ
(

2j+Kx− k− 2K−1
`1 − 2K−2

`2 − · · · − `K
)

.

Hence, g(2jx − k/2K) ∈ ΣL(D1
φ) for some uniform L depending only on

K and the length of the finite masks used above. Take any S ∈ Σm(D2K
g ).

Then S ∈ ΣLm(D1
φ), and using the Bernstein inequality for D1

φ we obtain
the wanted inequality,

|S|Ḃα
τ (Lτ(Rd)) ≤ C(Mm)α/d‖S‖Lp(Rd)

≤ C̃mα/d‖S‖Lp(Rd), ∀S ∈ Σm(D2K

g ).

Now it follows from Section 2 that

A
γ
q (Lp(R),D2K

g ) =
(

Lp(R), Bα
τ(Lτ(R)

)

γ,q,

for 1 < p < ∞, 0 < α < s, and 1/τ = α + 1/p. �

Remark 6.2. Notice that Proposition 6.1 easily generalizes to finite sets of
functions {gi}, provided that each function, gi, satisfies the conditions in
the proposition. In particular, Proposition 6.1 applies to a wavelet (bi-)fra-
me system {ψi}L

i=1 based on an s-regular MRA with scaling function φ.
Such a system is generated by a finite number of high-pass filters mi(ξ),
satisfying some extension principle, see [5, 6]. Usually the filters mi(ξ) have
only a single zero at ξ = 0. Then the hypothesis of Proposition 6.1 simply
reduces to the requirement of the framelet ψi given by ψ̂i(2ξ) = mi(ξ)φ̂(ξ)
should have at most s vanishing moments which is most often the case.

The following proposition, which concludes the paper, uses the result from
Proposition 5.2 to give a complete characterization of the approximations
spaceAγ

q (Lp(R),D2K
g ) for some sufficiently large K ∈ N and a more general

generator g than in Proposition 6.1.

For a finite set Φ ⊂ L2(R) we let

S(Φ) := span{φ(· − k) : φ ∈ Φ, k ∈ Z}.

Proposition 6.3. Let Φ ⊂ Ws(L∞(R)) ∩ C1+ε(R), s, ε > 0, be a finite set of
compactly supported refinable functions, and suppose g ∈ S(Φ), g 6= 0. Then,
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there exists a K0 such that for each K ≥ K0,

A
γ
q (Lp(R),D2K

g ) =
(

Lp(R), Bα
τ(Lτ(R)

)

γ,q,

for 1 < p < ∞, 0 < α < s, and 1/τ = α + 1/p.

Proof. By Proposition 5.2 there exists a constant K0 ∈ N0 such that for any
integer K ≥ K0

σm( f ,D2K

g )Lp ≤ Cm−α| f |Ḃα
τ (Lτ), ∀m ∈ N, f ∈ Ḃα

τ(Lτ)

for α > 0, 0 < p < ∞, and 1/τ = α + 1/p. A corresponding Bernstein
inequality follows by the same arguments given in the proof of Proposi-
tion 6.1. �
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