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Abstract

There are 24 feasible parameter sets for a primitive non-symmetric

association schemes with 3 classes and at most 100 vertices. Using

computer search, we prove non-existence for three feasible parameter

sets. Eleven cases are still open.

In the imprimitive case, we survey the known results including

some constructions of infinite families of schemes. In the smallest case

that has been open up to now we construct a new scheme. This scheme

is equivalent to a “skew” Bush-type Hadamard matrix of order 36. We

also consider directed graphs that satisfy only some of the conditions

required for a non-symmetric association scheme with 3 classes.

Let X be finite set (|X| = v) and let {R0, R1, . . . , Rd} be a partition of
X×X. Then we say that X = (X, {R0, R1, . . . , Rd}) is an association scheme
with d classes if the following conditions are satisfied

• R0 = {(x, x) | x ∈ X}.

• for each i, Rt
i := {(x, y) | (y, x) ∈ Ri} = Ri′, for some i′.

• for each triple (i, j, h), i, j, h ∈ {0, . . . , d} there exists a so-called inter-
section number ph

ij such that for all x, y ∈ X with (x, y) ∈ Rh there are
exactly ph

ij elements z ∈ X so that (x, z) ∈ Ri and (z, y) ∈ Rj.

If i = i′ for all i then X is said to be symmetric, otherwise it is non-
symmetric. If the graphs R1, . . . , Rd all are connected then we say that X is
primitive, otherwise it is imprimitive.
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In this paper we consider non-symmetric association schemes with d = 3
classes. We will assume that the relations are enumerated so that R1 and R2

are non-symmetric, R2 = Rt
1, and R3 is a symmetric relation. In this case

the association scheme is determined uniquely by relation R1.
If A denotes the adjacency matrix of the relation R1 then the adjacency

matrices of R0, R2 and R3 are I, At and J−I−A−At, respectively. The Bose-
Mesner algebra of X is the matrix algebra A spanned these four matrices,
see Bannai and Ito [1].

Higman [10] proved that an association scheme with d ≤ 4 has a commu-
tative Bose-Mesner algebra, which means that ph

ij = ph
ji, for all i, j, h.

Thus multiplication in the Bose-Mesner algebra is determined by the
following equations.

AJ = JA = κJ (1)

AAt = κI + λ(A + At) + µ(J − I − A− At) (2)

AtA = κI + λ(A + At) + µ(J − I − A− At) (3)

A2 = αA + βAt + γ(J − I − A− At), (4)

where κ = p0
12, λ = p1

12 = p1
21, µ = p3

12 = p3
21, α = p1

11, β = p2
11 and γ = p3

11.
We note that α = λ. This is seen by counting in two ways the pairs (y, z)

so that (x, y), (x, z), (y, z) ∈ R1, for a fixed vertex x.
Since A is commutative and consists of normal matrices, the matrices

of A have a common diagonalization, i.e., A has a basis {E0, E1, E2, E3} of
ortogonal projections.

A relation (say R1) of a symmetric association scheme with two classes
is a strongly regular graph with parameters (v, k, a, c), where v = |X|, k =
p0

11, a = p1
11, c = p2

11. And conversely, if R1 is a strongly regular graph and
R2 is the complementary graph of R1, then R1 and R2 form a symmetric
association scheme with two classes.

A relation of a non-symmetric association scheme with two classes is
called a doubly regular tournament. Reid and Brown [19] proved that there
exists a doubly regular tournament with n vertices if and only if there exists
a skew Hadamard matrix of order n + 1. Thus a necessary condition is that
n ≡ 3 mod 4.

Since a non-symmetric association X with 3 classes is commutative, the
symmetrization (X, {R0, R1 ∪ R2, R3}) is also an association scheme, thus
R3 is a strongly regular graph and R1 and R2 are orientations of a strongly
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regular graph. In fact R1 ∪R2 is a strongly regular graph with parameters

(v, k, a, c) = (v, 2p0
12, p

1
11 + p1

12 + p1
21 + p1

22, p
3
11 + p3

12 + p3
21 + p3

22) (5)

= (v, 2p0
12, 3p

1
12 + p1

22, 2(p3
11 + p3

12)) (6)

In [13], we prove the following.

Lemma 1 If A is the adjacency matrix of a regular directed graph (i.e.,
equation (1) is satisfied), then equation (2) and equation (3) are equivalent.

(This is also an alternative proof of the commutativity of the Bose-Mesner
algebra A.) A directed graph whose adjacency matrix satisfies these equa-
tions is called normally regular. The eigenvalues of a normally regular di-
graph have the following property.

Theorem 2 ([13]) If the adjacency matrix A of a regular directed graph
satisfies equation (2) then an eigenvalue θ 6= k lies on the circle in the com-
plex plane with centre λ − µ and radius

√

k − µ + (λ− µ)2 and θ + θ is an
eigenvalue of A + At.

If A satisfies all the equations (1), (2), (3), (4) then it has four eigenvalues
κ, and say ρ, σ and σ with multiplicities 1, m1, m2 and m2, respectively, and
the eigenvalues of A+At are 2κ, 2ρ, and σ +σ with multiplicities 1, m1, and
2m2.

For parameters v and ph
ij, i, j, h ∈ {0, 1, 2, 3} the parameters of R1∪R2 can

be computed from equation (6). Using standard formulas, the spectrum of
R1∪R2 can then be computed. From this it is possible to compute eigenvalues
and multiplicities of R1 (e.g. using Theorem 2). For arbitrary intersection
numbers the result may be expressions for the multiplicities which are not
integers.

Definition 1 We say that v and ph
ij, i, j, h ∈ {0, 1, 2, 3} form a feasible

parameter set for a non-symmetric association scheme with three classes if
they are non-negative integers and the multiplicities of the (four) eigenvalues
computed from these intersection numbers are possitive integers.

However, Bannai and Song proved that the spectrum of A can be com-
puted from the spectrum of A+At. (We note that if the eigenvalues of A+At

are 2k, r, s then either r or s can be split in two complex eigenvalues, if their
multiplicities are even.)
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Lemma 3 (Bannai and Song [2]) If s = σ +σ if an eigenvalue of A+At

then σ = 1
2
(s + i

√

vκ/m2).

From the spectrum of A it is possible to compute the intersection num-
bers.

The Hadamard product of matrices B = (bij) and C = cij) is the matrix
B ◦ C = (bijcij). Since {I, A,At, J − A − At − I} is a basis of A, it follows
by considering the Hadamard product of these matrices that A is closed
under the Hadamard product. In particular, there exists numbers qh

ij, for
i, j, h ∈ {0, 1, 2, 3}, so that Ei ◦ Ej = 1

v

∑

h qh
ijEh. These numbers are called

Krein parameters. It is known that each Krein parameter is a non-negative
real number, see Bannai and Ito [1]. Since the Krein parameters can be
computed from the spectrum of A, this can be used to prove non-existence
for some feasible parameter sets.

Neumaier [17] found another way to exclude feasible parameter sets. Let
mi be the rank of Ei, for i ∈ {0, 1, 2, 3}. (Thus m0, . . . ,m3 are the multiplic-
ities of eigenvalues.)

Theorem 4 ([17]) The following inequalities are satisfied for a commuta-
tive association scheme.

∑

h : qh
ii

>0

mh ≤
1

2
mi(mi + 1), for i = 0, . . . , d,

∑

h : qh
ij>0

mh ≤ mimj, for i, j = 0, . . . , d, i 6= j

1 Primitive association schemes with three

classes.

Below we give a list of feasible parameter sets for primitive association
schemes with three classes and |X| ≤ 100. For each feasible parameterset
(v, k, a, c) of a strongly regular graph we investigate the feasible parameters
of non-symmetric association schemes with three classes such that R1 ∪ R2

has parameters (v, k, a, c). It follows from equation (6) that we need only
consider parameters where k and c are even. It is also useful to know that
the eigenvalues of R1 ∪R2 are integers. This follows from the next lemma.
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Lemma 5 (Goldbach and Claasen [8]) There is no non-symmetric as-
sociation schemes with three classes so that R1 ∪ R2 has parameters (4c +
1, 2c, c− 1, c).

In parameter sets no. 7, 11 and 21 it is known that the strongly regular
graph does not exist, see Brouwer [3].

In parameter set no. 17 some of the Krein parameters are negative. Thus
this case is excluded. The multiplicities of eigenvalues for parameter sets no.
16 and 22 do not satisfy Neumaier’s condition.

Parameters
No. for R1 ∪R2 p1

12 p3
12 exists reference

1 (16, 10, 6, 6) 1 2 no Goldbach and Claasen [7]
2 (21, 10, 3, 6) 1 1 no Enomoto and Mena [5]
3 (36, 14, 4, 6) 0 2 yes Goldbach and Claasen [6]
4 (36, 20, 10, 12) 3 2 NO Theorem 8
5 (45, 32, 22, 24) 6 4 NO Theorem 7
6 (50, 42, 35, 36) 8 12 NO Theorem 6
7 (57, 42, 31, 30) 7 9 no Wilbrink and Brouwer [22]
8 (64, 28, 12, 12) 4 2 yes Enomoto and Mena [5]
9 (64, 36, 20, 20) 4 6 ?
10 (64, 42, 26, 30) 7 6 ?
11 (64, 42, 30, 22) 7 6 no absolute bound
12 (81, 50, 31, 30) 9 5 ?
13 (85, 64, 48, 48) 13 8 ?
14 (85, 70, 57, 60) 13 20 ?
15 (96, 38, 10, 18) 3 4 ?
16 (96, 50, 22, 30) 3 10 no Neumaier
17 (96, 60, 38, 36) 11 6 no Krein
18 (96, 76, 60, 60) 16 10 ?
19 (100, 44, 18, 20) 3 6 ?
20 (100, 54, 28, 30) 8 6 ?
21 (100, 66, 39, 52) 10 12 no absolute bound
22 (100, 66, 41, 48) 8 16 no Neumaier
23 (100, 66, 44, 42) 10 12 ?
24 (100, 72, 50, 56) 13 12 ?

For parameters no. 6, R3 is a strongly regular graph with parameters
(50, 7, 0, 1), i.e., it is the Hoffman-Singleton graph. This case can be excluded,
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by investigating possible orientations of the complement of the Hoffmann-
Singleton graph.

Theorem 6 There is no non-symmetric association scheme with three classes
where R3 is the Hoffman-Singleton graph.

Proof. Suppose that there exists a non-symmetric association scheme with
three classes where R3 is the Hoffman-Singleton graph. Let x be a vertex and
let x1, . . . , x7 be the neighbours of x in R3. Let Si be the set of neighbours
of xi other that x, for i = 1, . . . , 7. Let N+(x) be the set out-neighbours of
x in R1. Then N+(x) is a set of 21 vertices in the set N2(x) := S1 ∪ . . . ∪ S7

of vertices at distance 2 from x, and |Si ∩N+(x)| = p3
13 = 3, for i = 1, . . . , 7.

The subgraph of R3 spanned by N+(x) is regular of degree p1
13 = 4. The

complement of N+(x) in S1 ∪ . . . ∪ S7 is the set of in-neighbours of x in R1

and this set also spans a 4-regular subgraph of R3.
A computer enumeration shows that there are exactly 1140 subsets of

N2(x) with the properties required for N+(x). These 1140 subsets form
three orbits under the action of the subgroup of the automorphism group of
the Hoffman-Singleton graph stabilizing the vertex x.

For each pair x, y of vertices, the orientation of the edges incident with x
and the orientation of the edges incident with y should agree on the orien-
tation of the edge {x, y} if x and y are non-adjacent in R3, and they should
satisfy that for all i, j the number of vertices z so that (x, z) ∈ Ri and
(z, y) ∈ Rj is exactly ph

ij where (x, y) ∈ Rh.
A computer search shows that there are no orientations all of edges in-

cident with x, x1, x2, x3, x4 and x5 that satisfy these conditions. Thus the
required association scheme does not exist. �

For parameters no. 5, R3 is a strongly regular graph with parameters
(v, k, a, c) = (45, 12, 3, 3).

E. Spence, see [21], has shown that there are exactly 78 strongly regular
graphs with these parameters. This result was verified by J. Degraer and
K. Coolsaet (personal communication with Spence).

Thus the method from the previous theorem can be applied to each of
these 78 graphs.

Theorem 7 There is no primitive non-symmetric association scheme with
three classes with parameterset no. 5.
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Proof. Suppose that there exists such an association scheme. Let x be a
vertex and let x1, . . . , x12 be the neighbours of x in R3. Let Si be the set of
neighbours of xi at distance 2 from x, |Si| = k− a− 1 = 8, for i = 1, . . . , 12.
Let N+(x) be the set out-neighbours of x in R1. Then N+(x) is a set of 16
vertices in the set N2(x) := S1 ∪ . . . ∪ S12, and |Si ∩ N+(x)| = p3

13 = 4, for
i = 1, . . . , 12. The subgraph of R3 spanned by N+(x) is regular of degree
p1

13 = 3.
The computer search shows that if N is a set with |Si ∩ N | = 4, for

i = 1, . . . , 12, and in which every vertex has degree at most 3 then N is
3-regular and the subgraph of R3 spanned by N2(x) \N is also 3-regular.

The number of such sets N depend on the graph and the vertex x. The
largest number of sets is 396, which appear in the graph with a rank 3
automorphism group.

44 of the 78 candidates for R3 can be excluded because, for at least one
vertex x, there is no such set N .

For each of the other 34 graphs we find by computer search a set W of
at most 8 vertices so that there is no combination of orientations of edges
in the complement of R3 incident with w, for each w ∈ W that satisfies the
required properties. (This search took 45 minutes on a 2.4 GHz PC.)

Thus an association scheme with parameterset no. 5 does not exist. �

Using computersearch we can exclude one more case.

Theorem 8 There is no primitive non-symmetric association scheme with
three classes with parameter set no. 4.

Proof. We use an orderly search algorithm (se Read [18]) to search for the
matrix B = 3A3 + 2A2 + A1, where A1, A2, A3 are adjacency matrices of the
relations R1, R2, R3 of an association scheme with parameter set no. 4.

We want the vertices to be enumerated so that the matrix B is in maxi-
mal form, i.e., the sequence obtained by reading the entries of the first row
followed by the entries of the second row, etc., is as large as possible (in the
lexicographic order) among all enumerations of the vertices.

In turns out that with this condition (and for parameter set no. 4) it is
convenient to enumerate the relations so that R1 is symmetric and Rt

2 = R3.
Suppose that the first r−1 rows of the matrix B = (bij) has been filled in.

We then investigate all possible ways to fill in row r with 0 on the diagonal
entry, p0

11′ = 15 entries with 1’s, p0
22′ = 10 entries with 2’s, and p0

33′ = 10
entries with 3’s in such a way that

7



• the first r− 1 entries are in accordance with the entries of column r of
the previous rows.

• for each x < r the number of columns s, so that bxs = i and brs = j′ is
exactly ph

ij, where bxr = h.

• the matrix is still in maximal form.

We find that the number of ways to fill in the first r rows is 1, 1, 100,
24161, 205671, 1116571, 52650, 39, 0, . . . , 0, for r = 1, . . . , 36. Thus the
required association scheme does not exist. (This search took 81 minutes on
a 2.4 GHz PC.) �

2 Imprimitive association schemes with three

classes.

If R3 is connected but R1 and R2 are disconnected then each connected
component of R1 is a doubly regular tournament on 2p0

12+1 vertices. Thus the
study of these schemes reduces to the study of doubly regular tournaments.

We will thus assume that R1 and R2 are connected and R3 is disconnected.
Then R3 consists of m copies of a complete graph on r vertices, for some
constants m and r. We denote this graph by m◦Kr. Then R1 is an orientation
of the complement m ◦Kr. The vertex set of m ◦Kr is partitioned in m
independent sets of size r, denoted by V1, . . . , Vm.

In [14] we introduce the following family of graphs that do not necessarily
satisfy all the conditions on a relation of a non-symmetric association scheme
with three classes. We say that a directed graph is a doubly regular (m, r)-
team tournament if it is an orientation of m ◦Kr with adjacency matrix A
satisfying equations (1) and (4).

In [14] we give a combinatorial proof of the following, i.e., we do not use
eigenvalues.

Theorem 9 (Jørgensen, Jones, Klin and Song [14]) Every doubly reg-
ular (m, r)-team tournament is of one of the following types.

1. For every pair i, j either all the edges between Vi and Vj are directed
from Vi to Vj, or they are all directed from Vj to Vi. The graph with
vertices v1, . . . , vm and edges vi → vj if edges are directed from Vi to Vj

is a doubly regular tournament.
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2. For every vertex x ∈ Vi, exactly half of the vertices in Vj (j 6= i) are

out-neighbours of x, and α = β = (m−2)r
4

, and γ = (m−1)r2

4(r−1)
.

3. For every pair {i, j} either Vi is partitioned in two sets V ′

i and V ′′

i of
size r

2
so that all edges between Vi and Vj are directed from V ′

i to Vj and
from Vj to V ′′

i , or similarly with i and j interchanged. The parameters

are α = (m−1)r
4

− 3r
8
, β = (m−1)r

4
+ r

8
, γ = (m−1)r2

8(r−1)
.

A graph of type 3 can not be a relation of an association scheme. In this
case 8 divides r and 4(r− 1) divides m− 1. We do not know if any graph of
this type exists.

Every graph of type 1 or type 2 is a relation of a non-symmetric associa-
tion scheme with 3 classes. The results for these types where first proved by
Goldbach and Claasen [9].

Clearly, the graph in case 1 exists if and only a doubly regular tournament
of order m exists.

2.1 Type 2

We now consider graphs of type 2. We first show that a graph of this type
is a relation of a non-symmetric association scheme with 3 classes. This is
done by proving that equations (2) and (3) are satisfied.

Lemma 10 Let A be the adjacency matrix of a doubly regular (m, r)-team
tournament of type 2. Then A satisfies equations (2) and (3) with

• λ = α = (m−2)r
4

and

• µ = (m−1)r(r−2)
4(r−1)

.

In particular if m = r then λ = µ = m(m−2)
4

.

Proof. Let x ∈ Vi and y ∈ Vj, i 6= j, and suppose that x → y. Then x has
κ− r

2
out-neighbours outside Vi∪Vj. α of these are in-neighbours of y and the

remaining κ− r
2
− α are out-neighbours of y. Thus λ = κ− r

2
− α = (m−2)r

4
,

since κ = (m−1)r
2

.

Similarly, for x, y ∈ Vi, we get µ = κ − γ = (m−1)r(r−2)
4(r−1)

. Thus equation

(2) is satisfied. Equation (3) can be proved in a similar way, or by applying
Lemma 1. �
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Since the parameters of a graph of type 2 are integers, it follows that r
is even and r − 1 divides m− 1. Using eigenvalues, it can be shown that m
is even, see [14] or Goldbach and Claasen [9].

Existence in the case r = 2 is equivalent to existence of a doubly regular
tournament of order m− 1.

Theorem 11 ([14]) If there exists a doubly regular (m, 2)-team tournament
Γ of type 2 then 4 divides m and the outneighbours of a vertex in Γ span a
doubly regular tournament of order m− 1.

Conversely, for every doubly regular tournament T of order m− 1, there
exists a doubly regular (m, 2)-team tournament Γ, such that for some vertex
x in Γ the out-neighbours of x span a subgraph isomorphic to T .

No schemes with 4 ≤ r < m, where r − 1 divides m− 1 are known.

We will now consider the case m = r. We will see that such association
schemes are equivalent to special cases of some well-known structures.

Definition 2 An Hadamard matrix H of order n is an n×n matrix in which
every entry is either 1 or −1 and HH t = nI.

An Hadamard matrix H of order m2 is said to be Bush-type if H is a
block matrix with m ×m blocks Hij of size m × m such that Hii = Jm and
HijJm = JmHij = 0, for i 6= j.

Theorem 12 An imprimitive association scheme with 3 classes of type 2
and with r = m is equivalent to a Bush-type Hadamard matrix of order m2

with the property that Hij = −Hji, for all pairs i, j with i 6= j.

Proof. Let A be an adjacency matrix of relation R1, for some imprimitive
association scheme with 3 classes of type 2 and with r = m. We may assume
that vertices are enumerated such that the vertices in Vi corresponds to
coloumns/rows mi− i+1, . . . ,mi. Let H = Jm2−2A. Then H is partitioned
in blocks Hij of size m × m corresponding to the partition of vertices in
sets V1, . . . , Vm. Clearly Hii = Jm and since a vertex in Vi has exactly m

2

out-neighbours and m
2

in-neighbours in Vj, HijJm = JmHij = 0.

From equations (1) and (2) we get (since κ = m(m−1)
2

and µ = λ = m(m−2)
4

)

HHt = (Jm2 − 2A)(Jm2 − 2At) = (m2 − 4κ)Jm2 + 4(κI + µ(J − I)) = m2I.

10



Thus H is an Hadamard matrix.
Conversely, suppose that H is a Bush-type Hadamard matrix which is

skew in the sense that Hij = −Hji, for i 6= j.
Let A = 1

2
(J−H), where J = Jm2. Then A is a {0, 1} matrix. Since H is

Bush-type it has exactly m+(m−1)m
2

entries equal to 1 and (m−1)m
2

entries
equal to −1 in each row. Thus HJ = mJ and the transposed equation is
JHt = mJ . Similarly JH = mJ . Thus AJ = JA = m(m−1)

2
J and

AAt =
1

4
(J −H)(J −Ht) =

m(m− 2)

4
J +

m2

4
I.

We see that equations (1) and (2) are satisfied. Equation (3) can be proved
in a similar way, or by applying Lemma 1.

Let K denote the block diagonal matrix with diagonal blocks equal to
Jm. Then the Bush-type property of H implies that HK = mK and the
skew property of H implies that H + Ht = 2K. Thus H2 = H(2K −Ht) =
2mK −m2I, and so

A2 =
1

4
(J −H)2 =

1

4
(m(m− 2)J + 2mK −m2I).

Since J − I − A − At = K − I, it follows that equation (4) is satisfied with

α = β = m(m−2)
4

and γ = m2

4
. �

Kharaghani [15] proved that if there exists an Hadamard matrix of order
m then there exists a Bush-type Hadamard matrix of order m2.

Ionin and Kharaghani [11] modified this construction and proved that
if there exists an Hadamard matrix of order m then there exists a Bush-
type Hadamard matrix of order m2, which has the skew property required in
Theorem 12.

Thus in many cases with m = r a multiple of 4, an association scheme
can be constructed.

The case with m = r congruent to 2 modulo 4 seems to be more difficult
and no general constructions are known. But in the special case m = r =
6 we may apply the computer search algorithm described in the proof of
Theorem 8. However, it is estimated that a complete search would take
several years. We stopped the search after a few days. At that time two
association schemes were found.

Theorem 13 There exists an imprimitive non-symmetric association scheme
with 3 classes of type 2 with m = r = 6.

11



Proof. The adjacency matrix of R1 is listed below for one such scheme. �

A Bush-type Hadamard matrix of order 36 was first constructed Janko [12].
But a “skew” Bush-type Hadamard matrix of order 36 was not previously
known. Bussemaker, Haemers and Spence [4] proved that a symmetric Bush-
type Hadamard matrix of order 36 does not exist.
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0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1

0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1
0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1
1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0
1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 1

0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 1
0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0
0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1
1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0
1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1
1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0

0 0 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1
0 1 0 1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0
0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0
1 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1
1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1
1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0

0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0
0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1
1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0
1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1
1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1

0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0
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