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Abstract

In this paper we give some new criteria for identifying the compo-

nents of a probability measure, in its Lebesgue decomposition. This

enables us to give new criteria to identify spectral types of self adjoint

operators on Hilbert spaces, especially those of interest.

1 Introduction

In the spectral theory of self adjoint operators it is of interest to identify the
type of the spectrum. This problem is equivalent to identifying the compo-
nents of the spectral measures. The components of a probability measure
can be identified via a transform of the measure. Two of these are well
known, viz. the Fourier transform and the Borel transform. In this paper
we address the question of identifying the components using a more gene-
ral transform. We give results using a general approximate identity, and an
associated continuous wavelet transform.

Concerning the literature, the connection between an approximate identity
and the continuous wavelet transform was discussed in the book by Hol-
schneider [1], while wavelet coefficients of fractal measures were studied by
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nish National Research Foundation
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Strichartz in [4]. In the theory of selfadjoint operators finer decomposition
of spectra with respect to Hausdorff measures was first used by Last [2] and
general criteria for recovering a measure from its Borel transform was done
by Simon [3].

2 The criteria

We need to introduce conditions on our function ψ. Several of these can be
relaxed in some of the results. We use the standard notation 〈x〉 = (1+x2)1/2.

Assumption 2.1. Assume that ψ ∈ C1(R), ψ(0) = 1, ψ is even, and there

exist C > 0 and δ > 1, such that

|ψ(x)| + |xψ′(x)| ≤ C〈x〉−δ, x ∈ R. (2.1)

We set Aψ =
∫

R
ψ(x) dx and assume that Aψ 6= 0.

In the sequel we always impose this assumption on ψ. We introduce the
notation

ψa(x) = ψ(x/a) and ψ̃a(x) =
1

a
ψa(x), a > 0. (2.2)

In particular, the family {A−1
ψ ψ̃a} is an approximate identity. Let µ be

a probability measure on R in what follows, with Lebesgue decomposition
µ = µs+µac. Let f be a function. We recall that the convolution (f ∗µ)(x) =
∫

f(x− y)dµ(y) is defined, when the integral converges. Since ψ is bounded,
the convolution ψa ∗ µ is defined for all a > 0.

For 0 ≤ α ≤ 1 we define

(dαµ)(x) = lim
ε↓0

µ((x− ε, x+ ε))

(2ε)α
, (2.3)

whenever the limit on the right hand side exists.

We can now state the results. We first give results based on ψa and ψ̃a, and
then on an associated continuous wavelet transform.

Theorem 2.2. Let µ be a probability measure. Then

1. Let ψ satisfy Assumption 2.1. Then for every continuous function f of

compact support, the following is valid.

lim
a→0

∫

(ψ̃a ∗ µ)(x)f(x)dx = Aψ

∫

f(x)dµ(x).
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2. lim
a→0

(ψa ∗ µ)(x) = µ({x}).

3. Assume 0 < α ≤ 1 and (dαµ)(x) finite. Then we have

lim
a→0

a−α(ψa ∗ µ)(x) = cα(dαµ)(x), (2.4)

where cα =
∫ ∞

0
α2αyα−1ψ(y)dy.

Remark 2.3. (1) Equation (2.4) implies that if µ is purely singular, then the
limit of ψ̃a ∗ µ(x) is zero almost everywhere with respect to the Lebesgue
measure, since the derivative (d1µ)(x) = 0 almost everywhere for purely
singular µ.

(2) If x is not in the topological support of µ, then for each 0 ≤ α ≤ 1,

lim
a→0

a−αψa ∗ µ(x) = 0.

Our next theorem is a bit more and the first part is analogous to Wiener’s
theorem and its extension by Simon [3].

Theorem 2.4. Let µ be a probability measure. Then for any bounded interval

(c, d) the following are valid.

1. Let

C =

∫

R

|ψ(x)|2dx,

then

lim
a→0

1

a

∫ d

c

|(ψa ∗ µ)(x)|2dx

= C
(

∑

x∈(c,d)

µ({x})2 + 1
2

[

µ({c})2 + µ({d})2
]

)

. (2.5)

2. For 0 < p < 1, we have

lim
a→0

∫ d

c

|(ψ̃a ∗ µ)(x)|pdx = |Aψ|
p

∫ d

c

∣

∣

dµac

dx
(x)

∣

∣

p
dx. (2.6)

This theorem has the following corollary.

Corollary 2.5. Let µ be a probability measure. Then we have the following

results
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1. µ has no point part in [c, d], if and only if

lim inf
a→0

1

a

∫ d

c

|(ψa ∗ µ)(x)|2dx = 0. (2.7)

2. If µ has no absolutely continuous part in (c, d), if and only if for some

p, 0 < p < 1,

lim inf
a→0

∫ d

c

|(ψ̃a ∗ µ)(x)|pdx = 0. (2.8)

Now to state the results in terms of the continuous wavelet transform, we
introduce

h(x) = ψ(x) + xψ′(x). (2.9)

Under Assumption 2.1 we clearly have

|h(x)| ≤ C〈x〉−δ, (2.10)

with the δ from the assumption. Integration by parts and (2.9) imply
that h satisfies the admissibility condition for a continuous wavelet, i.e.
∫ ∞

−∞
h(x)dx = 0.

Thus we can define the continuous wavelet transform of a probability measure
µ as

Wh(µ)(b, a) =
1

a

∫ ∞

−∞

h((b− y)/a)dµ(y). (2.11)

The connection between the approximate identity and this transform is

−a
∂

∂a
(ψ̃a ∗ µ)(b) = Wh(µ)(b, a). (2.12)

This result follows from

−a
∂

∂a
(
1

a
ψ(
x

a
)) =

1

a

(

ψ(
x

a
) +

x

a
ψ′(

x

a
)
)

,

and the definitions.

We have the following analogue of Theorem 2.2:

Theorem 2.6. Let µ be a probability measure. Then we have the following

results:

1. We have

lim
ε↓0

ε

∫ ∞

ε

Wh(µ)(b, a)
da

a
= µ({b}). (2.13)
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2. Let 0 < α ≤ 1. Assume that (dαµ)(b) exists. Then

lim
ε↓0

ε1−α

∫ ∞

ε

Wh(µ)(b, a)
da

a
= cα(dαµ)(b), (2.14)

where cα was defined in Theorem 2.2.

Remark 2.7. We note that for 0 < α < 1 we can replace
∫ ∞

ε
by

∫M

ε
for any

M > 0. See the proof of the Theorem.

We also have the following analogue of Theorem 2.4(1).

Theorem 2.8. Let µ be a probability measure. Then for any bounded interval

(c, d) we have the following result. Let

Ch =

∫

R

|h(x)|2dx,

Then we have

lim
a↓0

∫ d

c

|Wh(µ)(b, a)|2db

= Ch

(

∑

x∈(c,d)

µ({x})2 + 1
2

(

µ({c})2 + µ({d})2
)

)

. (2.15)

Even when the quantity (dαµ)(x) does not exist, it is possible to say some-
thing on the wavelet transforms, to cover the cases of measures which are
not supported on the sets where such limits exist. Set

Cα
µ,ψ(x) = lim sup

a→0

ψa ∗ µ

aα
(x) and Dα

µ(x) = lim sup
ε→0

µ((x− ε, x+ ε))

(2ε)α
.

Then we have

Theorem 2.9. Let µ be a probability measure, and let ψ satisfy Assumption

2.1. Then Cα
µ,ψ(x) is finite for any x, whenever Dα

µ(x) is finite for the same

x, and, if ψ is non-negative, they are both finite or both infinite.

Remark 2.10. The above theorem implies that if lim supa→0 |(ψ̃a∗µ)(x)| <∞
for all x ∈ (c, d), then there is no singular part of µ supported in (c, d).

Finally as an application of the above theorems we consider H to be a sepa-
rable Hilbert space and A a selfadjoint operator. Then

Theorem 2.11. Suppose A is a selfadjoint operator on H. Consider a func-

tion ψ satisfying Assumption 2.1. Then
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1. λ is in the point spectrum of A, if for some f ∈ H, ‖f‖ = 1,

lim
a→0

〈f, ψa(A− λ)f〉 = 0.

2. Let B ⊂ R be a Borel set of positive Lebesgue measure. Then B ∩
σac(A) 6= ∅, if for some f ∈ H, ‖f‖ = 1,

lim
a→0

〈f, ψ̃a(A− λ)f〉 6= 0, for a.e. λ ∈ B.

3. The point spectrum of A in (c, d) is empty, if and only if for some

orthonormal basis {fn}, of H, one has for every n,

lim inf
a→0

1

a

∫ d

c

|〈fn, ψa(A− λ)fn〉|
2dλ = 0.

4. The absolutely continuous spectrum of A in (c, d) is empty, if and only

if for some orthonormal basis {fn} of H, one has for every n and some

0 < p < 1,

lim inf
a→0

∫ d

c

∣

∣

1

a
〈fn, ψa(A− λ)fn〉

∣

∣

p
dλ = 0.

3 Proofs

Throughout the computations below the letter C denotes a constant, whose
value may vary from line to line.

Proof of Theorem 2.2: Part (1): Since f is a continuous function of
compact support and ψa is bounded for each a > 0, f(x)ψa(x−y) is absolutely
integrable and the integral is uniformly bounded in y ∈ R. Therefore, by
an application of Fubini, a change of variable x → ax + y and dominated
convergence theorem, in that order, it follows that

lim
a→0

∫

dx f(x)
(

ψ̃a ∗ µ
)

(x) = lim
a→0

∫

dx f(x)

∫

ψ̃a(x− y)dµ(y)

= lim
a→0

∫

dµ(y)

∫

f(x)ψ̃a(x− y)dx

= lim
a→0

∫

dµ(y)

∫

f(ax+ y)ψ(x)dx

=

∫

dµ(y)

∫

(lim
a→0

f(ax+ y))ψ(x)dx

=

∫

f(y)dµ(y) ·

∫

ψ(x)dx.
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Part (2): This is a direct consequence of the definition of the integral noting
that pointwise we have

lim
a→0

ψa(x) =

{

0, if x 6= 0,

1, if x = 0.

We also need to use the dominated convergence theorem to interchange the
limit and the integral.

Part (3): Let Φµ denote the distribution function of µ. Then we have

1

aα

∫

R

ψa(x− y)dµ(y)

= −
1

aα

∫

R

d

dy
ψ((x− y)/a)Φµ(y)dy

=
1

aα

∫

R

ψ′(y)Φµ(x− ay)dy

= −

∫ ∞

0

ψ′(y)(2y)α
Φµ(x+ ay) − Φµ(x− ay)

(2ay)α
dy, (3.1)

where in the first step we used integration by parts, the next step changed
variables and in the last step used the oddness of ψ′ to split the integral into
the positive and negative half lines and multiplied by appropriate powers.

We observe that

(dαµ)(x) = lim
a→0

Φµ(x+ ay) − Φµ(x− ay)

(2ay)α

for each y ∈ R, and is finite by assumption. Furthermore, the function
(Φµ(x + ay) − Φµ(x − ay))(2ay)−α is a bounded measurable function, such
that we due to (2.1) we can take the limits inside the integral sign in (3.1)
and use the dominated convergence theorem.

Now doing an integration by parts gives the value of the integral as stated
in the theorem.

Proof of Theorem 2.4: Part (1): We have

1

a

∫ d

c

|ψa ∗ µ(x)|2dx =

∫∫

dµ(y1) dµ(y2)

∫ d

c

dx
1

a
ψa(x− y1)ψa(x− y2).

Since the function ψa is bounded, the interval (c, d) is bounded, and µ is a
probability measure, the right hand side integral converges absolutely, so we
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used Fubini to interchange integrals to get the equality above. Let

ha(y1, y2) =

∫ d

c

dx
1

a
ψa(x− y1)ψa(x− y2).

Suppose y1 6= y2, then using the bound |ψ(x)| ≤ C〈x〉−δ, we see that the
bound

|ha(y1, y2)| ≤
C

a

∫ ∞

−∞

〈(x+ y2 − y1)/a〉
−δ〈x/a〉−δdx

=
C

a

(

∫

|x|≤|y1−y2|/2

+

∫

|x|≥|y1−y2|/2

)

(· · · )dx

≤
Caδ

|y1 − y2|δ

∫ ∞

−∞

〈x/a〉−δd(x/a)

≤
Caδ

|y1 − y2|δ

is valid. It follows that lima→0 ha(y1, y2) = 0 for y1 6= y2. It remains to
consider y1 = y2. This is done by noting that

ha(y1, y1) =

∫ d

c

1

a
|ψa(x− y1)|

2dx =

∫ (d−y1)/a

(c−y1)/a

|ψ(x)|2dx,

from which taking limits, we obtain the stated value for the coefficient, either
C or C/2, based on whether c < y1 < d or y1 = c, d, using the evenness of
ψ. Now to complete the proof, we note the estimate

|ha(y1, y2)| ≤ C

∫

R

〈x/a〉−δd(x/a) ≤ C0,

where the constant C0 is independent of a, y1, and y2. Thus the proof is
completed used the dominated convergence theorem.

Part (2): We adapt the arguments in [3] to the case at hand. We split the
measure in three components: µ = µ1+µ2+µ3. Here dµ1 = (1−χ[c−1,d+1])dµ,
dµ2 = gdx with g ∈ L1([c−1, d+1]), and µ3 is purely singular, and supported
on [c− 1, d+ 1]. We have for x ∈ [c, d] the estimate

|(ψ̃a ∗ µ1)(x)| ≤ C

∫

R\[c−1,d+1]

a−1〈(x− y)/a〉−δdµ1(y) ≤ Caδ−1.

We now look at the µ2 part. We have, for 0 < p < 1, by the reverse Hölder
inequality
∫ d

c

∣

∣(ψ̃a ∗ g)(x) − Aψg(x)
∣

∣

p
dx ≤

(

∫ d

c

∣

∣(ψ̃a ∗ g)(x) − Aψg(x)
∣

∣dx
)p

(d− c)1−p,
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which implies that ψ̃a ∗ g → Aψg in Lp((c, d)), 0 < p ≤ 1.

Now we will show that the singular part µ3 does not contribute to the limit.
So assume that µ3 is purely singular and that its support S is contained in
[c − 1, d + 1]. Since µ3 is singular, by the definition of support, S satisfies
µ3(R \ S) = 0 and |S| = 0, with | · | denoting the Lebesgue measure. By
the regularity of the Lebesgue measure, given an ε > 0, there is an open
set O ⊂ (c − 2, d + 2), such that S ⊂ O, with |O \ S| < ε. We also have
|O| ≤ |O \ S| + |S| < ε. For the same ε, since the measure µ3 is regular,
we also have a compact K ⊂ S, such that µ3(S \K) < ε. In addition, since
K ⊂ S, and S has Lebesgue measure zero, K also has Lebesgue measure
zero.

The above reverse Hölder inequality gives

∫ d

c

∣

∣(ψ̃a ∗ µ3)(x)
∣

∣

p
dx =

∫

O

∣

∣(ψ̃a ∗ µ3)(x)
∣

∣

p
dx+

∫

(c,d)\O

∣

∣(ψ̃a ∗ µ3)(x)
∣

∣

p
dx

≤ |O|1−pµ3((c, d))
p‖ψ‖p1

+ |d− c|1−p
(

∫

(c,d)\O

∣

∣(ψ̃a ∗ µ3)(x)
∣

∣dx
)p

≤ Cε1−p + |d− c|1−p
(

∫

(c,d)\O

∣

∣(ψ̃a ∗ µ3)(x)
∣

∣dx
)p

.

Now consider a bounded continuous function h which is 1 on (c, d) \O, and
0 on K.

Then using Assumption 2.1, that |ψ(x)| ≤ C〈x〉−δ, and setting φ(x) = 〈x〉−δ,

∫

(c,d)\O

∣

∣(ψ̃a ∗ µ3)(x)
∣

∣dx ≤

∫

(c,d)\O

1

a

∫

R

|ψa(x− y)|dµ3(y)dx

≤ C

∫

(c,d)\O

1

a

∫

R

〈(x− y)/a〉−δdµ3(y)dx

≤ C

∫

(c,d)\O

h(x)(φ̃a ∗ µ3)(x)dx.

The function φ satisfies Assumption 2.1, so the Theorem 2.2(1) is applicable
with ψ replaced by φ there. Therefore the last term, which has positive
integrand, converges to

∫

(c,d)\O
h(x)dµ(x) as a goes to zero, which is bounded

by
∫

(c,d)\K
dµ(x),

∫

(c,d)\O

h(x)dµ(x) ≤ µ((c, d) \K) ≤ µ((c, d) \ S) + µ(S \K) < ε,
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using the facts that µ((c, d) \ S) = 0 and µ(S \K) < ε.

Using the inequality (a+b+c)p ≤ ap+bp+cp for 0 < p < 1 and non-negative
numbers a, b, c, we have

∫ d

c

|(ψ̃a ∗ µ)(x) − Aψg(x)|
pdx ≤

∫ d

c

|(ψ̃a ∗ µ1)(x)|
pdx

+

∫ d

c

|(ψ̃a ∗ µ2)(x) − Aψg(x)|
pdx

+

∫ d

c

|(ψ̃a ∗ µ3)(x)|
pdx

Putting the above estimates together and using that ε is arbitrary, one gets

lim
a→0

∫ d

c

|(ψ̃a ∗ µ)(x) − Aψg(x)|
pdx = 0.

Now the spaces Lp((c, d)), 0 < p < 1, are metric spaces with the metric
d(f, g) = ‖f − g‖pp. It then follows from the triangle inequality for this
metric that

lim
a→0

∫ d

c

∣

∣(ψ̃a ∗ µ)(x)
∣

∣

p
dx = |Aψ|

p

∫ d

c

|g(x)|pdx.

Since g = dµac

dx
, the result follows.

Proof of Theorem 2.6: Let 0 < ε < M <∞. It follows from (2.12) that
we have

∫ M

ε

Wh(µ)(b, a)
da

a
= (ψ̃ε ∗ µ)(b) − (ψ̃M ∗ µ)(b).

The results now follow from Theorem 2.2.

Proof of Theorem 2.8: The proof is entirely analogous to the proof of
Theorem 2.4, replacing ψ by h and adjusting the powers of a.

Proof of Theorem 2.9: Consider the case when Dα
µ(x) is finite for some

x and for some fixed α. Then for any 0 < y < 1, µ(x− y, x+ y) ≤ C|y|α for
some finite constant C. So, using the last line in equation 3.1 and estimating
the right hand side there, one has, by assumption 2.1,

∣

∣

1

aα
(ψa ∗ µ)(x)

∣

∣ ≤ C

∫ ∞

0

|ψ′(y)|(2y)αdy ≤ C

∫ ∞

0

〈y〉−δ|y|−1+αdy <∞.
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Now taking the lim sup of the left hand side the finiteness of Cα
µ,ψ follows.

On the other hand, since ψ is positive continuous with ψ(0) = 1, there is a
β > 0 such that ψ(y) > 1/2, −β < y < β. Using this and the evenness of ψ,

1

aα
(ψa ∗ µ)(x) =

1

aα

∫

ψa(x− y)dµ(y) =

∫

ψ(y/a)dµ(y + x)

≥
1

aα

∫ βa

−βa

1
2
dµ(y + x)

≥
1

2aα
[µ(x+ aβ) − µ(x− aβ)],

where ψ ≥ 0 is used to get the first inequality above. The above inequalities
immediately imply, since β is fixed, that Dα

µ(x) = ∞ implies the same for
Cα
µ,ψ(x).

Proof of Theorem 2.11: Parts (1) and (2) are a direct application of
Theorem 2.2(2) and (3) respectively. Parts (3) and (4) are a direct application
of Corollary 2.5 (1) and (2) respectively.
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