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Abstract

The uncertainty in estimation of spatial animal density from line transect surveys
depends on the degree of spatial clustering in the animal population. To quantify
the clustering we model line transect data as independent thinnings of spatial shot-
noise Cox processes. Likelihood-based inference is implemented using Markov Chain
Monte Carlo methods to obtain efficient estimates of spatial clustering parameters.
Uncertainty is addressed using parametric bootstrap or by consideration of posterior
distributions in a Bayesian setting. Maximum likelihood estimation and Bayesian
inference is compared in an example concerning minke whales in the North Atlantic.
Our modelling and computational approach is flexible but demanding in terms of
computing time.

Keywords: shot-noise Cox process, simulation-based inference, spatial point process, thin-
ning.

1 Introduction

Line transecting is a survey technique aimed at estimating the abundance of animals in an
area (Buckland et al., 2004). An observer traverses at fixed speed through the area along
a predetermined transect line, and records data on sighting conditions and on the sighted
animals. The transect is often a zigzag and may be broken due to changes in sighting
condition. For simplicity, consider one straight leg of the line, and term this the transect.
Let p(z,y) denote the probability of observing an animal at a location (z,y) assuming that



the transect of length L runs along the y-axis with start at the origin. If m animals are
observed, the standard moment estimate of animal density A is

A=m/ /OL /Zp(%y)dxdy. (1)

This is also the maximum likelihood estimate when the animal population is distributed
spatially as a homogeneous Poisson process with intensity A and the animals are detected
or not detected independently of each other with detection probability p(x,y). In spatial
point process terminology, the detected animals are given by an independent thinning
of the animal population with an inhomogeneous thinning probability 1 — p(x,y). Line
transect data were first regarded as thinnings of point processes in Schweder (1974) and
Schweder (1977). Many animal populations are more spatially variable and clustered than
a homogeneous or inhomogeneous Poisson process. Line transect data for such populations
may naturally be modelled as independent thinnings of spatial Cox point processes.

A computationally cheap way to obtain parameter estimates for a Cox process is to match
a non-parametric estimate of a second order summary statistic with its theoretical expres-
sion depending on the unknown parameters. This approach was first taken for line transect
data by Hagen and Schweder (1995) who used the so-called K-function. A non-parametric
estimate of the K-function may be obtained from line transect data as discussed in Bad-
deley et al. (2000). Due to strong edge effects for line transect data, it is, however, hard
to obtain an efficient estimate. Cowling (1998) (see also Aldrin et al., 2003) considers
the K-function for the one-dimensional point process obtained from projecting a thinned
Neyman-Scott process onto the transect line. The thinning probability is here assumed
centred Gaussian with constant scale parameter. In practice, however, the thinning prob-

ability is usually varying along the transect line according to sighting conditions, see e.g.
Skaug et al. (2004).

In this paper we develop efficient likelihood-based inference for a thinned Cox process both
in a frequentist and a Bayesian setting. The inference is implemented using simulation
methodology like parametric bootstrap and Markov chain Monte Carlo. A distinct ad-
vantage of our approach is that we do not need any simplifying assumptions regarding
the nature of the detection probability. Our modelling and computational approach can
moreover easily be adapted to other sampling designs of the distance type (Buckland et al.,
2004) and to nonstationary clustered animal populations.

Our discussion will be focused on a particular line transect study of minke whale abundance
in the North Atlantic, see Section 2. Section 3 and Section 4 describes our model and the
computational approach while Section 5 contains an application to the minke whale data.
Section 6 contains some final remarks.

2 Minke whales data example
Skaug et al. (2004) is concerned with statistical analysis of minke whales line transect
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data collected from 1996 to 2001 in various survey blocks covering the northeast Atlantic.
Here, we focus on the survey block named VSS located west of Spitzbergen. This block
was visually surveyed in 1999 with 50 whales observed (see Figure 1). A few comments
regarding a neighbouring survey block VSN (not shown) are given in Section 5 and 6.
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Figure 1: Left: transects and observed whales for the VSS block with distances in km.
The transecting was broken when sighting conditions became unsuitable, and restarted
according to a protocol. Right: gray scale plots of the detection probability for the two
leftmost transects in the VSS block. Dark means high detection probability and white dots
show positions of observed whales. Distances are in km both on the x and y axes.

The probability of detecting a whale is considerably less than one even when located
right on the transect. Let Q(z,y,7) denote the hazard probability of initially detecting
a whale surfacing at position (z,y) when the ship is at position (0,7), ¥ < y, along
the transect. Assuming that the whales surface according to a Poisson process in time
with intensity ¢ > 0 and that the ship moves at unit speed, the detection probability is
p(r,y) =1—exp ( — (;Sfi/oo Q(z,y, gj)dgj). To estimate Q(x,y,7), a double platform design
is used in the minke whale surveys. There is no communication between the platforms and
from each platform, tracks of successive surfacings of detected whales are recorded. An
estimate of Q(x,y,7) is then obtained from matched pairs of tracks observed from both
platforms and tracks observed from just one platform.

In the Norwegian minke whale surveys, radial distance from the ship to the surfacing
whale is estimated by eye, and the angle between the transect and the sighting line is
estimated by way of an angle board fixed to the rim of the barrel or platform fence. Time
and ship position are accurately measured, but the angle and particularly radial distance
measurements are rather imprecise. Due to measurement error, tracks and surfacings from
the two platforms might be wrongly matched. This induces bias in the estimation of p(z, y).
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The bias is estimated by regression analysis on simulated estimates, and a bias-corrected
estimate is obtained.

For our present purpose of fitting a spatial cluster model, the detection probability is
regarded as known and given by the estimate obtained in Skaug et al. (2004). The right
plots in Figure 1 show the estimated detection probabilities for two transects in the VSS
block. Note that the detection probabilities vary due to dependence on sea state, visibility,
observation team, and other covariates. An important feature of our likelihood-based
approach is that it easily accomodates the spatially varying detection probability.

3 Spatial point process modelling of whale positions

In this section we discuss the modelling of whale positions observed along one transect.
Within the time-span of traversing a transect the whales are regarded as immobile and
occur at spatial locations £ = (z,y) where these locations are relative to a coordinate
system with the transect along the y-axis and origin at the start of the transect. The
whales in the vicinity of the transect are regarded as a subset of a planar stationary point
process X whose intensity A is the parameter of main interest. The process Y of positions
of observed whales is regarded as an independent thinning of X with thinning probabilities
1 — p(-) where p(£) is the probability of detecting a whale positioned at £. In practice p(+)
has bounded support so that Y is a finite point process.

3.1 Shot-noise Cox processes

Minke whales in the north Atlantic tend to form loose and variable clusters, partially due to
stochastic clustering in the prey distribution (Skaug et al., 2004). Therefore a Cox process
seems an appropriate model for the whale positions. In this paper we consider so-called
shot-noise Cox processes (Brix, 1999; Mgller, 2003; Moller and Waagepetersen, 2003). A
shot-noise Cox process X in the plane is a Cox process with random intensity function

Z(Ee) = > k(€ —o) (2)

(e,y)e®

where ® is a Poisson process on R?x]0, 00| and k is a probability density. A shot-noise
Cox process can also be viewed as a cluster process, i.e. given ®, X is distributed as a
superposition of Poisson processes X(c ), (¢,7) € ®, each with intensity function vk(- — ¢)
where c¢ is the cluster centre and ~ is the expected number of points in the cluster. A
parametric model for ® is considered in Section 3.2 below. The process Y of observed
whales is a shot-noise Cox process with random intensity function

Zy(-|®) = p(-)Z(:|®).



Our kernel k is a truncated bivariate Gaussian density with scale parameter w > 0, i.e.
k((z,y);w) = Lmax(|z|, [y]) < Tw]exp (— (2* +y?)/(2%)) /(2nw?e(T)) (3)

where T' > 0 and ¢(7') is a normalizing constant ensuring that k& integrates to 1. In our
application, T" = 3 so that ¢(3) = 0.9973. Working with a k& of bounded support is very
advantageous for computational reasons, see Appendix A.

3.2 Shot-noise G Cox processes

A shot noise G Cox process (Brix, 1999) is obtained when @ in (2) has intensity function
of the form

C(c,7) = x(7) = exp(r) By " exp(—57)/T(a) (4)

where k € R, @ > —1, and # > 0. With av = 0 a so-called Poisson-gamma process (Wolpert
and Ickstadt, 1998) is obtained.

The process of cluster centres C' = {c € R* : (¢,7y) € ® for some v} is not locally finite
when a < 0. We henceforth assume « > 0 in which case ® can be viewed as a locally finite
marked point process where C' is a homogeneous Poisson process of intensity exp(x) and
the mark v associated with a cluster centre ¢ is gamma distributed with mean «/f and
variance a/3?. Then A\ = exp(r)a/3 and for a region A the overdispersion index (i.e. the
ratio between the variance and mean of the number of points in X N A) is approximately

1+ (1+a)/B.

A shot-noise G Cox process with o > 0 is an example of a Neyman-Scott process with
negative binomial numbers of points in each cluster. The use of gamma distributed marks
v in (2) adds additional flexibility compared to more common examples of Neyman-Scott
processes like the Thomas process (first used in the line transect context by Hagen and
Schweder, 1995) for which the random intensity function is obtained by a superposition of
Gaussian kernels all multiplied with the same positive parameter.

Our rather small data set provides only indirect observation of the «’s, so only the ratio o/
is well determined by the data. For numerical reasons (see Section 5) one may therefore
either fix a = 1 or # = 1 whereby respectively exponential or standard gamma distributed
marks are obtained. In the sequel we restrict attention to the standard gamma case 5 = 1.

4 Likelihood-based inference

The set of spatial locations with positive probability of detecting a whale is essentially
a union of narrow bands around the line transects. The geometry of this set is rather
complicated from a computational point of view. We therefore use a composite likelihood
approach: log likelihood functions are computed for each transect separately and then
added to obtain a composite log likelihood function based on all of the transects. Since



there is very little overlap between data from the narrow strips around different transects,
we believe that the loss of information is small compared to using the likelihood function.

For a data set with n transects, and letting 6 = (k, o, w), the composite log likelihood is
1(0) = >, log L;(8) where L;(8) is the likelihood function based on the ith transect. In the
following, we refer for sake of brevity to the composite likelihood function and maximum
composite likelihood estimates as the likelihood function and maximum likelihod estimates,
respectively.

In Section 5.1 we use a profile likelihood approach where [(6) is maximized with respect
to (k,«) for a finite set of w values using Newton-Raphson. The reason for using the
profile likelihood approach is that it is computationally very involved to compute the first
and second derivatives with respect to the kernel scale parameter w. The likelihood may
further be highly multimodal as a function of w, see Figure 2, in which case gradient
based maximization is not reliable. We are not aware of theoretical results concerning
the properties of maximum likelihood estimates for spatial Cox processes so we use a
parametric bootstrap to investigate the repeated sampling properties of our estimates.

The score function, information matrix, and log likelihood ratios [(65)—1(6, ) are obtained by
summing the corresponding quantities obtained from the log likelihood functions log L;(6)
for each transect. In the following we therefore restrict attention to the likelihood function
L;(0) based on data for just one transect.

4.1 Likelihood function for one transect

Let S; denote the bounded support of the detection probability for the ith transect, see
the right plots in Figure 1. The conditional density of ¥; =Y N S; given ® is given by

il 2 (1 030)) = exp (= / Zy(€l@:0))e) [T 2 (r]:) (5)

US

and the likelihood function for the ith transect is

Li(0) = B o) f (4i] Zy (-|®;w)) = B0 f (4] Zy (| ®i5w))

(see Chapter 10 in Mgller and Waagepetersen, 2003, for details) where ®; is the finite point
process of marked cluster centres which may contribute with offspring in S;. That is, for
a given w, ®; = {(c,v) € ®|c € E;} where E; is the smallest rectangle containing S; with
the property that a cluster centre ¢ outside F; has zero probability of contributing with an
offspring inside S;.

Approximations of likelihood ratios L;(0s)/L;(0;1) are obtained using bridge sampling (Gel-
man and Meng, 1998; Mgller and Waagepetersen, 2003). To compute approximate deriva-
tives of log L;(0) (Section 4.2) or bridge sampling likelihood ratios L;(02)/L;(61) we need
conditional simulations of the “missing data” ®; given Y;. An algorithm for this is discussed
in Appendix A. This algorithm also forms the backbone in an algorithm for posterior sim-
ulation in a Bayesian setting, see Section 4.3.
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4.2 Computation of log likelihood derivatives

Consider a fixed w and let ¢ = (k, ). Denote by n; the number of points in ®;, let [; =
Z(Cﬁ)@i logy and Vy(Y;, ®;) = dlog f;(y;, ®i; 0)/dy where fi(yi, ¢s;0) is the joint density
of (Y;, ®;), see (7) in Appendix A. Following Section 8.6.2 in Mgller and Waagepetersen
(2003), the score function for the ith transect is given by

UZWJ) = Ee,yiv@(Xi, q)z') = (EG,yini - exp(,«a)|E¢|, EQ,yili - W<Q)E6,yini)

where [y, denotes conditional expectation with respect to ®; given Y; = y; and W is the
digamma function. Similarly, the observed information matrix is

§i(Y) = =Ky, dVy(X;, ®;)/dyT — Varg,, Vy(Xi, ®;) =

exp(k)|E;l 0 | Vargy,n; Covey,[ni, li] — W(a)Varg,,n; (6)
U'()Egy,ni Varg,. [l — V(a)n;]

where Varg,, and Covy,, denotes conditional variance and covariance, and where the ma-
trices are symmetric with only the upper triangle shown. The first term in (6) is the
conditional expectation of the observed information in the case where n; and [; is observed.

We could reparametrize letting x := log(k — I'(«)) in which case an exponential family
density with sufficient statistic ¢; = (n;,l;) would be obtained for ®;. Then we obtain
particularly neat expressions for the score function and observed information: w;(¢) =
Eg . ti — Eot; and j;(¢0) = Varet; — Varg,,t;. However, with the original parametrization a
more well-conditioned observed information matrix is obtained.

The expectations appearing in the score function and the information matrix can not be
evaluated analytically. In order to estimate the expectations using importance sampling
methods (see Section 8.6.2 in Mgller and Waagepetersen, 2003) we use conditional simu-
lations of ®; given Y; = y;, see Appendix A.

4.3 Bayesian approach

A Bayesian approach is possible if prior information is available concerning 6. Assuming
independence between transects, this leads to consideration of the posterior distribution of
(0, (P;)1,) with density

n

(0. (67 (yi)izy) o< m(0) [ | filyer 4136

i=1

where 7(6) is the prior density. An MCMC algorithm for posterior simulation can be
obtained by combining the MCMC algorithm from Appendix A with Metropolis-Hastings
updates for 6 (see e.g. Robert and Casella, 2004, for background on MCMC).



5 Application to whale data

Precise Monte Carlo estimation of the score function and in particular the observed infor-
mation and log likelihood ratios requires large MCMC samples. Hence our approach to
maximum likelihood estimation is demanding in terms of computing time. The Bayesian
approach on the other hand is computationally much less demanding, see Section 5.3. To

give an idea of the computational complexity we report below computing times on a 2.4
GHz/256 MB Intel 4 processor.

5.1 Maximum likelihood estimation

Estimates (k;, ;) = argmax(, o) [(k, o, w;) and A; = exp(x;)oy are obtained for different
values w; = [/10km, [ = 2, ..., 30, using Newton-Raphson. Occasionally, Monte Carlo error
results in negative definite Monte Carlo estimates of the observed information so we use a
Marquardt-Levenberg variant of the Newton-Raphson algorithm where positive terms are
added to the diagonal of the estimated observed information when it is negative definite.

The left plot in Figure 2 shows the profile log likelihood function for w obtained by cumulat-
ing log likelihood ratios 1(6;,1)—1(6;) (with 6, = (k;, @y, w;)) obtained using bridge sampling,.
The profile likelihood function for VSS has a well-defined maximum for w = wg = 0.6 with

<
)
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1
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Figure 2: Left: Profile log likelihood functions I,(w) = max(, ) {(#) obtained for the VSS
(solid line) and VSN (dotted line) blocks by cumulating log likelihood ratios [(6;41) —
[(6;). The small vertical bars indicate Monte Carlo confidence intervals for the differences
[(0,41) — 1(0;). Right: confidence (solid line) and posterior credibility nets (dotted line) for
A, see Section 5.2 and Section 5.3.

corresponding estimates kg = 13.8, ag = 2.4 and A\g = 0.06. In Section 6 we comment on



the second more flat and multimodal profile likelihood function for the VSN block. The
small vertical bars in Figure 2 indicate Monte Carlo confidence intervals for the log likeli-
hood ratios [(6;41) — 1(6;). We consider the Monte Carlo error for the estimates (x;, oy, \;)
in the simulation study in Section 5.2. The computation of an estimate (k;, ;) and a log
likelihood ratio 1(6;41) — 1(6;) took around 70 minutes.

To illustrate how (k;, aq, \;) depends on wy, a collection of estimates are given in Table 1.
The estimates k; and o vary considerably whereas ); is rather insensitive to the value of

w |02 04 06 08 1
k| 153 145 138 134 13.1
ap| 05 1.2 24 37 49
A | 0.06 0.06 0.06 0.06 0.06

Table 1: A collection of estimates x;, oy and A; obtained for different values of w.

5.2 Parametric bootstrap

The repeated sampling properties of the parameter estimates are studied using a parametric
bootstrap based on 100 independent synthetic data sets obtained by simulation under
the fitted model with parameters equal to the maximum likelihood estimates obtained in
Section 5.1. It is very time consuming to repeat the whole profile likelihood procedure for
each simulated data set. We therefore use an adaption of the parametric bootstrap where
w is assumed known and equal to the maximum likelihood estimate. However, Table 1
suggests that this only implies a slight underestimation of the sampling variability for the
maximum likelihood estimate )\ of main interest.

Bootstrap estimates of the means for the sampling distributions of the estimates kg, ag and
Ag for fixed w = wg = 0.6 and the standard moment estimate (1) are 13.9 (13.8), 2.3 (2.4),
0.06 (0.06), and 0.06 (0.06) with the parameter values used for the bootstrap simulation
given in parantheses. The 2.5% and 97.5% quantiles are (13.3;14.6), (0.7;4.5), (0.03;0.08),
and (0.03;0.08). The estimates of x, «, and A for fixed w seem close to unbiased but
displays considerable variation. The right plot in Figure 2 shows a so-called confidence net
for A obtained from its confidence distribution (Schweder and Hjort, 2002) estimated from
the bootstrap simulations. For each level of confidence on the vertical axis, the horizontal
interval from the left to the right branch of the net provides a tail-symmetric confidence
interval.

For each simulated data set we considered two independent optimizations in order to assess
the Monte Carlo error on the parameter estimates. The estimated Monte Carlo standard
deviations for kg, aig, and Ag are 0.07, 0.2, and 0.002. The Monte Carlo standard deviations
seem reasonably small compared with the variability of the bootstrap distributions.



The average time used for a bootstrap simulation and subsequent optimization is around
30 minutes.

5.3 Bayesian inference

From a numerical point of view the Bayesian approach is very advantageous since Monte
Carlo estimation of posterior expectations is rather simple compared with maximization
of the likelihood function.

Hedley and Buckland (2004) mentions that minke whales in the Antarctic comes in pods
of 1-3 animals. This may not be relevant for the north Atlantic minke whales but we use
this information to illustrate a Bayesian approach. About 90% of the probability mass of a
negative binomial distribution with mean oo = 2 and variance 2« = 4 falls on {0,1...,5}.
It therefore seems reasonable to use an informative N(2,1) prior (truncated at zero) for .
We further impose uniform priors on exp(x) and w.

The marginal posterior means and 2.5% and 97.5% quantiles for x, o, w, and \ are 13.9
(13.2;14.7), 2.2 (1.0;3.5), 0.7 (0.4;1.0), and 0.06 (0.04;0.08). A posterior credibility net
for A is shown in the right plot in Figure 2, i.e., for a probability ¢ on the vertical axis,
the horizontal interval from the left to the right branch of the credibility net provides a
tail-symmetric ¢ posterior credibility interval. The posterior means are very similar to the
maximum likelihood estimates. The credibility net for A agrees well with the confidence
net, but is slightly narrower.

The MCMC computations for the Bayesian analysis took about 20 minutes.

6 Discussion

The stationary shot-noise Cox process with 5 = 1 does of course not fit all line transect
data. In addition to the VSS block, we considered another block, VSN, for which the
profile likelihood function (see Figure 2) was nearly flat with multiple local maxima. This
indicates a lack of fit of the model. An obvious extension of our approach would allow (3
to be estimated from the data. However, it seems more important to allow for nonstation-
arity. Hedley and Buckland (2004) models line transect data using nonstationary Poisson
processes depending on spatial covariates. Such covariates could easily be incorporated
in our model either through a linear model for x or by multiplying a log-linear term to
the random intensity function (2). The model would then account for both small scale
clustering and large scale heterogeneity given by the covariates.

Another very flexible class of Cox processes is given by log Gaussian Cox processes (Mgller
et al., 1998) where the log random intensity function is a Gaussian process. For these
processes we would not need to consider extended regions F; since the marginal distribution
of XN B is known for a log Gaussian Cox process X on R? and a bounded region B. Certain
discretization problems must on the other hand be addressed, see Waagepetersen (2004).

10



Our approach to maximum likelihood estimation is computationally demanding, but the
computing times do not seem prohibitive - especially when compared to the time spent on
collecting the line transect data. The computing time can moreover easily be reduced by
running optimization and bridge sampling computations in parallel on several computers.
When priors can be elicited in a sensible way the Bayesian approach is a computationally
much easier alternative.

The spatial distribution for territorial animals may be underdispersed relative to a Poisson
process. For this case we refer to Baddeley et al. (2000) where inference for a thinned
repulsive point process is considered.
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In Appendix A a working knowledge of spatial point process densities and Markov chain
Monte Carlo methods is assumed. Background material on these subjects can be found in
e.g. Robert and Casella (2004) and Mgller and Waagepetersen (2003).

A Conditional simulation using MCMC

The joint density of Y; and ®; with respect to the product of a unit rate Poisson process
on S; and a marked unit rate Poisson process on E;x]0, oo[ is given by

Fii 055 0) o< fi (il Zy (-| ¢33 w)) exp (|Ei| (1 — exp(x)) [ [ x(v: 5, ) /% () (7)
@i

where x is given by (4), X(-) is a positive reference mark density on ]0, oo and [, is short
for H(C,’Y)Gcbz"

Simulations from the conditional distribution of ®; given Y; = y; with density fijy (¢s]yi; 0) o
fi(yi, ¢i;0) can be obtained using a birth/death MCMC algorithm as described in Chap-
ter 7 in Mpller and Waagepetersen (2003). In each MCMC iteration it is then required to
compute the integral

/ Zy (€] w)de = / D) Z (€] w)de
S; Si
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appearing in the conditional density fy (¢;|ys,0) (cf. (5) and (7)) when ¢; is the proposal
for a new state of the MCMC chain. Numerical quadrature is required to compute the
integral due to the rather irregular form of the detection probability p(-).

Instead we may consider a data augmentation approach where we simulate the joint dis-
tribution of ®; and the unobserved whales X; = (X N S;) \ Y; within S; given Y = y;.
Given ®;, X; and Y; are independent Poisson processes and the joint density of (Y;, X;, ;)
is given by

F i i, 633 0) o
p(yz‘|yiUl‘z‘)eXP(—/SZ(§|¢i;w)df) H Z(U|¢z’;w)HX(7;H704)/>~C(7) (8)
¢ ¢i

ney;Jx;

where p(yi|y; Uxi) = [, ¢,, P(0) [ 1,0, (1 —p(n)). The evaluation of the conditional density

v x (Dilyi, w5 0) o< [ (yi, i, 633 0) of ®; given Vi = y; and X; = ; s easy since Z(1]¢i; w)
is just a sum of scaled truncated Gaussian densities, cf. Section 3.1. The full conditional of
X; given Y; and ®; is simply a Poisson process with intensity function (1 — p(+))Z(|¢;; w)
and is easily simulated using a thinning procedure. We can thus simulate (X;, ®;) given
Y; = y; by alternating between Gibbs updates for X; and single point birth/death updates
for ®,.

For computational speed it is very convenient to work with a kernel of bounded range since
a birth or death of a marked cluster centre then only influences the intensity function for
the whales in a neighbourhood of the added or removed marked cluster centre.
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