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Learning Dynamic Bayesian Networks
with Mixed Variables

Susanne G. Bgttcher
Aalborg University, Denmark

Abstract

This paper considers dynamic Bayesian networks for disenedl continuous
variables. We only treat the case, where the distributiothefvariables is
conditional Gaussian. We show how to learn the parameterstancture of

a dynamic Bayesian network and also how the Markov order ededrned.

An automated procedure for specifying prior distributiémsthe parameters
in a dynamic Bayesian network is presented. It is a simpleresion of the

procedure for the ordinary Bayesian networks. Finally th&féf’s sunspot

numbers are analyzed.

1 Introduction

In this paper we consider dynamic Bayesian networks (DBNs)fscrete and
continuous variables. A DBN is an extension of an ordinarye#an network and
is applied in the modeling of time series.

DBNss for first order Markov time series are described in Dedtafazawa (1989).
In Murphy (2002), a thorough treatment of these models isgueed and in Fried-
man, Murphy & Russell (1998) learning these networks in @mseowith only dis-

crete variables is described.

Here we consider DBNs with both discrete and continuousisées. In these net-
works we also allow some of the variables to be stagcsome of the variables do
not change over time. We only treat the case where the distsibof the variables
is conditional Gaussian (CG) and show how to learn the paemhand structure
of the DBN when data is complete. Further we present an adezhmaethod for
specifying prior parameter distributions for the paramsete a DBN. These meth-
ods are simple extensions of the ones used for ordinary Bayegtworks with
mixed variables, described in Bgttcher (2001).

We consider time series, where the Markov order can be hipherone and show
how the Markov order can be learned.

In Section 2, DBNs with static and time varying variables defined. Section
3 presents these DBNs for the mixed case and Section 4 gives sgamples of
some well known models that can be represented as DBNs.o8dcshows how
to learn the parameters and structure of a DBN with mixedatdes. Further,
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it shows how the Markov order can be learned. Section 6 ptesemethod for
specifying prior distributions of the parameters in the DBINSection 7 Viifer’s
sunspot numbers are analyzed using a DBN.

2 Dynamic Bayesian Networks

A Bayesian networks a graphical model that encodes the joint probabilityrdist
bution for a set of variables. For terminology and theoedtispects on graphical
models, see Lauritzen (1996). We define it adirected acyclic graph(DAG)
D = (V,E), whereV is a finite set of nodes and is a finite set of directed
edges between the nodes. The DAG defines the structure oftfesBn network.
To each node € V in the graph corresponds a random variakile The set of
variables associated with the graphis thenX = (X,),cv -

To each vertex with parents p@v), there is attached a local probability distribu-
tion, p(wy|7pq.)). The possible lack of directed edgeslihencodes conditional
independencies between the random variallethrough the factorization of the
joint probability distribution,

p(x) = H p(xv‘wpa(v))'

veV

In a Bayesian network, the set of random variabtess fixed. To model a multi-
variate time series we need a framework, where we allow thefsandom vari-

ables to vary with time. For this we use dynamic Bayesian agtgy defined as
below. This definition is consistent with the exposition imighy (2002), but here
we also allow for static variables and Markov orders highantone.

Let X! be a set of time varying random variables, thakXiscan take on the val-
ues X X' ..., XT. We index the time varying variables by the non-negative
integers to indicate that the observations are taken atedéestime points. The
corresponding nodes in the graph are dendtgdso X! = (X!),cy, for each
time pointt. Note however that; is “the same” for all time points, so formally

Vi = {(v,t),v € V'}. Further, letX*® be a set of static random variablés, vari-
ables that do not change over time. The nodes corresponaliig tire denoted
V. The set of variables associated with a DBN is ther- ((X*)7_,, X*) and the
set of nodes i¥ = ((Vi){—,, Vs).

We refer to the time varying variables at one time point dgn& sliceor just a
slice. We let the static variableg® belong to the time slice at time= 0 and refer
to this as the initial time slice. So the initial time slicecindes the variableX™®
andX*® and, fort = 1, ..., T, the time slice at time includes the variableX*.

We will mostly consider the variables in the initial timecslijointly, so to ease later
notation we defineX® = (X°, X*) andV; = (V;, V).
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The joint probability distribution of the variables in a dymic Bayesian network
can be very complex, as the number of variables grows ovaex. tiflerefore we
assume that the time series we are dealing withtis order Markoyi.e.

p(atle™, . a%) = p(atlat .., at ™)

)

for all time pointst = m, ..., T.

Further, we assume that the time seriesdtaionary dynamicsso

™™ 20),

platla'™ 2t = p

forallt = m,...,T. Stationary dynamics refers to the fact that the conditiona
distributions are time independent, while the marginatritistions may be time
dependent.

We will first introduce DBNSs for time series that are first ardiéarkov. With the
above assumptions, a DBN for a first order Markov time serégshe defined to
be the pair(Ba,BH), where B; is a Bayesian network defining the probability
distribution of X° as i o

p(a%) = ] pallapau));

’UGV(')

and B_, is a2-slice temporal Bayesian network defining the conditionsiribu-
tion of X as

P01, 0%) = T] plad oty olaly Tha)
veEV:

The joint probability distribution for a DBN witl" + 1 time points is given as

As we assumed that the time series has stationary dynaimedSBN is completely
specified througtB; and B_..

For the dependency relations between the time slices wenesthat arrows point
forward in time, so the variables in time slitean have parents in the time slices
to timet¢ andt — 1. Further, they can have parents fro¥if. Due to stationary
dynamics, the dependency relations between the time dieethe same for all
time points. This also means that if a time varying variabfjehas a static variable
X asaparent, theX; is alsoaparentak,,..., X/ . The variables in the initial
time slice can have parents from the initial time slice aretefore also fromX#,

as X“ isincluded in the initial time slice.

Within a time slice, there are no restrictions of the depeangeelations between
the variables, as long as the structure is a DAG. Due to st@tjodynamics, the
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dependency relations within a time slice are the same fotithe slices to time
t =1,...,T. They are however not necessarily the same as for the tinyingar
variables in the initial time slice.

So the structure of the DBN repeats itself over time, excepBf, where the time
series is initialized.

Figure 1 shows an example of the structure of a a first ordek®ebBN, (B3, B_.),
with two time varying variable¥* andZ* and one static variabl&¢. Because of
the first order Markov property, the structure is completggcified through the
first two time points and the structure of the DBN can theretoe represented by

the DAG in Figure 2.
B; B_,

Figure 1: Example of a first order Markov DB(\3;, B_. ).

Figure 2: A first order Markov DBN B;, B—,) represented by the first two time
points.

For time series with higher Markov order properties, we neeektend the defini-
tion.

Consider annth order Markov time series. The joint probability distrilaun for
T + 1 time points can be written as

T
p(:L'O7 ’l‘T’:L'S) = p(l'N’xl’ 7xm_1) H p(:pt|xt 17 7$t_m7x8)
t=m
= p(a®)p(at|z®) - p(a™Ha™ 2, 20
T
< TIpatle™" .. a2
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Following the definition for first order Markov time seriesgVetB_, be am + 1-
slice temporal Bayesian network defining the conditionsiriiution of X ¢,

p(atzt =L, atm 2) = II p($ih%dvy-"vx;;$>xgduﬂ>

veVy
fort=m,...,T.

The variables in time slicecan have parents in the time slices to times . , ¢t —

m and they can have parents frof’. Again, due to stationary dynamics, the
dependency relations between and within the time slicethareame for all time
pointst = m,...,T. Further, if a time varying variabl&! has a static variable
X: as aparent, theX; is also a parent ok, ..., X.

The question is now how to initialize the time series. Thebpfwlity distribution
p(x® 2, ... 2™ 1) can be written as

p(x()? xla ) xmil) = p(xﬁ)p($1|x6) o 'p(xmil‘xmia ceey ‘Ta)' (1)

As arrows point forward in time, this factorization definke possible dependency
relations between the variabla®, ..., X™1, As before we lef3; be a Bayesian
network defining the probability distribution &f° as

= ][ p(adledan)).

veVj

Now we also define Bayesian networks for the rest of the cmmdit distributions

in (1). We letB; be a2-slice Bayesian network defining the conditional distribnt

of X! givenX° as
pa'|2%) = [ ploylopan), Tpawy):

veEWV]
and likewise forBs, ..., B,,_1, where B,, 1 is anm-slice Bayesian network
defining the conditional distribution of ™! givenX™~2,... X% as
-1 -2 0 -1 -1 0
p(xm |xm yeen 7{1}0) = H p(fL‘T |1L’g;(v)7 7.’1383(1)))
vEVm_1

So the variables in the time slice to time- 1 can have parents from the time slice
to timet = 1 andt = 0. The variables in time slice: — 1 can have parents from
the time slices to timeé = 0,...,m — 1. The dependency relations between the
time slicestotimeé = 0, ..., m—1 are obviously not the same and the dependency
relations within these time slices are not necessarily dinees

The tuple(B3, By, ..., B—1, B—) is thus a DBN for armth order Markov time
series, where the different Bayesian networks in the tuglieds the corresponding
probability distributions as above. Notice that we coukbglst have specified the
networksB;, By, . .., B,,—1 as one large network, with the necessary restrictions
on the arrows.
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3 Dynamic Bayesian Networksfor Mixed Variables

In this section we consider DBNs witixed variablesi.e. the variables in the
network can be of discrete and continuous type. Wd/let A U I', whereA
andT" are the sets of discrete and continuous variables, resphctiThe corre-
sponding random variable¥ can then be denoted = (X,),ev = (I,Y) =
((Is)sen, (Y~)yer). Again, we index the sets of nodes and the random variables
with ¢ for time varying variabless for static variables and for the variables in the
initial time slice.

To ensure availability of exact local computation methogle,do not allow con-

tinuous parents of discrete nodes, so the probabilityidigions factorize into a
discrete part and a mixed part as presented below. To symihtion, we present
the theory for first order Markov time series and comment on tmextend it to

higher order Markov assumptions by following the definisdntroduced in the
previous section.

We considerB; and B_, separately, and the joint probability distribution is ob-
tained as specified in the previous section.

For B; we have that
p(%) = ] paflzpau))

UEV@

=1 »G3lias) 1T P libar): Ypas) )
(SEA() ’YGF@

and forB_,
'l 2%) = [ o o) Ty Thaw)

veV;

= 1 p(Slisas) tpas) ipas)) ©)
[ YAN?

t|:t t—1 .S t t—1 S

X H P(Yy i) Ty o) Ypatn): Ypa) Ypai) )

vyel'y

To account for higher order Markov assumptions, we would fiase to specify
the probability distributions for the intervening netwsrkccordingly.

To simplify notation forB_,, we use the following notation, where the possible
parent configurations are not explicitly defined. They muestspecified in the
given context and according to (3).

patlat ey = T el
veVy

= | plbliggs) TT P4 ligae)s vpa)):
0EA vel:
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So for examplez‘;aw) contains the variable‘%a(a), Zf);(}s) andiga(é).

In this paper we only consider networks, where the jointritistion of the vari-
ables is conditional Gaussian. The local probability distiions are therefore de-
fined as in the following two sections. In these sections, wenat distinguish
between the variables iB; and B_,, as the distribution of these variables is of
the same type. The possible parent set differ however betwagables inB; and
variables inB_,. In the following we therefore just denote the parents ofriatde

Ty DY Zpa,) @Ndzpy,,) Must be specified according to (2) or (3).

3.1 Distribution for Discrete Variables

When the joint distribution is conditional Gaussian, theallgprobability distribu-
tions for the discrete variables are just unrestrictedrdieadistributions with

p(i5|ipa(5)) >0 V deA.
We parameterize this as
Oislivas) = P(i5]ipas), Osipgs) )

Whereegll'pa((” - (eié‘ipa((s))iéezé'

Furthermorezi5615 eié‘ipa(& =1land0 < gimpa@ <
with a nodes is denoted bys, sofs = (s, )

1. All parameters associated

ipa(s) €ZLpa(s) *

3.2 Distribution for Continuous Variables

For the continuous variables, the local probability disitions are Gaussian linear

regressions with parameters depending on the configurattitve discrete parents.
i - ) ) 2

So let the parameters be given Wipw = (mﬂZpam , ﬁwpw,awpam). Then

. 2
(YW‘ypa(’Y% tpa(v)> 67|ipa(~y)) ~ N(m'Ylipa('y) + ﬁwipa('y)ypa('Y) 707|ipa<v))’ 4

whereﬁwpam are the regression coefficient:a,m-pam is the regression intercept,
andaj‘i ) is the conditional variance. Thus for each configuratiorhefdiscrete
pa(y

parents ofy the distribution ofY,, is Gaussian with mean and variance given as in

(4). The parameters associated with a nedethend., = (07|ip aw)im) ETpan) -

3.3 TheParameterized Distributions

With the above distributional assumptions, we can spehiyparameterized DBN
as follows.
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Let 05~: ((09)seay, (05)1ery) and 6~ = ((65)sea,, (65 )yer,). Further, let
0 =(0°,67). ThenB; is given as

0100 _ 0,0 0 01,0 0 0
p10%) =TI PC51ipas) Oty 1T PRIy Yoty i)
(SEA(] ’YEF(-)

andB_, as

p(atlz' 1 2%,07) = Hp(ig‘i;a(ci)’eﬁipa(é))
0€AL

t N s —
x 11 2 1o iy T

yel's

The joint distribution forl" + 1 time points is given as
T
p(a®, ... 2", 2%, 0) = p(z°|6°) Hp (zt|zt™1, 2%, 07).
t=1

Notice that, due to stationarit§;” is the parameter in the conditional distribution
of 2! for everytime pointt = 1,..., 7.

4 Examplesof DBNs

We will now give some examples of some well known models tlaat loe repre-
sented as DBNs. In the figures, shaded nodes representieigarables and clear
nodes represent continuous variables.

41 Hidden Markov Models

A Hidden Markov Model (HMM) is a stochastic automaton, wheagh state gen-
erates an observation. Figure 3 shows a HMM, where the hidtdas are first

order Markov.
O~~~ -~
OEONGNGE

Figure 3: A Hidden Markov Model.
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The hidden states.e. the discrete hidden variables, are denoted land the ob-
servations byY. We have represented the observed variables as continbiaius,
they can also all be discrete. In this HMNE! is conditionally independent of
It~1 givenI'. FurtherY' is conditionally independent of the rest of the variables
in the network, giver’t. A model like this is used in situations, where the obser-
vations do not follow the same model all the time, but carofeltifferent models

at different times. This gives for example the possibildyatcount for outliers.

When a HMM is represented as a DBN, we assume that the tinesdeas station-
ary dynamics. So, together with the first order Markov propeve can specify the
joint probability distribution for the variables in thistweork by just specifying the
initial prior probabilitiesp(i®), the transition probabilitieg(i*|i*~!) and the con-
ditional Gaussian distributions(y!|i*) (or, if the observed variables are discrete,
the conditional multinomial distributions(;¢|i')).

There are many variants of this basic HM®lg. Buried Markov Model, Mixed-
memory Markov Model and Hierarchical HMM, see Murphy (200&)a presen-
tation of these models represented as DBNs and their afiplicaithin speech
recognition.

4.2 Kalman Filter Models

A Kalman Filter Model (KFM), introduced by Harrison & Steve(1976) as a state
space model, models the dynamic behavior of a time seriesudh a model, the
continuous observatioris are indirect measurements of a latent Markov process

Z.
O~~~ -
ORGONGEGE

Figure 4: A Kalman Filter Model.

In Figure 4, a KFM is shown. The structure is the same as foHt#, since the
two models assume the same set of conditional independeritie probability
distributions to be specified is the Gaussian distributios?), the Gaussian linear
regressiom(zf|zt~1) and the Gaussian linear regressjgp’|z’). For a compre-
hensive treatment of KFMs and their applications, see Weda&ison (1989).

4.3 Multiprocess Kalman Filter Models

Multiprocess Kalman Filter Models (MKFMs), also known astsWing state space
Markov models, are an extension of the KFMs, see Harrison é&ets (1976),
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where the aim is to discriminate between different KFMs.

Figure 5: A Multiprocess Kalman Filter Model.

Figure 5 shows a MKFM. Again we see that the continuous obsiensY are
indirect measurements of a latent continuous Markov pges.e. this part of
the network represents a KFM. In addition, the procgssepends on the hidden
statesl, which in our example are first order Markov. Like the HMM,dmodel
can be used in situations, where the observations do nowfdle same model all
the time, but can follow different models at different timésit here the models
are KFMs. Applications include modeling piece-wise lindare series, which
for example can be used for monitoring purposes,esgeBgattcher, Milsgaard &
Mortensen (1995).

Notice that because of the first order Markov property assuimeHMMs, KFMs
and MKFMs, these models could have been represented by aisinthe first two
time points, as the structure repeats over time.

4.4 Vector Autoregressive processes

Another classical time series model is the Vector Autorsgjie process (VAR) of
Markov orderp. This model is equivalent to a DBN of Markov orderin which
all the variables are continuous and observed. So the lochhpility distributions
in this model are Gaussian linear regressions on the cantsparents.

t
Figure 6: A Vector Autoregressive process.

In Figure 6, an example of a VAR process of ordés given. Because of the second
order Markov property, this model can be represented by thigliree time points.
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In the next section, we will developed a method for learnimg parameters and
structure of a DBN. In this paper we assume that data are aiey@o we can
not learn networks with hidden variables. Therefore, theNtiNhe KFM and the
MKFM can only be learned with these methods, if a trainingadat with complete
data is available.

5 Learning DBNswith Mixed Variables

Learning first order Markov DBNs in the purely discrete caséhwo static vari-
ables is described in Friedman et al. (1998). Here we wilsater learning DBNs
with mixed variables for the case with both time varying atatis variables. Fur-
ther, we will also illustrate how to learn DBNs with higher Bav order and how
to learn this order.

As noted in Murphy (2002), learning DBNs is, because of thg @BNs are de-
fined, just a simple extension of learning BNs. This also iggpfior DBNs with
mixed variables, so we will use the theory for learning Bé@esnetworks with
mixed variables, described in Bgttcher (2001).

5.1 Parameter Learning

To learn the parameters for a given DAG, we use a Bayesiamapipr We specify
a prior distribution of a parameté@r use a random sampitefrom the probability
distributionp(x|6) and obtain the posterior distribution by using Bayes’ tieeor

p(0]d) o< p(d|0)p(0).
The proportionality constant is determined by the relatigm(6|d)d6 = 1, where
O is the parameter space.

To obtain closed formed expressions, we use conjugatétdistms of the param-
eters.

We assume that the parameters associated Bgthnd B_, are independent. Fur-
ther, for the parameters in respectivély and B_,, we assume that the parameters
associated with one variable is independent of the paramassociated with the
other variables and that the parameters are independeaaébr configuration of
the discrete parentse.

p(0) = p(0°)p(67)

=T I »@ )IT II »@..)  ©

d€AG pa(s) €Lpas) YELG pal~v) €Lpa(v)

<II II w50 11 11 PO iy )

d€At ipas) €Lpa(s) YELt pay) €Lpa(~)



12 LEARNING DYNAMIC BAYESIAN NETWORKS WITH MIXED VARIABLES

We refer to this aparameter independenc&lotice though that it is slightly dif-
ferent than parameter independence for ordinary Bayesamonks, as we here
assume that the parametersin, are the same for each time point 1,...,7T.

In the case with higher order Markov properties, paramet@ependence is also
valid for the parameters in the networks, . .., B, _1.

We also assumeomplete datai.e. each casér in a dataset! contains one in-
stance of every random variable in the network. With this ae show posterior
parameter independence. The likelihgdd|#) can be written as follows.

p(d|f) = Hp @’ x’0)
ced
T
11 <p<%c6|eﬁ> [[otaifa, o, 9*)) .
ced t=1

As the time series has stationary dynamics, we see thatébrazservations of the
variables inB,, there arel’ observations of the variables B\.,.

To simplify the expressions, we consider the likelihoodrtefor B; andB_, sep-
arately. ForB; we have that

0|90 (4050 G0 0
Hp(x 16°) H H (5| Tpas). 5\Zpa<s> H p( ypa(v “Upa(1) i) )

ced ced del; Y€l

where% and% respectively denotes the discrete part and the continuadpa
case. Our goal is to show posterior parameter independence, sawsé show
that the likelihood, like the parameters, factorizes inforeduct over nodes and
a product over the configuration of the discrete parents aicden Therefore we
write this part of the likelihood as

[[r0 =11 11 11 ] P i5e5) O

ced SEN ipa5) ETpa(s) escid =0
pa() Lpas) xil, 5 =il 5, )

x H ' H H ~ ‘ ypa(v pd'Y)’g?Yﬁpa('y)).
VEL ipay) ELpal) c: %gam_igam

We see that the product over cases is split up into a prodecttbe configurations
of the discrete parents and a product over those cases, tieecenfiguration of
the discrete parents is the same as the currently processéiguration. Notice
however that some of the parent configurations might not peesented in the
database, in which case the product over cases with thistpesafiguration just
adds nothing to the overall product.
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In the case withnth order Markov properties, the likelihood terms for all thet-
works By, ..., By,—1, can be written as in (6).

The likelihood part fromB_, is given as,

T
H Hp(cfﬂt‘c-ftil, cxs7 9%)

cedt=1
- HH H p Zé‘lpa(ls’ Sipa(s) H »( ypa(’?’ p 7)’0'Y|ipa('y))
cedt=1 \deA; v€elt
T
-
= 11 II II Il  »Cliae 05 W
OEAL iy )€ pa<6>t L eia ) =Tpa(s)
_
X H H H H p(% |ypa(v pa('y)’ ’Ylipam)
VEL tg) Epaty E=1 ) =lpay)

The product over cases is split up as before. Further, thagsis a product over
time points, so for each time poititwe take the product over cases with a specific
configuration of the discrete parents.

Posterior parameter independence now follows from (5)ag@) (7),

p(6]d) = p(°|d)p(6~|d)

=T II »@. o011 II »@, 1@

O€AG ipa5) ELpars) VELG ipa(y) ELpa+)
— —
X H H p(65|ipa(5) ) H H p(e'ﬂipa(w) ).
0EA ipas) ELpa(5) VELt ipay) ELpa()

So due to parameter independence and complete data, thegtara stay inde-
pendent given data. This means that we can learn the pananretée local dis-
tributions independently and also that the parametefs; iand B_, can be learned
independently. Again, if the time seriesrigh order Markov, posterior parameter
independence also follows and we can learn the parametéis in., B,,_1 and
B_. independently.

Consider for example if3; a parameter for a discrete noélewith a specific con-
figuration of the discrete parenti, 5. The posterior distribution (ﬂau is by

Bayes'’ theorem found as

p(eg\ipa@) ’d) X ) H - p(cig|iga(5), eglipa(a) )p(egﬁpa(&))'
€Ut 5) =)
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Thuseg‘im) is updated with the cases in the database, where the configucd
the parents of is z'ga(é).

Likewise with a parametét;;.  in B_,,

Slipas)

T
p(elﬁ;pa(s) |d) o H H p(cif;\i;((;), ea;pa(é) )p(e‘mpa@))'

t=1 c:%';(é) :i;((;)

Here@%pa@ is, for each time point, updated with the cases in the database for

which the configuration of the parentsdis 7;;3(5).

In the next sections we will introduce the conjugate distitms of the parameters
and show how these are learned. The only difference in hoydhemeters iB;
andB_, are learned, is the set of cases used to learn them. So inlkhify we
do not differentiate between the parameter8irand5_..

5.2 LearningtheDiscrete Variables

As described in DeGroot (1970), a conjugate family for rmathial observations
is the family of Dirichlet distributions. Let the prior di#itution of 95|ipa<5) be a
Dirichlet distribution, D, with hyperparameter&(gupa@) = (aiéﬁpw))iégé, also
written as

(06|ipa(6) ’a6|ipa<5)) ~ D(a(ﬂipa((;))'

The posterior distribution is then given as

(96|Zpa(6) |d) ~ ’D(aéhpa(&) + n6|ipa(5> )7

where the vecton); ., = (niaﬁpa(é))iéaé, also called the counts, denotes the
number of observations ihwhered and pdd) have that specific configuration.

Againag andn(gﬁpa@) can be indexed by and—, according taB; andB_.. So

ipa(5) Y
for B; we have than‘:L;?é|Z.pa(§> is the number of cases ihwith a given configuration
of 6 and p&d). Likewise for B_,, wheren_, ) is the number of cases thand

is |ipacs
for every time point = 1, ..., 7T, with this configuration o6 and p&J?).

5.3 Learningthe Continuous Variables
For the continuous variables we can write the local prolfitgtaistributions as

. T 2
(Y5 |Ypair)» Tpay) 9'Ylipa(’y)) ~ N (2pa(y) (m’ﬂipa(’y) ) 5'Y|ipa('y)) "77|ipa(7>)v
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wherezpa,) = (1,%pa)). A standard conjugate family for these observations is
the family of Gaussian-inverse gamma distributions. Letghor joint distribution

. . 2
Of (i) s Bolinay) andoZ,;  be as follows.

2 1
(M) Blipa) [Ty ) ™ N’fﬂ(“ﬂipam)’ VNipaq) ’Y‘lpa(—y))

(02, ) ~ 1IT Prlisar) i)
lipat) 2 2 '

is a parameter itB3;, the posterior distribution is found by

I 97|ipa(v)

p(eg‘ipa('y)|d) x H p(cymcyga(v)’ iga(v)’ egﬁpa('y) >p(0’(;|ipa('y)>'
ity Zipats)
We now join all the observatiorfy’ for which %pa(,y) = Gy N @ vectorbyv, i.e.

b?/g = (Cyg)%@

pa() o)
The same is done with the observations of the continuousz=oéy, i.e. byga(w) =

6 - ~ . . . . ) .
( de))“?’Saw:iSa(v)' The posterior distribution af,; = can now be written as

o b o ;0 o
P(97|ipa( |d) o p( y’y| Z/pa(7 ) pa(7 97|¢pa<7))p(97|¢pa(v))-
As the dlstrlbutlon,p(‘?y7|‘4ypaw , pa(v) 97|ipam), is a Gaussian distribution, then
] N ) ,0% ) is a multivariate Gaussian distribution. The covariance
pa(7y) pa(W Yipa(q)

matrlx is diagonal as all the cases in the database are indepe This way we
consider all the cases inbatch

The same formulation applies for parameter®in. Notice that the observations
included in%_~ andby’;(v) are taken for each time point=1,...,7T.

The posterior distribution is found to be
Niy1 (1.

2 2 —1 /
(m7|ipa(w) ’ ﬁﬂipa{w) ’U'Wpa('y) ’ d) 'uwipa('y) ’ U'Wpa(w) (T'Y“pa(w)) )

/ /
Pl oy
2 Vipa(y) " Vlipay)
<0—'Y|ipa(w)‘d> ir ( 2 ) 9 ) ’

where
Dlipay = Tty T (o) 2pay)
Wiy = Pliga) ™ Pty Py T (2pa) )
p'/Y‘ipa('y) = Prylipayy T 0]
¢,v\ipa<w> = Oylipay T (W — Zga(v)“/vlipw)Tyff

/ T
+(:u’y|’pa(v) B 'u’Y\ipa(v)) Tlipa() Flipacs)
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where|b| denotes the number of observation@in

5.4 StructureLearning

To learn the structure of a DBN, we again use a Bayesian appraad calculate
the posterior probability of a DA@ given datad,

p(D|d) o p(d|D)p(D), (8)

wherep(d| D) is the marginal likelihood o andp(D) is the prior probability of
D.

In this paper we choose, for simplicity, to let all DAGs be aliyilikely a priori
and therefore we use the measure

p(D|d) o< p(d|D).

We refer to the above measure asedwork score We can, in principle, calculate
the network score for all possible DAGs and then select thewith the highest
score (or, if using model averaging, select a few with higirel: In most situations
however, there are too many different DAGs to evaluate antkeskind of search
strategy must be employed, seg.Cooper & Herskovits (1992).

The marginal likelihoog(d| D) is given as follows.
p(dD) = | pldip. Dp(o|D)as
9ce

_ 0-6 -0 0 0 0
- H ' H / H p Z5’7136(5)’65|ipa(5)’D)p(eélipa\(ﬁ)’D>d95\ipa(5)X
€8 toats) STpats) * c:6if 5 =i, 5)

H H / Hp ypa(v pd'Y)’eglipa('y)’D>p(9%|ipa(7) ’D)deg’ﬁpa('y) X

VELG fpay) Elpal) c:if

pa(y) pa(w)
ct|— — — —
H H /H H p( Z5|1|08(5)’95|ipa<a>’Dm(%lipa«w’D)d(g(%aw)><
O€A tpas) ELpasy ~ 1L Cpasy =toas)

T
c tc,,— L—> — — —
H H /H Hp y'Y’ ypa(v)’Zpa(v)’H'Y\ipa(w)’D)p( 'Ylipa(w)‘D)d Vipac)

Vel ip:(v)ezpz(v) t= 16%%(7) pa(v)

We see that the marginal likelihogdd|D) factorizes into a product over terms
involving only one node and its parents, called local mabjikelihoods, so the
network score islecomposableThis also means that the likelihood factorizes into
terms related tdB; and terms related t&_.. For mth order Markov time series,
the likelihood factorizes in a similar manner into termsatet toB;, ..., By-1
andB_,
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Because of the way we specified the possible parent setsiables inB; and in

B_., we can find the best DAG (the one with the highest networkeydwy finding

the best DAG forB; and the best DAG folB_.. So we can learn the structure
of B; and B_, independently and we can learn them just as we learn ordinary
Bayesian networks with mixed variables as described indBgtt(2001). This also
applies formth order Markov time series in which we can learn the strchfr

Bg, ..., Bn_1 andB_, independently.

In the following we do not distinguish between variables3npand B_., as the
terms presented apply for bofy andB_,.

The network score contribution from the discrete variablesnetwork is given by

H H F(Oé+5\ipa(5))

NNay ., Ny s
SEA ipa(&)ez-paw) ( +5|7'pa(5) + +§‘Zpa(5))

I'(

Qi slipas)

+ Mgl
5| P8(5)). (9)

is€Ts F(O% lipa(s) )

For the continuous variables, the local marginal likeliti®are non-centraldis-
tributions Wi'[hp,y‘ip o) degrees of freedom, location vechgg(v) Foyfipag and scale

_ Prlipas) booy—1 (b T : < dofi
parametes.,; . = m(l+ (Zpa(v)%wlipam(zpa(w)) ). The indexb is defined

as in Section 5.3.

The network score contribution from the continuous vagal$ given by

I 11 L((Pryfipe,y +101)/2)
T
€T ioatr) EToary T (Pl /2 AU i iy 712
(i) 1D
1 2
b b —1 b_ b T
1+ ———(y; - Zpa(v)“vlipam)svlipam (45 — 2paty) Hlipas))
PAlipac+)
(10)

The network score is thus the product of (9) and (10).

So if the time series is first order Markov, we can find the besBy finding the
best DAG forB; and the best DAG foB_.. Ifitis mth order Markov, we find the
best DAGs forB;, . .., B,,_1 andB_..

55 LearningtheMarkov Order

If the Markov order of the time series is unknown, we can laalby choosing a
“prior” order and learn the DBN with this order. The learnadier can then be
read from the best DAG faB_,, by determining which time sliceX* has parents
from. The slice furthest back in time will give the order.
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It is important that the prior order is chosen high enoughritsuee that no order
higher than this is better in describing the time series. Hm this prior order in

practice should be chosen, depends on any prior informatiaitable on the time
series, but also of how large a dataset the network is ledroed The higher we

choose the order, the more complex the possible DAGs are more parameters
to estimate and fewer cases to learn them from.

To increase the stability of the search procedure, it coldatefore be better to
start by learning a DBN with a low Markov order. If the best DAG B_. in-
clude dependencies up to the chosen order, a network witgreehorder should

be tried and this should be repeated until no dependenciefgloér order reveal
themselves. However, with this procedure there is a chdratehie best Markov
order will not be learned. K.g.a prior order of three is chosen and the learned net-
work only reveals second order Markov properties, we wolitt ¥his procedure
conclude that the time series is second order Markov, evaungtinthe best order
could be higher than three. An example of this is shown iniSeat.

Situations can arise, where the Markov order in the initiald3 is higher than in
B_,. For example, if we have assumed that the time series is diniter Markov,

we need to learn the structure 8, B, Bo and B_,. Consider now a situation
whereB_, is learned to be first order Markoive. X has only parents iX* and
X*1 while B, is learned to be second order Markae. to have time varying
parents fromB;. This is not necessarily a problem, but it should be noted tha
if we had assumed the first order Markov property, then thevaldvhave been
more cases to learn the parameter®in by. In such situations, the importance of
specifying the initialization of the time series correctiyust be compared to the
loss of precision in the distribution of the parameters$in.

6 Specifying Prior Distributions

To learn the structure of the DAG we need to specify prior peateer distributions
for all possible DAGs under evaluation. An automated pracedbr doing this has
been developed for ordinary Bayesian networks. We calkitihster prior proce-
dure The procedure is for the purely discrete case treated ikétean, Geiger &
Chickering (1995), for the purely continuous case in Geiéteckerman (1994)
and for the mixed case in Bgttcher (2001).

We will here give an outline of the procedure and show how it ba used for
specifying prior parameter distributions for DBNs.
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6.1 TheMaster Prior Procedure

The idea in the master prior procedure is that from a givereB&y network, we
can deduce parameter priors for any possible DAG. The uséhps to specify

a prior Bayesian networkwhich is the Bayesian network as he believes it to be.
Also, he has to specify aimaginary sample sizeV, which is a measure of how
much confidence he has in the prior network. The procedurksaas follows.

1. Specify an imaginary sample size.

2. Specify a prior Bayesian netwolike. a prior DAG and prior local probability
distributions. Calculate the joint prior distribution.

3. From the joint prior distribution and the imaginary saengize, the marginal
distribution of all parameters in the family consisting afi@de and its par-
ents can be determined. We call thiyaster prior

4. The local parameter priors are now determined by comiitgin these mas-
ter prior distributions.

This procedure ensures parameter independence. Futtes,the property that if

a node has the same set of parents in two different netwdrés,the local param-
eter prior for this node will be the same in the two networkbefefore, we only
have to deduce the local parameter prior for a node, givesahe set of parents,
once. This property is callggarameter modularityFinally, the procedure ensures
likelihood equivalencethat is, if two DAGSs represent the same set of conditional
independencies, the network score for these two DAGs wilhbesame.

As an example, we will show how to deduce parameter priorhfodiscrete nodes.

Let U = (U;);c7 be the parameters for the joint distribution of the discrete-
ables. The joint prior parameter distribution is assumegkta Dirichlet distribu-
tion

p(¥) ~ D(a),
with hyperparameters = («;);cz. To specify this Dirichlet distribution, we need

to specify these hyperparameters. Consider the followgtagion for the Dirichlet
distribution,

with N = >, ;. Now we let the probabilities in the prior network be an esti-
mate ofl£(;), so we only need to determiéin order to calculate the parameters
(e78

We determineV by using the notion of an imaginary data base. We imagine that
we have a database of cases, from which we have updated thbulisn of ¥
out of total ignorance. Thamaginary sample sizef this imaginary data base is
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thus N. It expresses how much confidence we have in the dependencjuse
expressed in the prior network, see Heckerman et al. (1995).

We use this joint distribution to deduce the master priotritlistion of the family
A=46Updyd). Let
aiA = Z Oéj,

Jija=ia
and letay = (wi,)i ez, Then the marginal distribution o¥ 4 is Dirichlet,
p(P4) ~ D(ay). This is the master prior in the discrete case. Notice that th
parameters in the master prior can also be found as

Ay = Np(iA)>

wherep(iy) = ZMA:Z.A p(7).

The local parameter priors can now be found by conditionintpése master prior
distributions. The conditional distribution @fdﬁpa@) is

slipasy —

6.2 TheMaster Prior Procedurefor DBNs

For DBNSs, the parameter priors can also be found by usinglitbeeaprocedure.
Consider a DBN for a first order Markov time series (the prareds directly
extendible to time series with higher order Markov proesi As the DAG from
timet = 1 and forward repeats itself, the structure of the overall D&GmMpletely
specified by the structure of the first two time slices. So we secify all the
parameter priors we need from a prior network consistingrefviariablesx® and
X1, Notice that the parameter priors fBr_, are the same as the parameter priors
for the parameters iX !, as this is the first time point in the time series.

We will also allow for different imaginary sample sizes faetparameters if;
and the parameters iB_.. One reason for this is that the parameter®in are
updated with more cases than the parameterS;imnd therefore might need a
stronger prior distribution.

The procedure works almost as the procedure for ordinarg&ag networks, the
only difference being the different imaginary sample sizes

1. Specify an imaginary sample siZ€?, for B, and an imaginary sample size,
N—, forB_,,.

2. Specify a prior Bayesian network for the first two time efic Calculate the
joint prior distribution.
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3. From the joint prior distribution and the imaginary saenpize, the master
prior for all parameters in a family can be determined. Forifies including
only variables fromX?, the imaginary sample size fd; is used and for the
other families, the imaginary sample size fér, is used.

4. The local parameter priors are now determined by comditgin the appro-
priate master prior distribution.

Itis obvious that parameter independence and parametarlaray still applies as
these properties are not influenced by the use of differeaginary sample sizes.
Neither is likelihood equivalence, as variablesXfi can not have parents from
X, This means that parameter priors for two DAGs that reptebersame set of
conditional independencies, are calculated using the gaaginary sample sizes.
So likelihood equivalence also still applies.

As a simple example of the master prior procedure for DBNssitter a time series
for a single discrete variable, ..., I”. Assume that the time series is first order
Markov. The parameter priors for the DAG in Figure 7 are deduas follows

ag = Np(i°),

s = N7,

Figure 7: DAG for first order Markov time series.

7 Example

In this section, we will analyze the Wfer's sunspot numbers using a dynamic
Bayesian network. The Wfer’s sunspot numbers are annual measures of sunspot
activity, collected from 1700 to 1988. In statistical tefrtige sunspot numbers is a
univariate continuous time seri@?, ..., Y28, The dataset we use is from Tong
(1996).

The sunspot numbers are shown in Figure 8.

Many statistical investigations of these numbers have besde. Anderson (1971)
gives a short review of some of these studies. For examplgrioual measures
of sunspot activity from 1749 to 1924, Yule (1927) propodee autoregressive
process as a statistical model. He calculatedAli#p) for p = 2 andp = 5 and
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Figure 8: Wblfer’s sunspot numbers.

found that an AR2) was sufficient;.e. he estimated the sequence to be second
order Markov. Another example is found in Schaerf (1964 fils an autoregres-
sive model with lags 1, 2, and 9.

Here we will use a DBN as the statistical model and learn thekMaorder by
structural learning of the DBN. The software packdgal , see Bgttcher & Deth-
lefsen (2003), is used for the analysis.

Our aim is to learn the Markov order, so we are only interestel@éarning the
structure of B_,. The structure of the initial networks is not of interest aard
actually not likely to be determined by learning from the sumt numbers. These
numbers are namely representeddnetime series, meaning that for the initial
networks there are only one observation of each variable.

As the prior network we use the empty netwoilk, the one without any arrows.
In order to get the right location and scale of the paramgtegestimate the prior
probability distribution for the empty network from daiag. we use the sample
mean and the sample variance as the mean and variance inidh@nubability
distribution.

As the number of observations in the sunspot series is velgtlarge, we can
choose a rather high Markov order for the DBN. Anderson (J@ohcludes that
the order is not higher than 18. But to be absolutely surevtleatapture the best
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Figure 9: The learned network_., when an Markov order of 30 is assumed. The
variables that do not influendé!, have been omitted.

Figure 10: The learned networlB_,, when the 3. order Markov property is as-
sumed. The variabl&*—3 have been omitted as it does not influefite

order, we choose an order of 30. The result of the structeeahing of B_, is
shown in Figure 9. The variables that do not influeide have been omitted in
the figure. From the result we see that the sunspot numbetsecdescribed by a
Markov process of order 9 with lags 1, 2 and.8,

Yiem+BY" + BV 2+ 3V 46, 6 ~ N(0,07),

with parameter estimates = 5.06, §; = 1.21, f» = 0.51, By = 0.21 and
o? = 267.5.

The result is in accordance with some of the previous studigsSchaerf (1964)
as mentioned earlier. Other studies determine that an dexder Markov process
is sufficient,e.g.Yule (1927). But as mentioned, he only examines an ordergs hi
ash.

We have also tried to learB_. using lower Markov order properties. If waeg.
use a Markov order of 3, we reach the conclusion that the stimgpnbers are 2.
order Markov, with lags 1 and 2. This result is shown in Figli@e Similarly, if
we learnB_, using the orde®, ..., 7 or 8, we still reach the conclusion that the
sunspot numbers are second order Markov, with lags 1 andig.idtherefore an
example of the importance of choosing the prior Markov ofdgh enough.

As can be seen from Figure 8, the sunspot numbers are peaiedib a period of
between 10 and 11 years. To determine the period more phecigecalculate the
spectrum,

flw)=0’(1=) B ™),

see Venables & Ripley (1997), using the parameter estinoditesned frondeal .

The spectrum is shown in Figure 11.
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Figure 11: Spectrum of Wifer's sunspot numbers.

There is a peak at frequency 0.096, which corresponds toiadpef 1/0.096 =
10.40 years. This result is also in accordance with previous studi
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