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Learning Dynamic Bayesian Networks
with Mixed Variables

Susanne G. Bøttcher

Aalborg University, Denmark

Abstract

This paper considers dynamic Bayesian networks for discrete and continuous
variables. We only treat the case, where the distribution ofthe variables is
conditional Gaussian. We show how to learn the parameters and structure of
a dynamic Bayesian network and also how the Markov order can be learned.
An automated procedure for specifying prior distributionsfor the parameters
in a dynamic Bayesian network is presented. It is a simple extension of the
procedure for the ordinary Bayesian networks. Finally the Wölfer’s sunspot
numbers are analyzed.

1 Introduction

In this paper we consider dynamic Bayesian networks (DBNs) for discrete and
continuous variables. A DBN is an extension of an ordinary Bayesian network and
is applied in the modeling of time series.

DBNs for first order Markov time series are described in Dean &Kanazawa (1989).
In Murphy (2002), a thorough treatment of these models is presented and in Fried-
man, Murphy & Russell (1998) learning these networks in the case with only dis-
crete variables is described.

Here we consider DBNs with both discrete and continuous variables. In these net-
works we also allow some of the variables to be static,i.e.some of the variables do
not change over time. We only treat the case where the distribution of the variables
is conditional Gaussian (CG) and show how to learn the parameters and structure
of the DBN when data is complete. Further we present an automated method for
specifying prior parameter distributions for the parameters in a DBN. These meth-
ods are simple extensions of the ones used for ordinary Bayesian networks with
mixed variables, described in Bøttcher (2001).

We consider time series, where the Markov order can be higherthan one and show
how the Markov order can be learned.

In Section 2, DBNs with static and time varying variables aredefined. Section
3 presents these DBNs for the mixed case and Section 4 gives some examples of
some well known models that can be represented as DBNs. Section 5 shows how
to learn the parameters and structure of a DBN with mixed variables. Further,
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it shows how the Markov order can be learned. Section 6 presents a method for
specifying prior distributions of the parameters in the DBN. In Section 7 Ẅolfer’s
sunspot numbers are analyzed using a DBN.

2 Dynamic Bayesian Networks

A Bayesian networkis a graphical model that encodes the joint probability distri-
bution for a set of variables. For terminology and theoretical aspects on graphical
models, see Lauritzen (1996). We define it as adirected acyclic graph(DAG)
D = (V, E), whereV is a finite set of nodes andE is a finite set of directed
edges between the nodes. The DAG defines the structure of the Bayesian network.
To each nodev ∈ V in the graph corresponds a random variableXv. The set of
variables associated with the graphD is thenX = (Xv)v∈V .

To each vertexv with parents pa(v), there is attached a local probability distribu-
tion, p(xv|xpa(v)). The possible lack of directed edges inD encodes conditional
independencies between the random variablesX through the factorization of the
joint probability distribution,

p(x) =
∏

v∈V

p(xv|xpa(v)).

In a Bayesian network, the set of random variablesX is fixed. To model a multi-
variate time series we need a framework, where we allow the set of random vari-
ables to vary with time. For this we use dynamic Bayesian networks, defined as
below. This definition is consistent with the exposition in Murphy (2002), but here
we also allow for static variables and Markov orders higher than one.

Let Xt be a set of time varying random variables, that isXt can take on the val-
uesX0, X1, . . . , XT . We index the time varying variables by the non-negative
integers to indicate that the observations are taken at discrete time points. The
corresponding nodes in the graph are denotedVt, so Xt = (Xt

v)v∈Vt for each
time pointt. Note however thatVt is “the same” for all time pointst, so formally
Vt = {(v, t), v ∈ V }. Further, letXs be a set of static random variables,i.e. vari-
ables that do not change over time. The nodes corresponding to Xs are denoted
Vs. The set of variables associated with a DBN is thenX = ((Xt)T

t=0, X
s) and the

set of nodes isV = ((Vt)
T
t=0, Vs).

We refer to the time varying variables at one time point as atime sliceor just a
slice. We let the static variablesXs belong to the time slice at timet = 0 and refer
to this as the initial time slice. So the initial time slice includes the variablesX0

andXs and, fort = 1, . . . , T , the time slice at timet includes the variablesXt.

We will mostly consider the variables in the initial time slice jointly, so to ease later
notation we defineX 0̃ = (X0, Xs) andV0̃ = (V0, Vs).
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The joint probability distribution of the variables in a dynamic Bayesian network
can be very complex, as the number of variables grows over time. Therefore we
assume that the time series we are dealing with, ismth order Markov, i.e.

p(xt|xt−1, . . . , x0) = p(xt|xt−1, . . . , xt−m),

for all time pointst = m, . . . , T .

Further, we assume that the time series hasstationary dynamics, so

p(xt|xt−1, . . . , xt−m) = p(xm|xm−1, . . . , x0),

for all t = m, . . . , T . Stationary dynamics refers to the fact that the conditional
distributions are time independent, while the marginal distributions may be time
dependent.

We will first introduce DBNs for time series that are first order Markov. With the
above assumptions, a DBN for a first order Markov time series can be defined to
be the pair(B0̃, B→), whereB0̃ is a Bayesian network defining the probability
distribution ofX 0̃ as

p(x0̃) =
∏

v∈V0̃

p(x0̃
v|x

0̃

pa(v)),

andB→ is a2-slice temporal Bayesian network defining the conditional distribu-
tion of Xt as

p(xt|xt−1, xs) =
∏

v∈Vt

p(xt
v|x

t
pa(v), x

t−1
pa(v), x

s
pa(v)).

The joint probability distribution for a DBN withT + 1 time points is given as

p(x0, . . . , xT , xs) = p(x0̃)

T
∏

t=1

p(xt|xt−1, xs).

As we assumed that the time series has stationary dynamics, the DBN is completely
specified throughB0̃ andB→.

For the dependency relations between the time slices we assume that arrows point
forward in time, so the variables in time slicet can have parents in the time slices
to time t and t − 1. Further, they can have parents fromXs. Due to stationary
dynamics, the dependency relations between the time slicesare the same for all
time points. This also means that if a time varying variableXt

v has a static variable
Xs

w as a parent, thenXs
w is also a parent ofX1

v, . . . , X
T
v . The variables in the initial

time slice can have parents from the initial time slice and therefore also fromXs,
asXs is included in the initial time slice.

Within a time slice, there are no restrictions of the dependency relations between
the variables, as long as the structure is a DAG. Due to stationary dynamics, the
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dependency relations within a time slice are the same for thetime slices to time
t = 1, . . . , T . They are however not necessarily the same as for the time varying
variables in the initial time slice.

So the structure of the DBN repeats itself over time, except for B0̃, where the time
series is initialized.

Figure 1 shows an example of the structure of a a first order Markov DBN,(B0̃, B→),
with two time varying variablesY t andZt and one static variableXs. Because of
the first order Markov property, the structure is completelyspecified through the
first two time points and the structure of the DBN can therefore be represented by
the DAG in Figure 2.

Xs

Z0

Y 0

Xs

Zt−1 Zt

Y t−1 Y t

B0̃ B→

Figure 1: Example of a first order Markov DBN(B0̃, B→).

Xs

Z0 Z1

Y 0 Y 1

Figure 2: A first order Markov DBN(B0̃, B→) represented by the first two time
points.

For time series with higher Markov order properties, we needto extend the defini-
tion.

Consider anmth order Markov time series. The joint probability distribution for
T + 1 time points can be written as

p(x0, . . . , xT , xs) = p(x0̃, x1, . . . , xm−1)
T
∏

t=m

p(xt|xt−1, . . . , xt−m, xs)

= p(x0̃)p(x1|x0̃) · · · , p(xm−1|xm−2, . . . , x0̃)

×
T
∏

t=m

p(xt|xt−1, . . . , xt−m, xs).
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Following the definition for first order Markov time series, we letB→ be am + 1-
slice temporal Bayesian network defining the conditional distribution ofXt,

p(xt|xt−1, . . . , xt−m, xs) =
∏

v∈Vt

p(xt
v|x

t
pa(v), . . . , x

t−m
pa(v), x

s
pa(v)),

for t = m, . . . , T .

The variables in time slicet can have parents in the time slices to timest, . . . , t−
m and they can have parents fromXs. Again, due to stationary dynamics, the
dependency relations between and within the time slices arethe same for all time
pointst = m, . . . , T . Further, if a time varying variableXt

v has a static variable
Xs

w as a parent, thenXs
w is also a parent ofXm

v , . . . , XT
v .

The question is now how to initialize the time series. The probability distribution
p(x0̃, x1, . . . , xm−1) can be written as

p(x0̃, x1, . . . , xm−1) = p(x0̃)p(x1|x0̃) · · · p(xm−1|xm−2, . . . , x0̃). (1)

As arrows point forward in time, this factorization defines the possible dependency
relations between the variablesX 0̃, . . . , Xm−1. As before we letB0̃ be a Bayesian
network defining the probability distribution ofX 0̃ as

p(x0̃) =
∏

v∈V0̃

p(x0̃
v|x

0̃

pa(v)).

Now we also define Bayesian networks for the rest of the conditional distributions
in (1). We letB1 be a2-slice Bayesian network defining the conditional distribution
of X1 givenX 0̃ as

p(x1|x0̃) =
∏

v∈V1

p(x1
v|x

1
pa(v), x

0̃

pa(v)),

and likewise forB2, . . . , Bm−1, whereBm−1 is an m-slice Bayesian network
defining the conditional distribution ofXm−1 givenXm−2, . . . , X 0̃ as

p(xm−1|xm−2, . . . , x0̃) =
∏

v∈Vm−1

p(xm−1
v |xm−1

pa(v), . . . , x
0̃

pa(v)).

So the variables in the time slice to timet = 1 can have parents from the time slice
to timet = 1 andt = 0. The variables in time slicem − 1 can have parents from
the time slices to timet = 0, . . . , m − 1. The dependency relations between the
time slices to timet = 0, . . . , m−1 are obviously not the same and the dependency
relations within these time slices are not necessarily the same.

The tuple(B0̃, B1, . . . , Bm−1, B→) is thus a DBN for anmth order Markov time
series, where the different Bayesian networks in the tuple defines the corresponding
probability distributions as above. Notice that we could also just have specified the
networksB0̃, B1, . . . , Bm−1 as one large network, with the necessary restrictions
on the arrows.
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3 Dynamic Bayesian Networks for Mixed Variables

In this section we consider DBNs withmixed variables, i.e. the variables in the
network can be of discrete and continuous type. We letV = ∆ ∪ Γ, where∆
andΓ are the sets of discrete and continuous variables, respectively. The corre-
sponding random variablesX can then be denotedX = (Xv)v∈V = (I, Y ) =
((Iδ)δ∈∆, (Yγ)γ∈Γ). Again, we index the sets of nodes and the random variables
with t for time varying variables,s for static variables and̃0 for the variables in the
initial time slice.

To ensure availability of exact local computation methods,we do not allow con-
tinuous parents of discrete nodes, so the probability distributions factorize into a
discrete part and a mixed part as presented below. To simplify notation, we present
the theory for first order Markov time series and comment on how to extend it to
higher order Markov assumptions by following the definitions introduced in the
previous section.

We considerB0̃ andB→ separately, and the joint probability distribution is ob-
tained as specified in the previous section.

ForB0̃ we have that

p(x0̃) =
∏

v∈V0̃

p(x0̃
v|x

0̃

pa(v))

=
∏

δ∈∆0̃

p(i0̃δ|i
0̃

pa(δ))
∏

γ∈Γ0̃

p(y0̃
γ |i

0̃

pa(γ), y
0̃

pa(γ)) (2)

and forB→

p(xt|xt−1, xs) =
∏

v∈Vt

p(xt
v|x

t
pa(v), x

t−1
pa(v), x

s
pa(v))

=
∏

δ∈∆t

p(itδ|i
t
pa(δ), i

t−1
pa(δ), i

s
pa(δ)) (3)

×
∏

γ∈Γt

p(yt
γ |i

t
pa(γ), i

t−1
pa(γ), i

s
pa(γ), y

t
pa(γ), y

t−1
pa(γ), y

s
pa(γ)).

To account for higher order Markov assumptions, we would just have to specify
the probability distributions for the intervening networks accordingly.

To simplify notation forB→, we use the following notation, where the possible
parent configurations are not explicitly defined. They must be specified in the
given context and according to (3).

p(xt|xt−1, xs) =
∏

v∈Vt

p(xt
v|x

→
pa(v))

=
∏

δ∈∆t

p(itδ|i
→
pa(δ))

∏

γ∈Γt

p(yt
γ |i

→
pa(γ), y

→
pa(γ)).
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So for example,i→pa(δ) contains the variablesitpa(δ), i
t−1
pa(δ) andispa(δ).

In this paper we only consider networks, where the joint distribution of the vari-
ables is conditional Gaussian. The local probability distributions are therefore de-
fined as in the following two sections. In these sections, we do not distinguish
between the variables inB0̃ andB→, as the distribution of these variables is of
the same type. The possible parent set differ however between variables inB0̃ and
variables inB→. In the following we therefore just denote the parents of a variable
xv by xpa(v) andxpa(v) must be specified according to (2) or (3).

3.1 Distribution for Discrete Variables

When the joint distribution is conditional Gaussian, the local probability distribu-
tions for the discrete variables are just unrestricted discrete distributions with

p(iδ|ipa(δ)) ≥ 0 ∀ δ ∈ ∆.

We parameterize this as

θiδ|ipa(δ)
= p(iδ|ipa(δ), θδ|ipa(δ)

),

whereθδ|ipa(δ)
= (θiδ|ipa(δ)

)iδ∈Iδ
.

Furthermore
∑

iδ∈Iδ
θiδ|ipa(δ)

= 1 and0 ≤ θiδ |ipa(δ)
≤ 1. All parameters associated

with a nodeδ is denoted byθδ, soθδ = (θδ|ipa(δ)
)ipa(δ)∈Ipa(δ)

.

3.2 Distribution for Continuous Variables

For the continuous variables, the local probability distributions are Gaussian linear
regressions with parameters depending on the configurationof the discrete parents.
So let the parameters be given byθγ|ipa(γ)

= (mγ|ipa(γ)
, βγ|ipa(γ)

, σ2
γ|ipa(γ)

). Then

(Yγ |ypa(γ), ipa(γ), θγ|ipa(γ)
) ∼ N (mγ|ipa(γ)

+ βγ|ipa(γ)
ypa(γ) , σ2

γ|ipa(γ)
), (4)

whereβγ|ipa(γ)
are the regression coefficients,mγ|ipa(γ)

is the regression intercept,

andσ2
γ|ipa(γ)

is the conditional variance. Thus for each configuration of the discrete

parents ofγ the distribution ofYγ is Gaussian with mean and variance given as in
(4). The parameters associated with a nodeγ is thenθγ = (θγ|ipa(γ)

)ipa(γ)∈Ipa(γ)
.

3.3 The Parameterized Distributions

With the above distributional assumptions, we can specify the parameterized DBN
as follows.
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Let θ0̃ = ((θ0̃
δ)δ∈∆0̃

, (θ0̃
γ)γ∈Γ0̃

) and θ→ = ((θ→δ )δ∈∆t
, (θ→γ )γ∈Γt). Further, let

θ = (θ0̃, θ→). ThenB0̃ is given as

p(x0̃|θ0̃) =
∏

δ∈∆0̃

p(i0̃δ|i
0̃

pa(δ), θ
0̃

δ|ipa(δ)
)
∏

γ∈Γ0̃

p(y0̃
γ |i

0̃

pa(γ), y
0̃

pa(γ), θ
0̃

γ|ipa(γ)
),

andB→ as

p(xt|xt−1, xs, θ→) =
∏

δ∈∆t

p(itδ|i
→
pa(δ), θ

→
δ|ipa(δ)

)

×
∏

γ∈Γt

p(yt
γ |y

→
pa(γ), i

→
pa(γ), θ

→
γ|ipa(γ)

).

The joint distribution forT + 1 time points is given as

p(x0, . . . , xT , xs, θ) = p(x0̃|θ0̃)

T
∏

t=1

p(xt|xt−1, xs, θ→).

Notice that, due to stationarity,θ→ is the parameter in the conditional distribution
of xt for everytime pointt = 1, . . . , T .

4 Examples of DBNs

We will now give some examples of some well known models that can be repre-
sented as DBNs. In the figures, shaded nodes represent discrete variables and clear
nodes represent continuous variables.

4.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a stochastic automaton, whereeach state gen-
erates an observation. Figure 3 shows a HMM, where the hiddenstates are first
order Markov.

I
0

I
1

I
2

I
3 · · ·

Y
0

Y
1

Y
2

Y
3 · · ·

Figure 3: A Hidden Markov Model.
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The hidden states,i.e. the discrete hidden variables, are denoted byI and the ob-
servations byY . We have represented the observed variables as continuous,but
they can also all be discrete. In this HMM,It+1 is conditionally independent of
It−1, givenIt. Further,Y t is conditionally independent of the rest of the variables
in the network, givenIt. A model like this is used in situations, where the obser-
vations do not follow the same model all the time, but can follow different models
at different times. This gives for example the possibility to account for outliers.

When a HMM is represented as a DBN, we assume that the time series has station-
ary dynamics. So, together with the first order Markov property, we can specify the
joint probability distribution for the variables in this network by just specifying the
initial prior probabilitiesp(i0), the transition probabilitiesp(it|it−1) and the con-
ditional Gaussian distributionsp(yt|it) (or, if the observed variables are discrete,
the conditional multinomial distributionsp(jt|it)).

There are many variants of this basic HMM,e.g.Buried Markov Model, Mixed-
memory Markov Model and Hierarchical HMM, see Murphy (2002)for a presen-
tation of these models represented as DBNs and their application within speech
recognition.

4.2 Kalman Filter Models

A Kalman Filter Model (KFM), introduced by Harrison & Stevens (1976) as a state
space model, models the dynamic behavior of a time series. Insuch a model, the
continuous observationsY are indirect measurements of a latent Markov process
Z.

Z
0

Z
1

Z
2

Z
3 · · ·

Y
0

Y
1

Y
2

Y
3 · · ·

Figure 4: A Kalman Filter Model.

In Figure 4, a KFM is shown. The structure is the same as for theHMM, since the
two models assume the same set of conditional independencies. The probability
distributions to be specified is the Gaussian distributionp(z0), the Gaussian linear
regressionp(zt|zt−1) and the Gaussian linear regressionp(yt|zt). For a compre-
hensive treatment of KFMs and their applications, see West &Harrison (1989).

4.3 Multiprocess Kalman Filter Models

Multiprocess Kalman Filter Models (MKFMs), also known as switching state space
Markov models, are an extension of the KFMs, see Harrison & Stevens (1976),
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where the aim is to discriminate between different KFMs.

I
0

I
1

I
2

I
3 · · ·

Z
0

Z
1

Z
2

Z
3 · · ·

Y
0

Y
1

Y
2

Y
3 · · ·

Figure 5: A Multiprocess Kalman Filter Model.

Figure 5 shows a MKFM. Again we see that the continuous observationsY are
indirect measurements of a latent continuous Markov process Z, i.e. this part of
the network represents a KFM. In addition, the processZ depends on the hidden
statesI, which in our example are first order Markov. Like the HMM, this model
can be used in situations, where the observations do not follow the same model all
the time, but can follow different models at different times, but here the models
are KFMs. Applications include modeling piece-wise lineartime series, which
for example can be used for monitoring purposes, seee.g.Bøttcher, Milsgaard &
Mortensen (1995).

Notice that because of the first order Markov property assumed for HMMs, KFMs
and MKFMs, these models could have been represented by usingonly the first two
time points, as the structure repeats over time.

4.4 Vector Autoregressive processes

Another classical time series model is the Vector Autoregressive process (VAR) of
Markov orderp. This model is equivalent to a DBN of Markov orderp, in which
all the variables are continuous and observed. So the local probability distributions
in this model are Gaussian linear regressions on the continuous parents.

t = 0 t = 1 t = 2

· · ·

· · ·

· · ·

· · ·

Figure 6: A Vector Autoregressive process.

In Figure 6, an example of a VAR process of order2 is given. Because of the second
order Markov property, this model can be represented by the first three time points.
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In the next section, we will developed a method for learning the parameters and
structure of a DBN. In this paper we assume that data are complete, so we can
not learn networks with hidden variables. Therefore, the HMM, the KFM and the
MKFM can only be learned with these methods, if a training dataset with complete
data is available.

5 Learning DBNs with Mixed Variables

Learning first order Markov DBNs in the purely discrete case with no static vari-
ables is described in Friedman et al. (1998). Here we will consider learning DBNs
with mixed variables for the case with both time varying and static variables. Fur-
ther, we will also illustrate how to learn DBNs with higher Markov order and how
to learn this order.

As noted in Murphy (2002), learning DBNs is, because of the way DBNs are de-
fined, just a simple extension of learning BNs. This also applies for DBNs with
mixed variables, so we will use the theory for learning Bayesian networks with
mixed variables, described in Bøttcher (2001).

5.1 Parameter Learning

To learn the parameters for a given DAG, we use a Bayesian approach. We specify
a prior distribution of a parameterθ, use a random sampled from the probability
distributionp(x|θ) and obtain the posterior distribution by using Bayes’ theorem

p(θ|d) ∝ p(d|θ)p(θ).

The proportionality constant is determined by the relation
∫

Θ p(θ|d)dθ = 1, where
Θ is the parameter space.

To obtain closed formed expressions, we use conjugate distributions of the param-
eters.

We assume that the parameters associated withB0̃ andB→ are independent. Fur-
ther, for the parameters in respectivelyB0̃ andB→, we assume that the parameters
associated with one variable is independent of the parameters associated with the
other variables and that the parameters are independent foreach configuration of
the discrete parents,i.e.

p(θ) = p(θ0̃)p(θ→)

=
∏

δ∈∆0̃

∏

ipa(δ)∈Ipa(δ)

p(θ0̃

δ|ipa(δ)
)
∏

γ∈Γ0̃

∏

ipa(γ)∈Ipa(γ)

p(θ0̃

γ|ipa(γ)
) (5)

×
∏

δ∈∆t

∏

ipa(δ)∈Ipa(δ)

p(θ→δ|ipa(δ)
)
∏

γ∈Γt

∏

ipa(γ)∈Ipa(γ)

p(θ→γ|ipa(γ)
).
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We refer to this asparameter independence. Notice though that it is slightly dif-
ferent than parameter independence for ordinary Bayesian networks, as we here
assume that the parameters inB→ are the same for each time pointt = 1, . . . , T .

In the case with higher order Markov properties, parameter independence is also
valid for the parameters in the networksB1, . . . , Bm−1.

We also assumecomplete data, i.e. each casecx in a datasetd contains one in-
stance of every random variable in the network. With this we can show posterior
parameter independence. The likelihoodp(d|θ) can be written as follows.

p(d|θ) =
∏

c∈d

p(cx0, . . . , cxT , cxs|θ)

=
∏

c∈d

(

p(cx0̃|θ0̃)
T
∏

t=1

p(cxt|cxt−1, cxs, θ→)

)

.

As the time series has stationary dynamics, we see that for each observations of the
variables inB0, there areT observations of the variables inB→.

To simplify the expressions, we consider the likelihood terms forB0̃ andB→ sep-
arately. ForB0̃ we have that
∏

c∈d

p(cx0̃|θ0̃) =
∏

c∈d

∏

δ∈∆0̃

p(ci0̃δ|
ci0̃pa(δ), θ

0̃

δ|ipa(δ)
)
∏

γ∈Γ0̃

p(cy0̃
γ |

cy0̃

pa(γ),
ci0̃pa(γ), θ

0̃

γ|ipa(γ)
),

whereci andcy respectively denotes the discrete part and the continuous part of a
casecx. Our goal is to show posterior parameter independence, so wemust show
that the likelihood, like the parameters, factorizes into aproduct over nodes and
a product over the configuration of the discrete parents of a node. Therefore we
write this part of the likelihood as
∏

c∈d

p(cx0̃|θ0̃) =
∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

∏

c:ci0̃pa(δ)=i0̃pa(δ)

p(ci0̃δ|i
0̃

pa(δ), θ
0̃

δ|ipa(δ)
)

×
∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

∏

c:ci0̃pa(γ)
=i0̃pa(γ)

p(cy0̃
γ |

cy0̃

pa(γ), i
0̃

pa(γ), θ
0̃

γ|ipa(γ)
).

(6)

We see that the product over cases is split up into a product over the configurations
of the discrete parents and a product over those cases, wherethe configuration of
the discrete parents is the same as the currently processed configuration. Notice
however that some of the parent configurations might not be represented in the
database, in which case the product over cases with this parent configuration just
adds nothing to the overall product.



5.1 PARAMETER LEARNING 13

In the case withmth order Markov properties, the likelihood terms for all thenet-
worksB1, . . . , Bm−1, can be written as in (6).

The likelihood part fromB→ is given as,

∏

c∈d

T
∏

t=1

p(cxt|cxt−1, cxs, θ→)

=
∏

c∈d

T
∏

t=1





∏

δ∈∆t

p(citδ|
ci→pa(δ), θ

→
δ|ipa(δ)

)
∏

γ∈Γt

p(cyt
γ |

cy→pa(γ),
ci→pa(γ), θ

→
γ|ipa(γ)

)





=
∏

δ∈∆t

∏

i→pa(δ)∈I
→
pa(δ)

T
∏

t=1

∏

c:ci→pa(δ)=i→pa(δ)

p(citδ|i
→
pa(δ), θ

→
δ|ipa(δ)

) (7)

×
∏

γ∈Γ

∏

i→pa(γ)
∈I→pa(γ)

T
∏

t=1

∏

c:ci→pa(γ)
=i→pa(γ)

p(cyt
γ |

cy→pa(γ), i
→
pa(γ), θ

→
γ|ipa(γ)

)

The product over cases is split up as before. Further, this isalso a product over
time points, so for each time pointt, we take the product over cases with a specific
configuration of the discrete parents.

Posterior parameter independence now follows from (5), (6)and (7),

p(θ|d) = p(θ0̃|d)p(θ→|d)

=
∏

δ∈∆0̃

∏

ipa(δ)∈Ipa(δ)

p(θ0̃

δ|ipa(δ)
|d)

∏

γ∈Γ0̃

∏

ipa(γ)∈Ipa(γ)

p(θ0̃

γ|ipa(γ)
|d)

×
∏

δ∈∆t

∏

ipa(δ)∈Ipa(δ)

p(θ→δ|ipa(δ)
|d)

∏

γ∈Γt

∏

ipa(γ)∈Ipa(γ)

p(θ→γ|ipa(γ)
|d).

So due to parameter independence and complete data, the parameters stay inde-
pendent given data. This means that we can learn the parameters in the local dis-
tributions independently and also that the parameters inB0̃ andB→ can be learned
independently. Again, if the time series ismth order Markov, posterior parameter
independence also follows and we can learn the parameters inB0̃, . . . , Bm−1 and
B→ independently.

Consider for example inB0̃ a parameter for a discrete nodeδ, with a specific con-
figuration of the discrete parents,ipa(δ). The posterior distribution ofθ0̃

δ|ipa(δ)
is by

Bayes’ theorem found as

p(θ0̃

δ|ipa(δ)
|d) ∝

∏

c:ci0̃pa(δ)=i0̃pa(δ)

p(ci0̃δ|i
0̃

pa(δ), θ
0̃

δ|ipa(δ)
)p(θ0̃

δ|ipa(δ)
).
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Thusθ0̃

δ|ipa(δ)
is updated with the cases in the database, where the configuration of

the parents ofδ is i0̃pa(δ).

Likewise with a parameterθ→
δ|ipa(δ)

in B→,

p(θ→δ|ipa(δ)
|d) ∝

T
∏

t=1

∏

c:ci→pa(δ)=i→pa(δ)

p(citδ|i
→
pa(δ), θ

→
δ|ipa(δ)

)p(θ→δ|ipa(δ)
).

Hereθ→
δ|ipa(δ)

is, for each time pointt, updated with the cases in the database for

which the configuration of the parents ofδ is i→pa(δ).

In the next sections we will introduce the conjugate distributions of the parameters
and show how these are learned. The only difference in how theparameters inB0̃

andB→ are learned, is the set of cases used to learn them. So in the following we
do not differentiate between the parameters inB0̃ andB→.

5.2 Learning the Discrete Variables

As described in DeGroot (1970), a conjugate family for multinomial observations
is the family of Dirichlet distributions. Let the prior distribution of θδ|ipa(δ)

be a
Dirichlet distribution,D, with hyperparametersαδ|ipa(δ)

= (αiδ|ipa(δ)
)iδ∈Iδ

, also
written as

(θδ|ipa(δ)
|αδ|ipa(δ)

) ∼ D(αδ|ipa(δ)
).

The posterior distribution is then given as

(θδ|ipa(δ)
|d) ∼ D(αδ|ipa(δ)

+ nδ|ipa(δ)
),

where the vectornδ|ipa(δ)
= (niδ|ipa(δ)

)iδ∈Iδ
, also called the counts, denotes the

number of observations ind whereδ and pa(δ) have that specific configuration.

Againαδ|ipa(δ)
andnδ|ipa(δ)

can be indexed bỹ0 and→, according toB0̃ andB→. So

for B0̃ we have thatn0̃

iδ |ipa(δ)
is the number of cases ind with a given configuration

of δ and pa(δ). Likewise forB→, wheren→
iδ |ipa(δ)

is the number of cases ind and

for every time pointt = 1, . . . , T , with this configuration ofδ and pa(δ).

5.3 Learning the Continuous Variables

For the continuous variables we can write the local probability distributions as

(Yγ |ypa(γ), ipa(γ), θγ|ipa(γ)
) ∼ N (zpa(γ)(mγ|ipa(γ)

, βγ|ipa(γ)
)T, σ2

γ|ipa(γ)
),



5.3 LEARNING THE CONTINUOUS VARIABLES 15

wherezpa(γ) = (1, ypa(γ)). A standard conjugate family for these observations is
the family of Gaussian-inverse gamma distributions. Let the prior joint distribution
of (mγ|ipa(γ)

, βγ|ipa(γ)
) andσ2

γ|ipa(γ)
be as follows.

(mγ|ipa(γ)
, βγ|ipa(γ)

|σ2
γ|ipa(γ)

) ∼ Nk+1(µγ|ipa(γ)
, σ2

γ|ipa(γ)
τ−1
γ|ipa(γ)

),

(σ2
γ|ipa(γ)

) ∼ IΓ

(

ργ|ipa(γ)

2
,
φγ|ipa(γ)

2

)

.

If θγ|ipa(γ)
is a parameter inB0̃, the posterior distribution is found by

p(θ0̃

γ|ipa(γ)
|d) ∝

∏

c:ci0̃pa(γ)
=i0̃pa(γ)

p(cy0̃
γ |

cy0̃

pa(γ), i
0̃

pa(γ), θ
0̃

γ|ipa(γ)
)p(θ0̃

γ|ipa(γ)
).

We now join all the observationscy0̃
γ for which ci0̃

pa(γ) = i0̃
pa(γ) in a vectorby0̃

γ , i.e.
by0̃

γ = (cy0̃
γ)ci0̃pa(γ)

=i0̃pa(γ)
.

The same is done with the observations of the continuous parents ofγ, i.e.by0̃

pa(γ) =

(cy0̃

pa(γ))ci0̃pa(γ)
=i0̃pa(γ)

. The posterior distribution ofθγ|ipa(γ)
can now be written as

p(θ0̃

γ|ipa(γ)
|d) ∝ p(by0̃

γ |
by0̃

pa(γ), i
0̃

pa(γ), θ
0̃

γ|ipa(γ)
)p(θ0̃

γ|ipa(γ)
).

As the distribution,p(cy0̃
γ |

cy0̃

pa(γ), i
0̃

pa(γ), θ
0̃

γ|ipa(γ)
), is a Gaussian distribution, then

p(by0̃
γ |

by0̃

pa(γ), i
0̃

pa(γ), θ
0̃

γ|ipa(γ)
) is a multivariate Gaussian distribution. The covariance

matrix is diagonal as all the cases in the database are independent. This way we
consider all the cases in abatch.

The same formulation applies for parameters inB→. Notice that the observations
included inby→γ andby→pa(γ) are taken for each time pointt = 1, . . . , T .

The posterior distribution is found to be

(mγ|ipa(γ)
, βγ|ipa(γ)

|σ2
γ|ipa(γ)

, d) ∼ Nk+1(µ
′
γ|ipa(γ)

, σ2
γ|ipa(γ)

(τ−1
γ|ipa(γ)

)′)

(σ2
γ|ipa(γ)

|d) ∼ IΓ

(

ρ′
γ|ipa(γ)

2
,
φ′

γ|ipa(γ)

2

)

,

where

τ ′γ|ipa(γ)
= τγ|ipa(γ)

+ (zb
pa(γ))

Tzb
pa(γ)

µ′γ|ipa(γ)
= (τ ′γ|ipa(γ)

)−1(τγ|ipa(γ)
µγ|ipa(γ)

+ (zb
pa(γ))

Tyb
γ)

ρ′γ|ipa(γ)
= ργ|ipa(γ)

+ |b|

φ′γ|ipa(γ)
= φγ|ipa(γ)

+ (yb
γ − zb

pa(γ)µ
′
γ|ipa(γ)

)Tyb
γ

+(µγ|ipa(γ)
− µ′γ|ipa(γ)

)Tτγ|ipa(γ)
µγ|ipa(γ)

,
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where|b| denotes the number of observations inyb
γ .

5.4 Structure Learning

To learn the structure of a DBN, we again use a Bayesian approach and calculate
the posterior probability of a DAGD given datad,

p(D|d) ∝ p(d|D)p(D), (8)

wherep(d|D) is the marginal likelihood ofD andp(D) is the prior probability of
D.

In this paper we choose, for simplicity, to let all DAGs be equally likely a priori
and therefore we use the measure

p(D|d) ∝ p(d|D).

We refer to the above measure as anetwork score. We can, in principle, calculate
the network score for all possible DAGs and then select the one with the highest
score (or, if using model averaging, select a few with high score). In most situations
however, there are too many different DAGs to evaluate and some kind of search
strategy must be employed, seee.g.Cooper & Herskovits (1992).

The marginal likelihoodp(d|D) is given as follows.

p(d|D) =

∫

θ∈Θ
p(d|θ, D)p(θ|D)dθ

=
∏

δ∈∆0̃

∏

ipa(δ)∈Ipa(δ)

∫

∏

c:ci0̃pa(δ)=i0̃pa(δ)

p(ci0̃δ|i
0̃

pa(δ), θ
0̃

δ|ipa(δ)
, D)p(θ0̃

δ|ipa(δ)
|D)dθ0̃

δ|ipa(δ)
×

∏

γ∈Γ0̃

∏

ipa(γ)∈Ipa(γ)

∫

∏

c:ci0̃pa(γ)
=i0̃pa(γ)

p(cy0̃
γ |

cy0̃

pa(γ), i
0̃

pa(γ), θ
0̃

γ|ipa(γ)
, D)p(θ0̃

γ|ipa(γ)
|D)dθ0̃

γ|ipa(γ)
×

∏

δ∈∆t

∏

i→pa(δ)∈I
→
pa(δ)

∫ T
∏

t=1

∏

c:ci→pa(δ)=i→pa(δ)

p(citδ|i
→
pa(δ), θ

→
δ|ipa(δ)

, D)p(θ→δ|ipa(δ)
|D)dθ→δ|ipa(δ)

×

∏

γ∈Γt

∏

i→pa(γ)
∈I→pa(γ)

∫ T
∏

t=1

∏

c:ci→pa(γ)
=i→pa(γ)

p(cyt
γ |

cy→pa(γ), i
→
pa(γ), θ

→
γ|ipa(γ)

, D)p(θ→γ|ipa(γ)
|D)dθ→γ|ipa(γ)

We see that the marginal likelihoodp(d|D) factorizes into a product over terms
involving only one node and its parents, called local marginal likelihoods, so the
network score isdecomposable. This also means that the likelihood factorizes into
terms related toB0̃ and terms related toB→. For mth order Markov time series,
the likelihood factorizes in a similar manner into terms related toB0̃, . . . , Bm−1

andB→.
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Because of the way we specified the possible parent sets of variables inB0̃ and in
B→, we can find the best DAG (the one with the highest network score) by finding
the best DAG forB0̃ and the best DAG forB→. So we can learn the structure
of B0̃ and B→ independently and we can learn them just as we learn ordinary
Bayesian networks with mixed variables as described in Bøttcher (2001). This also
applies formth order Markov time series in which we can learn the structure of
B0̃, . . . , Bm−1 andB→ independently.

In the following we do not distinguish between variables inB0̃ andB→, as the
terms presented apply for bothB0̃ andB→.

The network score contribution from the discrete variablesin a network is given by

∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

Γ(α+δ|ipa(δ)
)

Γ(α+δ|ipa(δ)
+ n+δ|ipa(δ)

)

∏

iδ∈Iδ

Γ(αiδ|ipa(δ)
+ niδ|ipa(δ)

)

Γ(αiδ|ipa(δ)
)

. (9)

For the continuous variables, the local marginal likelihoods are non-centralt dis-
tributions withργ|ipa(γ)

degrees of freedom, location vectorzb
pa(γ)µγ|ipa(γ)

and scale

parametersγ|ipa(γ)
=

φγ|ipa(γ)

ργ|ipa(γ)

(I + (zb
pa(γ))τ

−1
γ|ipa(γ)

(zb
pa(γ))

T). The indexb is defined

as in Section 5.3.

The network score contribution from the continuous variables is given by

∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

Γ((ργ|ipa(γ)
+ |b|)/2)

Γ(ργ|ipa(γ)
/2)[det(ργ|ipa(γ)

sγ|ipa(γ)
π)]

1
2

×

[

1 +
1

ργ|ipa(γ)

(yb
γ − zb

pa(γ)µγ|ipa(γ)
)s−1

γ|ipa(γ)
(yb

γ − zb
pa(γ)µγ|ipa(γ)

)T

]

−(ργ|ipa(γ)
+|b|)

2

.

(10)

The network score is thus the product of (9) and (10).

So if the time series is first order Markov, we can find the best DAG by finding the
best DAG forB0̃ and the best DAG forB→. If it is mth order Markov, we find the
best DAGs forB0̃, . . . , Bm−1 andB→.

5.5 Learning the Markov Order

If the Markov order of the time series is unknown, we can learnit by choosing a
“prior” order and learn the DBN with this order. The learned order can then be
read from the best DAG forB→, by determining which time slicesXt has parents
from. The slice furthest back in time will give the order.
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It is important that the prior order is chosen high enough to ensure that no order
higher than this is better in describing the time series. Howhigh this prior order in
practice should be chosen, depends on any prior informationavailable on the time
series, but also of how large a dataset the network is learnedfrom. The higher we
choose the order, the more complex the possible DAGs are, with more parameters
to estimate and fewer cases to learn them from.

To increase the stability of the search procedure, it could therefore be better to
start by learning a DBN with a low Markov order. If the best DAGfor B→ in-
clude dependencies up to the chosen order, a network with a higher order should
be tried and this should be repeated until no dependencies ofhigher order reveal
themselves. However, with this procedure there is a chance that the best Markov
order will not be learned. Ife.g.a prior order of three is chosen and the learned net-
work only reveals second order Markov properties, we would with this procedure
conclude that the time series is second order Markov, even though the best order
could be higher than three. An example of this is shown in Section 7.

Situations can arise, where the Markov order in the initial DAGs is higher than in
B→. For example, if we have assumed that the time series is thirdorder Markov,
we need to learn the structure ofB0̃, B1, B2 andB→. Consider now a situation
whereB→ is learned to be first order Markov,i.e. Xt has only parents inXt and
Xt−1, while B2 is learned to be second order Markov,i.e. to have time varying
parents fromB0̃. This is not necessarily a problem, but it should be noted that
if we had assumed the first order Markov property, then there would have been
more cases to learn the parameters inB→ by. In such situations, the importance of
specifying the initialization of the time series correctly, must be compared to the
loss of precision in the distribution of the parameters inB→.

6 Specifying Prior Distributions

To learn the structure of the DAG we need to specify prior parameter distributions
for all possible DAGs under evaluation. An automated procedure for doing this has
been developed for ordinary Bayesian networks. We call it themaster prior proce-
dure. The procedure is for the purely discrete case treated in Heckerman, Geiger &
Chickering (1995), for the purely continuous case in Geiger& Heckerman (1994)
and for the mixed case in Bøttcher (2001).

We will here give an outline of the procedure and show how it can be used for
specifying prior parameter distributions for DBNs.
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6.1 The Master Prior Procedure

The idea in the master prior procedure is that from a given Bayesian network, we
can deduce parameter priors for any possible DAG. The user just has to specify
a prior Bayesian network, which is the Bayesian network as he believes it to be.
Also, he has to specify animaginary sample size, N , which is a measure of how
much confidence he has in the prior network. The procedure works as follows.

1. Specify an imaginary sample size.

2. Specify a prior Bayesian network,i.e.a prior DAG and prior local probability
distributions. Calculate the joint prior distribution.

3. From the joint prior distribution and the imaginary sample size, the marginal
distribution of all parameters in the family consisting of anode and its par-
ents can be determined. We call this amaster prior.

4. The local parameter priors are now determined by conditioning in these mas-
ter prior distributions.

This procedure ensures parameter independence. Further, it has the property that if
a node has the same set of parents in two different networks, then the local param-
eter prior for this node will be the same in the two networks. Therefore, we only
have to deduce the local parameter prior for a node, given thesame set of parents,
once. This property is calledparameter modularity. Finally, the procedure ensures
likelihood equivalence, that is, if two DAGs represent the same set of conditional
independencies, the network score for these two DAGs will bethe same.

As an example, we will show how to deduce parameter priors forthe discrete nodes.

Let Ψ = (Ψi)i∈I be the parameters for the joint distribution of the discretevari-
ables. The joint prior parameter distribution is assumed tobe a Dirichlet distribu-
tion

p(Ψ) ∼ D(α),

with hyperparametersα = (αi)i∈I . To specify this Dirichlet distribution, we need
to specify these hyperparameters. Consider the following relation for the Dirichlet
distribution,

p(i) = E(Ψi) =
αi

N
,

with N =
∑

i∈I αi. Now we let the probabilities in the prior network be an esti-
mate ofE(Ψi), so we only need to determineN in order to calculate the parameters
αi.

We determineN by using the notion of an imaginary data base. We imagine that
we have a database of cases, from which we have updated the distribution of Ψ
out of total ignorance. Theimaginary sample sizeof this imaginary data base is
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thusN . It expresses how much confidence we have in the dependency structure
expressed in the prior network, see Heckerman et al. (1995).

We use this joint distribution to deduce the master prior distribution of the family
A = δ ∪ pa(δ). Let

αiA =
∑

j:jA=iA

αj ,

and letαA = (αiA)iA∈IA
. Then the marginal distribution ofΨA is Dirichlet,

p(ΨA) ∼ D(αA). This is the master prior in the discrete case. Notice that the
parameters in the master prior can also be found as

αiA = Np(iA),

wherep(iA) =
∑

j:jA=iA
p(i).

The local parameter priors can now be found by conditioning in these master prior
distributions. The conditional distribution ofΨδ|ipa(δ) is

p(Ψδ|ipa(δ)) ∼ D(αδ|ipa(δ)),

with αiδ |ipa(δ) = αiA .

6.2 The Master Prior Procedure for DBNs

For DBNs, the parameter priors can also be found by using the above procedure.
Consider a DBN for a first order Markov time series (the procedure is directly
extendible to time series with higher order Markov properties). As the DAG from
timet = 1 and forward repeats itself, the structure of the overall DAGis completely
specified by the structure of the first two time slices. So we can specify all the
parameter priors we need from a prior network consisting of the variablesX 0̃ and
X1. Notice that the parameter priors forB→ are the same as the parameter priors
for the parameters inX1, as this is the first time point in the time series.

We will also allow for different imaginary sample sizes for the parameters inB0̃

and the parameters inB→. One reason for this is that the parameters inB→ are
updated with more cases than the parameters inB0̃ and therefore might need a
stronger prior distribution.

The procedure works almost as the procedure for ordinary Bayesian networks, the
only difference being the different imaginary sample sizes.

1. Specify an imaginary sample size,N 0̃, for B0̃, and an imaginary sample size,
N→, for B→, .

2. Specify a prior Bayesian network for the first two time slices. Calculate the
joint prior distribution.
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3. From the joint prior distribution and the imaginary sample size, the master
prior for all parameters in a family can be determined. For families including
only variables fromX 0̃, the imaginary sample size forB0̃ is used and for the
other families, the imaginary sample size forB→ is used.

4. The local parameter priors are now determined by conditioning in the appro-
priate master prior distribution.

It is obvious that parameter independence and parameter modularity still applies as
these properties are not influenced by the use of different imaginary sample sizes.
Neither is likelihood equivalence, as variables inX 0̃ can not have parents from
X1. This means that parameter priors for two DAGs that represent the same set of
conditional independencies, are calculated using the sameimaginary sample sizes.
So likelihood equivalence also still applies.

As a simple example of the master prior procedure for DBNs, consider a time series
for a single discrete variableI0, . . . , IT . Assume that the time series is first order
Markov. The parameter priors for the DAG in Figure 7 are deduced as follows

α0

i0 = N 0p(i0),

α→it|it−1 = N→p(i0, i1).

I0 I1

Figure 7: DAG for first order Markov time series.

7 Example

In this section, we will analyze the Ẅolfer’s sunspot numbers using a dynamic
Bayesian network. The Ẅolfer’s sunspot numbers are annual measures of sunspot
activity, collected from 1700 to 1988. In statistical terms, the sunspot numbers is a
univariate continuous time seriesY 0, . . . , Y 288. The dataset we use is from Tong
(1996).

The sunspot numbers are shown in Figure 8.

Many statistical investigations of these numbers have beenmade. Anderson (1971)
gives a short review of some of these studies. For example, for annual measures
of sunspot activity from 1749 to 1924, Yule (1927) proposed the autoregressive
process as a statistical model. He calculated theAR(p) for p = 2 andp = 5 and
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Figure 8: Ẅolfer’s sunspot numbers.

found that an AR(2) was sufficient,i.e. he estimated the sequence to be second
order Markov. Another example is found in Schaerf (1964). She fits an autoregres-
sive model with lags 1, 2, and 9.

Here we will use a DBN as the statistical model and learn the Markov order by
structural learning of the DBN. The software packagedeal, see Bøttcher & Deth-
lefsen (2003), is used for the analysis.

Our aim is to learn the Markov order, so we are only interestedin learning the
structure ofB→. The structure of the initial networks is not of interest andare
actually not likely to be determined by learning from the sunspot numbers. These
numbers are namely represented byone time series, meaning that for the initial
networks there are only one observation of each variable.

As the prior network we use the empty network,i.e. the one without any arrows.
In order to get the right location and scale of the parameters, we estimate the prior
probability distribution for the empty network from data,i.e. we use the sample
mean and the sample variance as the mean and variance in the prior probability
distribution.

As the number of observations in the sunspot series is relatively large, we can
choose a rather high Markov order for the DBN. Anderson (1971) concludes that
the order is not higher than 18. But to be absolutely sure thatwe capture the best
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Y t−9 Y t−2 Y t−1 Y t

Figure 9: The learned network,B→, when an Markov order of 30 is assumed. The
variables that do not influenceY t, have been omitted.

Y t−2 Y t−1 Y t

Figure 10: The learned network,B→, when the 3. order Markov property is as-
sumed. The variableY t−3 have been omitted as it does not influenceY t.

order, we choose an order of 30. The result of the structural learning ofB→ is
shown in Figure 9. The variables that do not influenceY t, have been omitted in
the figure. From the result we see that the sunspot numbers canbe described by a
Markov process of order 9 with lags 1, 2 and 9,i.e.

Y t = m + β1Y
t−1 + β2Y

t−2 + β9Y
t−9 + ǫt, ǫt ∼ N (0, σ2),

with parameter estimatesm = 5.06, β1 = 1.21, β2 = 0.51, β9 = 0.21 and
σ2 = 267.5.

The result is in accordance with some of the previous studies, e.g.Schaerf (1964)
as mentioned earlier. Other studies determine that an second order Markov process
is sufficient,e.g.Yule (1927). But as mentioned, he only examines an order as high
as5.

We have also tried to learnB→ using lower Markov order properties. If wee.g.
use a Markov order of 3, we reach the conclusion that the sunspot numbers are 2.
order Markov, with lags 1 and 2. This result is shown in Figure10. Similarly, if
we learnB→ using the order2, . . . , 7 or 8, we still reach the conclusion that the
sunspot numbers are second order Markov, with lags 1 and 2. This is therefore an
example of the importance of choosing the prior Markov orderhigh enough.

As can be seen from Figure 8, the sunspot numbers are periodical with a period of
between 10 and 11 years. To determine the period more precisely, we calculate the
spectrum,

f(ω) = σ2(1−
∑

t

βte
−itω)−2,

see Venables & Ripley (1997), using the parameter estimatesobtained fromdeal.

The spectrum is shown in Figure 11.
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Figure 11: Spectrum of Ẅolfer’s sunspot numbers.

There is a peak at frequency 0.096, which corresponds to a period of 1/0.096 =
10.40 years. This result is also in accordance with previous studies.

Acknowledgements

This research was supported by Novo Nordisk A/S. Also I wouldlike to thank
Claus Dethlefsen for useful discussions and his help with the implementation of
the example. Finally, I thank my supervisor Steffen L. Lauritzen for many valuable
comments.

References

Anderson, T. W. (1971).The Statistical Analysis of Time Series, John Wiley and
Sons, New York.

Bøttcher, S. G. (2001). Learning Bayesian Networks with Mixed Variables,Artifi-
cial Intelligence and Statistics 2001, Morgan Kaufmann, San Francisco, CA,
USA, pp. 149–156.

Bøttcher, S. G. & Dethlefsen, C. (2003).deal: A Package for Learning Bayesian
Networks,Journal of Statistical Software8(20): 1–40.



REFERENCES 25

Bøttcher, S. G., Milsgaard, M. B. & Mortensen, R. S. (1995).Monitoring by using
dynamic linear models - illustrated by tumour markers for cancer, Master’s
thesis, Aalborg University.

Cooper, G. & Herskovits, E. (1992). A Bayesian method for theinduction of
probabilistic networks from data,Machine Learning9: 309–347.

Dean, T. & Kanazawa, K. (1989). A model for reasoning about persistence and
causation,Computational Intelligence5: 142–150.

DeGroot, M. H. (1970).Optimal Statistical Decisions, McGraw-Hill, New York.

Friedman, N., Murphy, K. P. & Russell, S. (1998). Learning the Structure of Dy-
namic Probabilistic Networks,Proceedings of Fourteenth Conference on Un-
certainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA,
USA, pp. 139–147.

Geiger, D. & Heckerman, D. (1994). Learning Gaussian Networks, Proceedings
of Tenth Conference on Uncertainty in Artificial Intelligence, Morgan Kauf-
mann, San Francisco, CA, USA, pp. 235–243.

Harrison, P. J. & Stevens, C. F. (1976). Bayesian forecasting, Journal of Royal
Statistics38: 205–247.

Heckerman, D., Geiger, D. & Chickering, D. M. (1995). Learning Bayesian net-
works: The combination of knowledge and statistical data,Machine Learning
20: 197–243.

Lauritzen, S. L. (1996).Graphical Models, Clarendon press, Oxford, New York.

Murphy, K. P. (2002).Dynamic Bayesian Networks: Representation, Inference and
Learning, PhD thesis, University of California, Berkeley.

Schaerf, M. C. (1964). Estimation of the covariance and autoregressive structure of
a stationary time series,Technical report, Department of Statistics, Stanford
University.

Tong, H. (1996).Non-Linear Time Series, Clarendon Press, Oxford.

Venables, W. N. & Ripley, B. D. (1997).Modern Applied Statistics with S-PLUS,
second edn, Springer-Verlag, New York.

West, M. & Harrison, J. (1989).Bayesian Forecasting and Dynamic Models,
Springer-Verlag, New York.

Yule, G. U. (1927). On a method for investigating periodicities in disturbed series
with special reference to Ẅolfer’s sunspot numbers,Philosophical Transac-
tions of the Royal Society, Series A226: 267–298.


