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1 Abstract

There are many results dealing with the problem of decomposing a fixed
graph into isomorphic subgraphs. There has also been work on character-
izing graphs with the property that one can delete the edges of a number
of edge disjoint copies of the subgraph and, regardless of how that is done,
the graph that remains can still be decomposed (such graphs are called
randomly packable or randomly decomposable). In this paper we consider
the following variation. Given a fixed graph H, determine which graphs
(call them equipackable) have the property that every maximal edge disjoint
packing with H is maximum. In the case that the graph H is isomorphic to
the path on 3 nodes, we characterize the equipackable graphs of girth 5 or
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more.

2 Introduction

We begin with some necessary definitions. Let Pk denote a path on k
vertices. A vertex with precisely one neighbour is called a leaf while a
vertex adjacent to a leaf is called a stem. A stem is said to be of odd
(even) parity if it is adjacent to an odd (even) number of leaves. Let H
be a subgraph of G. An H-packing in G is a collection of edge disjoint
copies of H, say H1, . . . , Ht where each Hi is a subgraph of G. An H-
packing in G with t isomorphic copies H1, . . . , Ht of H is called maximal if
G − ∪t

i=1E(Hi) contains no subgraph isomorphic to H. An H-packing in
G with t isomorphic copies H1, . . . , Ht of H is called maximum if no more
than t edge disjoint copies of H can be packed into G. For example, if
G = P5 = v1v2v3v4v5 and H = P3, we see that v2v3v4 is a maximal P3-
packing in P5 while v1v2v3, v3v4v5 is a maximum P3-packing. A graph G is
called H-equipackable if every maximal packing with H in G is a maximum
packing with H in G. For instance, every graph is P2-equipackable while
P6 is P3-equipackable. This concept is partly prompted by the study of
well-covered graphs ([8]), those in which every maximal independent set
of vertices is also a maximum as well as equimatchable graphs ([5, 12]),
those in which every maximal matching is a maximum. Such graphs have
the advantage that one only need apply a greedy algorithm to find the
desired set. We also note that researchers have examined randomly Pk-
packable graphs, that is, graphs that regardless of how one removes paths
of a fixed length, one completely decomposes the edge set of the graph into
paths of that fixed length. The term randomly decomposable graphs is also
used ([1, 7, 9, 10]). We observe that these graphs are a subset of the H-
equipackable ones. In particular, Beineke, Hamburger and Goddard ([1])
characterized graphs which are randomly packable with paths on k edges
for k = 4, 5, 6 while Molina, McNally and Smith ([9]) recently extended
the results to k = 7, 8, 9. Of course there has been much work on packable
graphs. That is, on deciding when it is possible to decompose a graph
(usually the complete graph) into isomorphic copies of a fixed subgraph
([2, 4]). In the case of the path on 3 vertices, it has been shown that any
graph on an even number of edges can, in fact, be completely decomposed
into edge disjoint copies of such paths. The following lemma by Caro and
Schönheim ([3]) stating this fact was given an alternative proof by Ruiz
([10]) and is again established in Lemma 16 below.
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Lemma 1 A connected graph is P3-packable if and only if it has even size.

Observing that a connected graph G of odd size at least 3 contains an
edge e such that all remaining edges are in one component of G − e , and
hence has even size and is P3-packable, the following corollary is clear.

Corollary 2.1 If a connected graph is P3-equipackable, a maximum pack-
ing either contains all edges or all but one edge of the graph.

Since we are interested in maximal packings that are all maximum they
must be of one size and since the previous result shows that for any graph
there is a maximal packing missing at most one edge we have the following
observation that will be useful.

Lemma 2 If there is a maximal P3-packing of a connected graph G which
omits at least 2 edges, then the graph G is not P3-equipackable.

Another observation that is used (often implicitly) is the following.

Lemma 3 If a graph G is Pk-equipackable and F is a collection of edge-
disjoint Pk’s, then G - F is Pk-equipackable.

Proof: If G− F had two different size maximal Pk-packings, say A and
B, then A∪F and B ∪F would be two different size maximal Pk-packings
of G, a contradiction.

Lemma 4 Given a connected graph G and F a collection of edge-disjoint
P3’s, if G − F contains at least two components with an odd number of
edges, then G is not P3-equipackable.

Proof: If G is P3-equipackable, then G − F must also be. But any
maximal P3-packing of G−F omits at least one edge from each of the odd
size components. Thus, by Lemma 2, G is not P3-equipackable.

3 The Characterization

We begin with a sequence of technical lemmas that will be useful in char-
acterizing the graphs of girth 5 or more that are P3-equipackable.
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Lemma 5 If a graph G has two stems that are at distance m greater than
or equal to 4, then G is not P3-equipackable.

Proof: Assume a graph G is P3-equipackable and has two stems, say A
and B, which are at distance m ≥ 4. Let a shortest path joining A and
B be A,w1, w2, ..., wm−1, B. For every neighbour, say x, of A that is not a
leaf nor w1, select a neighbour, say y, of x and delete the edges Ax and xy.
In the resulting graph repeat the process. Once the only neighbours of A
are leaves (some might have been created by this procedure) and w1 repeat
the process at B.

If in the resulting graph A is of odd parity remove Aw1, w1w2, otherwise
A is of even parity and is adjacent to ≥ 2 leaves and we remove xA, Aw1

where x is a leaf. In both cases we have isolated a star with center A
having odd size. Similarly we isolate a star with center B and having odd
size. Thus G is not P3-equipackable by Lemma 4.

Lemma 6 If a graph G is P3-equipackable and has two stems that are at
distance 3, then both of these stems must be of odd parity.

Proof: Assume a graph G is P3-equipackable and has two stems, say
A and B, which are at distance 3, and at least one of the stems, say A,
is of even parity, say 2r, r ≥ 1. Let a shortest path joining A and B be
A, w1, w2, B.

(a) B is a stem of even parity:

(a)(i) B has 2s neighbours other than its leaves and w2. In this case
remove (as a P3) Bw2 along with an edge from B to a leaf and pair up the
2s edges to non-leaves and delete as P3’s.

(a)(ii) B has 2s + 1 neighbours other than its leaves and w2. In this
case remove (as a P3) Bw2 and w1w2. Also delete an edge from B to a leaf
along with one edge from B to a non-leaf neighbour (other than w2). Then
pair up the rest of the 2s edges to non-leaves and delete as P3’s.

(b) B is a stem of odd parity:

(b)(i) B has 2s neighbours other than its leaves and w2. Delete Bw2 and
w1w2 (as a P3) and pair up and delete the 2s edges to non-leaves.

(b)(ii) B has 2s + 1 neighbours other than its leaves and w2. Pair up
Bw2 and one of the edges to the other non-leaves and then pair up the 2s
edges from B to non-leaves that remain.
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In both (a) and (b), the resulting graph contains a component that is a
star with an odd number of edges and with center at B.

Now consider A. If A has 2t edges to non-leaves (other than w1), then
delete Aw1 and an edge from A to a leaf and then pair up and delete the
2t edges to the other non-leaves.

If A has 2t + 1 non-leaf neighbours besides w1, then remove the P3

consisting of Aw1 and an edge from A to a leaf. Then for some non-leaf
neighbour (not w1) of A, say x, choose a neighbour (other than A), say y, of
x. Remove the edges Ax and xy as a P3. Then pair up the 2t edges to non-
leaves that remain. This leaves another component (A and the remaining
leaves) with an odd number of edges. Together with the component at B
we now have two components with an odd number of edges and thus by
Lemma 4, G is not equipackable.

Lemma 7 If a graph G is P3-equipackable and has two stems that are at
distance 2, then these stems must be of different parity.

Proof: Assume a graph G is P3-equipackable and has two stems, say A
and B, which are at distance 2, and the stems are of the same parity. Let
AwB be a path of length two joining A and B.

First remove all but one path of length two, say AwB, joining A and B.
Let A have r leaves attached and B have s leaves. Say deg(A)=(r+1)+ c
and deg(B)=(s+1)+ d.

If both c and d are even, then pair up the c edges (to non-leaves other
than w) and the d edges at B (to non-leaves other than w) and delete as
P3’s. If exactly one of c and d, say c, is even and the other is odd, then pair
up the c edges at A and at B select a neighbour, say x, that is a non-leaf
but not w. Choose a neighbour, say y (other than B), of x. Then pair up
Bx and xy and delete. Then pair up the remaining d - 1 edges to non-leaves
at B and remove. In both these cases (exactly one or both of c and d even),
if r and s are both odd, pair up Aw and wB and delete and if r and s are
both even, pair up an edge from A to a leaf and Aw as well as an edge
from B to a leaf and Bw and remove as P3’s. The resulting graph has at
least two components with an odd number of edges and by Lemma 4 this
contradicts G being equipackable.

Now consider both c and d odd. If r and s are odd, then pair up the c
edges at A along with Aw and at B pair up the d edges along with Bw and
delete as P3’s. If r and s are even, then first remove the edges Aw and wB
as a P3. Then pair up the c edges to non-leaves at A along with one edge
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from A to a leaf. Similarly at B pair up the d edges and an edge from B
to a leaf and delete. Again we are left with two components each with an
odd number of edges proving by Lemma 4 that G is not equipackable.

Lemma 8 If a graph G is P3-equipackable and has two stems that are
adjacent, then these stems must be of the same parity.

Proof: Assume there are two stems, say A and B, that are adjacent but
of different parity. Say A is of odd parity and B of even parity. Let e denote
the edge joining A and B. First observe that e must be a cut edge. Assume
not. Let the length of a shortest path joining A and B that does not include
the edge e be k. If k=2 then remove the P3 consisting of e and an edge
joining B to a leaf. But then the parities of A and B in the resulting graph
violate Lemma 7. If k=3 and A is adjacent to ≥ 3 leaves remove BA and
an edge joining A to a leaf. Then we obtain two even stems at distance 3
contradicting Lemma 6. If k=3 and A is adjacent to exactly one leaf we
consider first the case deg(A)>3: Remove BA and an edge joining A to a
vertex which neither is a leaf nor is on the length 3 AB-path. We obtain
two stems at distance 3 of opposite parities contradicting Lemma 6. We
consider next the case k=3, A adjacent to exactly one leaf and deg(A)=3:
If deg(B) is even, pair off BA with the other non-leaf neighbour at A and at
B pair off all remaining edges, except for one edge joining B to a leaf. We
have isolated two edges and can apply Lemma 4. If deg(B) is odd, remove
the first two edges on the 3-path from A to B, and remove at B all edges
except one edge joining B to a leaf. This isolates two edges and we apply
Lemma 4. If k is 4 or more, deleting the edge AB and an edge from B to
a leaf results in a graph in which Lemma 5 is contradicted. Hence e must
be a cut edge. Say A has 2a + 1 leaves and deg(A)=(2a + 1) + 1 + r
and B is adjacent to 2b leaves, to A and to s non-leaf neighbours giving
deg(B)=(2b) + 1 + s. If r is odd, let x be adjacent to A where x is neither
a leaf nor the vertex B. Let y be adjacent to x. Remove the pair of edges
Ax and xy (as a P3) and then pair up the rest of the r edges meeting A
that do not join A to leaves nor to B and remove them (as P3’s). If r is
even just pair up all of these edges and remove. Repeat this procedure at
the vertex B. Finally delete the P3 consisting of the edge e and an edge
from B to a leaf. But the resulting graph has two stems of odd parity as
components and, by Lemma 4, we have a contradiction. Hence adjacent
stems must be of the same parity.

Lemma 9 If a graph G is P3-equipackable and has two stems that are at
distance 3, where the vertices on this shortest path are w1 and w2, then
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these stems must be of odd parity and have no neighbours other than leaves
and w1 or w2. In addition w1 and w2 are of degree two.

Proof: Assume that G is P3-equipackable and has two stems, say A
and B, that are at distance 3, where this path is Aw1w2B. By Lemma 6,
both A and B are of odd parity. First assume one of the stems, say A, has
s > 0 non-leaf neighbours besides w1. If s is odd, pair the edges to these
neighbours and Aw1 and delete as P3’s isolating A and its leaves. If s is
even, for one of these neighbours, say x, select a neighbour, say y (other
than A) and delete the edges Ax and xy (as a P3). Note that this does not
result in y being a (new) leaf at B else the (new) graph would have two
stems of different parities at distance 3 (in violation of Lemma 6). Next
pair up the remaining s - 1 edges as well as Aw1 and remove as P3’s. Again
we have isolated A and its leaves. Then isolate B and its leaves by pairing
up the edges to non-leaves (if this number is even) or (if this number is odd)
pair up Bw1 and w1w2 and the rest of the edges as pairs. Thus neither stem
can have a non-leaf neighbour other than w1 or w2 for otherwise we violate
Lemma 4.

But if either w1 or w2, say w1, has a neighbour (besides A and w2), say
x, then delete Aw1 and wx as well as Bw2 and w1w2 (as P3’s) and again
two odd components are left (contradicting Lemma 4). The lemma follows.

Observe conversely that if a graph G has two stems A and B, both
of odd parity, that are at distance 3, where Aw1w2B is a shortest path
joining them and w1 and w2 are both of degree 2 and neither A nor B has
neighbours other than its leaves and w1 or w2, then G is P3-equipackable.

Lemma 10 Say G is P3-equipackable, has girth at least 5 and has two
stems that are at distance two where w is a common neighbour of the stems.
Then these two stems must be of different parity and neither stem has other
neighbours than its leaves and w. Furthermore, the vertex w must be of
degree two.

Proof: Let G be a graph satisfying the hypothesis where A and B are
the 2 stems sharing a common neighbour w. By Lemma 7 the stems A and
B must be of different parity. Assume A is of even parity and B of odd
parity. If either A or B has a neighbour other than w that is a non-leaf,
remove the edge from the stem to it along with an edge from the stem to
a leaf (as a P3). But the resulting graph has two stems of the same parity
at distance two which contradicts Lemma 7. Thus neither A nor B has a
non-leaf neighbour other than w.
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Assume w has r > 0 neighbours besides A and B. If r is odd, pair up
the r edges to these vertices along with wB resulting in a graph with two
components on an odd number of edges (violating Lemma 4). If r is even,
first note that w is not a stem. If it were, then its parity would have to
agree with both A and B (by Lemma 8) which is not possible. For some
neigbour (neither A nor B), say x, of w, select a neighbour other than w
of x, say y. Remove wx and xy as a P3 and pair up the rest of the r edges
meeting w along with wB and remove. Again this violates Lemma 4. Hence
the lemma follows.

Observe that the girth restriction is sharp as the graph consisting of a
4-cycle abcd with a having one leaf adjacent and c having two leaves as
neighbours, is P3-equipackable.

Say G is a graph of girth at least 5 and has two stems that are at
distance two where w is the common neighbour of the stems. If it is the
case that these two stems are of different parity and neither stem has other
neighbours than its leaves and w and the vertex w is of degree two, then,
conversely, it is easy to verify that G is P3-equipackable.

Lemma 11 Say G is P3-equipackable, has girth at least 4, and has two
adjacent stems. Then the stems must be of the same parity and have only
each other and their leaves as neighbours.

Proof: Say G is P3-equipackable, has girth at least 4, and has two
adjacent stems, say A and B. First we note that A and B must be of the
same parity by Lemma 8. Now assume A has r non-leaf neighbours (besides
B) and B has s non-leaf neighbours (besides A).

(a) Both A and B of odd parity:

(a)(i) Say exactly one of r and s, say r, is odd and the other even. Pair
up the s edges from B to non-leaves other than to A and delete, also pair up
the r edges at A along with AB and remove. This results in two components
each with an odd number of edges which is impossible (Lemma 4).

(a)(ii) Say both r and s are odd. Pair up and delete the r edges at A
along with AB. At B for some non-leaf neighbour (other than B), say x,
select a neighbour (other than B), say y (possible since girth at least 4),
and delete Bx and xy as a P3. Then pair up the remaining edges at B to
non-leaves and remove. This again is a contradiction (to Lemma 4).

(a)(iii) Say both r and s are even. Pair up the r edges to non-leaves at
A and remove while at B for some non-leaf neighbour (other than A), say
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x, select a neighbour (other than A), say y, and delete Bx and xy as a P3.
Then pair up the rest of the s edges at B along with AB and delete. A
contradiction to Lemma 4 again results.

(b) Both A and B of even parity:

(b)(i) Say exactly one of r and s, say r, is odd and the other even. Pair
up the r edges to non-leaves at A and an edge from A to a leaf and delete.
Pair up AB and an edge from B to a leaf and remove.Then pair up the s
edges and delete. This would contradict Lemma 4.

(b)(ii) Say both r and s are odd. At A remove edges as in (b)(i). At
B delete the edges AB and an edge from B to leaf along with Bx and xy
(where x is a non-leaf neighbour and y is a neighbour of x). Then pair
up the rest of the s edges and remove. Again we have a contradiction to
Lemma 4.

(b)(iii) Say both r and s are even. At A pair up the r edges to non-leaves
and remove and also delete AB along with an edge from A to a leaf. At B
select a non-leaf neighbour of B, say x, and call one of its neighbours y (not
B). Remove Bx and xy. Also remove an edge from B to a leaf along with
one of the edges from B to a non-leaf. Then pair up the remaining edges
from B to non-leaves and delete. Again, by Lemma 4, the resulting graph
is not possible if the original graph was P3-equipackable. This proves the
lemma.

The restriction girth ≥ 4 is sharp. Consider the 3-cycle abc having two
leaves, one adjacent to a and the other to b.

Conversely, note that if G has two adjacent stems of the same parity
and these stems have only each other and their leaves as neighbours, then
G is P3-equipackable.

Observe that if G is a tree and P3-equipackable, it is either a star or
is described by the previous lemmas since it would have two stems. In
addition we have shown the following corollary.

Corollary 3.1 Any connected P3-equipackable graph which is not a tree
but is of girth 5 or more can have at most one stem.

We now complete the characterization of P3-equipackable graphs of girth
6 or more.

Lemma 12 Say G is a connected P3-equipackable graph of girth 6 or more
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but is not a tree. Then the graph must be C7.

Proof: Assume G satisfies the hypothesis of the lemma but is not C7.
First assume there is a vertex, say A, that has degree at least three, but is
not a stem. Let three of its neighbours be B, C and D. Since G has at most
one stem (Corollary 3.1), we can assume at least two of these neighbours,
say B and C, are not stems. Consider vertex B. For each of its neighbours,
say x, other than A, choose a neighbour, say y, and delete the P3 consisting
of Bx and xy. In the resulting graph B is now a leaf and hence A is a stem.
Note that the resulting graph H does not contain another stem, say S.
Otherwise A and S are stems in H and by Corollary 3.1 H is a tree. But
outside a shortest AS-path H contains a vertex C or D, say D, which is
not a leaf. That contradicts the structure described in Lemmas 6-8. So H
has a unique stem, namely A.

Now consider the vertex C. For each of its neighbours, say x, other than
A, choose a path Cxyz, and delete the P3 consisting of xy and yz. In the
graph that results both A and C are stems while D, again seen by the girth
restriction, is not a leaf. But this contradicts Lemma 11.

Hence, in G, any vertex of degree more than two must be a stem. But
as there can be at most one stem, say A, the other vertices must each be on
a circuit with A. Select one such circuit, say ABCDE...X. Delete the P3

consisting of CD and DE. But now both A and B are stems in the resulting
graph and there is at least one more vertex (the vertex X adjacent to A
that is neither a leaf nor a stem). This contradicts Lemma 11. Thus there
are no stems in the graph. This implies that the graph is simply one circuit.
It is easy to verify that the only possibility is C7 which is P3-equipackable.
That proves Lemma 12.

Lemma 13 Say G is a connected P3-equipackable graph of girth 5. Then
G is either C5 or has 5+2m vertices where G consists of a circuit of length
5 along with 2m leaves attached to exactly one node on the 5-cycle.

Proof: Let G be a connected P3-equipackable graph of girth 5 and abcde
be a 5-cycle in G. Assume there is a vertex, say A, that is a stem but A is
different from the vertices in abcde. Observe that there are no other stems
in G (by Corollary 3.1). Select a shortest path from A to the given 5-cycle
and let a be the point on the 5-cycle to which the path joins A. Remove
the edges bc and cd (as a P3). For each neighbour, say x, of b (other than
a), choose a neighbour, say y, and remove the edges bx and xy. When this
process is finished b is a leaf. For the vertex d for each neighbour, say x, if
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it has a neighbour, say y, remove the edges dx and xy. In the final graph d
is either a stem or a leaf. Note that A is still in the same component as a
by the girth restriction (no edge that was removed was in the shortest path
from A to the 5-cycle). But then we have a graph with at least three stems,
namely A, a and one of d,e, which means G is not P3-equipackable (Lemmas
10 and 11). Thus no vertex not on the 5-cycle can be a stem. Next assume
some vertex, say A, is not on the 5-cycle and is not adjacent to any vertex
of the 5-cycle. Select a shortest path from A to the 5-cycle and for each
neighbour, say x, of A not on that shortest path, choose a neighbour, say y,
and delete Ax and xy. In the resulting graph A is a leaf implying there is a
stem not on the 5-cycle. But this is impossible as shown in the first part of
the proof. Hence any vertex not on the 5-cycle must be adjacent to some
vertex of the 5-cycle. Let A be a vertex not on the 5-cycle and be adjacent
to a. If A is not a leaf, let B be a neighbour (other than a) of A. By the
girth restriction B is not on the 5-cycle. Since B must also be adjacent to
the 5-cycle it must be adjacent to either c or d. Without loss of generality
say B is adjacent to c. Delete ab and bc. But now for each vertex, say v,
of the 6-cycle aABcde, select a neighbour, say x, not on the 6-cycle and if
x has a neighbour, say y, delete vx and xy. When this operation can no
longer be performed the resulting graph has a component containing a 6-
cycle (namely aABcde) and possibly leaves attached to some of the vertices
of the 6-cycle. But, by Lemma 12, such a graph is not P3-equipackable.
This shows that any vertex not on abcde must be leaf. By Corollary 3.1, G
has at most one stem. If this stem, say a, were of odd parity, then delete ea
and ab leaving two components both with an odd number of edges which is
not possible since G is P3-equipackable. If the stem were of even parity it
is easily verified that the graph is P3-equipackable. Also C5 itself is in the
collection. This completes the proof and the characterization.

We summarize the characterization in the following theorem.

Theorem 1 A graph G of girth 5 or more is P3-equipackable if and only
if G satisfies one of the following:

(i) G is a tree consisting of a single star (i.e., K1,n).

(ii) G is a tree which has two stems that are at distance 3, where the
vertices on this shortest path are w1 and w2. Furthermore the stems are
of odd parity and have no neighbours other than leaves and w1 or w2. In
addition w1 and w2 are of degree two.

(iii) G is a tree which has two stems that are at distance two where
w is the common neighbour of the stems. The two stems must be of dif-
ferent parity and neither stem has other neighbours than its leaves and w.
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Furthermore, the vertex w must be of degree two.

(iv) G is a tree which has two stems that are adjacent where these stems
are of the same parity and these stems have only each other and their leaves
as neighbours.

(v) G is either C7, C5 or has 5+2m vertices where G consists of a
circuit of length 5 along with 2m leaves, all attached to the same vertex on
the 5-cycle.

We have shown that if a graph has no leaves and is of girth 8 or more
then it is not P3-equipackable. This result generalizes to paths of larger
order as shown by the following lemma.

Lemma 14 Let k be an integer, k ≥ 3. If δ(G) ≥ 2 and g(G) ≥ 4(k − 1),
then G is not Pk-equipackable.

Proof: Select a circuit in the graph. Given the girth restriction and the
fact that there are no leaves, it is possible to successively remove copies of
Pk to isolate a P2k−1. But such a resulting path is not Pk-equipackable. 2

We note that the girth restriction is sharp since C4k−5 is Pk-equipackable,
for k ≥ 2.

Lemma 15 Let k ≥ 2 and G be a connected, Pk-equipackable graph with
δ(G) ≥ 2 and g(G) = 4k−5. Then G is precisely a circuit of length 4k−5.

Proof: It is easy to verify that C4k−5 itself is Pk-equipackable. Assume G
is not C4k−5 but is a connected, Pk-equipackable graph with δ(G) ≥ 2 and
g(G) = 4k−5. Let v1, v2, . . . , v4k−5 be a cycle of length 4k-5 in G and v0 be
a neighbour of some vertex, say v1, on the cycle. Delete v0, v1, . . . , vk−1 and
v3k−3, v3k−2, . . . , v4k−5, v1 as Pk’s. Now consider the component containing
the path, say P , with 2k-2 edges which is vk−1, vk, . . . , v3k−3. Observe
that if any pair of vertices of P are joined by some other path, say Q,
that Q must have at least 2k-2 edges by the girth restriction. Also note
that if any vertex, say x, of P is joined to v0 by a path using only x from
v1, v2, . . . , v4k−5, then such a path has more than k-1 edges (girth restriction
again). Hence, since G had no leaves, we can isolate the path P by removing
Pk’s which have one end vertex on P but no edges in common with P . But
the resulting graph, namely, a path on 2k-2 edges, is not Pk-equipackable.

2
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4 Interpolation

A graph parameter α(G) is said to interpolate over a family G of graphs if
for every three integers a < b < c with α(G1) = a, α(G3) = c, G1, G3 ∈ G,
there exists G2 ∈ G such that α(G2) = b.

Lemma 16 Let G be any graph. The number of P3’s in a maximal P3-
packing interpolates over G.

Proof: We may assume G is connected. We consider packings of G which
contain a copies of P3 and are maximal, but not maximum. Among all P3-
packings with a copies of P3 choose A and e, f such that e, f are two edges
at minimum distance from each other in G and not belonging to A. Let
e1, . . . , ek be a shortest path in G joining an end of e to an end of f . Thus
each edge ei, 1 ≤ i ≤ k, must belong to A. Assume k > 1. Let e = x1y1,
e1 = x1x2. If e1 forms a P3 in A with f1 = x′1x1 we form the maximal
P3-packing A′ = A+ y1x1x

′

1−x2x1x
′

1 with a P3-copies and e1, f /∈ A′ have
dG(e1, f) < dG(e, f), a contradiction. Hence e1 must form a P3 in A with
f1 = x′2x2 and we form the maximal P3-packing A′ = A + y1x1x2−x1x2x

′

2

which has a P3-copies and x2x
′

2, f /∈ A′ and has dG(x2x
′

2, f) < dG(e, f),
again a contradiction. Thus k = 1 and A′ constructed above along with
e1f in the first situation and f1f in the second is a maximal P3-packing
with a + 1 copies of P3. This establishes the lemma. 2

We observe that the proof of Lemma 16 also establishes Lemma 1 since it
constructively finds a larger packing if there is more than one edge missing.

It is not obvious what the situation is for larger k and so we pose the
following question.

Question. Do maximal P4-packings interpolate over a graph? To what
extent can G be decomposed into P ′

4s?

Note that maximal Pk-packings of size 1,2 and 3 exist in the graph G
formed by taking Pk−1, Pk and Pk+1 and identifying one end vertex of each
of these paths.
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