Domination in partitioned graphs with minimum degree two

Let V_{1}, V_{2} be a partition of the vertex set in a graph G. For $i=1,2$, let γ_{1} denote the least number of vertices needed in G to dominate V_{i}. It is known that if G has order n and minimum degree two, then $\gamma_{1}+\gamma_{2} \leq 2 n / 3$. In this paper, we characterize those graphs of order n which are edge-minimal with respect to satisfying the conditions of connected, minimum degree at least two, and $\gamma_{1}+\gamma_{2}=2 n / 3$.

