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CUBICAL LOCAL PARTIAL ORDERS ON CUBICALLY

SUBDIVIDED SPACES - EXISTENCE AND CONSTRUCTION.

LISBETH FAJSTRUP

Abstract. The geometric models of Higher Dimensional Automata and Di-
jkstra’s PV-model are cubically subdivided topological spaces with a local par-
tial order. If a cubicalization of a topological space is free of immersed cubic
Möbius bands, then there are consistent choices of direction in all cubes, such
that any n-cube in the cubic subdivision is dihomeomorphic to [0, 1]n with the
induced partial order from IRn. After subdivision once, any cubicalized space
has a cubical local partial order. In particular, all triangularized spaces have
a cubical local partial order. This implies in particular that the underlying
geometry of an HDA may be quite complicated.

1. Introduction

In the study of applications of geometry and topology in computer science, the
notion of a locally partially ordered cubical complex is introduced [2]. This seems
to be a very rigid structure, which would not appear many places in “nature”.
On the other hand, many spaces can be subdivided into cubes; for instance
all triangulizable spaces admit cubical subdivisions in an unordered way, and
one may ask whether they admit cubical subdivisions with a cubical local par-
tial order, i.e., such that each cube in the subdivision is dihomeomorphic to
In = [0, 1]n with partial order induced from the standard partial order on IRn,
(x1, . . . , xn) ≤ (y1, . . . , yn) if xi ≤ yi for all i.

Given a cubical subdivision of a space, a necessary condition for having com-
patible partial orders on all the cubes is, that there is a compatible local partial
order on the 2-skeleton. For this, all edges, which are opposite edges in some
2-cube have to be oriented consistently. We prove here, that this is in fact also
a sufficient condition. Moreover, after subdividing once, all cubicalizations have
a compatible local partial order. In particular all triangularizable spaces allow
cubical local partial orders. Hence, the underlying geometry of a Higher Dimen-
sional Automaton [4], an HDA, may be very complicated, which is probably a
reflection of the computational power of the HDA.

Another consequence is, that we expect calculations of the dihomotopy category
for locally partially ordered cubical complexes, to lead to statements about the
underlying non-directed fundamental group. This strategy is thus applicable to
many spaces. It is expected that calculations of dihomotopy categories will be
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2 LISBETH FAJSTRUP

possible, whereas calculation of fundamental groups is known to be equivalent to
the word problem.

2. Definitions: Local partial orders and cubicalized spaces.

The first four definitions here are from [2]. The other definitions and results are
new.

Definition 2.1. A semi-cubical complex M is a family of sets {Mn|n ≥ 0} with
face maps ∂k

i : Mn → Mn−1 (1 ≤ i ≤ n, k = 0, 1) satisfying the semi-cubical
relations:

∂k
i ∂l

j = ∂l
j−1

∂k
i (i < j)

A geometric cubical complex is a semi cubical complex M such that for any pair
Ln and Km of elements of M , there is a (perhaps empty) common face Fr such
that any other common face Xk is a face of Fr.

We do not in general have a global partial order on a cubical complex. For
instance the circle has a direction by increasing angle, but this is not a transitive
relation. Instead, we get local partial orders:

Definition 2.2. A local partial order on a Hausdorff topological space X is a
cover U = {(Ui,≤i)} of X by open sets, Ui ⊂ X each with a partial order ≤i.
Such that:

• ≤i is closed: For any pair x, y ∈ Ui, with x 6≤ y, there are Vx and Vy,
open neighborhoods of x and y, s.t. z ∈ Vx and w ∈ Vy implies z 6≤ w

• For all x ∈ X there is a non-empty open po-neighborhood, (Wx,≤W ) s.t.
whenever x, y, z ∈ Ui ∩ Wx, then y ≤W z ⇔ y ≤Ui

z.

Two local partial orders U and V on X are equivalent if their union is a local
partial order.

In [2], we give a local partial order on the geometric realization of a geometric
cubical complex. Each k-cube |mk| ∈ |M | has a natural homeomorphism to
[0, 1]k and these respect the face maps. The local partial order on each k-cube is
the induced partial order from IRk, which is (x1, . . . , xk) ≤ (y1, . . . , yk) ⇔ xi ≤
yi, i = 1, . . . , k. In the star of each vertex, one takes the transitive hull of the
relation. This provides a local partial order.

Definition 2.3. Let X and Y be locally partially ordered spaces. A continuous
map f : X → Y is a dimap, if for all x ∈ X there are po-neighborhoods U
of x and V of f(x) such that for z, w ∈ f−1(V ) ∩ U , z ≤U w if and only if
f(z) ≤V f(w)

In other words, a dimap is continuous and locally monotone.
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Definition 2.4. A dihomeomorphism is a bijective dimap f : X → Y such that
the inverse is a dimap.

To define a cubically subdivided topological space, we follow the definition of a
triangulation in [1] p. 112. We let 2k denote the k-cube [0, 1]k. We do not allow
infinite dimensional complexes, since these are not needed for the applications.
But is seems that the statements will apply in that case too.

Definition 2.5. Let X be a Hausdorff topological space and let C = {Ck}
k=N
k=0

be a family of (possibly empty) sets of continuous maps such that the elements
ck ∈ Ck are maps ck : 2k → X from the k-cube to X. Then C is a cubicalization
of X if

(1) X is covered: X =
⋃

ck∈Ck,k=0,... ck(2k)

(2) All ck are injective.
(3) For all cm ∈ Cm, cn ∈ Cn, c−1

m (cn(2n)) is a (possibly empty) face of 2m

and c−1

n (cm(2m)) is a face of 2n and moreover

c−1

n ◦ cm : c−1

m (cn(2n)) → c−1

n (cm(2m))

is a linear isomorphism.
(4) X has the weak topology with respect to the inclusions: A ⊂ X is closed

if and only if A ∩ ck(2k) is closed for all ck.

Remark 2.6. Any triangulizable space has a cubicalization. This follows from
the fact that there is a cubic barycentric subdivision of a triangulation. Each
n-simplex Sn is divided into n + 1 n-cubes, each of which have a vertex v at the
barycenter and a diagonally opposite vertex at a vertex wi of the n-simplex. The
other vertices are midpoints of those edges in Sn which are in the star of wi.

Definition 2.7. Given a space X with a cubicalization C. A local partial order
on X, C consists of the following:

(1) For each cube ck ∈ Ck, there is a dihomeomorphism φck
:
→

I
k

→ 2k of the
form

φck
(x1, . . . , xk) = (φck,1(x1, . . . , xk), φck,2(x1, . . . , xk) . . . , φck,k(x1, . . . , xk)),

where φck,j(x1, . . . , xk) is either xj or 1 − xj.
(2) For all cm ∈ Cm, cn ∈ Cn, the map

(cn ◦ φcn
)−1 ◦ cm ◦ φcm

: (cm ◦ φcm
)−1(cn(2n)) →

→

I
n

is a dimap.

Lemma 2.8. Let X = In be the n-cube with all its subcubes and let I =
{i1, . . . , ik} ⊂ {1, . . . , n}. Then the partial order (x1, . . . , xn) ≤ (y1, . . . , yn) if
xi ≥ yi for i ∈ I and xi ≤ yi for i 6∈ I is a cubical partial order on X
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Proof. The map φcn
:

→

I
n

→ X has coordinate functions xi → 1 − xi for i ∈ I
and xi → xi else. The maps to the various subcubes are given by restriction. ¤

Corollary 2.9. Suppose in a cubical complex (X, C), we have provided φc2 for
all 2-cubes and φc1 for all edges. And suppose that they satisfy the compatibility,
2.7.2. Then there is a unique extension to a local partial order on all of (X, C)

Proof. All cubes have been provided with a direction on the edges such that these
agree on edges which are opposite in a 2-face. Hence we get an induced partial
order on each cube. By 2.8, the induced local partial order is an fact a cubical
local partial order. And it is unique, since we require compatibility. ¤

Remark 2.10. A cubical complex has several different meanings in the literature.
For instance group actions on such complexes - in particular when they are non-
positively curved- has been studied intensively following M. Gromov and others.
In this case, the metric is important. This is not the main point here. We are
interested in the local partial order on IRn and hence the cubes, and whether this
can be transferred consistently to the cubical complex.

3. Construction of a cubical local partial order.

Definition 3.1. A cubical Möbius strip [5] is a 2-complex with k 2-cells A1, . . . , Ak

glued as pictured in Fig. 1

b

b a

a

AkAk−1A2 A3A1

Figure 1. Cubical Möbius strip

It is clear that a cubical Möbius strip does not have a consistent cubical partial
order, since opposite edges in a 2-cell should be ordered consistently, and there is
no consistent choice of an order on the family of edges generated by taking edges
opposite the edge ab in the 2-cells.

It is possible however to find a cubical subdivision of the Möbius strip, which
has a cubical partial order. There are many ways of doing that - the following
example is from [2]:

Example 3.2. If the identification of edges is made as in Fig.2, then starting
with a direction on the edge a, directions are generated on all vertical edges plus
the horizontal edges of A1, and no obstructions arise. It is clear that one can
choose directions on the remaining horizontal edges in a consistent way, and this
gives a cubical local partial order.
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α

α

AkAk−1A3
A2A1

Figure 2. A cubicalized Möbius strip which has a cubical local
partial order.

Hence, a cubical local partial order does not give an orientation of the manifold.
And vice versa: non-orientable manifolds can have cubical local partial orders.

Remark 3.3. A cubical Möbius strip can be subdivided to obtain a cubicalization
which can be directed. There are many ways of doing this, but this is the one,
which will be useful later: Subdivide all edges once by adding a vertex in the
middle, then subdivide 2-cubes by adding a vertex in the center and inserting
edges from this vertex to the midpoints of the edges - thus subdividing a 2-cube
in 4 cubes. Then in particular the non-compatible edges (vertical in Fig. 3) are
subdivided, and the relation generated around the Möbius band implies that
either all these edges are oriented away from the zero section of the band or they
all point towards it. See Fig. 3. The horizontal edges may certainly be oriented
consistently.

Zero section

a

b

b

a

Figure 3. A subdivided cubical Möbius strip has a cubical local
partial order

Proposition 3.4. A cubicalized topological space (X, C) has a cubical local partial
order if and only if it does not contain any immersed cubical Möbius bands

Proof. Let M be a cubicalized topological space. If there are immersed cubical
Möbius bands, there is clearly no consistent orientation of the edges of the 2-cells
and hence no consistent local partial order of M .

Suppose M does not contain any cubical Möbius strips. The cubical partial order
on a cube is given, once we provide a consistent orientation of the edges and 2-
cells, and moreover, all the 2n consistent orientations of the edges of an n-cube
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a

a

Figure 4. A cubical Möbius strip with a selfintersection

give a cubical partial order by Lemma 2.8. Define an equivalence relation on edges
in the cubicalization of M as the transitive hull of the relation of being opposite
edges in a 2-cell. Each such equivalence class has two choices of orientation,
provided there are no cubical Möbius bands: Pick an edge in M and orient it.
Then orient all the edges equivalent to it consistently. Since there are no immersed
cubical Möbius bands, there are no obstructions to this. Now pick another edge
which has not already been oriented, choose an orientation on it and orient edges
equivalent to it consistently. Keep doing this until all edges have an orientation.
This gives the 2-cells a consistent partial order. Give the other cubes the induced
partial order.

¤

Remark 3.5. As noticed in [5], the cubical Möbius strip does not have to be
embedded in M . The conflict arising from the relation of being opposite edges
in a 2-cell could reuse some of the 2-cells, as seen in the bowlike shape in Fig.4
This does not affect the above proof.

We remind the reader of some definitions from combinatorics, which may be
found in for instance [3]
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Definition 3.6. A d-polytope is the convex hull of a finite subset of IRd. Such a
polytope is cubical if all its proper faces, i.e, faces of dimension strictly less than
d are combinatorially isomorphic to cubes. A facet is a d − 1 dimensional face.

With notation from [5], we give

Definition 3.7. The derivative complex of the boundary complex Q of a cubical
d-polytope is a cubical complex D(Q) whose vertices are the midpoints of all edges
of Q and whose facets correspond to pairs F, [e], where F is a facet and [e] is an
equivalence class of edges in F as defined above. The facets of D(Q) separate
opposite facets of Q.

Each connected component of the derivative complex is a d− 1 dimensional PL-
manifold, the dual manifold of Q.

Corollary 3.8. For every cubical d-polytope, P , (d ≥ 3) the dual manifolds of
P are orientable if and only if P admits a cubical local partial order.

Proof. This is a direct consequence of our Prop. 3.4 and Proposition 2.1 in [5] ¤

It is well known that the barycentric subdivision gives rise to a finer cubical (or
simplicial) subdivision of a space:

Definition 3.9. Let M, C be a cubicalized space. Then the barycentric subdivision
of the cubicalization is the cubicalization induced by subdividing 2n = In into the
2n subcubes [k1, l1] × · · · × [kn, ln], where ki, li ∈ {0, 1/2, 1} and ki < li.

Theorem 3.10. Let M be a cubicalized topological space. Then there is a cubi-
cal local partial order on M compatible with the once barycentrically subdivided
cubical structure on M .

Proof. We have to see that after subdividing once, there are no cubical Möbius
strips left.

Look at the equivalence classes of edges. If an equivalence class of edges contains
no cubical Möbius strips, then it gives rise to two equivalence classes in the sub-
divided complex, neither of which contain cubical Möbius strips. An equivalence
class E, which contains a cubical Möbius strip gives rise to one equivalence class
in the subdivided complex, since for any edge [a, b] in E, with midpoint c; going
around the Möbius strip we see that [a, c] is equivalent to [b, c] in a directed sense.
This equivalence class has a compatible orientation: Either orient all subdivided
edges in the equivalence class toward the midpoint of the original edges or away
from it.

¤

Corollary 3.11. Any triangulizable space has a cubical local partial order.
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Corollary 3.12. The number of cubical local partial orders on a cubical complex
without cubical Möbius bands is 2e where e = #{ equivalence classes of edges}

Proof. See the construction of local partial orders. For each equivalence class,
there are two possible choices of direction, and these choices are independent. ¤

Corollary 3.13. For every cubical d-polytope, the polytope obtained by subdivid-
ing once has orientable dual manifolds
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