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Abstract

In this paper we analyse a set of experimental data on a number of healthy and diabetic
patients and discuss a variety of models for describing the physiological processes involved in
glucose absorption and insulin secretion within the human body. We adopt a Bayesian approach
which facilitates the reformulation of existing deterministic models as stochastic state space mod-
els which properly accounts for both measurement and process variability. The analysis is further
enhanced by Bayesian model discrimination techniques and model averaged parameter estima-
tion which fully accounts for model as well as parameter uncertainty. Markov chain Monte
Carlo methods are used, combining Metropolis Hastings, reversible jump and simulated temper-
ing updates to provide rapidly mixing chains so as to provide robust inference. We demonstrate
the methodology for both healthy and type II diabetic populations concluding that whilst both
populations are well modelled by a common insulin model, their glucose dynamics differ con-
siderably.

1 Introduction

Quantitative assessment of the integrated glucose and insulin system within the human body is a vital
component in the study of diabetes. The intravenous glucose tolerance test (IVGTT) is commonly
used to study this system and involves sampling the glucose and insulin concentration in the blood
following an intravenous glucose injection. Such studies provide valuable data on the body’s response
to increased blood sugar levels and can be used to improve the classification, prognosis and therapy
of diabetes in human patients (Martin et al 1992).

Several models have been proposed in the medical literature to describe the human glucose and
insulin systems. However, the most popular is the minimal model proposed for the glucose kinetics
in Bergman et al (1979) and extended to the insulin kinetics by (Toffolo et al 1980). The minimal
model couples the insulin and glucose processes by a non-observable latent process representing the
effect of the insulin upon the glucose absorption rate. However, the minimal model possesses several
drawbacks. First it is an entirely deterministic model and takes no account of measurement error or
variability between individual patients. Secondly, some components of the model do not agree with
current thinking as to the physiological processes actually involved in glucose absorption and insulin
secretion within the human body. As a result, several modifications to the minimal model have been
suggested as well as an entirely new model recently suggested by de Gaetano and Arino (2000) in
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which the glucose and insulin systems are coupled directly via integration, removing the need for the
latent process used within the minimal model.

In this paper we examine data obtained from a study on both healthy and diabetic patients and use
Bayesian model discrimination techniques to determine the model which best describes the physio-
logical processes observed in each group. We consider the analysis of data arising from a series of
intravenous glucose tolerance tests (IVGTT) in which a dose of glucose is administered intravenously
to individual patients, and the subsequent glucose and insulin concentrations within the bloodstream
are recorded at pre-specified though irregular times. See Pacini and Bergman (1986) for example.
The data analysed in this paper are provided by Professor D. R. Owens, Diabetes Research Unit,
University of Wales College of Medicine, Wales, and include 19 healthy young male individuals and
52 Type II diabetic male individuals.

We begin, in Section 2 with a description of the basic models proposed in the literature and extend
them to account for both process and system errors by reformulating them as state space models.
In Section 3 we construct the likelihood of these models, and in Section 4 we provide details of
the Bayesian approach to the modelling used here, together with a simulation study to demonstrate
the utility and robustness of the methods we propose. We present our results in Section 5 before
providing additional interpretation and more general discussion in Section 6.

2 Data and Models

We begin with a brief description of diabetes and the human glucose-insulin system and how it differs
between diabetic and healthy patients, before discussing the various models proposed in the literature
for describing this system.

2.1 Diabetes and the Human Glucose-Insulin System

Diabetes is a progressive and incurable disease of the pancreas that causes an abnormally high level of
glucose to build up in the blood. The two most common types of diabetes are caused by the pancreas’
inability to produce insulin or by the body’s inability to respond to raised insulin levels to stimulate
glucose absorption. The former is referred to as type I diabetes whereas the latter is known as type
II diabetes. In type II diabetics the pancreas produces greatly reduced quantities of insulin, and the
fat, muscle, and liver cells all have a diminished ability to respond to the action of the insulin. With
possibly more than 250 million people suffering worldwide from diabetes, most in the form of type
II diabetes, the disease has reached epidemic proportions. In addition, recent prognoses say that this
number may more than double within the next thirty years and that early detection of diabetes is vital
for reducing the risk of obtaining the most severe symptoms such as impaired vision and gangrene
in consequence of becoming diabetic. It is therefore important to improve the understanding of the
human glucose-insulin system.

The human glucose-insulin system seeks to keep the levels of glucose and insulin within the blood-
stream in a state of equilibrium. Both body tissues and the liver absorb glucose from the blood stream
at a roughly constant rate p1 depending upon the current level of glucose compared to a natural base-
line, Gb. The rate p1 then denotes the natural absorption rate of glucose from the bloodstream that
occurs independently of the presence of insulin. Similarly insulin is constantly removed from the
body in the urine at a roughly constant rate, n depending upon the current insulin level and it’s devi-
ation from the natural baseline level, Ib. This insulin elimination occurs in both healthy and diabetic
patients.
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However, the absorption of glucose from the bloodstream is also affected by the level of insulin and
this additional absorption is known as the insulin action. In a healthy patient, ingestion of sugar
(or, in our case, an intravenous glucose dose) rapidly elevates the glucose concentration G(t) in the
bloodstream initiating the pancreatic β-cells to secrete insulin. The level of insulin I(t) within the
bloodstream therefore also increases, triggering the absorption of glucose from the bloodstream into
the adipose tissue, liver and muscles at some unobservable rate X(t). X(t) is the remote insulin
action and reflects the proportion of glucose removed from the bloodstream as a result of the current
insulin level at time t. This absorption process lowers the glucose concentration, affecting a reduc-
tion in pancreatic insulin production. This, in turn reduces the rate of glucose absorption and the
downward spiral continues until the levels of both glucose and insulin return to normal basal levels.
For a healthy individual this entire process normally take less than three hours.

Figure 1 provides plots of the glucose and insulin levels during an IVGTT for both a healthy and
a type II diabetic patient. The rapid increase in insulin levels immediately after the administration
of the glucose dose in the healthy patient can be clearly seen, as can the subsequent steady decline
in both the glucose and insulin levels. Type II diabetic patients, on the other hand, produce only a
small amount of insulin in reaction to glucose stimuli, and are not able to use this amount efficiently.
Therefore no significant increase in the insulin level is seen after the glucose injection, only an un-
stable and small reaction is observed in Figure 1. The glucose level therefore rises dramatically and
is lowered only very slowly at the constant absorption rate p1.

Healthy Type II diabetic
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Figure 1: Glucose and insulin concentrations in a healthy person and a type II diabetic recorded over a 240-
minute period after an intravenous glucose injection.

2.2 Minimal and Alternative Models

The medical literature provides a range of alternative models to describe the integrated glucose-
insulin system. Here, we begin by describing a standard formulation of Bergman’s minimal model
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before discussing various extensions and finally the entirely different delay-differential model pro-
posed by de Gaetano and Arino (2000).

2.2.1 The Minimal Model

As described earlier, the minimal model is probably the most popular of all of those proposed in the
literature due, in part, to the availability of the software package MINMOD for fitting the minimal
model to IVGTT data (Pacini and Bergman 1986).

The minimal model is wholly deterministic and can be represented by the compartment model de-
picted in Figure 2, or by the following set of differential equations

Ġ(t) = −p1(G(t)−Gb)−X(t)G(t), G(0) = G0,

Ẋ(t) = −p2X(t) + p3(I(t)− Ib), X(0)= 0,

İ(t) = −n(I(t)− Ib) + γJ+(G(t)− h)t, I(0) = I0.

(1)

Here J+(x) = x if x > 0 and zero otherwise.

γt p3 p2

Elimination
n

Plasma Insulin

I(t)

Remote
Insulin Action

X(t)

Liver
Plasma Glucose

G(t)
Periphery

Intravenous glucose dose

Figure 2: The Minimal Model describing the glucose and insulin system in an IVGTT study.

In this model, p2 describes the decreasing level of insulin action with time whilst p3 describes the rate
in which insulin action is increased as the level of insulin deviates from the corresponding baseline.
Similarly, γ denotes the rate at which insulin is produced as the level of glucose rises above some
threshold level, h. In the context of IVGTT data, G0 denotes the theoretical glucose concentration
in plasma extrapolated to the time of glucose injection, i.e. at time t = 0, and I0 denotes the corre-
sponding theoretical insulin concentration. We label the insulin model in the minimal model as I1
and the combined glucose and insulin action model as G1.

Three factors, referred to as the metabolic portrait (Pacini and Bergman 1986), play an important role
for the characterisation of an individual’s glucose disposal: (1) insulin sensitivity, defined by SI =
p3/p2, specifies the insulin’s capability to increase the glucose disposal to muscles, liver and tissue,
(2) glucose effectiveness, defined by SG = p1, represents the ability of blood glucose to enhance
its own disposal at basal insulin level, and (3) pancreatic responsiveness, defined jointly by ϕ1 =
(I0− Ib)/[n(G0−Gb)] and ϕ2 = γ× 104, characterises the ability of the pancreas to secrete insulin
in response to glucose stimuli. Failure in any of these factors may lead to impaired glucose tolerance,
or, if severe, diabetes. The assessment of these three key factors has proven to be very useful in the
classification, prognosis and therapy of diabetes (Martin et al 1992) and so will be the focus of our
study here.

4



All four parameters can be estimated via the minimal model, and usually this is done using iterative
non-linear weighted least squares estimation techniques in which the insulin is treated as known, i.e.
the minimal model is regarded as a deterministic model composed only of the equations for G and X .
There are many problems with this approach. For example, parameter estimates of insulin sensitivity
obtained by the use of MINMOD are often estimated to be close or even equal to zero, especially
for type II diabetic individuals, and the corresponding confidence intervals commonly include neg-
ative values for these strictly positive parameters. Furthermore ϕ1 and ϕ2 are not estimated in this
approach, since the insulin model is fixed and thus the parameters n and γ are not estimated.

The original derivation of the minimal model assumes that G, X and I constitute a single dynamical
system. However traditional analyses typically treat one of these processes as known and then esti-
mate the others conditional on the first, thereby analysing only part of the system at any one time. In
addition, the minimal model takes no account of either individual variability or process error. All of
these problems will be addressed by our reformulation and analysis of the minimal model described
later. However, we first describe several alternative models for the description of the underlying
physiological process.

2.2.2 Variations on the Minimal Model

The glucose-insulin model has attracted many mathematical descriptions. Using a combination of
Akaike information criteria and arguments based upon the minimisation of residual sums of squares,
Bergman et al (1979) and Toffolo et al (1980) showed that the minimal model dominated a large
range of alternative models. Nevertheless, several criticisms of the model remain, namely: (a) that
the positive truncation J is physiologically questionable (Bergman et al 1981); and (b) that the multi-
plicative effect of time t in system I1 suggests that the effect of circulating hyperglycemia on the rate
of pancreatic secretion of insulin is proportional to the time elapsed from the glucose stimulus (Tof-
folo et al 1980), which is difficult to justify biologically. We therefore consider three additional
variants of the insulin component of the model removing combinations of these two assumptions:

İ(t) = −n(I(t)− Ib) + γJ+(G(t)− h), I(0) = I0,

İ(t) = −n(I(t)− Ib) + γ(G(t)− h)t, I(0) = I0,

İ(t) = −n(I(t)− Ib) + γ(G(t)− h), I(0) = I0.

These alternative insulin models are labelled I2, I3 and I4 respectively.

2.2.3 The de Gaetano & Arino Model

De Gaetano and Arino (2000) undertake a thorough analysis of the standard minimal model and
demonstrate that the solution set is unstable in that both glucose and insulin levels may rise indefi-
nitely as time increases. Whilst it is possible to argue that observations are taken only over a finite
time interval and so the model need only approximate reality over a finite time scale, the inherent
instability of the system does occasionally lead to highly volatile solutions for particular data sets.

Another drawback with the minimal model is that the solution to the three differential equations
that make up the minimal model and its variants is generally very difficult to obtain and traditional
model-fitting techniques tend to treat the insulin observations as a fixed forcing function so that only
the insulin action and glucose system equations need be solved.

In order to overcome these problems de Gaetano and Arino (2000) propose an alternative two-system
model in which the coupling of the insulin and glucose process is made by the use of integration,
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removing the need for the non-observable state variable X . As with the minimal model the de
Gaetano and Arino (GA) model is fully deterministic, and can be illustrated as the compartment
model given in Figure 3.

b6/b5

Elimination
b2

Plasma Insulin

I(t)

Liver
Plasma Glucose

G(t)
Periphery

Intravenous glucose dose

Figure 3: De Gaetano & Arino model describing the glucose and insulin system in an IVGTT study.

The following set of differential equations provide a mathematical description of the system.

Ġ(t) = −b1G(t)− b4I(t)G(t) + b7, G(0) = Gb + b0,

İ(t) = −b2I(t) +
b6
b5

∫ t

t−b5

G(s) ds, I(0) = Ib + b3b0,

where G(t) ≡ Gb for t ∈ [−b5, 0). This model is both easier to fit and has more stable solutions than
the minimal model and its variants (Li et al 2001; Mukhopadhyay et al 2004).

The GA model introduces several new parameters, many of which can be expressed in terms of
the parameters under the minimal model. The parameter b0 is the theoretical increase in glucose
concentration over basal level caused by the glucose injection. Parameter b1 represents the constant
glucose absorption rate and is equivalent to the parameter p1 under the minimal model. Similarly,
b2 denotes the constant elimination rate of insulin and is equivalent to n under the minimal model.
Parameter b3 denotes the increase in insulin concentration per increase in glucose concentration at
time zero caused by the injection of glucose, whilst b4 denotes the glucose absorption rate per insulin
concentration and b5 the length of the time for which glucose concentration influences the current
pancreatic insulin secretion. Finally, b6 denotes the second-phase insulin release rate per average
glucose concentration during the last b5 minutes and b7 denotes the constant increase in glucose
concentration due to constant baseline liver glucose release. We label this glucose model as G2 and
the insulin model as I5.

2.2.4 Relating the Minimal and GA Models

The GA model is, in fact over-parameterised and de Gaetano and Arino (2000) show that setting b7 =
Gb(b1 + b4Ib) and b6 = b2Ib/Gb provides an adequate description of the underlying physiological
processes.

Comparing the GA model with the minimal model is it fairly easy to see that b4 = p3/p2, Gb+ b0 =
G0 and Ib + b3b0 = I0. Thus, the metabolic portrait under the GA model is given by SI = b4,
SG = b1, and ϕ1 = b3/b2. The second pancreatic responsiveness parameter ϕ2 cannot be estimated
under the GA model.
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3 Likelihood Construction

Having described the data and introduced the basic models, we next describe how these essentially
deterministic models can be expressed as stochastic state space models that approximate the corre-
sponding stochastic differential equation models.

We use the same approach as Andersen and Højbjerre (2003), in which an entire set of coupled
differential equations is solved by first applying a logarithmic transformation of the system in order
to bring the process entities onto the same scale so that they can share a common variance, then
discretising and embedding them within a stochastic state space modelling framework allowing for
random errors both within the system and measurement processes. This state space formulation then
provides a natural framework for likelihood construction and therefore statistical analysis.

3.1 Logarithmic Transformation

We begin by taking a logarithmic transformation of all the glucose and insulin systems. Here, we
let g(t) = logG(t), x(t) = logX(t) and i(t) = log I(t), so that ġ(t) = Ġ(t)/G(t), ẋ(t) =
Ẋ(t)/X(t) and i̇(t) = İ(t)/I(t). Adopting this transformation and reparameterising in terms of the
metabolic portrait parameters SI , SG, ϕ1 and ϕ2 as well as the GA model parameters b0 and b3, the
minimal model becomes

ġ(t) = −SG(1−Gb e
−g(t))− ex(t), g(0) = log(Gb + b0),

ẋ(t) = −p2(1− SI(e
i(t) − Ib)e

−x(t)), x(0) → −∞,

i̇(t) = −
b3
ϕ1
(1− e−i(t)Ib) + 10

−4e−i(t)ϕ2J+(e
g(t) − h)t, i(0) = log(Ib + b3b0).

(2)

Similarly, the three alternative insulin models derived from the minimal model become

i̇(t) = −
b3
ϕ1
(1− e−i(t)Ib) + 10

−4e−i(t)ϕ2J+(e
g(t) − h), i(0) = log(Ib + b3b0),

i̇(t) = −
b3
ϕ1
(1− e−i(t)Ib) + 10

−4e−i(t)ϕ2(e
g(t) − h)t, i(0) = log(Ib + b3b0),

i̇(t) = −
b3
ϕ1
(1− e−i(t)Ib) + 10

−4e−i(t)ϕ2(e
g(t) − h), i(0) = log(Ib + b3b0),

(3)

and the GA model becomes

ġ(t) = −SG(1−Gb e
−g(t))− SI(e

i(t) − IbGbe
−g(t)), g(0) = log(Gb + b0),

i̇(t) = −
b3
ϕ1

[

1−
Ib

Gbb5
e−i(t)

∫ t

t−b5

eg(s) ds

]

, i(0) = log(Ib + b3b0).
(4)

Thus, the parameter vector for any model obtained by combining either glucose process from the
minimal model with any of the four insulin process I1, . . . , I4 contains the parameters (SG, SI , ϕ1,
b3, b0, Gb, Ib, ϕ2, p2, h), whereas the two models adopting the GA insulin process contain parameters
(SG, SI , ϕ1, b3, b0, Gb, Ib, b5). Later these parameter vectors will be extended to also include the
precisions of the error processes on the underlying system and the measurements.

3.2 Model Discretisation and Stochasticity

We discretise the process in order to obtain an approximation to the continuous time process de-
scribed by the different combination of differential equations given in the previous section.
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We begin by dividing the sample period into suitably small time intervals in which the end points,Λ =
{t1, t2, . . . , t|Λ|}, of the time intervals need not necessarily be equidistant, but are chosen so that the
observation times all lie within Λ. We introduce a more convenient notation for g(tk), x(tk) and i(tk)
by using tk as a subscript and adding s as superscript indicating that they represent the underlying sys-
tem process, e.g. g(tk) = gstk . Discretising the processes and adding noise with variance dependent
on the discretisation intervals, we derive the underlying system process for e.g. the log-transformed
minimal model as

gstk = fg
tk−1

+ εg
s

,

xs
tk
= fx

tk−1
+ εx

s

,

istk = f i
tk−1

+ εi
s

,

where

fg
tk−1

=gtk−1
−(tk−tk−1)

(

SG(1−Gb e
−gtk−1 ) + extk−1

)

,

fx
tk−1

=xtk−1
−(tk−tk−1)p2

(

1− SI(e
itk−1 − Ib)e

−xtk−1
)

,

f i
tk−1

= itk−1
−(tk−tk−1)

( b3
ϕ1
(1− e−itk−1 Ib)− 10

−4e−itk−1ϕ2J+(e
gtk−1−h)tk−1

)

,

and where εg
s
, εx

s
and εi

s
each follows a normal distribution with zero mean and common vari-

ance ν−1(tk − tk−1).

Thus, the corresponding stochastic differential equations become a discrete-time stochastic process
where

gstk | g
s
tk−1

, xs
tk−1

, ν ∼ N (f g
tk−1

, ν−1(tk − tk−1)),

xs
tk
|xs

tk−1
, istk−1

, ν ∼ N (fx
tk−1

, ν−1(tk − tk−1)), (5)

istk | i
s
tk−1

, gstk−1
, ν ∼ N (f i

tk−1
, ν−1(tk − tk−1)).

We can derive similar process for each of the remaining models obtained by combining the two
glucose models with any of the five insulin models. The corresponding mean values for these process
are provided in Appendix A, as the variances remain unchanged.

Note, that the larger the value of |Λ|, the smaller the time intervals in the discretisation and the
more accurate the approximation of the system processes. Thus, the time intervals indicate a level of
coarseness of the solution. In practice, at resolution level τ , we divide the interval [tk, tk+1] into κkτ

sections so that κkτ quantifies the coarseness and τ indexes the coarseness level. As an example, we
might set κkτ = τ , so that each time period is divided into an equal number parts. We return to the
definition of κ in the next section. Of course, for large values of |Λ| the likelihood evaluations are
extremely computational expensive.

The true underlying system described is not directly observable. We have instead a series of ob-
servations from which we wish to estimate the true underlying process. If we denote the observed
log-values of the glucose and insulin levels at time tk by gotk and iotk respectively, then observations
are made at times tk ∈ T ⊆ Λ. Thus, the discretisation above is sufficiently fine so that obser-
vations occur on a subset of the discrete time points in Λ. We model the measurement error on go

t

and iot by random white noise processes with precisions νgo and νio , respectively. Consequently the
distributional assumptions for gotk and iotk are

gotk | g
s
tk
, ν−1go ∼ N (gstk , νgo),

iotk | i
s
tk
, ν−1io ∼ N (istk , νio).

(6)
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3.3 Population Modelling

From the sections above, we have two distinct glucose models, G1 and G2, and five different insulin
models, I1, . . . , I5. We combine these to obtain 10 different models to choose from when describing
the glucose and insulin system. We use m as a model index, i.e. m = 1, . . . , 10, where the former five
models contain the glucose model G1 and insulin model I1 to I5, and the latter five models contain
the glucose model G2 and insulin models I1 to I5.

These models describe the system for a specific individual but can be further extended to consider
a population of individuals as follows. Suppose our population comprises L individuals and let the
vector of system process values for individual j in model m be given by

Φ
s
jm =

{

{gsjmtk
, xs

jmtk
, isjmtk

}tk∈Λ, for m = 1, . . . , 5,

{gsjmtk
, isjmtk

}tk∈Λ, for m = 6, . . . , 10.

The corresponding data vector of observations is denoted by Φo
j = {gojtk , i

o
jtk
}tk∈T . Using the

distributional assumptions in (5) and (6) the densities associated with the individual system and
observation processes are simply products of univariate normal densities, so that

pm(Φ
s
jm |θjm)∝

{

ν
|Λ|
j exp(−Vm(Φ

s
jm,θjm)), for m = 1, . . . , 5,

ν
3|Λ|/2
j exp(−Vm(Φ

s
jm,θjm)), for m = 6, . . . , 10,

pm(Φ
o
j |θjm,Φs

jm) ∝ (νgo
j
νioj )

|T |/2 exp(−W (Φo
j ,Φ

s
jm,θjm)),

where θjm denotes the vector of parameters for individual j in model m (as stated in Section 3.1 but
extended to include the individual precisions νj , νgo

j
, νioj ) and corresponding variance functions are

given by

Vm(Φ
s
jm,θjm)=



















1

2
νj
∑

tk∈Λ

(gsjmtk
−fg

jmtk
)2+(xs

jmtk
−fx

jmtk
)2+(isjmtk

−f i
jmtk

)2, m=1, . . . , 5,

1

2
νj
∑

tk∈Λ

(gsjmtk
−fg

jmtk
)2+(isjmtk

−f i
jmtk

)2, m=6, . . . , 10,

W (Φo
j ,Φ

s
jm,θjm)=

1

2

∑

tk∈T

νgo
j
(gojtk − gsjmtk

)2 + νioj (i
o
jtk
− isjmtk

)2.

Thus, we assume that each individual has their own individual system process and associated pa-
rameters. However, we further assume that the values of the model parameters for each individual
are drawn from some common population distribution. Essentially, we assume that the θjm are ran-
dom effects. Here, we assume that the individual system parameters in θjm are independent and
log-normally distributed, except for the precisions which we assume to be gamma distributed. This
means that θjm belongs to a common population distribution pm(θjm |Ψm) which is the product
of log-normal and gamma distributions and with population parametersΨm consisting of the means
and precisions for the log-normal distributed systems parameters, e.g. µSG

and τSG
, and the scale

and shape parameters for the gamma-distributed precisions, e.g. αν and βν .

The likelihood for the whole population in model m can then be written as

L(Ψm,θm,Φs
m |Φ

o) =

L
∏

j=1

pm(Φ
o
j |θjm,Φs

jm)pm(Φ
s
jm |θjm)pm(θjm |Ψm),

where Φs
m = (Φs

1m,Φs
2m, . . . ,Φs

Lm) is the set of all L individual system processes in model m,
Φ

o = (Φo
1,Φ

o
2, . . . ,Φ

o
L) is the set of all individual observations and θm = (θ1m,θ2m, . . . ,θLm)

denotes the set of all individual system parameters in a given model m.
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Now that we have a likelihood, we can undertake our Bayesian analysis as described in the next
section.

4 Bayesian Analysis

Here, we undertake a Bayesian analysis of the data, both to facilitate the model discrimination prob-
lem and to ensure efficient propagation of the information in the data throughout the model. We begin
by giving a brief overview of the Bayesian approach used here.

4.1 The Bayesian Approach

The Bayesian approach involves constructing a posterior distribution for the model parameters as a
product of the joint probability distribution of the data (essentially the likelihood) with prior distri-
butions representing our prior beliefs about the parameters before any data was observed.

Dropping the model dependence here for notational convenience, we have data Φo and wish to esti-
mate the unobserved process Φs, the individual parameter values θj and the population parameters,
Ψ. The corresponding posterior distribution for these unknowns is therefore

π(Ψ,θ,Φs |Φo) ∝
L
∏

j=1

p(Φo
j |θj ,Φ

s
j)p(Φ

s
j |θj)p(θj |Ψ)p(Ψ)

for some appropriate (hyper)prior distribution p(Ψ) (see Section 4.4 for discussion on priors).

In order to obtain inference about the parameters of interest we use Markov chain Monte Carlo
(MCMC) methods (Brooks 1999; Gilks et al 1996) to obtain the corresponding posterior means and
variances. Implementational details of the MCMC algorithm used here are provided in Appendix B.
To ensure adequate performance, the MCMC scheme is tuned via an initial pilot simulation. For the
population parameters (which, as described in Appendix B, are updated individually) we adapt the
proposal scales by running the simulation for an initial N iterations and then calculating the mean
acceptance ratio for the updates for each parameter in the model. For any parameter with a mean
acceptance ratio less than 0.2, we halve the current proposal variance. For any parameter with a mean
acceptance ratio greater than 0.5, we multiply the current proposal variance by 1.5. This process is
continued until all mean acceptance ratios lie within (0.2, 0.5), see Gelman et al (1996). For the
individual parameters (which we update together as a block in the main simulation) we conduct an
initial pilot simulation in which the parameters are updated individually and follow the process above
to find suitable proposal scales. We then conduct a second simulation in which the parameters are
updated together and rescale all of the proposal variances together following the scheme above in
order to get a suitable acceptance rate for the full joint update described in Appendix B. For each of
these pilot simulations, a value of N = 10 000 appears to work well.

4.2 Model Uncertainty

As well as parameter estimation, we are interested in determining which combination of glucose
and insulin models best describes the observed data. In order to address this question, we extend
the posterior distribution above to include both parameter and model uncertainty, so that if θjm

andΨm denote the individual and population parameters present in model m, then the joint posterior

10



distribution over both model and parameter space is given by

π(Ψm,θm,Φs
m,m |Φo) ∝

L
∏

j=1

pm(Φ
o
j |θjm,Φs

jm)pm(Φ
s
jm |θjm)pm(θjm |Ψm)p(Ψm |m)p(m).

Here p(m) denotes the prior model probability for model m and pm the corresponding probability
distribution under model m.

Posterior model probabilities are then obtained by integrating the joint posterior over the correspond-
ing parameter space. These posterior model probabilities can then be used either to discriminate
between competing models or to provide model-averaged predictive inference incorporating both pa-
rameter and model uncertainty. In particular, they can be used to provide model-averaged inference
with regard to parameters such as SI which retain a constant interpretation across all models. These
posterior model probabilities are obtained by augmenting the MCMC algorithm discussed above to
include reversible jump (RJ)MCMC (Green 1995) transitions for moves between models. Details of
the RJMCMC transitions used in this analysis are provided in Appendix B.

The implementation of the RJMCMC scheme can be rather problematic because of the need to spec-
ify both a map between the parameter spaces for different models and a corresponding proposal
distribution. For problems with only a small number of competing models the between-model tran-
sitions can be pilot-tuned beforehand (Richardson and Green 1997). However, for more general
modelling problems more complex automated schemes are required (see Brooks et al 2003; Green
2003).

These transition problems can be eased somewhat by periodically “relaxing” the algorithm so that
the accept-reject step becomes more lenient, allowing a wider variety of proposals to be accepted.
This can be achieved through the introduction of a suitable tempering scheme.

4.3 Improving Mixing

The MCMC scheme described above can exhibit poor mixing properties with particularly low ac-
ceptance rates for between-model transition. In order to improve the mixing rate and, in particular,
the ability for the simulation to move between models, we introduce a simulated tempering scheme
(Marinari and Parisi 1992; Geyer and Thompson 1995) which involves further augmenting the pos-
terior distribution above to depend upon an arbitrary temperature parameter. Conceptually, at high
temperatures we want the corresponding posterior to be reasonably flat so that movement around the
joint model and parameter space is unrestricted. We also require a temperature corresponding to the
posterior of interest, the so-called cold distribution as it is from this distribution that inference will
be obtained.

In our context, a very natural tempering scheme is obtained by equating temperature with the res-
olution level τ described in Section 3.2. Thus, our augmented posterior distribution incorporating
resolution level becomes

πτ (Ψm,θm,Φs
m,m |Φo) ∝

L
∏

j=1

pm,τ (Φ
o
j |θjm,Φs

jm)pm,τ (Φ
s
jm |θjm)

× pm(θjm |Ψm)p(Ψm |m)p(τ |m)p(m),

where pm,τ denotes the corresponding probability distribution associated with model m at resolution
level τ . Here, we take κkτ = 2ak/τ − 1, where ak is chosen sufficiently large so that all observations
inΦo are used for approximating the joint probability distribution. In order to account for the pertur-
bation of the glucose-insulin system at time t = 0, we let ak decrease gradually over time as to allow
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for better approximation at the beginning of the experiment than at the end, i.e. we choose ak = 5
for tk+1 ≤ 2, ak = 4 for 2 < tk+1 ≤ 10 and ak = 3 otherwise. Here, we take T = 3 temperatures.

Since p(m | τ = 1) is pre-determined as our model prior (assuming that τ = 1 corresponds to the
cold distribution) and since p(m | τ = 1) ∝ p(τ = 1 |m)p(m), we fix p(τ = 1 |m) = 1 for
all m. The remainder of the prior weights can be determined so as to maximise the efficiency of
the resulting algorithm. In practice, we use a pilot-tuning scheme to choose values for p(τ |m)
for τ 6= 1 which ensures that transitions between temperatures can occur with relative ease. Pilot-
tuning can be a time-consuming process, so we adopt the following automated procedure. For fixed
model m, let cτ = p(τ |m). Then, given a simulated tempering scheme with fixed model and
temperatures τ = 1, . . . , T we begin by setting cτ = 1 for all τ = 1, . . . , T . We fix c1 = 1 to ensure
a unique solution and, without loss of generality, restrict attention to tempering schemes under which
transitions may only be made between neighbouring temperatures. We begin our simulated tempering
scheme in some arbitrary starting position and after each temperature transition, we update the prior
weights as follows. Suppose we currently have weights c1, . . . , cT and that we have just proposed
a move from temperature τ to τ + 1, say. Whether or not we accept this move we now divide all
weights cτ+1, . . . , cT by the acceptance ratio for the proposed move. Thus, if the move attracts a low
acceptance probability, the normalising constant for the proposed model is increased. Similarly, since
we have learnt only about the τ → τ +1 transition from this proposed move, all of the normalisation
constants to the right of τ are increased to preserve their relative size. Similarly, if we propose to
move from τ to τ − 1, we would multiply the constants cτ , . . . , cT by the corresponding acceptance
ratio. This procedure is repeated until the weights settle to roughly constant values and, once the
weights have been determined, they can then be used as inputs for the main simulation.

One advantage of this approach is that as the resolution level decreases (with increasing temperature)
so does computational expense. Thus, transitions within the hotter temperatures not only enable
more rapid movement (due to increasing coarseness of the likelihood) but are also computationally
cheaper than transitions in the cold distribution. However, one problem with this approach is that
though the prior weights can be tuned so as to allow adequate mixing between temperatures, the
decrease in resolution may not on its own be sufficient to achieve satisfactorily rapid mixing between
models in the hottest temperatures. To increase mixing between models we further adapt the posterior
distribution so that as the temperature increases, not only does the resolution decrease, but also the
affect of the likelihood decreases, so that the posterior looks increasingly like the prior. This is most
easily achieved by taking

πτ (Ψm,θm,Φs
m,m |Φo) ∝

L
∏

j=1

(

pm,τ (Φ
o
j |θjm,Φs

jm)pm,τ (Φ
s
jm |θjm)

)s(τ)

× pm(θjm |Ψm)p(Ψm |m)p(τ |m)p(m),

where s(τ) = 2−(τ−1)n for n > 0. Clearly, s decreases as τ increases so the influence of the
likelihood terms on the posterior similarly decreases. In addition, when τ = 1, s = 1 so that the cold
distribution remains the distribution of interest.

Having described the algorithm to be used to undertake the analysis, we next describe the priors to
be used before undertaking a simulation study to examine the algorithm’s performance.

4.4 Priors

The only parameters requiring prior distributions are the population parameters Ψm. We assume
normal priors for all mean parameters and gamma priors for the corresponding precisions. These
priors are adapted from the results of previous studies (e.g. Pacini and Bergman 1986) and from

12



information elicited from collaborators at Novo Nordisk A/S. However, for µGb
and µIb

the priors
are based on observations of the pre-injection levels of the glucose and insulin concentrations. The
MINMOD programme fixes these base levels of glucose and insulin, but the parameter estimation
there is very sensitive to these fixed values. Therefore we impose fairly informative prior distributions
for µGb

and µIb
based upon observations of each patient’s glucose and insulin levels taken 30 minutes

and again 15 minutes before the glucose injection. These observations are obviously excluded from
the likelihood terms used in the analysis. Finally for the population parameters corresponding to the
individual precisions, we assume vague Gamma priors.

In terms of models we have no preference a priori for one model over another, and so we assume
equal prior probabilities across all models.

4.5 Simulation Study

In order to assess the performance of our methodology both for parameter estimation and for model
discrimination, we conduct a brief study in which simulated data is analysed and compared with
the truth. Here, we construct an artificial population distribution p(Ψm |m) from which simulated
IVGTT data can be drawn under a fixed model m. The MCMC simulation algorithm is then applied
to these data to assess the method’s performance.

We simulated four different sets of data consisting of 25 subjects from the same population distri-
bution under the four different models m = 1, 5, 6, and 10. The four chains were run for 3 million
iterations each and exhibited good estimation properties. In particular, the algorithm was easily able
to distinguish the true model for each of the four data sets, with posterior model probabilities of more
that 90% for the true model. See Table 1 for details. Kass and Raftery (1995) discuss the interpre-
tation of the ratio of the posterior to prior odds which, in this case as we have flat priors, is simply
the ratio of two posterior model probabilities. They conclude that a ratio greater than 3 suggests
some evidence whereas a ratio of greater than 20 represents very strong evidence in favour of the
most probable model in favour of the other. Each of the Bayes factors corresponding to the poste-
rior model probabilities in Table 1 suggests strong evidence in favour of the correct model over the
next best alternative. The posterior population and individual parameter estimates are also extremely
accurate, with posterior means close to the true values and high posterior precision. We therefore
conclude that our method provides a robust and accurate analysis of IVGTT data.

Posterior model probability

True model 1 2 3 4 5 6 7 8 9 10

1 0.94 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.05 0.95 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.91 0.06 0.02 0.01 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.97

Table 1: The achieved cold posterior model probabilities for four simulations under known ‘true’ models.

In order to examine the influence of the population size on the model discrimination we conduct a
final simulation study. Here, we subsample at random three groups of subjects from the 25 simulated
subject from model m = 10. These groups comprise 10, 15 and 20 subjects, respectively. Three
additional Markov chains were run and essentially all chains exhibited similar behaviour implying so
that the models visited during the cold distribution were almost identical. Parameter estimates were
also consistent and accurate, though the larger group had smaller credible intervals from which we
may conclude, as expected, that the inclusion of more data provides better estimates of population
and individual parameters.
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5 Results

It is worth noting here, that the minimal model is based upon the assumption of a single well-mixed
pool of glucose (Pacini and Bergman 1986), which requires the injected glucose load to be fully
circulated within the venous system before glucose measurements can be used for the actual model
fitting. It is in general believed that this mixing phase lasts approximately 10 minutes and conse-
quently the MINMOD software package zero-weights all glucose observations taken at times t < 8
minutes. However, exploratory pilot simulation studies indicate that with a logarithmic transforma-
tion of the data the observations taken at t = 2, 4, 6 minutes exhibit similar behaviour around the
fitted mean values to those taken at t ≥ 8 minutes. We expect these glucose observations to contain
important information which may be lost if not included in our simulations. The observations taken
at t = 0 must be discarded as to allow for adequate estimates of G0 and I0. This applies to our
approach as well as the MINMOD package.

For adequate model discrimination of the two populations, we follow the procedure outlined in Sec-
tion 4 noting that we used a small degree of fine tuning to obtain the tempering parameter n. It was
found that suitable tempering schemes for both populations was obtained for n = 1.5. Our MCMC
simulation is run for a total of 5 million iterations during which we update the temperature every 50
iterations and the model every 500.

Output from the two chains is shown in Figure 4, from which we see that the chains appear to move
fairly easy between resolution levels. Shown also are the models visited at each resolution level τ .
It is clear that between-model mixing is excellent at resolution level τ = 4. Note that, as expected,
the stationary distributions become more and more centred on only a few models as the resolution
level is decreased. For the healthy population we obtain models 2 and 3 as the most probable models,
whereas for the type II diabetic population the most probable models are 8 and 10. See Table 2 for
the corresponding posterior model probabilities. In both cases the support for the a posteriori most
probable model is significant.

Posterior model probability

Population Resolution 1 2 3 4 5 6 7 8 9 10

1 0.00 0.21 0.76 0.03 0.00 0.00 0.00 0.00 0.00 0.00
Healthy 2 0.10 0.15 0.23 0.20 0.08 0.02 0.07 0.08 0.05 0.01

4 0.11 0.13 0.12 0.10 0.10 0.16 0.07 0.05 0.09 0.06

1 0.00 0.00 0.07 0.00 0.01 0.00 0.00 0.75 0.00 0.17
Diabetic 2 0.05 0.09 0.15 0.07 0.08 0.04 0.13 0.20 0.08 0.11

4 0.13 0.05 0.11 0.10 0.07 0.08 0.14 0.13 0.12 0.09

Table 2: The achieved posterior model probabilities under the three degrees of resolution.

Clearly, the variants of Bergman’s minimal model dominates all others for the healthy data set as there
is no posterior support for the GA model. Overall, we would conclude that the minimal model without
the positive truncation is the most appropriate model for the healthy data though, with approximately
25% of the posterior mass on alternative models, model averaged predictive estimates may be useful
as they would properly reflect this element of uncertainty. For the type II diabetic population, we see
that the same insulin model as for the healthy population is strongly identified in the posterior with a
posterior model probability of 82% (summing over models 3 and 8). However, here we find a large
degree of evidence for the use of the glucose part of the GA model (92%) as opposed to the minimal
glucose model observed for the healthy patients. Comparing the two populations we deduce that
insulin model I3 is the best to describe both populations, however for the glucose model we need to
distinguish between the population, since the GA model is the best for the type II diabetic population,
whereas for the healthy population the minimal model is the best.
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Figure 4: Simulation output for the healthy and diabetic populations showing the trace plots for the resolution
and models within-resolution parameters over time.
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Table 3 provides the posterior means and corresponding credible intervals of the population param-
eters for the two populations under the two most probable models identified, together with model-
averaged values. For the healthy population, each of these parameters retain a consistent interpreta-
tion across the three models identified and we can see that most parameters vary only little between
models. However, for the type II diabetic population we obtain quite different estimates for the
baseline insulin level between the two top models, for example, with correspondingly large credible
intervals.

Healthy Model m = 3 (76%) Model m = 2 (21%) Model averaged

SG 0.025 (0.020,0.031) 0.025 (0.020,0.032) 0.026 (0.019,0.032)

SI · 105 1.638 (0.785,2.387) 1.746 (0.583,2.699) 1.693 (0.607,2.761)

ϕ1 323.775 (301.937,342.026) 322.570 (299.497,348.975) 322.160 (295.953,349.681)

ϕ2 540.488 (451.745,625.243) 538.327 (449.116,610.311) 533.957 (447.655,620.240)

Gb 4.351 (3.069,5.259) 4.275 (3.164,5.010) 4.375 (3.407,5.289)

Ib 53.983 (48.600,59.019) 54.446 (47.362,60.195) 54.593 (47.476,61.107)

b0 4.531 (4.402,4.641) 4.541 (4.406,4.682) 4.539 (4.402,4.694)

b3 51.229 (46.415,56.132) 50.444 (46.526,54.894) 50.723 (46.803,54.531)

p2 0.020 (0.018,0.022) 0.020 (0.017,0.022) 0.020 (0.017,0.022)

h 6.941 (4.142,9.748) 6.752 (4.046,9.984) 6.875 (3.782,10.205)

ν 4165.656 (3232.793,5101.553) 4102.646 (3200.843,5180.017) 4143.755 (3112.828,5253.806)

Diabetic Model m = 8 (75%) Model m = 10 (17%) Model averaged

SG 0.008 (0.005,0.011) 0.007 (0.005,0.009) 0.007 (0.005,0.010)

SI · 105 0.106 (0.041,0.179) 0.105 (0.043,0.170) 0.102 (0.038,0.177)

ϕ1 157.383 (139.250,175.218) 157.814 (142.135,171.744) 158.970 (139.552,175.266)

ϕ2 776.508 (535.876,954.114) – 754.391 (537.810,958.524)

Gb 9.994 (7.028,11.897) 10.250 (8.171,11.974) 10.128 (7.013,12.436)

Ib 64.860 (1.639,331.458) 118.951 (4.911,390.844) 77.614 (2.079,351.639)

b0 20.656 (19.402,22.895) 20.851 (19.511,22.776) 20.624 (19.397,22.573)

b3 2.966 (2.410,3.730) 2.997 (2.650,3.438) 2.978 (2.392,3.520)

b5 – 14.636 (11.363,18.155) 14.642 (10.812,18.200)

p2 – – 0.007(0.003,0.011)

h 0.020 (0.010,0.027) – 0.019(0.008,0.027)

ν 2760.839 (1852.464,3431.459) 2817.343 (2333.624,3246.538) 2723.238 (1670.877,3435.933)

Table 3: Posterior mean and 95% credible intervals (in subscript) for the population parameters in the most
probable models in the cold distribution. Given is also the model-averaged posterior mean and a
model-averaged 95% credible intervals for the same parameters.

Possibly one of the most considerable consequences of the analysis, is the estimation of the healthy
population mean glucose process, together with a measure of our associated uncertainty. A graphical
representation of the true underlying model-averaged glucose and insulin processes are provided in
Figure 5. Note how the diabetic blood glucose reaction to glucose stimuli is more pronounced than
for the healthy population, which may be explained by the healthy subjects being able to dispose
of glucose instantaneously. We also see, for the diabetics, that the insulin rises immediately and
decreases very slowly as the pancreas remains producing insulin in order to dispose of the glucose.

Normal curves such as these can be used to monitor a particular patients’ reaction to the IVGTT test
to determine whether or not the patient is in the risk group for developing type II diabetes. Attaining
a reliable estimate of the true underlying glucose disposal process facilitates a more robust classifica-
tion procedure which is further improved by the provision of the corresponding error bounds. It is on
the basis of such plots that the reaction to treatment, for example, is judged and so obtaining reliable
estimates is of paramount importance.
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Figure 5: Posterior mean (white line) and 95% credible intervals superimposed in black for the glucose and
insulin levels for the healthy and the type II diabetic populations.

6 Discussion

In this paper we consider the problem of discriminating between several proposed variations of the
minimal models in addition to the new model proposed by de Gaetano and Arino (2000). Thus we
obtain a total of ten different models subject for discrimination. The models have been logarith-
mically transformed and recast as state space models treating each of them as unified systems in a
Bayesian setting and allowing for incorporation of noise on both the glucose and insulin concen-
trations, together with noise on the differential equations. The models we use here are therefore
stochastic versions of those traditionally adopted in the literature and we use Bayesian model-fitting
techniques to deal with this stochasticity.

For the healthy population we see that the model describing the data best is model 3 combining the
minimal glucose model G1 and the insulin model I3 which has no positive reflection. This is, in
fact, the model suggested by Bergman et al (1981). However, for the type II diabetic population
we find that model 8 describes the data the best, and combines the same insulin model as for the
healthy patients with the glucose model proposed by de Gaetano and Arino (2000). This supports the
criticism by Pillonetto et al (2002) that the minimal model does not adequately describe the glucose-
insulin system for type II diabetics because of the inherently low response in insulin concentration
observed for these patients.

It is worth noting that though the conclusions drawn from the analyses presented here may well apply
to the original deterministic models, we have fitted stochastic versions of those original models in
this paper. This means also that comparisons with metabolic portraits estimated from our stochastic
version of the minimal model should be compared to estimates obtained via MINMOD with care.
However, as demonstrated in Andersen and Højbjerre (2003) the Bayesian approach tends to provide
far more precise parameter estimates that those obtained via MINMOD and are more robust to the
instabilities inherent in the underlying model. Further, Cobelli et al (1999) showed that estimates of

17



the metabolic portrait obtained by MINMOD are typically biased compared to estimates obtained by
expensive and time consuming clamp studies, and that a Bayesian approach to the minimal model
improves the accuracy of the estimates obtained. This is partly caused by MINMOD incorrectly
estimating very low insulin sensitivity indices. It would be interesting to apply the approach presented
in this paper on subjects that have undergone both an IVGTT study as well as a clamp study to further
investigate the accuracy of our estimates, though the simulation studies do already appear to suggest
that accuracy is very high.
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A System Process Means

The system means in the different models are given below. Note that the integral in the GA model is
approximated here by a trapezoidal quadrature rule.
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Glucose model G1 and insulin model I1 to I5:

G1 : f
g
tk−1

=gtk−1
−(tk−tk−1)

(

SG(1−Gb e
−gtk−1 ) + extk−1

)

,

fx
tk−1

=xtk−1
−(tk−tk−1)p2

(

1− SI(e
itk−1 − Ib)e

−xtk−1
)

,

I1 : f
i
tk−1

= itk−1
−(tk−tk−1)

( b3
ϕ1
(1− e−itk−1 Ib)− 10

−4e−itk−1ϕ2J+(e
gtk−1−h)tk−1

)

,

I2 : f
i
tk−1

= itk−1
−(tk−tk−1)

( b3
ϕ1
(1− e−itk−1 Ib)− 10

−4e−itk−1ϕ2J+(e
gtk−1−h)

)

,

I3 : f
i
tk−1

= itk−1
−(tk−tk−1)

( b3
ϕ1
(1− e−itk−1 Ib)− 10

−4e−itk−1ϕ2(e
gtk−1−h)tk−1

)

,

I4 : f
i
tk−1

= itk−1
−(tk−tk−1)

( b3
ϕ1
(1− e−itk−1 Ib)− 10

−4e−itk−1ϕ2(e
gtk−1−h)

)

,

I5 : f
i
tk−1

= itk−1
−(tk−tk−1)

(

−
b3
ϕ1

(

1−
Ib

Gbb5
e−itk−1

∑

tj∈Λ∩[tk−b5,tk]

(tj − tj−1)(e
g(tj) + eg(tj−1))/2

)

)

Glucose model G2 and insulin model I1 to I5:

G2 : f
g
tk−1

= gtk−1
− (tk − tk−1)

(

SG(1−Gb e
−gtk−1 )− SI

(

eitk−1 − IbGbe
−gtk−1

)

,

I1 : f
i
tk−1

= itk−1
−(tk−tk−1)

( b3
ϕ1
(1− e−itk−1 Ib)− 10

−4e−itk−1ϕ2J+(e
gtk−1−h)tk−1

)

,

I2 : f
i
tk−1

= itk−1
−(tk−tk−1)

( b3
ϕ1
(1− e−itk−1 Ib)− 10

−4e−itk−1ϕ2J+(e
gtk−1−h)

)

,

I3 : f
i
tk−1

= itk−1
−(tk−tk−1)

( b3
ϕ1
(1− e−itk−1 Ib)− 10

−4e−itk−1ϕ2(e
gtk−1−h)tk−1

)

,

I4 : f
i
tk−1

= itk−1
−(tk−tk−1)

( b3
ϕ1
(1− e−itk−1 Ib)− 10

−4e−itk−1ϕ2(e
gtk−1−h)

)

,

I5 : f
i
tk−1

= itk−1
−(tk−tk−1)

(

−
b3
ϕ1

(

1−
Ib

Gbb5
e−itk−1

∑

tj∈Λ∩[tk−b5,tk]

(tj − tj−1)(e
g(tj) + eg(tj−1))/2

)

)

B (RJ)MCMC Updates

Here we provide additional details on the MCMC transitions used to explore the posterior described
in the text.

B.1 Parameter Updates

The parameter updates occur in two distinct steps. First we update the population parameters using
a series of univariate Metropolis Hasting updates. Then, due to the high correlations between the
individual parameters and system process, these are updated together using a Metropolis Hastings
step for each individual j in turn.

The posterior conditional distributions for the population parameters all have standard form except for
those corresponding to the three precision parameters. Thus, Gibbs moves are used to update these,
using the corresponding normal or gamma conditional distributions, whilst random walk Metropolis
Hastings updates are required to the population parameters associated with the precisions.
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High posterior correlations between the elements of θjm means that updating the entire vector in a
single step is likely to be most efficient. Similarly, the high dependence between Φs

jm and θjm sug-
gests blocking these two vectors together within a single Metropolis Hastings update. An additional
advantage of this approach is that all of these parameters are updated at a cost of only one likelihood
evaluation. Here, we use a random walk Metropolis proposal for θjm which is uniformly distributed
within a hyper-rectangle centred on the current position. The length of the proposal interval for each
parameter is determined separately via an initial pilot-tuning simulation, as discussed in Section 4.1.
As a proposal for the Φs

jm we simply sample a new value Φs
jm

′ from the model pm,τ (Φ
s
jm |θ

′
jm)

where θ′jm denotes the proposed new value for the vector of individual parameters. The proposed
jump from (Φs

jm,θjm) to (Φs
jm

′,θ′jm) is subsequently accepted with probability α = min(1, A),
where

A =

[

pm,τ (Φ
o
j |θ

′
jm,Φs

jm
′)
]s(τ) [

pm,τ (Φ
s
jm

′|θ′jm)
]s(τ)−1

p(θ′jm|Ψm)
[

pm,τ (Φ
o
j |θjm,Φs

jm)
]s(τ) [

pm,τ (Φ
s
jm|θjm)

]s(τ)−1
p(θjm|Ψm)

.

B.2 Model Updates

Jumps between some models (e.g., updating the insulin model from I1 to It, t = 2, 3, 4, say) do not
involve changing the number of parameters. For moves of this kind, we simply compare the posterior
distribution under the current and proposed new model with the current parameter values and adopt
the usual Metropolis Hastings acceptance ratio. This works reasonably well in practice, since the
majority of parameters that persist in all models change very little between models.

For moves that involve adding or deleting a parameter (e.g., when we update the glucose model) we
require a reversible jump MCMC update which we implement as follows. First, we select a new
model to which we propose to jump, this we do by picking one of the remaining models with equal
probability. We then use the prior corresponding to the new model to generate values for any popula-
tion parameters which exist in the proposed new model but not the current one. Formally, suppose Ψ̃
denotes the set of population parameters common to all models and Ψ̃m denote those population pa-
rameters which belong to model m but are not common to all other models, so thatΨm = (Ψ̃, Ψ̃m).
Thus, supposing that we propose to model m′, we generate Ψ̃

′
m′ from its corresponding prior.

Next, for any individual parameters that exist in the new but not the current model, θ̃jm′ , we generate

new values from the corresponding conditional distribution pm′(θ̃
′
jm′ |Ψ̃

′
m′). Finally, we generate

an entirely new system vector Φs
jm′

′ from the conditional distribution pm′,τ (Φ
s
jm′

′ | (θ̃j , θ̃
′
jm′), with

obvious notation. This proposal is then accepted with probability α = min(1, A), where

A =
p(τ |m′)p(m′)

p(τ |m)p(m)

L
∏

j=1

(

pm′,τ (Φ
0
j | [θ̃j , θ̃

′
jm′ ],Φs

jm′
′)

pm,τ (Φ
0
j | [θ̃j , θ̃jm],Φ

s
jm)

)s(τ)(
pm′,τ (Φ

s
jm′

′ | [θ̃j , θ̃
′
jm′ ])

pm,τ (Φ
s
jm | [θ̃j , θ̃jm])

)s(τ)−1

.

B.3 Temperature Updates

Suppose the Markov chain is in model m at temperature τ , and a new temperature τ ′ is proposed
with equal probability, then the corresponding acceptance probability is given by α = min(1, A),
where

A =
L
∏

j=1

(

pm,τ ′(Φ
o
j |θjm,Φs

jm)pm,τ ′(Φ
s
jm |θjm)

pm,τ (Φ
o
j |θjm,Φs

jm)pm,τ (Φ
s
jm |θjm)

)s(τ ′)
p(τ ′|m)

p(τ |m)
.
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