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Abstract

The goodness-of-fit of the distribution of random effects in a gener-

alized linear mixed model is assessed using a conditional simulation of

the random effects conditional on the observations. Provided that the

specified joint model for random effects and observations is correct, the

marginal distribution of the simulated random effects coincides with

the assumed random effects distribution. In practice the specified

model depends on some unknown parameter which is replaced by an

estimate. We obtain a correction for this by deriving the asymptotic

distribution of the empirical distribution function obtained from the

conditional sample of the random effects. The approach is illustrated

by simulation studies and data examples.

Keywords: conditional simulation, empirical distribution function, general-
ized linear mixed model, goodness-of-fit, random effects.

Running header: A simulation-based goodness-of-fit test.

1 Introduction

This paper is concerned with assessment of the distributional assumptions for
the random effects in a generalized linear mixed model (GLMM). Since the
random effects are not observed, one approach would be to consider random
effects predictions like conditional expectations or modes. However, except
for linear mixed models, the distributional properties of such predictions are
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unknown. It is thus difficult to judge whether a sample of random effects
predictions is consistent with the assumed random effects distribution.

In this paper we pursue instead the following simple idea: consider a
pair of random vectors (A, Y ) which is assumed to follow some fully specified
distribution where A represents the unobserved random effects and Y the ob-
servations. If the specified joint model for (A, Y ) is correct then the observed
data y is a realization from the marginal distribution of Y . Suppose next we
generate a simulation A∗ from the conditional distribution of A given Y = y.
Then marginally, A∗ and A are identically distributed and correlated. We
can thus base goodness-of-fit testing on the sample A∗ proceeding just as if
A had been observed itself.

The situation becomes more complicated when the joint distribution of
(A, Y ) depends on some unknown parameter θ. If a proper prior is specified
for θ in a Bayesian framework one may consider a simulation (A∗, θ∗) from
the posterior of (A, θ) given Y . Again, the distribution of (A∗, θ∗) coincides
with the specified distribution of (A, θ) provided the assumed joint model for
(θ,A, Y ) is correct. In practice, however, one often uses very vague or even
improper priors which are not regarded as bona fide components in a joint
model for (θ,A, Y ).

In this paper we replace θ by a point estimate θ̂. Let P|y,θ denote the
conditional distribution of A given Y = y and indexed by θ. We then base
goodness-of-fit tests on a simulation Ã from P|y,θ̂. In this case Ã only approx-
imately follows the specified distribution for A due to the effect of replacing
the unobserved θ with θ̂. Inspired by Ritz (2004) we derive the asymp-
totic distribution of the empirical distribution function obtained from the
conditional sample Ã of the random effects. This provides an asymptotic
correction for the effect of replacing θ with an estimate.

When the objective is to estimate fixed effects in a GLMM one may
argue that the assumptions concerning the shape of the random effects dis-
tribution is not critical. However, in many applications, e.g. in quantitative
genetics, the random effects themselves and their distributional characteris-
tics are the focal objects of the statistical analysis. A thorough assessment of
the goodness-of-fit of the random effects distribution then seems mandatory.
Moreover, the approach in this paper is not confined to providing a p-value
for a goodness-of-fit test. In the examples in Section 4, exploratory plots of
the simulated random effects e.g. disclose patterns of heterogeneity or cor-
relation among the individuals to which the random effects are associated.
Such patterns should also be taken into account in an analysis of fixed effects.

In Section 2 we obtain the asymptotic distribution of the empirical dis-
tribution function for simulated random effects within the framework of
GLMMs with iid normal random intercepts. Section 3 is concerned with
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the practical implementation of a goodness-of-fit test based on the asymp-
totic result. Simulation studies and applications are considered in Section 4.
Section 5 contains a concluding discussion.

2 Convergence of the empirical distribution

function for a conditional sample of ran-

dom effects

The asymptotic result in this section is derived within the set-up of gener-
alized linear models (GLMs) with iid normal random intercepts. Maximum
likelihood inference for such models is implemented in e.g. the SAS procedure
nlmixed or the Stata program gllamm.

2.1 Set-up and notation

Denote by Y = (Yi)i≥1 a sequence of observation vectors Yi = (Yi1, . . . , YiNi
)

with associated covariatesXi = (Xi1, . . . , XiNi
),Xij ∈ R

p, p ≥ 1, and random
effects Ai. The (Ni, Xi, Ai, Yi), i ≥ 1, are assumed to be independent where
Ni is integer valued, (Ni, Xi) follows some unspecified distribution, and given
(Ni, Xi), Ai is N(0, 1). The linear predictor for the observation Yij is ηij =
Xijβ

T +σAi where β ∈ R
p and σ > 0. Conditional on Ai = ai, Ni = ni, Xi =

xi, Yi1, . . . , Yini
are conditionally independent with densities of GLM type

(see e.g. McCullagh and Nelder, 1989), i.e. the conditional density of Yij is
of the form

f(yij|ψij, φ) = exp((yijψij − b(ψij))/φ+ c(yij, φ))

where φ > 0, b and c are certain functions, and ψij = h(ηij) for some one-to-
one function h.

The joint distribution of (Ni, Xi, Ai, Yi), i ≥ 1, is parametrized by θ =
(β, σ, φ) which belongs to an open set Θ ⊂ Rp+2. We assume that Y is
generated under the joint distribution Pθ0

corresponding to a specific param-
eter value θ0 ∈ Θ. Henceforth, probabilities, expectations, and variances are
computed with respect to Pθ0

unless otherwise stated.
With a slight abuse of notation let Fi|yi,θ denote the distribution func-

tion of Ai given (Ni, Xi, Yi) = (ni, xi, yi) and let θ̂n denote an estimate of
θ based on Y1, . . . , Yn. For each n, (Ã1n, . . . , Ãnn) denotes a sample where
Ãin is generated from Fi|Yi,θ̂n

and Ãin, i = 1, . . . , n, are independent given

Y , N = (Ni)i, and X = (Xi)i. The empirical distribution function based
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on Ã1n, . . . , Ãnn is denoted F̃n. For a finite index set I ⊆ R, the asymptotic
distribution of (F̃n(t))t∈I is given in the following Section 2.2.

2.2 Asymptotic result

Assume that h and c are continuously differentiable and (for sake of the sec-
ond result (10) in the Appendix) assume that h′ is bounded, and that |h(A1)|,
|b(h(A1))| and |A1b

′(h(A1))| have finite expectation. All these assumptions
are valid for the common examples of GLMMs considered in Section 4. As-
suming in addition that θ̂n is asymptotically normal and efficient, we obtain

Theorem 1. Under the above set-up and assumptions, (G̃n(t))t∈I = (
√
n(F̃n(t)−

Φ(t)))t∈I converges in distribution to a zero mean Gaussian vector (G(t))t∈I

with covariances given by

EG(s)G(t) = Φ(s ∧ t)− Φ(s)Φ(t)− h(s, θ0)V (θ0)h(t, θ0)
T, s, t ∈ I (1)

where h(t, θ) = E(dF1|Y1,θ(t)/dθ|θ=θ0
), Φ(·) is the standard normal distribu-

tion function, and V (θ0) is the asymptotic covariance matrix for θ̂n.

Proof. Without loss of generality we can assume Ãin = F−1

i|Yi,θ̂n

(Ui) where

U1, U2, . . . iid uniform on [0, 1] and independent of N , X, and Y . Similarly,
we let A∗

i = F−1
i|Yi,θ0

(Ui) and let F ∗
n denote the empirical distribution function

based on A∗
1, . . . , A

∗
n.

We now split G̃n(t) as follows:

G̃n(t) = G∗
n(t) + Zn(t)

where
G∗

n(t) =
√
n(F ∗(t)− Φ(t))

and
Zn(t) =

√
n(F̃n(t)− F ∗

n(t)).

Note that, marginally, the A∗
i are independent standard normal variables.

Hence, weak convergence of (G∗
n(t))t∈R to a zero-mean Gaussian process with

covariance function Φ(s ∧ t)−Φ(s)Φ(t) is a classical result, see e.g. Van der
Vaart (1998).

Consider now the term Zn(t) and let din(t) = 1[Ui ≤ Fi|Yi,θ̂n
(t)]− 1[Ui ≤

Fi|Yi,θ0
(t)], min(t) = E(din(t)|N,X, Y ) = Fi|Yi,θ̂n

(t) − Fi|Yi,θ0
(t), and vin(t) =

Var(din(t)−min(t)) = E(|min(t)|(1− |min(t)|)). Then

sup
t∈I

(

Zn(t)−
n

∑

i=1

min(t)/
√
n
)

= sup
t∈I

n
∑

i=1

(din(t)−min(t))/
√
n. (2)
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Note that Cov(din(t)−min(t), djn(t)−mjn(t)) = 0 when i 6= j. Hence, using
Chebyshevs inequality,

P (sup
t∈I
|

n
∑

i=1

(din(t)−min(t))/
√
n| ≥ ǫ) ≤

∑

t∈I

P (|
n

∑

i=1

(din(t)−min(t))/
√
n| ≥ ǫ)

≤ card(I) sup
t∈I

v1n(t)/ǫ2.

It follows from (9) in Lemma 1 in the Appendix that the right hand side
of (2) is oP (1) so that supt∈I

(

Zn(t)−∑n
i=1min(t)/

√
n
)

= oP (1). Moreover,
letting gi(t, θ) = dFi|Yi,θ(t)/dθ,

n
∑

i=1

min(t)/
√
n =

√
n(θ̂n − θ0)

n
∑

i=1

gi(t, θ0)
T/n+

√
n(θ̂n − θ0)

n
∑

i=1

(gi(t, λin)− gi(t, θ0))
T/n

where λin is between θ0 and θ̂n. Note that
∑n

i=1 gi(t, θ0)/n converges to
h(t, θ0) = Eg1(t, θ0) almost surely. Further,

P (sup
t∈I
|

n
∑

i=1

(gi(t, θ0)− gi(t, λin))T/n| ≥ ǫ) ≤ E sup
t∈I
|g1(t, θ0)− g1(t, λ1n)|/ǫ

where by (10) in Lemma 1, limn→∞ E supt∈I |g1,t(θ0)−g1,t(λ1n)| = 0 since λ1n

tends to θ0 in probability.
We conclude that

sup
t∈I
|G̃n(t)−G∗

n(t))−
√
n(θ̂n − θ0)h(t, θ0)| = oP (1) (3)

and thus (G̃n(t))t∈I and (Vn(t))t∈I = (G∗
n(t)+

√
n(θ̂n−θ0)h(t, θ0))t∈I have the

same weak limit. By Pierce (1982), (Vn(t))t∈I and hence (G̃n(t))t∈I converges
to a zero mean Gaussian vector (G(t))t∈I with covariances EG(s)G(t) given
by (1) for s, t ∈ I.

Remark 1. Weak convergence of the process (G̃n(t))t∈R essentially follows
provided I in (3) can be replaced by R. The main obstacle here is to verify
that supt∈R

∑n
i=1(din(t)−min(t))/

√
n is oP (1). However, convergence of finite

dimensional distributions suffices for our application, see Section 3.
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3 Implementation of goodness-of-fit tests

In the subsequent simulation studies and applications our goodness-of-fit
statistic T (F̃n) is a discretized version of the Anderson-Darling statistic, i.e.
for any distribution function F ,

T (F ) =
1

m

m−1
∑

l=0

(F (Φ−1(vl))− vl)
2

vl(1− vl)
(4)

where vl = (l + 0.5)/m, l = 0, . . . ,m − 1. As in Ritz (2004) we compute p-
values using simulation from the asymptotic distribution of F̃n with h(t, θ0)
and V (θ0) replaced by estimates obtained as follows.

Denote by fi(·; θ) the density of Yi given Xi = xi and Ni = ni, i.e.

fi(yi; θ) =

∫ ∞

−∞

ni
∏

j=1

f(yij|ψij, φ)Φ′(ai)dai, (5)

and denote by ui(θ) and ji(θ) the score function and observed information
based on fi(Yi; θ). Let further Eθ denote expectation under Pθ. Then

h(t, θ) = EθdF1|Y1,θ(t)/dθ = −Eθu1(θ)F1|Y1,θ(t)

which is approximated by

−1

n

n
∑

i=1

Eθ[ui(θ)Fi|Yi,θ(t)|ni, xi] (6)

where the expectation is conditional on Ni = ni and Xi = xi. In the case
of a linear mixed model, we can calculate the conditional expectations in
(6) explicitly. For GLMMs in general, we first compute ui(θ) and fi(Yi; θ)
using adaptive Gaussian quadrature (see e.g. Pinheiro and Bates, 1995) and
compute

Fi|Yi,θ(t) =

∫ t

−∞

∏Ni

j=1 f(Yij|ψij, φ)

fi(Yi; θ)
Φ′(ai)dai =

∫ Φ(t)

0

∏Ni

j=1 f(Yij|ψij , φ)

fi(Yi; θ)
dvi

(7)
using a Riemann sum. Secondly, the conditional expectation of ui(θ)Fi|Yi,θ(t)
given Ni = ni and Xi = xi is in general computed using Monte Carlo simu-
lations of Yi given Ni = ni and Xi = xi. In the special case where the Yij are
identically distributed, j = 1, . . . , ni, we can rewrite the conditional expec-
tation in terms of first a conditional expectation with respect to the scalar
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random variable Yi· =
∑ni

j=1 Yij given Ai, Ni, and Xi, and secondly an expec-
tation with respect to Ai. Thereby numerical integration becomes feasible.
Similarly, we approximate V (θ) by the inverse of 1

n

∑n
i=1 Eθ[ji(θ)|ni, xi]. For

linear mixed models we can again calculate the conditional expectation ex-
plicitly while we resort to Monte Carlo or numerical integration for GLMMs
in general. Finally, we replace θ0 by the maximum likelihood estimate θ̂n.

The simulations Ãin are in general obtained using adaptive rejection sam-
pling using a t-distribution centered at the mode and scaled by the hessian,
respectively, for the conditional density of Ai given (Ni, Xi, Yi). In the case
of linear mixed models, Ãin can be sampled directly since the conditional
distribution of Ai is normal with conditional expectation and variance given
explicitly by

Eθ[Ai|ni, xi, yi] =
σ

φ/ni + σ2
r̄i and Varθ[Ai|ni, xi, yi] =

1

1 + niσ2/φ
(8)

where r̄i =
∑ni

j=1(yij − xijβ
T)/ni.

All computations are implemented in R (R Development Core Team, 2004)
and c. Programs can be obtained from the author.

4 Simulation studies and applications

In the first part of this section we compare our approach to the one introduced
by Ritz (2004) within the context of linear mixed models. We secondly turn
to Poisson-log normal and binomial-logit normal GLMMs.

4.1 Linear mixed models

In the case of linear mixed models, the conditional distribution of Ai given Yi

is normal and known in closed form, see (8). Ritz (2004) base goodness-of-
fit testing on the empirical distribution function for standardized estimated
conditional expectations Âi(θ̂n)/σi(θ̂n) where Âi(θ) = Eθ[Ai|Ni, Xi, Yi] and
σ2

i (θ) = Varθ[Âi(θ)|Ni, Xi] = σ2/(σ2 + φ/Ni). We here repeat parts of the
simulation study leading to Table 3 in Ritz (2004). Briefly, n = 50, Ni ∼
Poisson(5)+1, treatments 0, 10, or 12 are assigned randomly to units, σ = 1,
and the conditional variance φ is 1. The random effects distribution is either
N(0, 1), 0.46t(2) or Γ(1, 1). In addition we consider also n = 100.

Table 1 shows Monte Carlo estimates (based on 10000 synthetic data
sets) of powers obtained using T (F̃n) (see (4)) with m = 150, and rejecting
when the bootstrap p-value is below the nominal levels α = 0.01, α = 0.05,
or α = 0.10, respectively. The numbers in brackets are the powers obtained
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n 50 100
α 0.01 0.05 0.10 0.01 0.05 0.10
N(0,1) 0.02 [0.01] 0.06 [0.06] 0.12 [0.12] 0.02 0.06 0.11
0.46t(2) 0.38 [0.53] 0.47 [0.65] 0.54 [0.72] 0.60 0.70 0.75
Γ(1, 1) 0.34 [0.66] 0.49 [0.83] 0.59 [0.88] 0.64 0.78 0.84

Table 1: Power of goodness-of-fit test T (F̃n) with different random effects
distributions and nominal levels and with n = 50 or n = 100. The numbers
in brackets are powers obtained in Ritz (2004).

by Ritz (2004). The first row indicates that our test and the Ritz (2004)
test are both rather close to the nominal levels. The next two rows show
that within the setting of the simulation experiment we need about twice the
number of random effects to achieve the power of the Ritz (2004) test. That
the Ritz (2004) test is more powerful is not surprising in view of the following
considerations: Assuming for a moment that the variance of Ai exists and is
equal to one,

Corr(A∗
i , Ai) = Corr(Âi, Ai)

2 where Corr(Âi, Ai) = (1 + φ/(niσ
2))−1/2.

Hence we may expect that Ai is more correlated with Âi(θ̂n) than with Ãin.

Example 1. To illustrate further we apply our test to the data from Example 2
in Ritz (2004) (602 observations in n = 56 groups of roughly the same size,
see Damstrup and Nielsen, 2002). We obtain MLEs σ̂ = 0.047 and φ̂ = 2.840.
With these parameter values, Corr(A∗

i , Ai) is smaller than 0.0033. Hence it
is an unfavorable situation for our test. Thus Ritz (2004)’s test is highly
significant (p < 0.005) while ours is not (p = 0.30). The example may be
considered somewhat extreme since the random effects only contribute with
a very small proportion 2.7e− 4 of the total variance for an observation.

Example 2. As a second example we consider a data set extracted from
the Framingham study (see e.g. Zhang and Davidian, 2001). The data set
contains repeated measurements of cholestorol level for 384 women of age
greater than 50 at study entry. We apply a linear mixed model with individ-
ual specific random intercepts and time as explanatory variable. We obtain
σ̂ = 0.36 and φ̂ = 0.24 and a p-value of 0.004. Figure 1 shows the conditional
simulation of the random effects. In accordance with Zhang and Davidian
(2001) the plot suggests the presence of a subpopulation of individuals with
extraordinary high cholestorol levels.
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Figure 1: Left: qq-plot for a conditional sample of the random effects for
the Framingham data (Example 2) versus the standard normal distribution.
Right: a scatterplot of (Ãin, Ã(i+1)n), i = 1, . . . , 533, for the mumps data
(Example 4).

4.2 Poisson regression

We now turn to an example of a non-normal and non-linear model. The obser-
vations Yij are assumed to follow a Poisson-log normal model, i.e. conditional
on Ai = ai and Xi = xi, Yij is Poisson with expectation exp(xijβ

T + σai).
In the following simulation study we consider for ease of computation (cf.
Section 3) fixed Ni = 6 and Xij = 1. We use the test statistic T (F̃n) with
m = 300 (the discretization used for the Riemann-approximation of (7)).

Table 2 contains Monte Carlo estimates of the levels for this test for
varying values of n, E[Yij ], and σ when rejecting at the nominal levels 0.01,
0.05 and 0.10. The table indicates that the levels of our test is slightly too

σ E[Yij] n = 50 n = 100
0.25 3 0.02 0.06 0.10 0.01 0.05 0.10
0.25 8 0.02 0.06 0.12 0.01 0.06 0.11
0.50 3 0.02 0.07 0.12 0.01 0.05 0.10
0.50 8 0.01 0.07 0.12 0.01 0.06 0.12

Table 2: Levels for the goodness-of-fit statistic T (F̃n) when observations are
Poisson-log normal with varying parameters and rejecting at the nominal
levels 0.01, 0.05, or 0.10.

high for n = 50 and fairly close to the nominal levels when n = 100 (the
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estimated levels are based on 1000 synthetic data sets and are subject to
Monte Carlo errors with standard deviations around 0.003, 0.007, and 0.009
for the three nominal levels considered).

The powers in Table 3 are estimated for 0.46t(2) and Γ(1, 1) alternatives
and with nominal level 0.05. The power is poor for the small counts case
σ = 0.25 and E[Yij] = 3 but increases to reasonable values as σ and E[Yij]
increases. With Ni = 2 and with standard normal random effects we obtain

n = 50 n = 100
σ E[Yij] 0.46t(2) Γ(1, 1) 0.46t(2) Γ(1, 1)
0.25 3 0.15 0.14 0.22 0.20
0.25 8 0.29 0.34 0.42 0.60
0.50 3 0.32 0.56 0.49 0.84
0.50 8 0.52 0.84 0.75 0.98

Table 3: Powers obtained for non-normal random effects alternatives when
Ni = 6, observations are conditionally Poisson, and with nominal level 0.05.

levels (not shown) similar to those in Table 2. As might be expected, the
powers for the non-normal alternatives decrease when Ni is reduced to 2, see
Table 4.

n = 50 n = 100
σ E[Yij] 0.46t(2) Γ(1, 1) 0.46t(2) Γ(1, 1)
0.25 3 0.09 0.06 0.13 0.05
0.25 8 0.14 0.12 0.20 0.16
0.50 3 0.17 0.20 0.27 0.34
0.50 8 0.28 0.54 0.50 0.80

Table 4: Powers obtained for non-normal random effects alternatives when
Ni = 2, observations are conditionally Poisson, and with nominal level 0.05.

Example 3. Our first example of a Poisson regression with random intercept
is Model II from Breslow and Clayton (1993) who considered the epileptic
seizure data from Thall and Vail (1990). For each of 59 subjects, the ob-
servation vector Yi consists of four counts of epileptic seizures during two
week periods prior to each of four clinic visits. The covariates are log base-
line count, treatment (placebo or a certain drug), log age, and an indicator
for the fourth visit. We obtain σ̂ = 0.50 and a p-value of 0.69. Hence
the goodness-of-fit test does not provide evidence against the assumption of
normal subject specific random intercepts.
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Conditional on the data, our p-value is subject to random variation
mainly due to the conditional sampling of the random effects. Figure 2
(left) shows a histogram of p-values obtained for 100 independent repetitions
of the goodness-of-fit test applied to the seizure data. The variation of the
p-values is considerable but only a small fraction (3%) suggests evidence at
the 5% level against the assumption of normal random effects.
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Figure 2: Histograms illustrating the variation of the p-values conditional
on (left) the epileptic seizure data (Example 3) and (right) the mumps data
(Example 4).

Example 4. The second Poisson regression example is concerned with a time
series of 534 monthly counts of mumps cases in New York City, 1928-1972
(Hipel and McLeod, 1994). The data set is obtained from the Time Series
Data Library maintained by Rob Hyndman and Muhammed Akram. There
is a pronounced seasonal variation so we include month (1-12) as a categor-
ical covariate. In addition, we include a quadratic term in time (measured
in units of months) to take into account large scale variation. A random in-
tercept for each observation accounts for possible overdispersion. We obtain
σ̂ = 0.42 (with approximate confidence interval [0.39, 0.45]) and p = 0.01 so
there is evidence of overdispersion and evidence against the assumption of
independent normal random effects. Especially the assumption of indepen-
dence seems dubious in this example and the right scatterplot of (Ãin, Ã(i+1)n)
in Figure 1 strongly indicates serial correlation.

As in the previous example, Figure 2 (right) shows the distribution of p-
values obtained from 100 independent repetitions of the goodness-of-fit test
applied to the mumps data. The distribution of the p-values is concentrated
on small values - 89% of the p-values fall below the 5% significance level.
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4.3 Logistic regression

We briefly comment on the case of a logistic regression with random effects.
The observations Yij are conditionally Bernouilli with logit(E[Yij |xi, ai]) =
βT + σai and we consider fixed Ni = 6, n = 50 or 100, β = 0 or 1, and
σ = 0.5 or 1. In the case of standard normal random effects the levels
(not shown) are close to the nominal levels. For the non-normal alternatives
Γ(1, 1) and 0.46t(2) we obtain very poor powers (not shown) only slightly
bigger than the nominal level. For a logistic regression, each observation Yij

only contains very limited information on Ai, so very large values of Ni or n
are needed to get reasonable powers.

5 Discussion

Our goodness-of-fit test is targeted at the random effects but a rejection
could be due to a wrongly specified conditional distribution of Y |A. So the
test should of course be accompanied by an assessment of the conditional
distribution of the observations given the random effects. In this connection
it might be helpful to consider “simulated residuals” obtained by replacing
Ai by Ãin in the linear predictor for Yij.

An alternative to the use of the asymptotic result in Theorem 1 is a para-
metric bootstrap where T (F̃n) is compared with T (F̃ b

n), b = 1, . . . , B, where
F̃ b

n is obtained as F̃n but from synthetic data simulated under Pθ̂n
. In the

data examples, similar p-values were obtained with the parametric bootstrap
and the asymptotic approach, but the parameter estimation for each boot-
strap replicate data set is time consuming. The parametric bootstrap on the
other hand allows for consideration of goodness-of-fit statistics for which the
asymptotic distribution is not known.

Our statistic T (F̃n) may be viewed as an approximate simulated repli-
cate of the unobserved statistic T (Fn) given by (4) with F equal to the
empirical distribution function Fn for A1,. . . ,An. We then compare T (F̃n)
with the asymptotic sampling distribution under the assumed joint model for
(Ni, Xi, Ai, Yi), i ≥ 1. In a Bayesian framework, one might instead follow-
ing Dey et al. (1998) consider the entire posterior distribution D(T (Fn)|y)
of T (Fn) (or any other goodness-of-fit statistic) given (Y1, . . . , Yn) = y and
compare this with its sampling distribution (i.e. the sampling distribution of
the data when the unknown parameters are sampled from the priors). The
approach in Dey et al. (1998) relies on the use of informative priors and is
computationally demanding due to the need for computing posterior distri-
butions for replicate data sets.
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A A technical lemma

The set-up, notation, and assumptions are as in Section 2.

Lemma 1. Assume that θn is a sequence which tends to θ0 in probability.

Then

lim
n→∞

E sup
t∈R

|F1|Y1,θn
(t)− F1|Y1,θ0

(t)| = 0 (9)

and

lim
n→∞

E sup
t∈R

|g1(t, θn)− g1(t, θ0)| = 0 (10)

where g1(t, θ) = dF1|Y1,θ(t)/dθ.

Proof. Recall (5) and (7). It is a standard fact for GLMs that

f(y1j|ψ1j, φ) < f̃(y1j|y1j, φ) (11)

where f̃(y1j|µ1j, φ) = f(y1j|(b′)−1(µ1j), φ) is obtained by reparametrization
in terms of the mean parameter µ1j = b′(ψij). Since f̃(y1j|y1j, φ) does not de-
pend on a1 it follows using dominated convergence that f1(y1; θ) and F1|y1;θ(t)
are continuous functions of (n1, x1, y1, θ) and (n1, x1, y1, θ, t), respectively.

Consider now (9). Given ǫ > 0 we establish in the following that there is
a n1 so that

E sup
t∈R

|F1|Y1,θn
(t)− F1|Y1,θ0

(t)| < ǫ (12)

when n ≥ n1. Choose a closed ball B0 centered at θ0 and of positive radius
and a compact set C such that P ((N1, X1, Y1) ∈ C, θn ∈ B0) ≥ 1 − ǫ/4
whenever n ≥ n0 for some sufficiently large n0. Using (11) and continuity,

sup
(n1,x1,y1,θ)∈C×B0

F1|y1,θ(t) < MΦ(t)

for some 0 < M <∞ whereby

lim
t→−∞

sup
(n1,x1,y1,θ)∈C×B0

F1|y1,θ(t) → 0

and
lim
t→∞

sup
(n1,x1,y1,θ)∈C×B0

1− F1|y1,θ(t) → 0.
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Consider n ≥ n0. We can now choose t1 and t2 so that

E sup
t<t1 or t>t2

|F1|Y1,θn
(t)− F1|Y1,θ0

(t)| <

ǫ/4+E sup
t<t1 or t>t2

1[(N1, X1, Y1) ∈ C, θn ∈ B0)]|F1|Y1,θn
(t)−F1|Y1,θ0

(t)| < ǫ/2.

Moreover, for all η > 0 we can choose n1 ≥ n0 so that P ((N1, X1, Y1) ∈
C, |θn − θ0| > η) < ǫ/4 whenever n ≥ n1. Then

E sup
t∈[t1,t2]

|F1|Y1,θn
(t)− F1|Y1,θ0

(t)| <

ǫ/4 + E sup
t∈[t1,t2]

1[(N1, X1, Y1) ∈ C, |θn − θ0| ≤ η]|F1|Y1,θn
(t)− F1|Y1,θ0

(t)|.

Since F1|y1,θ(t) is uniformly continuous on C × B0 × [t1, t2],

E sup
t∈[t1,t2]

1[(Ni, Xi, Yi) ∈ C, |θn − θ0| ≤ η]|F1|Y1,θn
(t)− F1|Y1,θ0

(t)| < ǫ/4

provided η is small enough and (12) follows.
Regarding (10), one can check that for any θ̃ ∈ Θ there exists a neigh-

bourhood U around θ̃ so that

∂

∂θl

n1
∏

j=1

f(y1j|ψ1j, φ) < M(a1), l = 1, . . . , p+ 2,

for θ ∈ U where
∫

M(a1)Φ
′(a1)da1 < ∞. It follows that f1(y1; θ) and

F1|Y1,θ(t) are continuously differentiable with respect to θ and that inter-
change of the order of differentiation and integration is allowed. Thus (10)
can be handled along the same lines as (9).
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