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Summary (extended abstract):

The thickness of face-laminates in CFRP-sandwich panels are often increased locally in
order to provide for the load-transfer around highly loaded locations such as joints or
inserts. Such thickness-increases are accomplished by adding extra plies to the face-
laminates, and a taper is produced by dropping of plies away from the area of localised
loading. At all the stations where such thickness drop-offs are made, the local bending
stiffness of the face-laminate changes discontinuously, thus inducing severe local
bending effects. These local bending effects, in which the face-laminate/core interaction
plays an important role, induces interlaminar and bending stresses in the face-laminates,
as well as interlaminar stresses in the interface between the core-material and the face.
laminates. Thus, the stress concentrations induced in the regions of the dropped plies
may initiate delamination, core crushing or direct bending failure of the face-laminates.
The present study introduces a simple method of analysing the thickness-change induced
local bending problem in CFRP-sandwich panels. The constituent parts of the model are
the base-line laminate of a CFRP-sandwich panel, a dropped sub-laminate, a supporting
honeycomb-type core material, and an adhesive/resin-layer interfacing the laminates. The
model is based on the assumption that the interaction between the core-material and the
face-laminates can be modelled using a two-parameter elastic foundation model, which
accounts for the shearing interaction effects. The face-laminates are modelled using
classical beam-theory (extendible to plate and shell problems), and the adhesive/resin-
layer is modelled using a continuous linear tension/compression and shear spring model].
The governing equations are formulated in terms of 2 set of coupled first order ordinary
differential equations, and the resulting "multiple-point” boundary-value problem is
solved numerically using the "multi-segment method" of integration.

A few examples have been evaluated using the developed solution procedure, and it has
been demonstrated that the local bending response is influenced significantly by the
presence of a supporting core material. Thus, it is shown that the core/face-iaminate
interaction causes even more severe adhesive/resin layer stress concentrations to occur
than is the case for the “unsupported” CFRP-laminate thickness drop-off problem.

parametric studies, and it has been shown that three parameters exerts "primary

bending stiffness of the dropped sub-laminate to the base-line laminate; the
“characteristic" length of the core/face-laminate interaction; and finally the ratio of the
adhesive/resin-layer stiffness to the core transverse stiffness. The overall effect is, that
an increase of each of these parameters causes the adhesive/resin stresses, the core
stresses, as well as the face-laminate bending stresses to increase significantly.

Keywords:

Local bending, thickness drop-off problem, CFRP-sandwich panels, core/face-laminate
interaction, general face/plate/shell-formulation, "multi-segment method" of integration,
parametric effects.
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ANALYSIS OF "THICKNESS-CHANGE" INDUCED LOCAL
BENDING PROBLEMS IN CFRP-SANDWICH PANELS

1. INTRODUCTION

The originating problem for this study was the specific failure mode

experienced with a wet filament wound CRFP sandwich structure (Al honeycomb
core), representing the central thrust cylinder of a telecommunications satellite
designed and manufactured under the ESA-ASTP3 programme. In this programme, a
full scale demonstration model thrust cylinder was loaded to failure in a static test
with the objective of verifying the strength margin. It was not possible to decide
which failure mechanism actually initiated the onset and development of the final
failure, but eventually the face-laminates of the thrust cylinder failed completely at a
location where the face-laminate thickness changed abruptly. This drop-off in face-
thickness was located at the junction between the cylinder central section, and the
reinforcing laminates mounted at the ends of the cylinder. These extra layers of CFRP
were added to provide the transfer of forces from the thrust cylinder to the end-rings
(adhesively bonded to the cylinder). Similar discontinuous thickness-changes of the
CFRP-laminates were situated around the areas of the central cylinder where internal
fuel tanks were mounted with tank-inserts . -
The phenomenon causing failure to occur at the former of the locations described,
instead of an overall/local buckling failure somewhere along the midsection of the
cylinder (as expected), was most likely local bending induced by the abrupt change of
the face bending stiffness caused by change of the face thickness. Thus, in a strict
sense, the type of failure experienced by the cylinder was not an instability
phenomenon (global/local), but merely a local bending phenomenon.

2. OBJECTIVES

The problem described briefly above, is of more general interest than "just"
the design of the satellite thrust cylinders. This is the case, as local bending effects
under certain circumstances proves to be the most likely cause of failure, thus adding
another possible failure mechanism to the ones usually considered for honey-comb
cored CFRP-sandwich panels. The 3 "usual" failure modes being overall buckling,
wrinkling and dimpling ("intra-cell" buckling).

The objective of the present study has been defined as the development of a simple
analysis-tool capable of describing the local bending phenomenon in terms of the
locally induced displacement-, strain- and stress- fields. The analysis tool is intended
for conducting a series of parametric studies, where the influence on the local
bending state of parameters such as geometrical characteristics, core properties, as
well as face properties are included in the investigation.

3 DEFINITION OF THE MECHANICAL MODEL

The problem defined loosely above could be addressed in several different
ways, where the most obvious choice might be to conduct a series of FEM-analyses.
However, in the present situation, where it is of just as much importance to gain a
thorough understanding of the local bending problem and the factors influencing it, as



EWP-1787, June 1994

it is to develop a base of quantitative information, it seems worthwhile to focus the
attention to other possible tools.

Moreover, it seems worthwhile to explore the possibility of developing a relatively
simple tool, capable of describing the basic mechanics of the problem. This despite
the fact, that the level of sophistication of the output data from the simple model may
suffer compared to the results obtained from a FEM-analysis using capabilities such
as solid modelling, geometrical non-linear analysis, non-linear constitutive models,
inclusion of viscous effects, etc.

la:
P P
Sy |
——Tr ‘
P -
P
1b:
reinforcing CFRP- )
laminate: face2 i:g?:swe
base-line CFRP-
laminate: facel Y 7 P
\ t l Ty " [ =
Y e W R ALY
A ‘ A P"
-4 - - - B
Y P=P'+P"
™t~ Supporting
core
material
Fig. 1. Definition of mechanical model:
la: Compression loaded CFRP-sandwich panel with tapered face-

laminates.
Ib:  Local zone around "drop-off" of face laminate thickness.

The mechanical model chosen in this study can be considered as a general beam/
plate/shell model. This is to be understood in the way that the system governing
equations for each type of model, or the field equations, can be stated mathematically
in the exact same form, thus enabling the use of the same solution procedure
independent of the nature of the problem addressed (i.e., a beam-, plate- or shell-
problem). This, of course, is a consequence of the fact, that the beam theory (classical
Bernoulli-Euler- or Timoshenko-theories) can be considered as a special case of plate



PRINCIPAL NOTATION
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¢
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P

Qi (i=1,2):

s:

| %

|5} (=1.2x

[Tol:

[Ti]:

u; (i=1,2):

ug (=12}

Principal extensional stiffness components of face-laminates 1 and
2; (N/mm).

Extensional stiffnesses of face-laminates 1 and 2 obtained from
classical laminate theory (CLT). In the present study: (A11)i=A;;
(N/mm).

(6,6)-matrix of stiffness coefficients for system of differential
equations in region 1.

(6,6)-matrices of stiffness coefficients for system of differential
equations in region 2.

Width of face-laminates, b=1 mm in the present study; (mm).
(6,1)-matrix of non-homogeneous load-terms for system of
differential equations in region 1.

(6,1)-matrices of non-homogeneous load-terms for system of
differential equations in region 1.

Core thickness (mm).

Principal bending stiffness components of face-laminates 1 and 2;
(Nmm).

Bending stiffnesses of face-laminates 1 and 2 obtained from CLT.
In the present study: (Dy;);=D;; (Nmm).

Elastic modulus of adhesive/resin-material; (MPa).

Effective elastic modulus of adhesive/resin-material, E,¢ff>E,;
(MPa).

Elastic modulus (transverse) of core material; (MPa).

In-plane elastic moduli of the individual laminae of the face-
laminates, (j=1,..,n;); (MPa).

Effective transverse elastic modulus of core-material; (MPa).
Shear modulus od adhesive/resin-material; (MPa).

In-plane shear moduli of the individual laminae of the face-
laminates, (j=1,..,n;); (MPa).

Transverse and shear foundation moduli of core material:
(MPa/mm=N/mm3).

"Coefficient functions" for elastic foundation moduli.

Lengths of face-laminates in regions 1 and 2; (mm).

Characteristic length of core/face-laminate interaction; (mm).
Bending moment resultants in face-laminates 1 and 2; (Nmm/mm).
Number of laminae in face-laminates 1 and 2.

Normal stress resultants in face-laminate 1 and 2; (N/mm).
Compressive in-plane load; (N/mm).

Transverse shear stress resultants in face-laminates 1 and 2;
(N/mm).

Honeycomb-core cell-size: largest circle-diameter which can be
inscribed in the honeycomb-cells; (mm).

Thickness of adhesive/resin-layer interfacing face-laminates 1 and
2; (mm)

Thicknesses of face-laminates 1 and 2; (mm).

Non-singular (6,6) transformation matrix specifying the boundary
conditions at x=0.

Non-singular (12,12) transformation matrices.

Longitudinal displacements of face-laminates 1 and 2; (mm).
Longitudinal displacements of mid-surfaces of face-laminates 1 and
2; (mm).



{Uo}:
{Ui}: (i=1,2)

Wi (i=1.2):
X;
{yix)} (i=1,2):

Greek symbols:

Bi (i=1,2):
o:

Vo

(viiy (k,1=1,2):
(i=1,2)

Superscripts:

()"

(6,1)-matrix containing the fundamental variables at x=0.
(12,1)-matrices containing the fundamental variables at x=L, and
x=L{+Ls.

Lateral displacements of face-laminates 1 and 2; (mm).
Longitudinal coordinate; (mm).

(6,1)-matrix of fundamental variables for face-laminates 1 and 2

{yi(x) }={ui(x), wi(x), Bi(x), Ni(x), Mj(x), Qi(x)}.
Transverse coordinate; (mm).

Transverse coordinate within each lamina of the face-laminates:
(mm).

Rotation of normal to midsurface of face-laminates 1 and 2; (rad).
Non-dimensional geometric coefficient (foundation model).
Non-dimensional coefficient (foundation model); (y=1.5).
Wave-length of elastic response (A = 2nLg); (mm).

Ratio of adhesive/resin-layer stiffness to core transverse stiffness.
Poisson's ration of adhesive/resin-material.

Poisson's (transverse) ratio of core-material.

Effective Poisson's ratio of core-material.

In-plane Poisson's ratios of the individual laminae of the face-
laminates; j=1,..,n;.

Adbhesive/resin-layer transverse normal stress; (MPa)

Core transverse normal stress (interface between core and face-
laminates); (MPa).

Bending stress components in laminae of face-laminates; (MPa).

Nominal stress, on=N;(x=0)/t,; (MPa)
Adbhesive/resin-layer shear stress; (MPa).

Core shear stress (interface between core and face-laminates):
(MPa).

Differentiation with respect to x-coordinate: ( )'=d( )/dx.

vi
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theory (Kirchhoff- or Mindlin-theories), which again can be considered as a special
case of general shell theory (Love-Kirchhoff- or "higher order"- shear theories).

The problem considered is illustrated in Fig. 1a, which shows a part of a honeycomb-
cored CFRP-sandwich panel loaded in compression. The thickness of the face-
laminates varies stepwise over the length of the sandwich panel. The local area
around such a thickness drop-off is shown schematically in Fig. 1b, which also
defines the mechanical model used for describing the local bending problem.

The model shown in Fig. 1b considers the face of the sandwich-panel (being
modelled as a beam, a plate in cylindrical bending, or a circular cylinder) as
elastically supported on the core material of the sandwich panel. The face is subjected
to the compressive load P. The thickness of the face changes from t; to t;+ta+t; over
the length of the considered face section, where t, is the thickness of the adhesive
layer (or resin-"rich" layer for co-cured face-laminates) between the two laminates.

4. DERIVATION OF SYSTEM GOVERNING EQUATIONS

The system of governing equations are set up for the simplest possible case,
i.e. where the faces are considered as laminated beams or plates in cylindrical
bending. If the need for a more general shell formulation appears, however, the
formulation can be extended without any principal difficulties. In the most general
form, the model will be able to account for any rotationally symmetric shell
configuration, with generally orthotropic material properties (i.c., arbitrary stacking
sequences and principal material directions), as well as arbitrary boundary and load
conditions (i.e., also non-axisymmetric conditions).

In the beam-approach, the formulation of the governing equations is based on the
ordinary "Bernoulli-Euler" theory: i.e., it is assumed that normals to the undeformed
neutral-axis of the face-laminates remains straight, normal and inextensional during
deformation, so that transverse normal and shearing strains may be neglected in
deriving the face kinematic relations.

Referring to Fig. 1b, it is observed that the system governing equations has to be set
up in the two adjoining regions:

1. Region 1: D% 214,
Z. Region 2: Li<x<L;+L,

The face kinematic relations are given by (valid in both regions):

(1) u,':uo,"*'zﬁf’ ﬁi'__-wi’ (i=1,2)

where u; is the longitudinal displacement component, ug; is the longitudinal displace-

ment component of the face-laminate neutral-axis ("membrane"-contribution), B; is
the rotation of the face-laminate normal, w; is the lateral deflection of the face-
laminate, ( )' denotes differentiation with respect to the longitudinal coordinate x, and
i=1, 2 corresponds to face-laminates 1 and 2, respectively (see Fig. 1b).

Referring to Fig. 2, the equilibrium equations in region 1 can be written as:
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N, =1,

(2) 0 =o,
’ t
M =0-1,<1
1 Ql c2

where Ny, Q1, M; are the normal stress, transverse shear, and bending moment resul-
tants in face-laminate 1. o, is the foundation (i.e., core) transverse normal stress
component, and T, is the foundation shear stress component.

dx
Z, Wl
Q+dQ,
t N1+dN1
— et e s s
X u +dM
: 1
1 Q] e Ml
T .dx
[
o dx
c
Fig. 2. Equilibrium element of face-laminate 1 in region 1;0<x <L,.

The interaction between the supporting core material and the CFRP-face laminate is
modelled using a "two-parameter” elastic foundation model, which takes into account
the shear interaction effects between the core and face-laminates. The elastic response
of the core material is suggested expressed using the following expressions
(according to ref. 1), relating the face-laminate deflections u; (only bending contribu-

tion) and w to the core stress components G, T

t t
(3) o,=Kw, 17,=K, {u,(x,—il)} =-K, Elﬁ'

BENDING CONTRIBUTION

where K, and K are the elastic foundation moduli of the core material. According to
refs.1 and 2, appropriate expressions for K, Ky can be given as (in slightly modified
form):

E,b

__ Ey -
- A b(l—‘ voz) F1(¢)! x 41‘*6"}’(1"‘ VO) F2(¢)a
_ sinh(¢)cosh(¢)+ ¢ _ sinh(¢)cosh(¢)— ¢
Fi(9)= sinh?(¢) » B@)= sinh?(¢) :
4) _ 2y _E, v B
=% BT BTy TRk
L in region 1

b =1.0mm ("unit width"), ¢’ -_—{ . _
L+t ,+t, inregion 2
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where c is the core height, E is the transverse elastic modulus, and V¢ is the Poisson's
ratio of the core material.

By combining equations (1)-(3) followed by some rearrangement the governing
equations in region 1 (0 <x <L) can be written in the form:

’ N ’ ’ M
Uy, =I]l’ Wy =_)81, B, =F:a
e Kt 7 K t?
(5) N, ="ﬁ1—xl’ M, 261 a +0,
2 4
Ql =szl

where A, D; are the extensional and bending stiffnesses of face-laminate 1.
Equations (5) constitutes a set of 6 linear coupled first-order ordinary differential
equations.

The system of governing equations in region 2 (see Fig. 1b), are set up in the same
way as in region 1, the only difference being that the governing equations have to be
specified for both face-laminates (1 and 2).

dx
zZ, W
2
Q2+dQ2
] N2+dN2
2 | g
X, u +
2 Q 5 t,/2 M2 M2
T_dx
a
csadx
d
g W] Ua X
J T adx
15/2 ; :
N, ‘] N+dN,
Bl B o il
X, u 1 M1 0 : M1+dMI
1 T dx
Cc
o, dx
Fig. 3. Equilibrium elements of face-laminates 1 and 2 in region2; L; £x <

L]+L2.

Referring to Fig. 3, the equilibrium equations in region 2 can be specified as:



EWP-1787, June 1994

r ’

N =1-1, N, =%,
(6) Region I Q =o0.~-0, Region 2: =0,
! t L+t 4 t,+1t
M = P T _l — 1‘ 1 a M — _ ,r 2 a
1 QI c 2 a 2 2 Q2 a 2

Oa, T are the adhesive layer transverse normal (peel- or cleavage stress) and shear
stress components. The coupling between the two face-laminates is established
through the constitutive relations of the adhesive/resin layer, which is assumed to be
homogeneous, isotropic and linear elastic. According to ref, 3, the adhesive layer
constitutive equations are suggested in the form:

E¥ G
(7 ag,= ; {Wz_wl}’ = ra

a a

t I
{uoz - Ezﬁz — Uy — Elﬁ1}

where G, is the shear modulus, and E,°ff is the effective elastic modulus of the
adhesive material. E,*/f is somewhat larger than E, (adhesive elastic modulus), and is
introduced in order to account for the prevented straining of the adhesive layerl,

1 E,¢ff can be found from the elastic stress-strain relationship for the adhesive:

, E, v,
(I) O-Za: 1+ v 8Zﬂ+1_2V (SXG+E)'G+SZG)
a a
Because of the compability of strains across the interface between the face-laminates
and the adhesive layer, €,, and €ya in the adhesive layer must be equal in magnitude
to the adherend strains ey, €,; (i=1,2) on the interfaces, whereas the transverse

adhesive layer normal strain €,,, which is given by (g,, is assumed constant over the
adhesive thickness):

s W, — W,
(i1) £, B——k
a

can be much larger. Thus, the following statement is true:

(i) |e,|>>(e,.€,)

If &4, and &y, are neglected in comparison with €, eq. (i) can reduced to:

- { ; }
0,=0,=—*—<€ +—=2—¢ \=FE¥eg &
a a a 2a a a
1+¥, -2,

Eeﬁ_E (1—'Va)

‘ “(A-2v)(1+v,)

making E,*f somewhat larger than E, (E,¢ff>E, for physically realistic values of v,:
0.25 < v,<0.45).
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Combination of equations (1), (3) and (7), yields the set of governing equations in
region 2:

Face I:
[ ’ N ’ ’ M.
“01 :I:, MJ1 :—[)’1’ ﬁ] =B;1-’
’ G Gt Kt G Gt
N =u. —24 a’l _ “*x7l I a2,
1 o1 " 181[_2% BN jl 02 . B, 21
’ G (t,+t) G,(t,+t)t K.t* G, (t,+1)
M =y a\'l a 4 a\'l a l+ X"l gy a "l a
I M, o1 3 131[ ar, 4 02 21
(8a) G, (1, +1)t
=3 a‘\’l a 2+ ,
ﬁz_*———4ta 0
’ eff Eﬂ‘ﬂr
ta ra
Face 2:
’ N2 ’ ’ M2
Uy ===, w, ==p,, f, =—2,
) G, .G & - g
! a ﬂr a ﬂt
N, =““0|T_ﬁ1 2t]+“oz7‘_ﬁz 2r2,
@) 4§ G.(t,+1)  G.(1,+1)t C Gt +t) G,(t,+1)t
M, =uy 322ta =+ Zza Bt gty = 22:a = gt 24taa ~+ 0.,
’ E‘-’ﬂ- E‘-’ﬁ
Q) =-w——+w, :

where A;, D are the extensional and bending stiffnesses of face-laminate 2. Equa-

tions (8a-b) constitutes a set of 12 coupled linear first order ordinary differential
equations.

Equations (5) and (8a-b) represents the set of governing equations in regions 1 and 2,
and the only thing still needed is the formulation of the boundary conditions. With
reference to Fig. 1b, the boundary conditions are suggested as follows:

w, =0
&) x=0: N,=-P ("simple support" condition),
M, =0
( "continuity" of solution across junction
Face I: .
between regions 1 and 2,
(]O) X = L‘l: < N2 =0
Face2: <M, =0 ("free edge" condition),
Q,=0
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-

Face I: { B, =0 ("symmetry" condition),
Q] =0

Uy, =0

(11) x=L+L; -

Face 2: ¢ B,=0 ("symmetry" condition)
Qz =0

The statement of the boundary conditions at the ends of the modelled "drop-off”, i.e.,
the assumption of simple support at x=0 and "symmetry" conditions at x=L1+L,, of
course contains an element of arbitrariness, as the "real" boundary conditions for a
thickness "drop-off" in the middle of a sandwich panel are likely to be more
complicated. However, given that the considered length of the thickness "drop-off"
section (L;+Ly) is sufficiently large, the actual boundary conditions imposed at x=0
and x=L;+L; are not very important. This is due to the fact, that the local bending
effects only extends a very short distance to each side of the discontinuous thickness
change (as will be demonstrated later).

3. SOLUTION : "THE MULTI-SEGMENT METHOD OF INTEGRATION"'

The set of governing equations (5), (8a-b) together with the statement of the
boundary conditions, given by equations (9)-(11), constitutes a "multiple-point"
boundary value problem, which can be expressed in the following general form:

Governing equations:
Dex=sl; @} =[AL 5 )} +{B,(x)}

a2) L, *
L<x<L+L; {{y‘(“‘)}} _ [[A“(x)] [Alz(x)]H{yn(x)}}Jr {{B: (x)}}

@} [AL@] AL [{m&} B0
x=0: [T:]{» 0} ={v,},
(13)  Boundary conditions: | x=1I,: [T,]{Eyligi}:{v,},
Y,
(L + L)
eene (m){PGO TN

In equations (12), {y.(x)} = {u[,l.(x),wi(x),ﬁ,.(x),N,.(x),M,.(x),Q!.(x)} (i=1,2) are the
(6,1) matrices (vectors) of so-called fundamental variables, [A1(x)], [Aj*(x)]
(1,j=1,2) are (6,6) matrices of stiffness coefficients; and {B1(x)}, {Bi*(x)} (1=1,2)
are vectors of non-homogeneous load terms (zero in this problem as no external
surface loads are specified).

In equations (13), [To] is a non-singular (6,6) transformation matrix, and [T], [T5)
are non-singular (12,12) transformation matrices. {Up) is a (6,1) matrix containing
the fundamental variables at x=0, and {U, }, {U,} are (12,1) matrices containing the
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fundamental variables at x=L; and x=L;+L,. It should be emphasised here, that the
form of the equations (13) does not involve any restrictions on the boundary
conditions, and that any natural boundary conditions may be stated in this form.

Considering the "multiple-point” boundary value problem thus stated (egs. (12),
(13)), it appears that no general closed-form solutions are obtainable, Thus, a
numerical solution procedure has to be developed. Such a numerical solution
procedure can be developed by following two possible approaches:

1. the finite difference method,
ok the direct integration method ("multi-segment method of integration").

The latter offers some advantages compared to the former, where the most significant
ones in this context are:

- It can be applied conveniently to systems of first order equations.

- It can be applied equally well to beam, plate and shell problems.

- It is especially well suited for solving "multiple-point” boundary value
problems.

Thus, the multi-segment method of integration will be used for the present study.
Without going into details, the method is based on a transformation of the original
"multiple-point” boundary value problem into a series of initial value problems.
Referring to Fig. 4, the problem consisting of the elastically supported face elements
is divided into a finite number of segments (N + N, usually 10-25 elements), and the
solution within each segment can be accomplished by means of any of the standard
methods of direct integration (Runge-Kutta, or Predictor-Corrector methods). Conti-
nuity of al the solution vectors {y,(x)} (containing the fundamental variables of the
problem) at the boundaries (x=0, L, L;+ L,), and at the separation points between
the segments, is ensured by formulating and solving a set of linear algebraic
equations. For more detailed information about the multi-segment method of
integration, the reader is referred to refs. 4 and 5.

REGION 1 REGION 2
1 1 1 i
1 | 1
I | | | | I
— : — '
Segm.: Segm.: Segm.:| Segm.: . Seem.: Segm.:
R N, N1 Ng2 | INFN,
- X
0 Ll L1+L2
Fig. 4. CFRP-sandwich face thickness "drop-off" problem divided into

N; + Nj segments.
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The implementation of the developed solution procedure, has been carried out using

the mathematical software-package MATLAB® version 4.1, which supplies a
technical computing environment for numeric computation and visualisation. A

UNIX-version of MATLAB® installed on a HP workstation, was used for the
development of the described solution procedure as well as for the conduction of a
parametric study (the details of which will be given later). The part of the solution
involving direct integration, is based on a MATLAB®-routine using an "adaptive
step-size" 4th and 5th order Runge-Kutta-Fehlberg method.

No further details about the MATLAB®—implementation will be given, except that it
should be stated that the solution procedure was very easy to implement in the

MATLAB® environment, and, moreover, that the resulting MATLAB®-program is
very "cost-effective” in terms of computer power needed (run-time is usually 10-30
CPU seconds on the HP-workstation).

The developed MATLAB® source-code is given in appendices 1-20 of this report.

6. EXAMPLES

To demonstrate the applicability of the developed solution procedure, as well
as to illustrate the basic mechanical characteristics of the thickness "drop-off"
problem in CFRP-faced sandwich panels, a couple of examples will be given.

6.1  Example 1: 'sandwich face-laminate thickness drop-off"

The first example given represents a thickness "drop-off" of a symmetric honeycomb-
cored sandwich panel with CFRP-faces. The elastic and geometrical properties of the
sandwich panel are assumed to be as follows:

Face I(base-line laminate):

5-ply laminate made of UD-prepregs: HTS carbon fibres in an epoxy resin

system with curing temperature of 120 °C (code 92). The ply-thickness is

0.05 mm corresponding to 60% fibre volume (as specified for a CFRP-

sandwich thrust-cylinder in ref. 6):

Stacking sequence:  symmetric lay-up;[+25°,0°, ¥ 25°].

Laminate thickness: t;=0.25 mm.

Laminate properties: A1;=22.0 kN/mm, A;,=3.5 kN/mm, A,=2.6 kN/mm,
Age=4.0 KN/mm (only A;;="A" is needed in the
present analysis).

D11=106.0 Nmm, D7=22.0 Nmm, D77=15.0 Nmm,
Dgs=25.0 Nmm (only D;;="D;" is needed in the
present analysis).

Length, region 1: L;=10.0 mm.

Face 2 (reinforcing laminate):
2-ply laminate made from the same HTS carbon fibre/epoxy resin system as
face-laminate 1:

Stacking sequence:  non-symmetric lay-up;[+45°].

Laminate thickness: t3=0.10 mm.

Laminate properties: Aj1=3.6 kN/mm, A;,=2.8 kN/mm, A5,=3.6 kN/mm,
Ag=2.8 kN/mm (as before, only A;;="A," is needed in
the present analysis).

D11=3.0 Nmm, D12=2.3 Nmm, D22=3.0 Nmin,

10
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Dgg=2.3 Nmm (as before, only D;;="D>" is needed in
the present analysis).
The existence of non-zero "B-matrix" elements (caused
by the non-symmetric lay-up) is ignored.

Length, region 2: L,=10.0 mm.

Core material:

HEXCEL Al-Honeycomb: 3/16"-5056-0.0007":
Cell-size: $=3/16"=4.8 mm,

Core thickness: ¢=10.0 mm,

Elastic properties: E.=310.0 MPa, v.=0.3 ("out-of-plane" properties).

Adhesive material:

The adhesive layer is assumed to have the same characteristics as the code 92
epoxy resin used in the prepregs. Thus, it is implicitly assumed that the manu-
facturing of the base-line laminate (face 1) and the reinforcement (face 2) has
been cured simultaneously. The properties of the bulk epoxy resin are:

Elastic properties: E;= 2350.0 MPa, v,=0.4.
Adhesive layer thickness: t,=0.01 mm (this value can only be estimated,
) as it will be very difficult in practice to measure
the thickness of the resin rich interface layer
between the plies).

The CFRP-sandwich thickness drop-off zone configuration is illustrated "to scale" in
Fig. 5, from which it is seen that the honeycomb cell-size s is rather large compared
to the thicknesses of the CFRP-laminates. The question about whether the elastic
foundation approach can be justified under such circumstances will be discussed in

later section of this report.
reinforcing laminate

base-line laminate
¢ \ * t2=0.1 mm

t1=0I5 mm
cell-size: gauge-size:
s=3/16" 0.0007" -
= 4.8 mm =0.018 mm e=lRlmm
— g
Al-honeycomb
= , =f L4
L =10.0 mm I.2=10.0 mm
e > —>|
Fig. 5. "To scale" illustration of the considered CFRP-sandwich thickness

drop-off problem. :

In the example, the load is assumed to a unit compressive load applied at x=0, i.e.,
Nj=-1.0 N/mm (or P=1.0 N/mm). The main results of the analysis are shown in Figs.
6-11.

11
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(x=L)) (>(=L1 +L 2)

X, mm

Fig. 6. "Scaled" plot of face laminates 1 and 2 in deformed configuration
(solid and "dash-dot" lines represents the middle surfaces of the face
laminates).

Fig. 6 shows the deformed configuration, where the magnitude of the deflections has
been represented in scaled "non-dimensional" form. The reason for this is, that the
magnitude of the maximum lateral deflections ((W;)max= -1.5 10-5 mm at x=9.5 mm)
is several orders of magnitude smaller than the distance between the neutral-axes of
the two face-laminates, thus making it impossible to show the deflections (in
dimensional form) of the two face-laminates in the same graph.

It is observed from Fig. 6 that very strong local bending effects are present close to
the thickness "drop-off", and that these effects diminishes very dramatically as the
distance from the thickness "drop-off" is increased. The very distinct "wavy"
harmonic nature of the deflectional pattern is caused by the core/face-interaction, and
the wave-length of the elastic deformations can be calculated from the following
expressions (refs. 1 and 2):

(14) A=2rxl, Lﬂ=1/%

where Ly is referred to as the characteristic length of the core/face-interaction (or
rather the foundation/face-interaction), and D;* the bending stiffness of the face-
laminates. In region 1, D" is equal to D; of face-laminate 1, whereas in region 2, D;*
is equal to the combined bending stiffness of face laminates 1 and 2. Thus, eq. (14)

predicts that A should be of different magnitude in regions 1 and 2. This result is
confirmed from a closer inspection of Fig. 6. Using eq. (14), A(region 1)=4.0 mm and
Mregion 2)=4.9 mm.

12
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Fig. 7. Distribution of normalised adhesive/resin stresses: o,/ oy, T, /0.

Fig. 7 shows the distribution of peel and shear stresses in the adhesive layer. The
adhesive stresses have been normalised with respect to the nominal stress defined by:

(15) oy = ﬂf—zm = _TP =-4.0MPa
1 I

As expected, the presence of the adhesive peel and shear stress components is a very
local phenomenon. Thus, it is seen that the decay of the adhesive stresses is nearly

complete for x>12 mm. The peak values of Ga/ON, Ta/ON are located at x=L; (x=10.0
mm), i.e., at the free surface of the adhesive layer. The occurrence of non-zero shear
stresses at the free edge of course violates the condition of stress equilibrium at this
location, and is a consequence of modelling the adhesive layer as continuous
compression/tension- and shear-springs rather than an elastic continuum. However,
the true shear stress peak-value is located only a few adhesive thicknesses inward
from the free surface, and the predicted peak value correlates well with the results of
more advanced theoretical models.

Fig. 8 shows the distribution of normalised foundation stresses (interface) over the
length Lj+L;. As the honeycomb core material really does not supply a continuous
support, but rather a discrete support, for the face laminates, the actual stresses

(Oc/ON, Tc/ON) shown in Fig. 8, should be considered as an average stress distribution.
However, the tendencies observed from the figure are clear. The interface transverse
normal stresses follows a pattern similar to the transverse deflections of the face
laminates. This is no surprise, of course, as the face/foundation interaction equations

13
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(3) assumes the interface transverse normal stress component O to be proportional
with the lateral displacement w; of face-laminate 1.

O. 0025 T T T ¥ T U T T T

0.0015

0.0005

-0.0005

-0.0015

Normalised interface core (foundation) stresses

-0.0025
0 4 8 12 16 20
(x:L l) (X=L I+L2)
X, mm
Fig. 8. Distribution of normalised foundation stresses: Oc/ON, T/ON.

Thus, it is seen that the presence of interface transverse normal stresses is also a very

local phenomenon. Two peak values of Gc/ON are observed, one compressive peak for
x<Lj, and one tensile peak for x>L; (of course reversed if the external load is
changed to a tensile load). The peak values are located approximately one quarter of
an elastic wavelength (A/4, se eq. (14)) away from x=L;. In the actual case, the
maximum interface transverse normal stress is compressive and is located in region 1

(x<Lj): (0c/ON)peak=0.0025. The corresponding peak value of 6./Gy in region 2 is

tensile: (0./oN)=-0.0018. These peak values are quite modest in magnitude compared
to the stresses in the adhesive layer, but it has to be remembered that the honeycomb-
core material is a low density material with very limited crushing strength (Al
honeycomb, 3/16"-5056-0.0007"": Ocrushing=0.5 MPa).

The distribution of normalised interface shear stresses (T./On) is also shown in Fig. 8,

but as their magnitude are insignificant compared to G./Oy it can be concluded that
the shearing interaction between core and face-laminates are of very little importance
in the present problem.

The distributions of normal stress (N1, N2), bending moment (M1, M») and transverse
shear stress resultants (Q,, Q) are shown in Figs. 9, 10, 11.

From Fig. 9 it is seen that the normal stress resultant in face-laminate 1 is constant in
region 1 (x<L;): N1/Nj(x=0)=1. At the location of the thickness drop-off, a part of the
normal stress loading is transferred into the reinforcing laminate (face-laminate 2)
where the load-transfer is achieved through the shearing of the adhesive layer. The

14
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normal stress resultant distribution in region 2 (x>L) stabilises rapidly to a constant
value distribution, where face-laminate 2 carries approximately 14% of the total in-
plane loading.

1‘2 T I T T T T T T T

2

5

o= 1 b
=

4 /l\

2 08 [ N,/N, x=0) ]
=

75]

| 06 | .
g

o

=]

=

=] 0.4 - =
2

E ool N,/N, (x=0) )
z \ =

0 L 1 1 1 { 1 L 1 1
0 4 8 12 16 20
(X—_—L]) (x-—-Ll+L2)
X, mm
Fig. 9. Distribution of normalised normal stress resultants: N 1/N1(x=0),
NQ/N}(X‘:O).

Fig. 10 displays the bending moment resultant distributions in the two face-laminates.
As could be expected, significant bending moment concentrations are present
(primarily in face-laminate 1) in the close neighbourhood of x=L;, which of course is
induced by the abrupt change of bending stiffness at this location.

The presence of these local bending moment concentrations, off course, also indicates
the presence of severe stress concentrations in the face-laminates. The normal stress
distributions within each of the laminae of the two face-laminates can be evaluated
from the following expression:

(16) o= A/ I: E, ] % M, l: E, :l B,
‘ (All)i (I—VIZVZI) ij (Dn); (l”vlzvzl) ,

iJ
iJ

where i=1,2 refers to the actual face-laminate, and J=1,...n; refers to the layers (or
laminae) of which the face-laminates are composed.

Finally, Fig. 11 shows the distribution of transverse shear stress resultants within the
two face-laminates. It is observed that the occurrence of transverse shear stress
resultants is a very local phenomenon, and that their magnitude is quite small
compared to the primary in-plane loading (N;). However, the presence of local shear
stress concentrations is yet another measure/indication of the presence of strong local
bending effects in the neighbourhood of the thickness drop-off at x=L;.

15
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Fig. 10. Distribution of bending moment resultants: M 1, M (unit load case:
N (x=0)=-1.0 N/mm).
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Fig. 11. Distribution of normalised transverse shear stress resultants:

Qi/N1(x=0), Q2/N(x=0).
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To conclude this example, some important points should be emphasised. The pre-
sence of a thickness drop-offs exerts significant influence on the local stress distribu-
tion, an this could lead to a premature failure due to:
- inducement of stress concentrations in the interface between the core
material and the face-laminates;
- inducement of stress concentrations in the adhesive/resin-layer inter-
facing the base-line face-laminate and the reinforcing laminate;
- and finally inducement of strong local bending stresses in the face-
laminates.

6.2  Example 2: "unsupported thickness drop-off"

The example presented in this section is identical to example 1, except that the face-
laminates are not supported by a core-material. Thus, the problem addressed is the
classical bonded "doubler"-problem. This problem can be modelled simply by
assigning zero-value elastic modulus to the core (i.e., Ec=0) in the input-data for the
MATLAB® solution-procedure.

The reason for giving this example together with the first one, is to show that the
presence of a supporting core material exerts a significant influence on the
deflectional and load-distribution characteristics of the problem. Thus, it will be
demonstrated that the inclusion of the core/face-laminate interaction in the modelling,
is very important for the proper understanding of the mechanics of the local bending
problem associated with face-laminate thickness drop-offs in CFRP-sandwich panels.

The geometrical, material and load data (compressive unit load) are as quoted for
example 1. The results of the analysis of the bonded "doubler-problem" are shown in
Figs. 12-16.

0 4 8 12 16 20
(x=L) (x=L +L,)
X, mm
Fig. 12. Deformed configuration of face-laminates 1 and 2 for the bonded

"doubler"-problem.

17
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Fig. 12 shows the deformed configuration of the bonded "doubler", where the
magnitude of the lateral deflections has been greatly exaggerated. Comparing Fig. 12
with Fig. 6 (supported face-laminates) illustrates that the principal elastic response is
completely different for the two examples. Thus, it is observed, that the wavy
harmonic "short wave-length" response which was seen in example 1 is completely
missing in the solution to the bonded "doubler" problem.

Another important feature of the bonded "doubler" solution, as compared to example
1, does not show in Figs. 6 and 12 because the lateral deflections are only displayed
qualitatively. As mentioned in the discussion of the results displayed in Fig. 6, the
peak lateral deflection determined for example 1 was (W)pax= -1.5 10-5 mm at x=9.5
mm (very close to x=L;), whereas the maximum lateral deflection determined in
example 2 (same load !) was (W{)pnax=1.8 10-2 mm at X=L1+L7=20 mm. In other
words, the supporting core material in example 1 acts as an effective restraint on the
lateral deflections (to a degree of three orders of magnitude), with the very important
side effect of inducing the characteristic wavy deflectional pattern displayed in Fig. 6.

0. ] 5 T T ¥ I
g
£ 0.1 :
@
=
3
=i
® 0.05 E
-]
2
s
E o
4

"0_05 1 1 1 ]

10 10.5 11 115 12 12.5
(x=L,) X, mm
Fig. 13. Distribution of normalised adhesive/resin stresses: o,/ oy,1,/0,

The stress distribution within the adhesive/resin layer interfacing the two laminates is
shown in Fig. 13. Comparing Figs. 13 and 7 displays the same overall tendency of
very localised occurrence of adhesive stresses, but also reveals the somewhat
surprising result that the peak interface adhesive/resin stresses obtained in example 2
have been reduced by approximately 40% as compared to example 1. The reason for
this difference is, that the short wave-length elastic response imposed on the face-
laminates in example 1 causes the difference between the displacements (in-plane as
well as lateral) of the base-line and reinforcing laminates to exceed those encountered
in example 2, thus inducing more severe local adhesive/resin stress concentrations (as
the adhesive/resin stresses are proportional to the difference between the
displacements of the two laminates according to egs. (7)).

18
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This observation reveals that the adhesive/resin layer stress concentrations in tapered
CFRP face-laminates of sandwich panels, in general exceeds those experienced in
unsupported CFRP-laminates. This again implies, that the employment of the well-
known bonded doubler results, for the estimation of local stress concentrations in
tapered CFRP-faced sandwich panels, will seriously underestimate the adhesive/resin
Stress concentrations in many cases.

1.2 T T T T T i T I T

&
=
S 1 \ i
=
7]
& ra

L /N (x=0 i
§ 0.8 N /N, (x=0)
w
= i i
g 0.6
=
S
=
-~ 04 I= e
&
= Nlel(x=0)
£ 02} :
=
4 SN S P

0 1 1 | 1 [ 1 1 | 1
0 4 8 12 16 20
(x=LE) (x=L1+L2)
X, mm
Fig. 14. Distribution of normalised normal stress resultants: N;/N 1(x=0),
NQ/N](X=0).

Considering the distribution of normal stress resultants in the two laminates,
displayed in Fig. 14, it is seen that no major differences are present. The only slight
deviation between the two examples (see Fig. 9 for comparison), is that the reinfor-
cing laminate carries an even smaller portion (about 8%) of the overall in-plane load
than was the case in the first example.

The explanation for this phenomenon can be given simply by considering the fourth

of the equilibrium equations (6), i.e. Np'=1,. This equation states, that the rate of
change of the normal stress resultant N in face-laminate 2 equals the adhesive/resin

layer stress T,. As T, is of considerable lower magnitude, as well as extends with
non-zero values over a considerably shorter distance, in the present example as
compared to example 1, it is apparent that the build up of the normal stress resultant
N in the reinforcing laminate is less significant than in example 1. This again
indicates, that the reinforcing laminate in unsupported CFRP-laminates generally
participates less in the carrying of in-plane loads than is the case for CFRP-faces of
sandwich panels.

The bending moment resultant distribution is displayed in Fig. 15, and comparison

with Fig. 10 shows a significantly different overall pattern. This pattern, of course, is
closely associated with the deflectional pattern shown in Fig. 12. From Fig. 15 it is
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seen that no bending effects (M;=0) are present in face-laminate 1 for x<L;, while an
almost constant value of M is present for x>L; (M;=0.013 Nmm/mm). These
observations corresponds very well with Fig. 12, where the "straight-line"/"zero
curvature” deflectional pattern seen for x<L; indicates that no bending moment
loading is being transferred in this area. For x>L1, Fig. 12 displays a "constant
curvature"/"circular arc" deflection pattern, thus indicating the transfer of a constant
bending moment loading.

0014 T T T T T T T T T
0.012 i
g 0.01 - 1
_§_ / Ml
E 0.008 | .
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& 00
~ 0.004 | .
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0.002 | / .
0 T T TR e ]
_0002 1 I} 1 1 ] 1 1 ! 1
0 4 8 12 16 20
(x=L ) (x=L +L)
1 12
X, mm
Fig. 15. Distribution of bending moment resultants: M, M5 (unit load case:

Ni(x=0)=-1.0 N/mm).

Face-laminate 2 does not contribute significantly to the bending moment load
transfer.

Comparing with the results displayed in Fig. 10, it is also observed that the magnitude
of the peak value encountered (present example: (Mj)peax=0.013 Nmm/mm) is
somewhat larger than was experienced in the former example (example 1: (My)peak=-
0.009 Nmm/mm). This result, which holds generally true, shows that the bending
stresses encountered for the unsupported doubler case exceeds the locally induced
bending stresses encountered in sandwich panels.

Finally, Fig. 16 displays the transverse shear stress resultant distribution for the
unsupported thickness drop-off problem. As expected, transverse shearing effects are
only present very close to x=L;. Thus, a complete decay of Q; and Q, is observed
within 0.5 to 1 mm from x=L;. These observations are in close agreement with the
results shown in Fig. 15, as the constant moment regions invariably (follows from the
elementary theory for bending of beams) corresponds to regions of zero transverse
shearing.
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Fig. 16. Distribution of normalised transverse shear stress resultants:
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e LIMITATIONS AND RANGE OF APPLICABILITY

To conclude the presentation of the mechanical model introduced in the
present study, a few additional comments about the implications and limitations of
the model will be given.

The method presented in the preceding chapter relies heavily upon the assumption
that the face-laminate/core interaction can be modelled properly by use of an elastic
foundation model (two-parameter foundation model in the present case). Obviously,
the application of such a model cannot be justified in a general sense as it is
impossible to specify constant values of the elastic foundation moduli K, K which

are appropriate for deformations of any (arbitrary) deflectional wave-length A
(defined by eqn. (14)). The reason for this is that the shearing deformations of the
core material (foundation) becomes very influential for deformations with very short
wave-length, thus implying that proper modelling of the face-laminate/core
interaction can only be achieved by application of a continuum formulation for the
core-material. For practical sandwich panels, however, the bounds imposed by the
vaguely formulated concept of "deformations with very short wave-length" are not
likely to be active, as the values of the bending stiffness D; and the foundation
modulus K, observed even for extremely thin CFRP-laminates (2-3 plies) in
combination with high-density/high-stiffness Al-honeycomb cores, as seen in special
spacecraft applications, will ascertain sufficiently large deflection wave-lengths to
ensure that the elastic foundation approach will supply good results. As a "rule of
thumb", the elastic foundation approach will generally provide good result if the
following inequality is satisfied (t; is the thickness of the base-line face-laminate):
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(17} Apsh

Another important point to be made, in the context of evaluating the quality of the
suggested approach, is that the modelling of the core by application of an elastic
foundation model implies that the core material is assumed to support the face-
laminates continuously. This, off course, is not strictly true for honeycomb-cored
sandwich panels where the face-laminates are supported in a discrete manner along the
edges of the individual honeycomb-cells. Whether the elastic foundation approach
provides a good mechanical model for the face/core-interaction is determined by two

important quantities: the wave-length of the elastic deformations A, and the cell-size of
the honey-comb which is denoted by "s". The following guidelines can be given:

o5 The elastic foundation model provides a good description,
- and the quality of the model improves dramatically if A >> s.

(18) The elastic foundation model is not adequate, as the face -

laminates will tend to act as plates within the boundaries of

A<s: each honeycomb - cell. The quality of the elastic foundation

model of course degrades drastically if A <<s.

For the main portion of honeycomb-cored CFRP-sandwich panels (even for space-
applications) the elastic foundation approach will provide a good description as the
former of the inequalities (18) will be fulfilled. However, for certain space-
applications, CFRP-sandwich panels with extremely thin CFRP face-laminates in
combination with low stiffness honeycombs (light gauge, large cell-size) are used, and
for such cases the elastic wave-lengths encountered can be very close to (or even
violate) the limits imposed by the inequalities (18).

For instance, this was the case in example 1 (section 6.1) where the elastic wave-length

of face-laminate 1 was found to be A=4.1 mm, whereas as the honeycomb cell-size

was assumed to be s=3/16"=4.8 mm (see Fig. 5 for scale-sizes of problem). Thus, it is
seen that the application of the elastic foundation approach for the analysis of example
1, at its very best, has to be considered as a limiting case, and that the actual numerical
results obtained have to be looked upon with some reservation.

8. PARAMETRIC EFFECTS

The two examples given in chapter 6 displayed most of the basic mechanical
features for the general thickness drop-off problem (supported as well as
unsupported). However, to obtain an understanding for the influence of the various
parameters included in the modelling of the problem, it is necessary to conduct a
parametric study.

The parametric effects included in the present study are:
- the bending stiffnesses of face-laminates 1 and 2.
- the core transverse stiffness.

- the stiffness of the adhesive/resin interface layer between face-laminates
1 and 2.
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The influence of these quantities on the local bending behaviour will be illustrated by
showing the peak values of the adhesive stresses components G,, T,, the core

transverse normal stress O (due to its almost negligible magnitude T, will not be

shown, see Fig. 8), and finally the laminate bending moment resultants My, M, as
functions of the following three parameters:

- the characteristic length of face-laminate 1: L, = i/ %—

- the ratio of the bending stiffness of face-laminate 2 (reinforcement) to

the bending stiffness of face-laminate 1 (base-line laminate): 21

1
- and finally the ratio of the adhesive/resin layer stiffness (Eo/t,) to the
(B, It)
=g

z

transverse foundation modulus K, (core stiffness): A =

Note that Lo has the dimension mm (length), whereas D,/D; and A are non-
dimensional parameters.

The external load is assumed to be a unit compressive normal stress resultant
imposed on the structure at x=0. Thus the external load is given as N 1(x=0)=-P=-1.0
N/mm. In the parametric study, the face-laminate bending and extensional stiffnesses
Dj, Dy, Ay, and A; are treated as variables, whereas (for reasons of simplicity) the
thicknesses of the face-laminates are assumed to be identical and constants: ty=t5=0.5
mm (the face-thicknesses are parameters of "secondary" influence as will be explained
later in section 8.3). The core thickness ¢ and the core E-modulus E, are also assumed
to be constants, which again implies that the foundation moduli are assumed to be
constants in the parametric study (again for reasons of simplicity).

In the representation of the results obtained the adhesive and core stress components
will be normalised with respect to the nominal stress defined by (similar to eq. (15)):

_N(x=0) -10N/mm
f 0.5 mm

(19) o, =-2.0 MPa

8.1 Stress and moment concentrations vs. Ly and D,/D; (fixed A )

For all the parametric effects given in this section the parameter A (representing
the ratio of the effective adhesive stiffness to the core stiffness) is fixed to A=250.

The first parametric results, which are shown in Fig. 17, represents the normalised
peak adhesive transverse normal stress 6,/cy as function of Ly and D,/D;. The peak
value of 0,/0N is located at x=L; (see Fig. 7). It should be noted from Fig. 17 that

Oa/ON is positive, and as Oy is negative (compressive), it is seen that the stress state
within the adhesive/resin layer is also compressive. For a tensile external load the
adhesive transverse normal stresses would of course also be tensile.

The tendency observed from Fig. 17 is that 6,/0n decreases significantly as Lg is
increased (i.e., as the bending stiffness of face-laminate 1 is increased compared to the

core stiffness), and that 6,/cy increases as D,/D; is increased (i.e., as the bending
stiffness discontinuity is increased). It is further observed that the stress range covered
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(about 7 decades) is extremely large, thus indicating that a very strong "power law

dependency" exists between G,/0y and L.
The range covered for the characteristic length Ly is also very large; 0.25 mm < Ly <

100 mm (corresponding to elastic wave-lengths in the range 1.6 mm < A < 628 mm,
according to eq. (14)). The range of Lo which corresponds to "realistic" geometrical
and material properties is not quite as wide as shown in Fig. 17 (and all the other
figures to come), but would rather be 0.4-0.5 mm < Ly < 8-10 mm.

100 : ; .

10 |

0.1 [
z 001
0.001 |
0.0001 |

105 |

10° |

0.1 1 10 100
"Characteristic Length'":

L,=[D /K], mm

Normalised adhesive layer transverse normal stress:

Fig. 17. Normalised peak adhesive transverse normal stress 6,/ vs. Lo and
Dy/Dq (A=250).

At this stage an important point should be made. For the compressive load case

considered, the peak adhesive transverse normal stress G, is compressive (as already
mentioned), and this circumstance of course eliminates the possibility of delamination
between face-laminates 1 and 2 to be a likely failure-mode in an actual engineering
application. However, if the external load is tensile (due to overall tensile or overall
bending loading of a sandwich panel) peeling would be a highly possible failure-mode.

Fig. 18 shows the normalised peak adhesive/resin layer shear stress T,/cy as function

of Ly and D2/Dy. The peak value of 1,/0n is located at x=L, (see Fig. 7).
The overall tendencies observed from Fig. 18 are similar to the ones observed from

Fig. 17, i.e., the peak value of 1,/oN decreases strongly as Ly is increased, and

increases (not so dramatically however) as D,/D; is increased from D,/D1=0.01 to
Dg/D]=1.
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Fig. 19 shows the normalised peak core transverse normal stress o /oy (interface
between core material and face-laminate 1) as function of Ly and Do/Dy. As was the

case for o /oN (Fig. 17) it is noted that 6 /oy is positive, and as oy is negative
(compressive), it is observed that the peak core stress is compressive. The peak value

of 6 /o is located approximately A/4 = 2rnLy/2 before x=L,, i.e. at x = L;-nLy/2 (see
Fig. 8).
Again the overall tendencies observed from Fig. 19 are similar to the ones observed

from Figs. 17 and 18, i.e., the peak value of 6./oN decreases strongly as Lg is
increased, and increases as Do/D; is increased.

The last two figures (Figs. 20, 21) to be included in the this part of the parametric
study illustrates the influence of the local bending on the stress state in the two face-
laminates. Showing the actual peak bending stresses induced in the face-laminates
would require an exact specification of the actual laminate lay-ups considered
(including lay-up angles and stacking sequences for each of the face-laminates), and
would therefore destroy the generality of the parametric results.

Instead, it has been decided to show the peak values of My, M, as function of L and
D»/D;. This provides for the desired generality of results, and for specified laminate
lay-ups it is an easy task to evaluate the actual bending stress distributions
(discontinuous) through the thickness of the laminates.

The inplane normal stress resultants Ny, N, in the two face-laminates will not be
included in this parametric study as no real stress concentrations occurs (see Fig. 9).
The peak values of transverse normal stress resultants Q;, Q, will not be given either,
even though significant peaks are induced (as illustrated in Fig. 11). However, the
magnitudes of the transverse shear stresses, which over the laminate thicknesses adds
up to the transverse shear stress resultants, are quite modest.

Fig. 20. shows the peak bending moment resultant M, induced in face-laminate 1 as
function of Ly and Dy/D;. The peak value of M is located approximately at the
junction between regions 1 and 2, i.e. approximately at x = L.

It is observed that the peak value of M is negative, thus indicating that the upper fibre
of face-laminate 1 in a compressive state of stress at the location of (My)peak- This latter
observation is, of course, a direct consequence of the fact that face-laminate 1 is
indented into the core material at the location where M, attains its peak value (see Figs.
6 and 10).

The overall tendency observed from Fig. 20 is that the peak value of M; (absolute
value) decreases as the characteristic length Ly increases, and increases as Dy/D; is
increased. Thus, the general effects observed are similar to the parametric influences
exerted on the peak adhesive and core stresses.

Even though the effect of altering L and D,/D) is very significant, the mere fact that a
linear "Y-axis" is used to represent (M )pea in Fig. 20 reveals that the influence is not

as strong as were the case for G,/ON, T/ON . 6/ON (plots shown in Figs. 17, 18 and
19).

Fig. 21. shows the peak bending moment resultant M, induced in face-laminate 2 as
function of Ly and Do/D;. The peak value of M; is located approximately A/8 = ntLy/4
after x=L,, i.e. approximately at x =~ L;+nLy/4.
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The peak value of M; is positive, thus indicating that the upper fibre of face-laminate 2
is in a tensile state of stress at the location of (M2)peak.

Apart form this difference, and apart from the fact that the peak value of M, is
generally smaller than the peak value of M, the overall pattern is the same as seen in
Fig. 20. Thus, it is seen that (M2)peax decreases with increasing Lg-values, and
increases with increasing values of Do/D.

Summing up briefly, the parametric study represented in this section has shown that
the stress state in the constituent parts (core material, face-laminates and adhesive/resin
interface layer), which together constitutes the thickness drop-off zone in a sandwich
panel, is affected very strongly by Ly and D,/D;. The general observation is, that the
lower the value of Ly (i.e., the shorter the wave-length of the elastic response) the
more severe stress concentrations are encountered. Furthermore, it is observed that the
magnitude of the stress concentrations increases with increasing vale of Dy/Dg (i.e.,
with increasing values of D, for D;=constant)

8.2 Stress and moment concentrations vs. Ly and A (fixed D>/D;)

The parametric study presented in this section has been carried out by varying

the characteristic length Ly and the parameter A=(Ey/t,)/K, which determines the ratio of
the adhesive/resin layer stiffness to the core stiffness. The ratio between the bending
stiffness of face-laminate 2 (reinforcement) to the bending stiffness of face-laminate 1
has been kept fixed to D,/D;=0.05 (which is a realistic value for the discontinuous
jump in bending stiffness at a typical face-thickness drop-off in a CFRP-sandwich
panel).

The first parametric effects given in this section are presented in Fig. 22, which shows
the peak adhesive/resin normalised transverse normal stress 6,/0 as function of Lo
and A.

The range of the parameter A is given as 50 < A < 2000, which is a bit wide with
respect to the upper end of the range. For "realistic" combinations of geometrical and

material parameters A will usually be limited by A < 1100-1200.
The peak value of 6,/0y is located at x=L;, and as was the case for the results shown

in Fig. 17 the fact that 6,/oy is positive indicates that a compressive state of stress is
present in the adhesive layer.

The general tendency derived from Fig. 22 is that 6,/cy decreases with increasing
value of Lo (which was already shown in Fig. 17, section 8.1), and that C0./ON

increases with increasing value of A. The latter of the observations made indicates that
the adhesive layer stress state is very sensitive to the relative stiffness of the adhesive
layer (Ea/t;) to the stiffness of the core material (K,), and that severe stress
concentrations (up to 3-4) can be encountered in the "realistic" range of the
characteristic length Ly: 0.4-0.5 mm £ Lo < 8-10 mm.

Fig. 23 displays the normalised peak adhesive/resin shear stress T,/Gy as function of

Lo and A. As could be expected the overall tendencies observed from Fig. 23 are
similar to the tendencies observed from Fig. 22.
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Fig. 24 Shows the peak core transverse normal stress 6./ (at the interface between

core and face-laminate 1) as function of Ly and A.

As expected from the results given in Fig. 19, the dependency of Lg is pronounced,
and the overall tendencies are exactly as stated in section 8.1. As was the case for the

results presented in Fig. 19, the peak value of 6./0N occurs approximately at x = L;-
ntlo/2. It should be noted that (Oc)peak 1 compressive for the considered load case.
With respect to the relationship between the peak value of 6/oy and the parameter A,

the tendency is that 6./cy increases with increasing A. Thus, it is observed that the core
stresses increases as the stiffness of the adhesive/resin layer increases relative to the
core stiffness. Even though the actual stress concentration values displayed in Fig. 24
might seem modest in magnitude, it should be remembered that the core material is
usually a low density material with limited load carrying capability (compared with the
face-laminates and the resin material).

The influence of Lo and A on the peak value of the bending moment resultants M;, M,
in face-laminates 1 and 2, respectively, is displayed in Figs. 25 and 26. The overall
tendencies with respect to the influence of the parameter Ly are quite similar to the
results displayed in Figs. 20 and 21 of section 8.1. Thus, it is seen that the peak values
of M (peak value negative), M, (peak value positive) decreases strongly as the
characteristic length increases. This implies that the bending stress state in the face-
laminates becomes less severe as the bending stiffness of the faces is increased relative
to the core transverse stiffness.
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Fig. 24. Normalised peak core transverse normal stress 6,/0y (interface between
core and face-laminate 1) vs. Ly and A (Dy/D1=0.05).
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However, the most interesting new feature displayed by the plots in Figs. 25 and 26, is
the influence of the adhesive/core-stiffness ratio A on the peak values of M;, M.

Considering the results shown in Fig. 25, it is apparent that increasing the
adhesive/core-stiffness ratio affects the bending state in face-laminate 1 such that the
peak value of M increases (absolute value) as well. Even though this effect is not very
dramatic (displayed by the use of a linear scaled "Y-axis"), it is clear that an increase of
(M})peak means an increase of the bending stresses in face-laminate 1. Thus, it is seen

that the influence of A on the bending stress state in face-laminate 1 is similar to the
influence exerted on the adhesive/resin layer and the core stress states.

All the observations derived from Fig. 25 about the relationship between the adhesive/
core-stiffness ratio A and the peak value of M, are valid for the results displayed in

Fig. 26 showing the Mj-A relationship. Thus, no additional comments will be given
with respect to the results shown in Fig. 26.

To conclude this section, it has been demonstrated that the adhesive/resin layer, the
core as well as the face-laminate stress states are strongly influenced by the

adhesive/core-stiffness ratio A (and of course by Lp).The overall conclusion drawn is

that the larger the value of A .i.e., the larger the difference between the effective

adhesive/resin layer stiffness (E,/ty) and the core stiffness K,, the more severe stress
concentrations are encountered.

8.3 '"Secondary" parametric effecis

The parametric study given in the two preceding sections illustrates the

influence of what could be called the "primary parameters" (Lg, D2o/Dg and A), thus
indicating that these parameters exert primary influence on the local bending behaviour.
This, of course, indicates that there are other, and less influential, parameters which
also exerts influence on the local bending problem. These parameters could be called
"secondary parameters”, and their influence is at least partly included in the "primary
parameters”.

Examples of "secondary parameters” are: laminate extensional stiffnesses, laminate
stacking sequences, laminate thicknesses, as well as laminate coupling effects (due to
unsymmetric and unbalanced laminate lay-ups). The influence of these parameters will
not be given any further attention in this report, but they will of course have to be
considered in a design situation.

9.0 "HIGH-LIGHTING" OF PRIMARY DIFFERENCES BETWEEN
TAPERED CFRP-SANDWICH AND UNSUPPORTED TAPERED
CFRP-LAMINATE CASES

In the two examples presented in paragraphs 6.1 and 6.2 of this report, the
differences between the local mechanical response encountered in tapered CFRP-
sandwich panels and tapered unsupported CFRP-laminates (i.e. CFRP-laminates
which are not acting as face-sheets of sandwich panels) were discussed. For the
CFRP-sandwich case it was found, that the core material acts as a very efficient
restraint on the lateral displacements, but as the face-laminate/core interaction at the
same time imposes a short wave-length deflectional pattern, the resulting elastic
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response differs significantly from the unsupported CFRP-laminate case. Especially
three important differences were found:

- severe stress concentrations are induced in the core material in the sandwich
case (obviously, for the unsupported case no core stresses exists as there is no
supporting core-material);

- the adhesive/resin layer stress concentrations induced in the sandwich case
tends to be more severe than in the unsupported case;

- The bending moment concentrations (and thereby the laminate bending stresses)
concentrations found for the unsupported case are generally more severe than
for the sandwich case.

The points made are quite important, as the temptation to analyse the tapered CFRP-
sandwich problem with the well-known methods developed for the unsupported
bonded "doubler”-problem is very nearby. As observed, however, this will neglect the
existence of core transverse normal as well as shear stresses, it will underestimate the
stress concentrations in the adhesive/resin layer which separates the base-line and
reinforcing laminates, and finally it will overestimate the magnitude of the locally
induced bending stresses in the base-line laminate (this at least being conservative).

In order to elaborate a bit on the latter two of the differences mentioned, the results of
an additional (and small) parametric study will be given. The idea of the study is to
give a quantitative impression of the differences between the peak adhesive/resin layer
stresses, and the peak bending moment resultants encountered in tapered CFRP face-
laminates of sandwich panels and unsupported CFRP-laminates, respectively. In the
parametric study a thickness drop-off zone with the following characteristics is
considered:

- a reinforcing laminate (face 2) made from 2 plies of HTS carbon fibre/
epoxy prepreg (same as face 2 in examples 1, 2 of sections 6.1 and 6.2) with

stacking sequence [+45°] and thickness t;=0.1 mm is dropped (see section 6.1
for elastic properties).

- the base-line laminate (face 1) is assumed to be some "fictive" carbon-fibre
laminate (made of UD-ply prepregs; unspecified stacking sequence) where the
thickness is varied between t;=0.2 mm and t;=2.0 mm (the interesting
thickness-range for most aerospace applications), and where the in-plane elastic
properties are assumed to be as follows (values are representative for carbon-
fibre/epoxy laminates with a "high" percentage of 0°-plies):

E11=65.0 GPa, E3,=8.0 GPa, v,=0.175, v;;=1.35, G;,=16.0 GPa.

- the core material is assumed to be HEXCEL Al-honeycomb; 3/16"-5056-
0.0007" which was specified in examples 1 and 2 of sections 6.1, 6.2.

- the adhesive/resin layer is assumed to the same as specified in examples 1
and 2 of sections 6.1, 6.2.

The results of the paramatric study are shown in Fig. 27 and 28. It should be noted
here, that the quantitative results displayed are only strictly valid for the specific
thickness drop-off configurations considered, and that all other configurations will
yield different stress and moment resultant concentration values. However, the overall
(qualitative) tendencies displayed are generally valid.
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Fig. 27 shows the peak values of the normalised transverse normal and shear stress

components, (Ca/ON)peak and (T/ON)peak- @s functions of the thickness t; of the base-
line laminate for the sandwich and unsupported CFRP-laminates, respectively.

Fig. 28 shows the corresponding peak values of the face-laminate bending moment
resultants (M)peax @s function of t; encountered for the sandwich and unsupported
CFRP-laminates, respectively.
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Fig. 27. (02/ON)peak and (Ta/ON)peak vs. t; (0.2 mm < t; < 2.0 mm) for
sandwich and unsupported CFRP-laminates. The thickness of the

reinforcing laminate is kept constant: t=0.1 mm (corresponding to 2
HTS carbon/epoxy plies).

Considering the results displayed in Fig. 27, it is observed that the adhesive/resin layer
stress level is generally higher (as stated earlier) in the sandwich CFRP-laminates than
in the unsupported CFRP-laminates. Furthermore, it is seen that this general
observation is especially pronounced for small values of t; (which corresponds to small

values of the elastic wave-length A for the CFRP-sandwich case), while the difference
between the adhesive/resin layer stress concentrations for the two cases decreases with
increasing values of t;.

Comparing the overall tendencies displayed in Fig. 27 (CFRP-sandwich results) with
Figs. 17, 18 (section 8.1) and Figs. 22, 23 (section 8.2), some surprising and at first
s1ght contradictory results shows. In Fig. 27 is it seen that (Ga/ON)peax and (Ta/CFN)peak
increases with i increasing values of t. Increasing values of t; corresponds to increasing
values of the primary bending stiffness D (assuming constant material properties),
which again corresponds to increasing values of the elastic wave-length A (also

assuming constant K;). Thus, in Fig. 27 it is seen that (Ga/ON)peak and (Ta/ON)peak
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increases with increaSing values of A, while the opposite conclusion can be drawn
from the results displayed in Figs. 17, 18, 22 and 23.
Another (and similar) apparent discrepancy between the results of Fig. 27 and the

results of Figs. 17 and 18 can be found. In Fig. 27, (Ca/ON)peak and (Ta/ON)peak
increases with increasing values of t; (corresponding to increasing values of D), and
as t; has been kept fixed (i.e. D = constant), it is seen that the adhesive/resin peak
stresses increases with decreasing values of the stiffness ratio D»/D; (D, = constant
and D, increasing). This result is completely opposite to the results displayed in Fig.
17 and 18.

The reason for these apparently contradictory results is not an inconsistency in the
modelling of the thickness drop-off problem (fortunately), but is a consequence of the
different circumstances (basic assumptions) under which the parametric study results
displayed in sections 8.1, 8.2 and this section have been obtained.

One of the primary objectives of the parametric studies displayed in sections 8.1 and
8.2 were to show the relationship between the stress/moment concentrations and the
"primary” parameter Lo (characteristic length; see eq. (14)). The parameter L is
determined by D; and K, which imply that L is determined by the "effective in-plane
face-laminate E-modulus" ("E;;" for face-laminate 1), the face-laminate thickness t;,
and the core stiffness Ec. In order to facilitate the conduction of the parametric study
results presented in sections 8.1 and 8.2 the face-thicknesses t; and t, as well as the
core E-modulus E; were treated as constants, while the "effective in-plane laminate E-
moduli” of the face-laminates were treated as variables.

The parametric results displayed in Fig. 27, however, were obtained by varying t; with
constant values of E and t; as well as the "in-plane effective E-moduli" of the face-
laminates. The solution-procedure "runs" were conducted by specifying a unit
compressive line load Nj(x=0)=-P=-1.0 N/mm, and it is readily seen that the value of

the nominal stress oy decreases with increasing t; (as oy = Ni(x=0)/t; = (-1.0
N/mm)/t;). When t; is increased (while t; is maintained constant), a smaller and
smaller portion of the total load is transferred into the reinforcing laminate, and this
causes the absolute value of the adhesive/resin stresses to decrease. This decrease is,

however (as explained above), accompanied by a decrease in Oy, and as the decrease
of on is more steep than the decrease of ¢, and 1, (absolute values), the result

displayed in Fig. 27 is that (Ca/ON)peak and (To/ON)peak increases with increasing values
of ;.
Thus, the tendency of increasing values of normalised adhesive/resin stresses with

increasing value of t; (corresponding to increasing value of the elastic wave-length A
and decreasing value of the stiffness ratio D,/D;) displayed in Fig. 27, can be
attributed to the circumstances that the load-sharing between the two face-laminates, as
well as the nominal stress (with which the adhesive stresses are normalised), changes
in the conducted parametric study. This again shows, that proper interpretation of the
parametric results is not a straight forward matter, and that it can be difficult to separate
the effects of the various parameters influencing the mechanics of the thickness drop-
off problem.

The results displayed in Fig. 28, showing the absolute values of the peak bending
moment resultants for the sandwich and the unsupported tapered CFRP-laminate cases
as functions of t;. These peak bending moment resultants occurs in face-laminate 1,
and for the sandwich case, (M)peak is negative (for compressive external load) and is
located at x=L; (see Fig. 10), whereas for the unsupported case, (M1)peak is positive
and occurs for x>L (see Fig. 15).
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It is seen from Fig. 28, that the peak bending moment resultant values for both cases
increases with increasing values of t;. Furthermore, it is seen that [(M),eaxl tends to be
larger for the unsupported case than for the sandwich CFRP- lammate case. The
difference between values of I(M)peaxl-values is smallest for small values of t;, and
increases with increasing t;.

For t;>0.8 mm, the relative difference between the two cases is almost constant, and,
moreover, the continued increase of the peak bending moment resultant values with
increasing 8] has almost vanished (i.e., |(M1)peak| UNSUPPORTED = 2 I(Ml)peakl SANDWICH
= constant).

The tendency of increasing values of I(M)peaxl With increasing values of t; (which

corresponds to increasing A—value and decreasing D,/D;-ratio) observed from Fig. 28,
is apparently a complete contradiction to the results displayed in Figs. 20 and 25 of
sections 8.1-8.2 (same type of "discrepancy” as observed for the results shown in Fig.
27). As before, this "apparent” discrepancy can be attributed to the mere fact that the
circumstances under which the parametric study results shown in Fig. 28 have been
obtained are different from the circumstances under which the results shown in
sections 8.1 and 8.2 were obtained.
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Fig. 28. I(M1)peak! vs. t; (0.2 mm < t; < 2.0 mm) for sandwich and unsuppor-
ted CFRP-laminates. The thickness of the reinforcing laminate is kept

constant: tp=0.1 mm (corresponding to 2 HTS carbon/epoxy plies).
Thus, the reason for I(Ml) eakl to increase with 1ncreasmg t; in Fig. 28 (not very
pronounced for the sandw1ch case) is, that the increase of t; causes the bending
stiffness D) to increase (D; o< t;3), and even though the curvature B{'=-w," of face-
laminate 1 decreases due to the increased bending stiffness (note that M;=D; B;"), the

product between D; and B’ increases overall. This tendency is especially pronounced
for 0.2 mm < t; £ 0.8 mm for the unsupported CFRP-laminate case.
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10. DESIGN GUIDELINES

Based on the results presented in chapters 6, 8 and 9, it is possible to formulate
a number of simple design guidelines for tapering face-laminates of CFRP-sandwich
panels:

- The thickness drop-off step-size should be made as small as possible in order to
minimise the parameter D,/D;. If possible, the drop-off step-size should be
limited to a thickness of two ply-thicknesses (one ply-thickness being
impractical and unrealistic).

“ As a direct continuation of the first design guideline, a strong advise is given to
avoid dropping a thick sub-laminate (reinforcement) containing a large number
of plies abruptly. It is preferable to drop a large number of plies as a number of
thin sub-laminates evenly distributed over a some longitudinal distance.

- The spacing between two adjacent thickness drop-offs should at least equal the

wave-length of the core/face-laminate elastic response: A=2nL (and preferably

it should exceed A).

- If possible, the adhesive/resin properties as compared to the core properties
should be chosen in such a way as to minimise the adhesive/core-stiffness

ratio A=(E,/ty)/K;.
- Finally, as significant stress concentrations in the adhesive/resin layer
interfacing the base laminate and the reinforcing laminate are unavoidable, an

adhesive/resin system with long elongation to failure capability (ductility)
should be used.

The simple guidelines formulated above agrees very well with the general design
guidelines specified for unsupported CFRP-composites in refs. [7], [8].

11. FINAL COMMENTS, CONCLUSIONS AND SUGGESTIONS
FOR AN EXPERIMENTAL STUDY

A mechanical model of the thickness drop-off problem encountered in CFRP-

faced sandwich panels has been developed, and it has been shown that the inclusion of
core/face-laminate interaction in the model is of paramount importance. This has been
achieved by introducing a two-parameter elastic foundation model, which includes the
shearing interaction between the core material and the face-laminates.
The model presented has been restricted to considering the face-laminates as layered
linear elastic beam-elements, or layered linear elastic orthotropic plate-elements in
cylindrical bending, and the results presented therefore have to be evaluated in this
context. Furthermore, linear elastic assumptions have been used for the core material
and the resin/adhesive layer interfacing the base-line and reinforcing face-laminates.

The actual problem solution has been accomplished by transforming the resulting
multiple-point boundary value problem into a series of interconnected initial value
problems, which can be solved using a direct integration scheme. The method used,
known as the "multi-segment method of integration", was implemented on a HP-
workstation using the mathematical software-package MATLAB® (version 4.1), and
the numerical solution procedure developed has proven to be very efficient and robust.

The numerical solution procedure developed has been used for conducting a series of
parametric studies, and three "primary parameters" were found to exert significant
influence on the stress concentrations induced by local bending in the adhesive/resin
layer, the core material and the face-laminates. The three "primary parameters” are:
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D
K,

- the ratio of the bending stiffness of face-laminate 2 (reinforcement) to

- the characteristic length of face-laminate 1: L, =

the bending stiffness of face-laminate 1 (base-line laminate): —g—z

1
- the ratio of the adhesive/resin layer stiffness (E,/t,) to the transverse

(E, /1)
N

4
It was found that an increase of all the quoted parameters was accompanied by signifi-
cantly increased stress concentrations.

foundation modulus K, (core stiffness): A=

As mentioned in the introductory chapters of this report, the solution method developed
(beam/plate model) should be looked upon as the simplest possible version of a general
beam/plate/shell model of the thickness drop-off problem. However, it would be rather
simple to implement a number of additional features such as:

- Using higher-order beam/plate/shell theory in order to account for the
transverse shearing effects. This feature might be valuable/necessary in cases
where thick (substantial number of plies) face-laminates are used.

- Expanding the model to general rotationally symmetric shells (cylinders
or shells with arbitrary meridian shapes). The material properties of the face-
laminates can be modelled as generally orthotropic (i.e., the principal material
directions do not have to coincide with the principal directions of curvature),
and the external loading can be non-axisymmetric.

- Non-linear material behaviour of the adhesive/resin layer, the face-lami-
nates and the core material can be included in the modelling by adopting an
incremental formulation. This additional feature (at least including non-linear
adhesive/resin and/or core properties) would be necessary in order to enable the
prediction of the failure load and the actual failure mode.

- Geometrically non-linear effects can also be included in the model by
adopting a non-linear strain-displacement relationship together with an
incremental formulation.

The work reported so far has been solely theoretical, and even though not much doubt
can be raised towards the quality of the predictions in a qualitative sense, an evaluation
of the actual quantitative predictions of the model would be highly desirable. Thus, an
experimental investigation with the objective of verifying/adjusting the model is
currently being considered.

No decision has been made regarding the experimental technique to be used, but two
types of techniques are being considered:

1, Strain gauge measurement of surface strains on the tapered face-laminates
of CFRP-sandwich panels.
In order to carry out such an experimental investigation successfully, it would
be of paramount importance that the wave-lengths of the elastic deformations
should be sufficiently large to enable the measurement of the surface strains
close to the thickness drop-off areas. In order to accomplish this, CFRP-
sandwich panels with rather thick laminates should be used in the experiments.
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Suitable geometrical and material properties for the test-specimens could, of
course, be deternined by use of the developed solution procedure.

Optical measurement of the displacement field of the surface of the tapered
face-laminates of CFRP-sandwich panels.

For the present investigation, optical measurement of the displacement field can
be accomplished by two different methods: holographic interferometry
(double exposure or real-time), or moiré fringe interferometry. The
former method is about one order of magnitude more sensitive than the latter,
as the smallest measurable displacement using holographic interferometry is
about 1-2 x 10 mm, whereas it is about 2-3x 10-> mm using moiré fringe
interferometry. From this it is seen that the most promising method in the
present context would be holographic interferometry, as the lateral deflections
encountered locally will be very small.
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APPENDICES: MATLAB® "M-FILES"

Appendix 1: EXEC.m (main execution program)

% M-file: EXEC.m

%

% Solution of "thickness change" induced bending
% problem in CFRP-sandwich panels.

clear
clear global

% Loading of Input data; Calculation of foundation moduli and stiffness
% coefficients; Definition of B.C.'s through non-singular transformation
% matrices TO, T1 T2 and B.C.-vectors u01, ui1, u23 and u24.

global N1 N2 fvar fhalf Nvar

Input; % Using M-file: Input.m.
stiffcoeff; % Using M-file: stiffcoeff.m.
BC; % Using M-file BC.m.

% Solving the problem involves solution of a matrix equation of the form:
% [S}{U}={V} (U=S\V in MatLab syntax). The system matrix [S], the solution
% vector {U}, and the "load vector" {V} are defined by:

fvar=6;
fhalf=fvar/2;
Nvar=(N1+2*N2)*fvar;

S=sparse(Nvar,Nvar);
U=zeros(Nvar,1);
V=zeros(Nvar,1);
V(Nvar-fvar+1:Nvar-fhalf,1)=u23;
V(Nvar-fhalf+1:Nvar,1)=u24;

% Creation of system matrix [S].
% Creation of solution vector {U}.
% Creation of "load vector" {V}.
% B.C.'s in last segment.

%o do.

% The structure of the system matrix [S] is roughly defined by:

%

% P11 -l "segment 1" |
% | P2 S I
% | Y1Y2 -l ‘“"segment2 % I
% | Y3y4 -l ______ |
% | YiY2 -I ‘“"segment3" "REGION 1" I
% | Y3avya -l ___ __ _ I
% | I
% | I
% ______ |
% | Y2 Y3 Y4 -l |
% | "segment Y6 Y7 Y8 -l "REGION 2" I
%1  N1+1" Y10 Y11 Y12 -1 |
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Y%l _ Y14Y15Y16 -l |
% | Y1 Y2 Y3 Y4 - |
% | ‘"segment N1+2" Y5 Y6 Y7 Y8 | |
% | Y9 Y10Y11Y12 -| I
%l YiISY14 Y15 Y16 -l |
% | . I
% | |
%l e |
% | Y1 Y2 Y3 Y4 - I
% | "segment N1+N2" Yo Y& Y7 Y8 -1
% | Y9 Y10 Y11Yi2 |
% | Y13Y14 Y15Y16 I
%

% where the I's are (3,3)-unit matrices.

%

% REGION 1; SEGMENTS 1 TO N1:

I=-eye(N1*fvar,N1*fvar);
S(1:N1*fvar,fhalf+1:N1*fvar+fhalf)=I,
clear I,

% "step" goes from 1 to N1in REGION 1, but 1. segment is special.

% 1. segment; REGION 1:
step=1;

Y_1=eye(fvar,fvar); % Creation of (fvar*fvar)-matrix Y_1.
YY1=eye(fvar,fvar);

Y10=YY1(:); % Specification of initial conditions at x=0.
x0=0;

dx1=L1/N1;

X1=x0+dx1,

[x_1,Y1]=0de45('DDX_Y1'x0,x1,Y10);

[m,n]=size(Y1);

Y 1G)=Y1tnnin)

% "Filling in" of "load vector {V}", and system matrix [S]:
YY=Y_1*inv(TO);

V(1:thalf, 1)=-YY(1:fhalf,1:fhalf)*u01;
V(fhalf+1:fvar,1)=-YY (fhalf+1:fvar,1:fhalf)*u01;
S(1:fvar,1:thalf)=YY(1:fvar,fhalf+1:fvar);

% Stepping over segments 2 to N2 in REGION 1:
for step=2:N1
J=(step-1)*fvar,
S(J+1:J+fvar,J+1-thalf:J+fhalf)=Y_1; % "Filling in" of [S].
end;
% {V}=0 in these segments; "filled in" already.
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% REGION 2; SEGMENTS N1+1 TO N1+N2:

dum=fvar*(2*N2-1);

I=-eye(dum,dum);
S(N1*fvar+1:N1*fvar+dum,(N1+1)*fvar+1:Nvar)=l;
clear l;clear dum;

% "step" goes from 1 to N2 in REGION 2, but 1. and last segments are
% special.

% REGION 2; segment 1 (N1+1):
step=1,

Y_2=eye(2*fvar,2*fvar); % Creation of (2fvar*2fvar)-matrix Y_2.
YY2=eye(2*fvar,2*fvar);

Y20=YY2(:); % Specification of initial conditions at x=L1.
x0=0;

dx2=L2/N2;

x1=x0+dx2;

[x_2,Y2]=0de45('DDX_Y2',x0,x1,Y20);

[p.q]=size(Y2);

Y_2()=Y2(p,1:q);

% "Filling in" of "load vector" {V}:

YY=Y_2%inv(T1);

V(N1*fvar+1:N1*fvar+fhalf,1)=-YY(1:fhalf,1:fhalf)*u11;
V(N1*fvar+fhalf+1:(N1+1)*fvar,1)=-YY (fthalf+1:fvar,1:fhalf)*u11;
V((N1+1)*fvar+1:(N1+1)*fvar+fhalf,1)=-YY(fvar+1:fvar+thalf,1:thalf)*ui;
V((N1+1)*fvar+fhalf+1:(N1+2)*fvar,1)=-YY (fvar+fhalf+1:2*fvar,1:fthalf)*u11;

% "Filling in" of system matrix [S]:
S(N1*fvar+1:(N1+2)*fvar,N1*fvar-
fhalf+1:(N1+1)*fvar)=YY(1:2*fvar,fhalf+1:2*fvar);
clear YY;

% Stepping over segments 2 to N2-1 in REGION 2:
for step=2:(N2-1)
J=N1*fvar+(step-1)*2*fvar;
S(J+1:J+2*fvar,J+1-fvar:J+fvar)=Y 2;
end;
% {V}=0 in these segments; "filled in" already.

% REGION 2; segment N2 (N1+N2):
step=N2;

% "Filling in" of system matrix [S]:
YY=T2*Y_2;
J=N1*fvar+(N2-1)*2*fvar;
S(J+1:J+2%fvar,J-fvar+1:J+fvar)=YY;
clear YY;

% {V} "filled in" already.
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% After integration in each segment (1 to N1+N2), and after assembly
% of the system equations [S{U}={V}, the solution is obtained as:
U=S8\v;

% A small "repair job" on the solution vector {U} still remains,

% as {U} does not contain the prescribed B.C.'s u01 (x=0), u11 (x=L1),
% and u23, u24 (x=L1+L2).

% The final solution vector components are stored in the vector {Ures}:
Ures(1:fhalf,1)=u01;

Ures(fhalf+1:N1*fvar,1)=U(1:N1*fvar-fhalf,1);
Ures(N1*fvar+1:N1*fvar+fhalf,1)=u11;
Ures(N1*fvar+fhalf+1:fvar<(N1+2*N2+1),1)=U(N1*fvar-
fhalf+1:fvar*(N1+2*N2),1);

Ures(Nvar+fvar+1:Nvar+fvar+fhalf, 1)=u23;
Ures(Nvar+fvar+fhalf+1:Nvar+2*fvar,1)=u24;

% The elements of {Ures} at the ends (x=0, x=L1+L2), and at the
% junction between REGIONS 1 and 2 (x=L1) still needs rearrangement:

Ures(1:fvar,1)=inv(T0)*Ures(1:fvar,1);

% x=0
Ures(N1*fvar+1:(N1+2)*fvar,1)=inv(T1)*Ures(N1*fvar+1:(N1+2)*fvar,1);
% x=L1
Ures(Nvar+1:Nvar+2*fvar,1)=inv(T2)*Ures(Nvar+1:Nvar+2*fvar,1);

% x=L1+L2

% Calculation of complete solution using M-file: STRESScalc.m:
STRESScalc;

% Calculation of "upper surface" strain fields using M-file: STRAIN.m:
STRAIN;

% "Separation” of lateral deflection components: w1, w2 as well
% as longitudinal displacement components u1, u2.
for i=1:N1*(m-1)+N2*(p-1)+1
wi(i,1)=yy1(2,i);
ut(i,1)=yy1(1,);
end;
offset=2e-5; % Used for plot-"scaling" of deformed structure.
for i=1:N2*(p-1)+1
w2(i,1)=yy2(2,i);
w2plot(i,1)=w2(i,1)+offset*(0.5*(tf1+tf2)+ta); % w2-comp. for
% DEFORM.m
u2(i,1)=yy2(1,i);

end;
% Definition of x1- and x2-coordinates.

xco1(1:N1*(m-1)+1,1)=xco(1:N1*(m-1)+1,1);
xco2(1:N2*(p-1)+1,1)=xco(N1*(m-1)+1:N1*(m-1)+N2*(p-1)+1,1);
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Appendix 2: Input.m (in-data for EXEC.m)
% M-file: Input.m

%

% Input data for "thickness change"-problem

% face layer no. 1 (base-line laminate):

load LAMinput1.dat; % loading laminate properties from ASClII-file.
LI=LAMinput1;

[R,Cl=size(Ll);

LAMINATE; % calculating laminate stiffness properties; CLT-method.
Al=alf; % "principal" extensional stiffness.

Df1=d11; % "principal" bending stiffness.

tf1=t; % laminate thickness.

L1=100; % length of REGION 1.

N1=10; % number of segments in REGION 1 (NB: minimum 3)
% face layer no. 2 (reinforcment):

load LAMinput2.dat; % loading laminate properties from ASClI-file.
LI=LAMinput2;

[R,Cl=size(LI);

LAMINATE; % calculating laminate stiffness properties; CLT-method.
A2=all; % "principal" extensional stiffness.

Df2=d11; % "principal" bending stiffness.

tf2=t; % laminate thickness.

L2=100; % length of REGION 2

N2=15; % number of segments in REGION 2 (NB: minimum 3).
% Adhesive layer:

Ea=2500; % E-modulus.

nya=0.40; % Poisson's ratio.

ta=0.01;

Eaeff=Ea*(1-nya)/((1-2*nya)*(1+nya)); % effective adhesive E-modulus;
% Eaeff>Ea.

Ga=Ea/(2*(1+nya)); % G-modulus.

% Honeycomb core material (Hexagonal cells, Al.):
Ec=500; % E-modulus.

nyc=0.3; % Poisson's ratio.

c=10; % core height.

% Calculation of effective core stiffness and foundation moduli:

EO=Ec/(1-nyc”2); % effective Young's modulus.

nyO=nyc/(1-nyc); % effective Poisson's ratio.

gamma=1.5; % impirical factor.

phi=2*gamma®c;

psi1=(sinh(phi)*cosh(phi)+phi)/((sinh(phi))2);

psi2=(sinh(phi)*cosh(phi)-phi)/((sinh(phi))*2);

Kx1=psi2*E0/(4*(tf1*c*gamma*(1+ny0))); % foundation modulus - shear;
% region 1.

Kx2=Kx1*tf1/(tf1+ta+tf2); % foundation modulus - shear;
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% region 2.
Kz=psi1*gamma*E0/(1-ny0"2); % foundation modulus -
% transverse normal

% External inplane loading:
P=-1;

% PARAMETRIC STUDY 1: var. of LO and D2/D1:

% L0=10; % variable: L0=0.25, 0.5, 1.0, 10.0, 100.0

% L1=15*L0; % HINT: min. 10*LO

% N1=60;

% L2=L1, % HINT: min. 10*LO

% N2=90,

% Df1=L0N*Kz;

% koef=1.0; % variable: koef=D2/D1=0.01, 0.05, 0.1, 0.5, 1.0

% Df2=koef*Df{;
% tf1=0.5;1f2=0.5;

% A1=Df1*12/(tf12);
% A2=Df2*12/(tf2/2);

% PARAMETRIC STUDY 2: var. of LO and (Ea/ta)/Kz:

% L0=1; % variable: L0=0.25, 0.5, 1.0, 10.0, 100.0
% L1=15"L0; % HINT: L1 min. 10*L0

% N1=40,

% L2=L1; % HINT: L2 min. 10*L0

% N2=80;

% Df1=L0N*Kz;
% Df2=0.05"Df1;

% tf1=0.5;tf2=0.5;

% A1=Df1*12/(tf112);

% A2=Df2*12/(tf2/2);

% koef=250.0; % variable: koef=(Ea/ta)/Kz=50, 100, 500, 1000, 2000
%Ea=koef*Kz*ta; ‘

% Eaeff=Ea*(1-nya)/((1-2*nya)*(1+nya)); % effective adhesive Youngs

% modulus, Eaeff>Ea
% Ga=Ea/(2*(1+nya));

Appendix 3: LAMINATE.m (calculation of laminate stiff-
nesses; used by Input.m)

% M-file: LAMINATE.m

%
% "LAMINATE" calculates laminate stiffnesses from the stiffness coefficients

45



EWP-1787, June 1994

% of the individual plies.
% "LAMINATE" is based on classical laminate theory: CLT-theory.

% The input for "LAMINATE" should be specified in the form:

% "ply 1"(counted from the bottom): E11 E22 nui12 G12 h theta
% "ply 2": -

% .

% "ply B s

t=0; % intialising.

% Calculation of laminae-stiffnesses from
% engineering constants E11, E22, vu12, G12, h, theta.
fori=1:R

t=t+LI(i,5);

theta=LI(i,6)*pi/180;

si2=(sin(theta))"2;

co2=(cos(theta))"2;

sid=(si2)"2,

co4=(co2)"2;

si2co2=si2*co2;

dum=LI(i,3)*LI(i,2)/L1(i,1);
dum=1-LI(i,3)*dum;
g11=LI(i,1)/dum;
g22=LI(i,2)/dum;
q12=LI(i,3)*LI(i,2)/dum;
q66=LI(i,4);

Q11(i)=q11*cod4+2*(q12+2*q66)*si2co2+q22*si4;

Q22(i)=q11*si4+2*(q12+2*q66)*si2co2+g22*co4;

Q12(i)=(gq11+922-4*q66)*si2co2+q12*(cod+si4);

Q66(i)=(q11+g22-2*(q12+966))*si2co2+q66*(co4+si4);
end;

a11=0;a12=0;a22=0;a66=0; % "initialising".
b11=0;b12=0;b22=0;b66=0;
d11=0;d12=0;d22=0;d66=0;

tu=-1/2; % "starting point for stepping over laminate thickness".
fori=1:R

tu=tu+LI(i,5);

tb=tu-LI(i,5);

% Extensional stiffnesses - "A-matrix".
al1=a11+Q11(i)*LI(i,5);
al2=a12+Q12(i)*LI(i,5);
a22=a22+Q22(i)*LI(i,5);
a66=a66+Q66(i)*LI(i,5);
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% Coupling stiffnesses - "B-matrix".
b11=b11+0.5*Q11(i)*(tur2-tb"2),
b12=b12+0.5*Q12(i)*(tur2-tb"2);
b22=b22+0.5*Q22(i)*(tur2-tb"2);
b66=b66+0.5*Q66(i)* (tur2-tb"2),

% Bending stiffnesses - "D-matrix".

d11=d11+Q11(i)*(tu"3-tb"3)/3;

d12=d12+Q12(i)*(tur3-tb"3)/3;

d22=d22+Q22(i)* (tu/3-tb"3)/3;

d66=d66+Q66(i)* (tur3-tb"3)/3;
end;

Appendix 4: LAMinputl.dat (input file for LAMINATE.m
containing material data for face-laminate 1)

Example of contents of LAMinputl.dat (corresponding to example 1 in section 6.1: 5-
ply HTS-carbon fibre/epoxy laminate):

115000 7100 0.3 4000 0.05 25
115000 7100 0.3 4000 0.05 -25
115000 7100 0.3 4000 0.05 0

115000 7100 0.3 4000 0.05 -25
115000 7100 0.3 4000 0.05 25

Appendix 5: LAMinput2.dat (input file for LAMINATE.m
containing material data for face-laminate 2)

Example of contents of LAMinput2.dat (corresponding to example 1 in section 6.1: 2-
ply HTS-carbon fibre/epoxy laminate):

115000 7100 0.3 4000 0.05 45
115000 7100 0.3 4000 0.05 -45

Appendix 6:  stiffcoeff.m (calculation of stiffness coeffi-
cients for system equations; used by

EXEC.m)
% M-file: stiffcoeff.m
%
% Calculation of STIFFNESS COEFFICIENTS contained in STIFFNESS
% MATRICES of system of governing equations in REGION 1 & REGION 2

% REGION 1:

47



global a14 a23 a35 a41 a43 a51 a53 a56 a62

a14=1ﬂU;
a23=-1;
a35=1/Df1;
ad1=0;
a43=-Kx1*tf1*0.5;
a51=0;
a53=-a43*0.5*tf1;
a 5=1,

a’ _=Kz;

% REGION 2:

EWP-1787, June 1994

global b14 b23 b35 b41 b43 b47 b49 b51 b53 b56 b57 b59
global b62 b68 b710 b89 b911 b101 b103 b107 b109 b111

global b113 b117 b119 b1112 b122 b128

b14=a14;

b23=-1;

b35=a35;

b41=Gal/ta;
b43=0.5"tf1*(-Kx2+Ga/ta);
b47=-Ga/ta;
b49=-b47*0.5*tf2;
b51=0.5"(tf1+ta)*Ga/ta;
b53=0.25"tf1*(Kx2*tf1+(tf1 +ta)*Ga/ta);
b56=1;
b57=-0.5"(tf1+ta)*Ga/ta;
b59=-b57*tf2*0.5;

b62=Kz+Eaeff/ta;
b68=-Eaeff/ta;

b710=1/A2;
b89=-1;
b911=1/Df2;
b101=b47;
b103=b47*tf1*0.5;
b107=-b47;
b109=b47*tf2*0.5;

b111=-b47*0.5%(tf2+ta);
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b1 13=B111*0.5*1;
b117=-b111;
b119=b111*0.5%f2;
b1112=1;

b122=b68;
b128=-b68;

Appendix 7: BC.m (specification of boundary conditions;
used by EXEC.m)

% M-file: BC.m

%

% Definition/Specification of B.C.'s through non-singular transformation

% matrices TO, T1, T2 and associated B.C. vectors u01, ui1, and u23, u24.

% MATRIX TO & VECTOR u01: "Simple support: x=0 (face-laminate 1)".
TTO0=zeros(6,6);

TT0(1,2)=1,

TT0(2,4)=1;

TTO(3,5)=1;

TTO(4,1)=1;

TT0(5,3)=1;

TT0(6,6)=1;

TO=sparse(TT0); % Sparse matrix storage.

u01=[0 P O]}

% MATRIX T1 & VECTOR u11: "Free edge: x=L1 (face-laminate 2)".
TT1=zeros(12,12);

TT1(1,10)=1;

TT1(2,11)=1;

TT1(3,12)=1;

TT1(4,1)=1;

TT1(5,2)=1;

1TT116,3)=1;

TT1(7,4)=1;

TT1(8,5)=1;

TT1(9,6)=1;

TT1(10,7)=1;

TT1{11,8)=1;

TT1{12,9)=1;

T1=sparse(TT1); % Sparse matrix storage.
uil1=[0 0 0]

% MATRIX T2 & VECTORS u23, u24: "Symmetry condition: x=L1+L2 (face-
% laminates 1+2)".

TT2=zeros(12,12);

TT2(1,2)=1;

TT2(2,4)=1;
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I
T2=sparse(TT2); % sparse matrix storage.
u23=[0 0 0]
u24=[0 0 0]

Appendix 8: DDX_Y1.m (derivation of set of 36 l.order
ordinary differential equations in region 1;
used by EXEC.m)

% M-file: DDX_Y1.m

function Y1dot = DDX_Y1(x,Y1)

% DDX_Y1(x,Y1) returns the state derivatives of the beam/plate/shell
% equations in REGION 1; i.e. 36 coupled first order ODE's.

% Used by ode45.

global a14 a23 a35 a41 a43 a51 a53 a56 a62

A(6,6)=0; % create 6*6 matrix A.
A(1,4)=a14;
A(2,3)=a23;
A(3,5)=a35;
A(4,1)=a41;
A(4,3)=a43;
A(5,1)=a51;
A(5,3)=a53;
A(5,6)=a56;
A(6,2)=ab2;

yt1(6,6)=0; % create a 66 matrix yt1.

yt1(:)=Y1; % copy vector Y1 into yt1, columnwise.
yt1=A*yt1;

Y 1dot(:)=yt1;
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Appendix 9: DDX_Y2.m (derivation of set of 144 1.order
ordinary differential equations in region 2;
used by EXEC.m)

% M-file: DDX_Y2.m

%

function Y2dot = DDY_Y2(x,Y2)

% DDX_Y2(x,Y2) returns the state derivatives of the beam/plate/shell
% equations in REGION 2; i.e. 144 coupled first order ODE's.

% Used by ode45.

global b14 b23 b35 b41 b43 b47 b49 b51 b53 b56 b57
global b59 b62 b68 b710 b89 b911 b101 b103 b107 b109
global b111 b113 b117 b119 b1112 b122 b128

B(12,12)=0; % create 12*12 matrix B.
B(1,4)=b14;

B(2,3)=b23;
B(3,5)=b35;

B(4,1)=b41;
B(4,3)=b43:
B(4,7)=b47;
B(4,9)=b49;

B(5,1)=b51;
B(5,3)=b53;
B(5,6)=b56;
B(5,7)=b57:
B(5,9)=b59;

B(6,2)=b62;
B(6,8)=b68;

B(7,10)=b710;
B(8,9)=b89;
B(9,11)=b911;

B(10,1)=b101;
B(10,3)=b103;
B(10,7)=b107;
B(10,9)=b109;

B(11,1

J=b111;
B(11,3)

)

)

113;
117;
119:

B(11,7
B(11,9

TCOTUT
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B(11,12)=b1112;

B(12,2)=b122;
B(12,8)=b128;

yt2(12,12)=0; % create a 12*12 matrix.
yt2(:)=Y2; % copy vector Y2 into yt2, columnwise.
yt2=B*yt2;

Y2dot(:)=yt2;

Appendix 10: STRESScalc.m (calculation of adhesive/resin
layer stresses, core stresses as well as face-
laminate normal stress, bending moment and
transverse shear stress resultants; used by
EXEC.m)

% M-file: STRESScalc.m

Y%

% DERIVATION OF COMPLETE SOLUTION:

% Foundation stress components; Adhesive/Resin-layer stress components;
% Stress and Moment resultants for face-laminates 1 and 2.

global fvar fhalf Nvar N1 N2nm p q Y1 Y2 dx1 dx2 Ures
global sc tc sa ta Nx1 Nx2 Mx1 Mx2 Qx1 Qx2

% REGION 1; segments 1 to N1.
% Stepping over segments 1 to N1:
Y (fvar,fvar)=0; % creation of fvar*fvar matrix Y.
for step=1:N1
J1=(step-1)*fvar;
for i=1:m-1
J2=(step-1)*(m-1)+i;
Y()=Y1(i,1:n);

yy1(1:fvar,J2)=Y*Ures(J1+1:J1+fvar,1); % FACE 1
% sol. vectors.
sc(J2,1)=Kz*yy1(2,J2); % Found. transv. normal
% stress.
tc(J2,1)=-Kx1*0.5*tf1*yy1(3,J2); % Found. shear stress.

Nx1(J2,1)=yy1(4,J2); % Normal stress result.; FACE 1.
Mx1(J2,1)=yy1(5,J2); % Bending moment result. FACE 1.
Qx1(J2,1)=yy1(6,J2); % Trans. shear str. result.; FACE 1.

xco(J2,1)=x_1(i,1)+(step-1)*dx1;
end;
end;

% REGION 2; segments 1 (N1+1) to N2 (N1+N2).
% Stepping over segments 1 to N2:
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YY(2*fvar,2*fvar)=0; % creation of (2 fvar)*(2 fvar) matrix YY.
for step=1:N2

J1=N1*fvar+(step-1)*2*fvar;

for i=1:p-1

J2=(step-1)*(p-1)+i;

J3=N1*(m-1)+J2;

YY()=Y20.1:1);

yy1(1:fvar,J3)=YY(1:fvar,1:2*fvar)*Ures(J1+1:J1+2*fvar,1);
% FACE 1 solution vectors.

yy2(1:fvar,J2)=YY (fvar+1:2*fvar,1:2*fvar)*Ures(J1+1:J1+2*fvar,1);

end;
end;

% FACE 2 solution vectors.

sc(J3,1)=Kz*yy1(2,J3); % Found. transv. normal str.
tc(J3,1)=-Kx2*0.5*tf1*yy1(3,J3); % Found. shear stress

ssa(J2,1)=(Eaeff/ta)*(yy2(2,J2)-yy1(2,J3));
% Adhesive trans. normal stress (peel).
tta(J2,1)=(Ga/ta)*(yy2(1,J2)-0.5*f2*yy2(3,J2)-yy1(1,J3)-
0.5%tf1*yy1(3,J3)); % Adhesive shear stress.

% Stress and moment resultants; FACE 1:
Nx1(J3,1)=yy1(4,J3); % Normal stress result.; FACE 1.
Mx1(J3,1)=yy1(5,J3); % Bending moment result.; FACE 1.
Qx1(J3,1)=yy1(6,J3); % Trans. shear str. result.; FACE 1.

% Stress and moment resultants; FACE 2:
Nx2(J2,1)=yy2(4,J2); % Normal stress result.: FACE 2.
Mx2(J2,1)=yy2(5,J2); % Bending moment result.: FACE 2.
Qx2(J2,1)=yy2(6,J2); % Trans. shear stress result.; FACE 2.

xco(J3,1)=x_2(i,1)+L1+(step-1)*dx2;

% Additional "arrangement" for last point in REGION 2, segment N2,
YY(:)=Y2(p,1:q);
yy1(1:fvar,d3+1)=YY(1:fvar,1:2*fvar)*Ures(J1+1:J1+2*fvar, 1);

yy2(1:fvar,d2+1)=YY (fvar+1:2*fvar,1:2*fvar)*Ures(J1+1:J1 +2*tvar,1)

1

sc(J3+1,1)=Kz*yy1(2,J3+1); % Found. transv. normal

% stress.

te(J3+1,1)=Kx2*(yy1(1,J3+1)+0.5*tf1*yy1(3,J3+1)); % Found. shear stress.

ssa(J2+1,1)=(Eaeff/ta)*(yy2(2,J2+1)-yy1(2,J3+1)); % Adhesive trans.

% normal stress (peel).

tta(J2+1,1)=(Ga/ta)*(yy2(1,J2+1)+0.5* (tf2+ta) *yy2(3,J2+1 )-
yy1(1,J3+1)+0.5%(tf1+ta)*yy1(3,J3+1)); % Adhesive shear

% stress.
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% Stress and moment resultants; FACE 1:

Nx1(J3+1,1)=yy1(4,J3+1); % Normal stress resultant; FACE 1.
Mx1(J3+1,1)=yy1(5,J3+1); % Bending moment resultant; FACE 1.
Qx1(J3+1,1)=yy1(6,J3+1); % Trans. shear stress resultant; FACE 1.
% Stress and moment resultants; FACE 2:

Nx2(J2+1,1)=yy2(4,J2+1); % Normal stress resultant; FACE 2.
Mx2(J2+1,1)=yy2(5,J2+1); % Bending moment resultant; FACE 2.
Qx2(J2+1,1)=yy2(6,J2+1); % Trans. shear stress resultant; FACE 2.

xco(J3+1,1)=L1+L2;

% Definition of "nominal" stress resultant Nnom, and "nominal" stress snom:
Nnom=Nx1(1);
snom=Nnom/tf1;

Appendix 11: STRAIN.m (calculation of strain components
in the upper surfaces of the face-laminates;
used by EXEC.m)

% M-file: STRAIN.m

%

% Calculation of surface strains in face-laminates 1 & 2.

% Creation of text-files epsX1.dat and epsX2.dat (ASClI-files)
% containing the calculated surface strains.

% REGION 1; segments 1 to N1.
% Stepping over segments 1 to N1:
for step=1:N1
J1=(step-1)*fvar,
fori=1:m-1
J2=(step-1)*(m-1)+i;
epsx1(J2,1)=Nx1(J2,1)/A1+(Mx1(J2,1)/Df1)*(tf1/2);
end,;
end;

% REGION 2; segments 1 (N1+1) to N2 (N1+N2).
% Stepping over segments 1 to N2:
for step=1:N2
J1=N1*fvar+(step-1)*2*fvar;
for i=1:p-1
J2=(step-1)*(p-1)+i;
J3=N1*(m-1)+J2;
epsx1(J3,1)=Nx1(J3,1)/A1+(Mx1(J3,1)/Df1)*(tf1/2);
epsx2(J2,1)=Nx2(J2,1)/A2+(Mx2(J2,1)/Df2)*(tf2/2);
end;
end;

% Additional arrangement for last point in REGION 2,
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% segment N2:
epsx1(J3+1,1)=Nx1(J3+1,1)/A1+(Mx1(J3+1,1)/Df1)*(tF1/2);
epsx2(J2+1,1)=Nx2(J2+1,1)/A2+(Mx2(J2+1,1)/Df2)*(tf2/2);

% CREATION OF output-file epsX1.dat and epsX2.dat
% containing the calculated surface strains:

OU=[xco epsx1];
fid=fopen('/t2/othomsen/TEXT/epsX1.dat','w");
fprintf(fid,'x epsX1\n');

fprintf(fid,'%8.5f %12.8f\n',0OU");
status=fclose(fid);

OU=[xco2 epsx2];
fid=fopen('/t2/othomsen/TEXT/epsX2.dat','w');
fprintf(fid,'x2 epsX2\n');

fprintf(fid,'%8.5f %12.8f\n',0U");
status=fclose(fid);

Appendix 12: TEXTout.m (creation of output text-files
containing normalised adhesive/resin layer
stresses, core stresses as well as face-laminate
normalstress, bending moment and transverse
shear stress resultants; used for graphical
processing of results)

% M-file: TEXTout.m

%

% Creation of output text-files (ASCII) containing the results of the analysis:
% 1a. wlout.dat: lateral deflect.; face 1.

% 1b. w2out.dat: lateral deflect.; face 2.

% 2. adhes.dat: adhesive stresses.

% 3. found.dat: foundation stresses.

% 4a. N1.dat: Normal stress result. distrib.; face 1.

% 4b. N2.dat: Normal stress result. distrib.; face 2.

% 5a. M1.dat: Bending moment result. distrib.; face 1.
% 5b. M2.dat: Bending moment result. distrib.; face 2.
% 6a. Q1.dat: Trans. shear stress result. distrib.;face 1.
% 6b. Q2.dat: Trans. shear stress result. distrib.;face 2.
OU=[xco w1];

fid=fopen('/t2/othomsen/TEXT/w1out.dat','w');
fprintf(fid,'x win');

fprintf(fid,'%8.5f %12.8f\n',0U");
status=fclose(fid);

OU=[xco2 w2plot];
fid=fopen(/t2/othomsen/TEXT/w2out.dat','w');
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fprintf(fid,'x2 "w2plot"\n');
fprintf(fid,'%8.5f %12.8f\n',0U";
status=fclose(fid);

ssa=ssa/snom; % Normalisation.
tta=tta/snom; % Normalisation.
OU=[xco2 ssa tta];
fid=fopen('/t2/othomsen/TEXT/adhes.dat','w');
fprintf(fid,'x ssa tta\n');
fprintf(fid,'%8.5f %12.8f %12.8f\n',0U");
status=fclose(fid);

sc=sc/snom; % Normalisation.
tc=tc/snom; % Normalisation.
OU=[xco sc tc];
fid=fopen('/t2/othomsen/TEXT/found.dat','w');
fprintf(fid,'x sc tc\n');
fprintf(fid,'%8.5f %12.8f %12.8f\n',0U");
status=fclose(fid);

Nx1=Nx1/Nnom; % Normalisation.
Nx2=Nx2/Nnom; % Normalisation.
OU=[xco Nx1];
fid=fopen('/t2/othomsen/TEXT/N1.dat','w");
fprintf(fid,'x Nx1\n');

fprintf(fid,'%8.5f %12.8f\n',0U'");
status=fclose(fid);

OU=[xco2 Nx2];
fid=fopen('/t2/othomsen/TEXT/N2.dat','w');
fprintf(fid,'x2 Nx2\n');

fprintf(fid,'%8.5f %12.8f\n',0QU");
status=fclose(fid);

OU=[xco Mx1];
fid=fopen('/t2/othomsen/TEXT/M1.dat','w');
fprintf(fid,'x Mx1\n');

fprintf(fid,'%8.5f %12.8f\n',0U");
status=fclose(fid);

QU=[xco2 Mx2];
fid=fopen('/t2/othomsen/TEXT/M2.dat','w');
fprintf(fid,'x2 Mx2\n');

fprintf(fid,'%8.5f %12.8f\n',0U");
status=fclose(fid);

Qx1=Qx1/Nnom; % Normalisation.
Qx2=Qx2/Nnom; % Normalisation.
OU=[xco Qx1];
fid=fopen('/t2/othomsen/TEXT/Q1.dat','w");
fprintf(fid,'x Qx1\n');
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fprintf(fid,'%8.5f %12.8f\n',0U");
status=fclose(fid);

OU=[xco2 Qx2];
fid=fopen('/t2/othomsen/TEXT/Q2.dat','w");
fprintf(fid,'x2 Qx2\n');

fprintf(fid,'%8.5f %12.8f\n',0U);
status=fclose(fid);

Appendix 13: DEFORM.m (creation of line-plot showing
the deformed structural configuration)

% M-file: DEFORM.m

%

% Plot of deformed configuration.

% "Deflections” of the two face elements have been scaled.

plot(xco,w1,('r-"),xco2,w2plot,'g-.");
title(DEFORMED CONFIGURATIONY);
axis('off');

Appendix 14: DEFLECplot.m (creation of line-plot
showing the lateral deflections of the face-
laminates)

% M-file: DEFLECplot.m
%
% Plot of lateral deflection of the two face elements.

plot(xco,w1,('r-'),xco2,w2,'g--");
title('LATERAL DEFLECTIONS");
xlabel('x-coordinate, [mm]');

ylabel('w1 (solid), w2 (dashed), [mm]');

Appendix 15: Adhestress.m (creation of line-plot showing
the adhesive/resin stress distribution)

% M-file: Adhestress.m

Yo

% Plotting of adhesive layer stresses.

% The adhesive stresses are normalised with respect to the
% "nominal" stress snom.

ssa=ssa/snom; % Normalisation.
tta=tta/snom: % Normalisation.
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plot(xco2,ssa,'r-',xco2,tta,'g--");

title('Normalised Adhesive layer peel and shear stress components');
xlabel('x2-coordinate, [mm]');

ylabel('ssa/snom (solid) & tta/snom (dashed)');

Appendix 16: Foundstress.m (creation of line-plot showing
the core stress distribution)

% M-file: Foundstress.m

%

% Plotting of foundation stresses.

% The foundation stresses are normalised with respect to the
% "nominal" stress snom.

sc=sc/snom; % Normalisation.
te=tc/snom; % Normalisation.
plot(xco,sc,'r-',xco,tc,'g--");

title('Normalised foundation stress components');
xlabel(*x-coordinate, [MPa]');

ylabel('sc/snom (solid) & tc/snom (dashed)');

Appendix 17: Ndistr.m (creation of line-plot showing the
normal stress resultant distribution in the
face-laminates)

% M-file: Ndistr.m

%

% Plotting of normal stress components.

% Nx1, Nx2 are normalised with respect to the "external load":
% Nx1(x=0)=Nnom.

Nx1=Nx1/Nnom; % Normalisation.

Nx2=Nx2/Nnom; % Normalisation.

plot(xco,Nx1,'r-",xco2,Nx2,'g--");

titte('Normalised normal Stress Resultants: Nx1/Nnom and Nx2/Nnom');
xlabel('x-coordinate, [mm]');

ylabel('Nx1/Nnom (solid); Nx2/Nnom (dashed)');

Appendix 18: Mdistr.m (creation of lineplot showing the .
bending moment resultant distribution in the
face-laminates)

% M-file: Mdistr.m

%
% Plotting of bending moment resultants: M1 & M2.
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plot(xco,Mx1,'r-',xco2,Mx2,'g--");

title('Bending Moment Resultants: M1 and M2');
xlabel('x-coordinate, [mm]');

ylabel('Mx1,[N/mm] (solid); Mx2,[N/mm] (dashed)";

Appendix 19: Qdistr.m (creation of lineplot showing the
transverse shear stress resultant distribution
in the face-laminates)

% M-file: Qdistr.m

%

% Plotting of transverse shear stress resultants; Qx1, Qx2.

% Qx1, Qx2 are normalised with respect to the "external load":
% Nx1(x=0)=Nnom.

Qx1=Qx1/Nnom; % Normalisation.

Qx2=Qx2/Nnom; % Normalisation.
plot(xco,Qx1,'r-',xc02,Qx2,'g--");

title('Normalised Transverse Shear Stress Resultants: Q1/Nnom and
Q2/Nnom);

xlabel('x-coordinate, [mm]');

ylabel('Qx1/Nnom (solid); Qx2/Nnom (dashed)');

Appendix 20: STRAINplot.m (creation of lineplot showing
the strain distribution in the upper surfaces
of the face-laminates)

% M-file: STRAINplot.m
%
% Plotting of face-laminate surface-strains.

plot(xco,epsx1,'w-',xco2,epsx2,'g--);
title('Face-laminate surface strains: epsX1, epsX2);
xlabel('x-coordinate, [mm]');

ylabel('strain, [mm/mm]");
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