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i

Preface

In this report, an equivalent circuit model for the free stator of piezoelectric motor
is presented while the circuit elements have complex values. The mechanical, dielec-
tric and piezoelectric losses associated with the vibrator are accounted for by the
imaginary components of the circuit elements. It is shown that the calculation of
the circuit parameters from the complex elastic, dielectric and piezoelectric material
constants is straightforward and the model accuracy is verified with experiments.
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Nomenclature

Physicsal Parameters

There are a number of physical parameters for which symbols are used.

S1 Mechanical strain vector in 1-direction
T1 Mechanical stress vector in 1-direction caused by a pressure in

1-direction
E3 Electrical field vector in 3-direction
D3 Electrical displacement vector in 3-direction
sE
11 Element (1, 1) in elastic compliance matrix of piezoelectric material

at constant electrical field
d31 Element (3, 1) in piezoelectric constant matrix
ǫT
33 Element (3, 3) of electrical permitivity matrix at constant stress

k31 Electromechanical coupling constant
ρ Mass density of the piezoelectric material
F1, F2 External forces acting on the pirzoelectric bar laterally
l Length of the piezo bar
h Height of the piezo bar
W Width of the piezo bar
ζ Displacement of the vibrating edge of piezoelectric bar
vE
b Velocity of longitudinal waves in the piezoelectric bar

ω Angular frequency of electrical field
E0 Amplitude of electrical field
U1, U2 Velocities of piezoelectric bar at each end
I(t) Electric current flowing into the piezo ceramic
Cd Clamped capacitance of the piezoelectric
N Electromechanical transformed (force factor)
Ym Transformed motional admittance
Yd Damping admittance
ym Motional admittance
fs Resonance frequency of the piezoelectric ring
fp Anti-resonance frequency of the piezoelectric ring
Rd A resistor representing the electromechanical losses
Y (ω) Admittance of the unloaded stator at angular frequency ω

Z(ω) Impedance of the unloaded stator at angular frequency ω

B Susceptance of unloaded stator
G Conductance of unloaded stator
X Reactance of unloaded stator
R Resistance of unloaded stator
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1 Introduction

The traveling wave piezoelectric motor has excellent performance and many use-
ful features such as high holding torque, high torque at low speed, quiet operation
(ultrasonic), simple structure, compactness in size and no electromagnetic interfer-
ences [2]. However, the mathematical model of the piezoelectric motor is complex
and difficult to drive due to its driving principle based on high-frequency mechan-
ical vibrations and frictional force. With the help of the model, the influence of
diverse factors like material and construction parameters, electrical excitation, load
torque and axial applied force can be examined. Also, achieving a good model is
very important for studying and design of control systems for the motor. Despite
many reported attempts, the modeling of this device is still a challenging problem.
It is frequently more convenient to use the equivalent circuit approach for modeling
where both the electrical and mechanical portions of piezoelectric motor are rep-
resented by electrical equivalents [2]. The equivalent circuit can be derived using
the equation of motion and appropriate piezoelectric equations. Equivalent circuit
modeling of traveling wave ultrasonic motor has been the subject of extensive re-
search all over the world and important contributions have been established in [2].
In [3, 4] a systematic modeling approach has been reported for Shinsei type USR60
as a case study, but the authors have used simplification assumption for modeling
and the presented models fit only for fundamental resonance frequency. In this re-
port, an equivalent circuit model for the free stator of rotary piezoelectric motor
proposed that the circuit elements are complex. Also, the proposed approach can
be applied for all rotary type of piezoelectric motor. By comparing with the mea-
surements data, it is shown that the proposed model describes the behavior of the
motor around the fundamental frequency substantially more precise than the former
models.

In this report, first, the background of the equivalent circuit modeling method
is described. Then, complex numerical approach for equivalent circuit modeling is
introduced and the measuring methods for complex material constants are presented.
Finally, the validation of model is accomplished by comparing the simulation results
with the experimental measurements.
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2 Modeling

2.1 Equivalent circuit modeling of a free stator

We can consider the stator ring as a straight beam with infinite length as shown
in Fig. 1. Assume a bar of piezoelectric material lied along the x-direction, with

Figure 1: The stator of traveling wave motor regarded as a straight beam

electrode faces normal to the z-direction as shown in Fig. 2, and with both cross-
sectional dimensions small compared to its length. With this assumption, a bending
deformation of a transverse type (T -effect) driven by an alternative voltage is gen-
erated along the straight beam. The fundamental (T,E)-type relation is [5]

S1 = sE
11T1 + d31E3 (1)

D3 = d31T1 + ǫT
33E3 (2)

and the wave equation which is derived using Newton’s equation for an element of

Figure 2: One dimensional actuator using T -effect under z-direction poling

volume (dxdydz) is

ρ
∂2ζ1

∂t2
dxdydz =

∂T1

∂x
dxdydz (3)
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where ζ1 is the displacement of the vibrating edge and ρ is the mass density of the
beam. Substituting from Eq. (1) and recalling that S1 = ∂ζ1

∂x
, yield

ρ
∂2ζ1

∂t2
=

1

sE
11

∂2ζ1

∂t2
− d31

sE
11

∂E3

∂x
(4)

As it is shown in Fig. 2, two opposite surfaces of the rectangular cube are coated
by electrodes and connected to the power supply. Each of the coated surfaces is
equipotential and the width of the bar, W , is very small in comparison with its
length, l. Therefore E3 is independent of x and ∂E3

∂x
= 0.

∂2ζ1

∂t2
=

1

ρsE
11

∂2ζ1

∂x2
= (vE

b )2
∂2ζ1

∂x2
(5)

and

vE
b =

1
√

ρsE
11

(6)

where vE
b is the velocity of longitudinal waves in the piezoelectric bar [6]. The

solution of (5) gives the formula which describes the transverse vibration in the
beam

ζ1 =
[

Asin(
ωx

vE
b

) + Bcos(
ωx

vE
b

)
]

ejωt (7)

Now, we consider the block equivalent circuit shown in Fig. 3 for length ex-
pander bar with electric field perpendicular to the length direction. For a sinusoidal

Figure 3: Block equivalent circuit for length expander bar with electric field perpendicular to
the length

excitation E3 = E0e
jωt = V (t)

W
, the constants A and B in Eq. (7) are evaluated in

terms of the velocities U1 and U2

ζ̇1|x=0 = +U1 , ζ̇1|x=l = −U2 (8)






A = − 1
jω

(

U2

sin ωl

vE
b

+ U1

tan ωl

vE
b

)

e−jωt

B = 1
jω

U1e
−jωt

(9)

The forces at the both faces can be expressed using Eqs. (1), (2), (7) and (9). At
x = 0, F1 = −hWT1|x=0 gives

F1 = −hW

sE
11

A
ω

vE
b

ejωt +
hd31

sE
11

V (10)
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Also, at x = l, F2 = −hWT1|x=l gives

F2 = −hW

sE
11

(

A
ω

vE
b

cos
ωl

vE
b

− B
ω

vE
b

sin
ωl

vE
b

)

ejωt +
hd31

sE
11

V (11)

By substituting Eq. (9) in the above equations and after rearranging the terms,
Eqs. (10) and (11) become

F1 =
hW

jsE
11v

E
b sin ωl

vE
b

U2 +
hW

jsE
11v

E
b tan ωl

vE
b

U1 +
hd31

sE
11

V (12)

F2 =
hW

jsE
11v

E
b tan ωl

vE
b

U2 +
hW

jsE
11v

E
b sin ωl

vE
b

U1 +
hd31

sE
11

V (13)

Eqs. (12) and (13) can be written in the following form

F1 = Z1U2 + (Z1 + Z2)U1 + NV

F2 = (Z1 + Z2)U2 + Z1U1 + NV (14)

where






Z1 = hW

jsE
11

vE
b

sin ωl

vE
b

Z2 = jhW

sE
11

vE
b

tan ωl
2vE

b

(15)

The electric current flowing into the piezo ceramic can be evaluated as follows

I(t) =

∫ h

0

∫ l

0
jωD3dxdy (16)

By using E3 = V (t)
W

and after inserting Eq. (1) into (2), the following relation is
obtained

D3 =
d31

sE
11

S1 + ǫS
33

V (t)

W
(17)

where
{

ǫS
33 = ǫT

33(1 − k2
31)

k2
31 =

d2

31

sE
11

ǫT
33

(18)

and k31 is the electromechanical coupling factor. By using Eqs. (16) and (17), the
electric current is expected as

I = −hd31

sE
11

U1 −
hd31

sE
11

U2 + jω
ǫS
33hl

W
V (t) (19)

which can be rewritten as

I = −N(U1 + U2) + jωCdV (t) (20)

where

N =
hd31

sE
11

, Cd =
ǫS
33hl

W
(21)
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and Cd is the clamped capacitance of the piezoelectric from the derived Eqs. (14),
(19). The electromechanical equations in the beam are represented by







F1 = Z1U2 + (Z1 + Z2)U1 + NV (t)
F2 = (Z1 + Z2)U2 + Z1U1 + NV (t)
I(t) = −N(U1 + U2) + jωCdV (t)

(22)

Furthermore, the above equations can be shown in the form of six-terminal circuit
as shown in Fig. 4 [6]. In the case of the piezoelectric ring, F1 = F2 = F and

Figure 4: Six-terminal equivalent circuits for length expander bar

the six-terminal equivalent circuit is reduced to four-terminal circuit. Therefore Eq.
(22) becomes







F = Z1U2 + (Z1 + Z2)U1 + NV (t)
F = (Z1 + Z2)U2 + Z2U1 + NV (t)
I(t) = −N(U1 + U2) + jωCdV (t)

(23)

which gives

I = − 2N

2Z1 + Z2
F +

( 2N2

2Z1 + Z2
+ jωCd

)

V (24)

Consequently, the admittance Y of the stator is obtained from Eq. (24)

Y =
I

V
= jωCd +

2N2

2Z1 + Z2
= Yd + Ym (25)

where Yd is the damping admittance and Ym is the transformed motional admittance
to the electrical side defined as

Yd = jωCd

Ym =
2N2

2Z1 + Z2
= N2ym (26)

here, N is the electromechanical transformer known as the force factor and ym is
the motional admittance

ym =
2

2Z1 + Z2
(27)
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By using Eqs. (15) and (27), ym can be rewritten as

Ym = jωCd
k2
31

1 − k2
31

tan ωl
2vE

b

ωl
2vE

b

(28)

2.2 Real Numerical Approach

The obtained equation for admittance is not suitable for representation in the form
of equivalent circuit because of the involved nonlinear tangent term. The common
solution for this issue is to confine the attention to mechanical resonance and an-
tiresonance i.e. to values of ω where tan ωl

vE
b

= ∞ or 0. The tangent function maybe

expanded near a resonance by the Mittage-Leffler theorem [7] which is given by

tan(x)
x

=
∑

∞

n=1
Pn

1−
(

x
xn

)2 , n = 2k ± 1 k = 1, 2, ... (29)

where
Pn = 8

π2n2 , xn = nπ
2 (30)

at resonance. By substituting Eq. (29) in Eq. (28), the motional admittance
becomes

Ym =
∑

∞

n=1 jω N2

1

Cn
−ℓω2

= N2ym , n = 2k ± 1 k = 1, 2, ... (31)

where
{

ℓ = 1
ω2

nCn

Cn = Pn

N2

k2

31

1−k2

31

Cd

(32)

Therefore, the electromechanical motional branch of the admittance is expressed
by an infinite number of (ℓ, Cn)-series circuits in parallel. Figure 5 demonstrates
the circuit. Practically, the fundamental frequency is interesting and useful thus it

Figure 5: Equivalent circuit model for one phase of the stator over a large span of frequencies

is mandatory to identify the admittance around this frequency and represent the
motional admittance with one set of (ℓ, C1) as it is shown in Figure 6. In order to
consider the sources of loss of energy in real stator, the losses of energy within the
system at the input terminal and the output terminal should be integrated. This is
done by adding a resistor Rd, representing the dielectrical losses, in parallel with the
blocking capacitance and another resistance R1, as the electromechanical losses in
series with the motional (ℓ, C1)-series (Fig. 7). The electromechanical transformer
is normally eliminated by transforming the mechanical elements ℓ and C1 to the
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Figure 6: Equivalent circuit model for one phase of stator without losses around the funda-
mental resonance frequency

Figure 7: The equivalent circuit model for one phase of the stator integrating the losses around
the fundamental resonance frequency

electrical side. The equivalent electrical values of the transported electromechanical
elements are

R = R1

N2 , L = ℓ
N2 , C = N2C1 (33)

and the electrical equivalent circuit model is shown in Fig. 8.

Figure 8: The equivalent circuit modeling for one phase of stator integrating the losses around
the fundamental frequency (the mechanical parameters are shown as their electrical equivalents)

2.3 Complex Numerical Approach

As discussed in the previous section, the equation for the admittance of an unloaded
stator is described as a function of the frequency ω by the following equation

Y = jωCd + jωCd
k2
31

1 − k2
31

tan ωl
2vE

b

ωl
2vE

b

(34)

Substituting Equation (21) into (34) yields

Y = jω
ǫT
33hl

W

(

1 − k2
31 + k2

31

tan ω
4fs

ω
4fs

)

(35)

where
fs =

vE
b

2l
=

√

1
4l2ρsE

11

, k2
31 =

d2

31

ǫT
33

sE
11

(36)
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The material constants ǫT
33, sE

11 and d31 were originally assumed to be real in the
derivation of the equations. Holland [8] found that the material constants of piezo-
electric materials can be represented by complex numbers with the imaginary parts
representing the losses or out-of-phase components.

The admittance Eq. (35) does not change if the material constants are defined
as complex numbers. Also, the above equations show that, when ǫT

33, sE
11 and d31

are complex, fs and k31 must be also complex. The real and imaginary parts of
fs represent the resonance frequency and the bandwidth of resonance, respectively
[9, 10].

The model presented at the previous section uses four real circuit parameters
to represent admittance of a unloaded stator. However, Eq. (35) shows that six
material constants (the real and imaginary components of ǫT

33, sE
11, d31 or k31 are

needed to describe the resonance completely when losses are significant. As pointed
out in [11], representing the losses of a capacitor or inductor by adding a frequency-
independent resistor in parallel with them is less general than is representing these
losses by the use of complex circuit components i.e. the obtained resistor becomes
frequency dependant.

Therefore, we propose a circuit model which contains three circuit elements,
C0, C and L. The circuit has six parameters and some features that make it an
appropriate model for representing the circuit characteristics of an unloaded stator
(Fig. 9).

Figure 9: The proposed complex circuit model. The values of all the circuit constants are
complex

2.3.1 Measuring Method for Complex Material Constants

The IEEE standard on piezoelectricity [12] describes the resonance-antiresonance
(R-A) method for determining the real, but not complex, material constants of
piezoelectric. The effect of losses and all the phase information neglected in the
IEEE standard method. Also, there are several methods which can be classified as
iterative [13–16,16–19] and non-iterative [9, 10]. The iterative methods use the fre-
quency spectrum of the electrical measurements, within the range of the resonance-
antiresonance of the fundamental mode only, to determine all material constants,
while the non-iterative methods require some more measurements, away from funda-
mental resonance, to determine the dielectric constants at constant stress or strain.
Also, Du et al. [20–22] introduced an analytical approach to determine complex con-
stants of piezoelectric material. All reported methods normally give accurate results
in research work.
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In this report, we propose an non-iterative approach similar to Sherrit’s, but It’s
different in the last stage. In other words, we choose a frequency data point in the
last stage to fit our model to experimental data. This is the main difference between
our approach and Sherrit’s. We define the parallel and series resonance frequencies
fs and fp, as the frequencies which correspond to maxima in the real parts of ωZ(ω)

and Y (ω)
ω

respectively. Our definitions are mathematically more correct since fs, for
example, is the frequency at which the expression in parentheses in Eq. (35) has
a maximum in its real part. Also, we define frequencies, with complex arguments,
which combine the critical frequencies from both the real and imaginary parts of
the impedance and admittance spectra. Thus, the series and the parallel resonance
frequencies are respectively defined by [1]

fp = f (1)
p

(

1 − j
f

(1)p

−
1

2

− f
(1)p

+ 1

2

f
(1)
p

)

−
1

2 (37)

fs = f (1)
s

(

1 − j
f

(1)

−
1

2

− f
(1)

+ 1

2

f
(1)
s

)

−
1

2 (38)

(39)

where all the particular frequencies are shown in Fig. 10. The compliance sE
11 is

Figure 10: The critical frequencies determined from the modified admittance and impedances

locus diagrams which are plots of B(ω)
ω

versus G(ω)
ω

and of ωX(ω) versus ωR(ω). [1]

determined by assuming that the frequency fs corresponds to the argument of the
tangent function equal to π

2 .

sE
11 =

1

4ρl2(fs)2
(40)

The last equation is valid when the magnitudes of the imaginary parts of coefficients
are much less than those of their real parts (for example, less than 10 times) [20] .
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The complex value of the electromechanical coupling constant, k31 , can be evaluated
from IEEE standard method [12].

k2
31 =

π
2

fp

fs
tan(π

2
(fp−fs)

fs
)

1 + π
2

fp

fs
tan(π

2
(fp−fs)

fs
)

(41)

In Eq. (41) , we assume that the frequency fp is close to the zero point of the
admittance. The accuracy of this assumption is dependent on the mechanical quality
factor (the real part of sE

11 over its imaginary part) [16]. For ideal, no-loss materials,
the tangent function in Eq. (35) has a real argument and sweeps from −∞ to +∞
in the vicinity of π

2 . In this case, the zero point of Eq. (35) can be found. However,
the zero point usually does not exist for lossy materials. Even for a material with a
high mechanical coupling factor, the tangent function in (35) varies in limited range.
The error of k2

31 decreases as k2
31 or the mechanical quality factor increases [16]. By

using the value of k2
31 and solving Eq. (34) for an arbitrary frequency, f , ǫT

33 will be
determined by

ǫT
33 =

Y (ω)W

ihlω
(

1 − k2
31 + k2

31

tan( ω
4fs

)
ω

4fs

)

(42)

Subsequently, the following known equation gives the value of d2
31

d2
31 = ǫT

33s
E
11k

2
31

The selection of the frequency for solving Eq. (42) should be performed carefully
because the variation of the admittance curve around and close to the critical fre-
quencies is very high which brings inaccuracy in calculating the value of ǫT

33 therefore
we suggest using a frequency far enough from fp and fs e.g. f = 1.1fs or f = 0.9fs.
On the other hand, this selection constitutes an essential rule in fitting the calculated
model to the real curve of admittance. If fitting in higher frequencies is desired, f

should be chosen bigger than fp and fs and contrariwise for lower frequencies. Thus,
a hybrid model to get the best result could be accomplished.

2.3.2 The calculation of the circuit parameters from the material constants

This section describes how the complex circuit parameters, C0, C and L, can be
determined from the complex material constants. As the frequency ω tends to zero,
the admittance of the unloaded stator shown in Eq. (35) tends to the following value

lim
ω→0

Y (ω) = jωǫT
33

hl

W
(43)

whereas the impedance of the circuit model in Fig. 9 is

lim
ω→0

Y (ω) = jω(C0 + C) (44)

A comparison of the two values of Y shows that

C0 + C =
ǫT
33hl

W
(45)
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The parallel and series resonance of the circuit shown in Fig 8 are

fp =
1

2π
√

L C0C
C0+C

fs =
1

2π
√

LC
(46)

Finally, the complex circuit constants C0, L and C may be written in terms of the
complex constants k31, sE

11, ǫT
33, fp and fs. Thus

C =
f2

p − f2
s

f2
p

ǫT
33hl

W
(47)

L =
1

4π2f2
s C

(48)

C0 =
ǫT
33hl

W
− C (49)
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3 Simulation

In this section, the proposed model for unloaded stator modeling is examined on
a Shinsei USR60 piezoelectric motor. In [4] Gain-Bandwidth method [23] is used
for measuring the real values of the elements of the equivalent circuit. The Gain-
Bandwidth method is based on the approximation of Eq. (35) by the first term
of Mittage-Leffler expansion introduced in section 2.2. The least approximation
error for this expansion occurs at the resonance frequency, fs. The error of this
approximation increases as the difference of fs and the frequency at which the ap-
proximation is performed grows. In addition, this approach neglects the dielectric
losses and does not use the phase of the admittance to improve the accuracy. Du et
al. in [21] studied the error arising by applying this method.

As the first stage of the simulation, the values of the crucial frequencies (fs and
fp) are calculated from the curve of the admittance. fp and fs are calculated from
figures 11a and 11b according to the method described in Section 2.3.1 by Eqs. (37)
and (39).

(a) Plot of B
ω

versus G
ω

for identifying the
series resonance frequency fs

(b) Plot of ωX versus ωR for identifying
the parallel resonance frequency fp

Figure 11: Evaluating the resonance and anti-resonance frequencies by Land’s method
[1]

Table 1: Values of piezoelectric constants

Material Constant Value Unit

Mass Density of the Piezoplate ρ = 7650 [kg.m−3]

Length of piezo-plate bar l = 2π · 26.75× 10−3 [m]

Compliance at constant electri-
cal field

sE
11 = 7.7669× 10−13 − 4.8305× 10−15j [m2.N−1]

Resonance Frequency fs = 38593 + 120j [Hz]

Anti-resonance Frequency fp = 39042 + 100j [Hz]

Intrinsic Coupling Factor k2
31 = 0.0282− 0.0013j -

By using Eq. (41), the overall intrinsic coupling factor of the piezomaterial, k2
31

is calculated. Table 1 shows the values of fs, fp, sE
11 and k2

31.
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Two scenarios are evaluated here for simulation and verification of the proposed
method. In the first scenario, frequencies higher than the resonance frequency are
considered and Eq. (42) is solved for f = 41000[Hz]. After calculating the complex
values of ǫT

33 and d31, the elements of the equivalent circuit are calculated as shown
in table 2. Comparing the magnitude of the admittance of the equivalent circuit and

Table 2: Values of piezoelectric constants in the first scenario

Material Constant Value Unit

Di-electric Constant d31 = 2.0712× 10−11 − 9.1400× 10−13j [C.N−1]

Electrical Permitivity at Con-
stant Stress

ǫT
33 = 1.9566× 10−8 − 6.8864× 10−10j [F.m−1]

C 1.6274× 10−10 − 1.3369× 10−11j [F ]

C0 6.9625 × 10−9 − 2.3741× 10−10j [F ]

L 0.1039 + 0.0079j [L]

the measured admittance of the unloaded stator in frequencies higher than fs shows
that the equivalent circuit models the unloaded stator precisely (See Fig. 12). Also
in Fig 12, the admittance curve of our method is compared with another method,
based on evaluation of real values for constants and equivalent circuit elements
proposed by ElGhouti in [4].
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Figure 12: Comparison of the measurement of the admittance with the results of simulation
for frequencies higher than resonance frequency, fs.

In the second scenario, the Eq. (42) is solved for an arbitrary frequency less than
the resonance frequency. For the simulation purposes f = 35000[Hz] is used and
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the results of the calculation of the piezoelectric constants and also the equivalent
circuit elements are shown in table 3.

Table 3: Values of piezoelectric constants in the second scenario

Material Constant Value Unit

Di-electric Constant d31 = 1.8857× 10−11 − 7.1079 × 10−13j [C.N−1]

Electrical Permitivity at Con-
stant Stress

ǫT
33 = 1.6217 × 10−8 − 3.6217× 10−10j [F.m−1]

C 1.3496× 10−10 − 9.3424× 10−12j [F ]

C0 5.7706× 10−9 − 1.2255× 10−10j [F ]

L 0.1255 + 0.0079j [L]

The result of the simulation of the equivalent circuit is compared with the mea-
surements and ElGhouti’s result are shown in Fig. 13.
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Figure 13: Comparison of the measurement of the admittance with the results of simulation
for frequencies less than resonance frequency, fs.

4 Discussion

By utilizing the results of the simulation, it is concluded that the suggested method
based on using complex resonance frequency is modeling the admittance of the
unloaded stator without using a large number of measurements for computing the
constants of the material. Also it is presented that the new complex method is as
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accurate as the method based on modeling with real numbers [4] for the frequencies
below the resonance frequency whereas it models the admittance more accurately
at the frequencies higher than the resonance frequency. It should be noted that the
performance and efficiency of the motor at later frequency range is higher [24]. This
means that our models suits modeling of the motor for later practical usages and
control purposes.

Also it is suggested that care should be taken in solving Eq. (34) to find ǫT
33

because the measurement error around the critical frequencies is higher than the
frequencies which are above or below them therefore a small change in the frequency
has a significant influence on the value of admittance.

5 Conclusion

In this report, we have investigated free stator modeling of rotary piezoelectric motor
and proposed a complex numerical approach for modeling purposes. Also, the pro-
posed method has been used for free stator modeling of Shinsei piezoelectric motor
(USR60). It has shown that the model extracted by our method is more accurate
than the model presented in [4] based on using real numbers for modeling. Further,
the simulation shows that the new method is able to model the admittance of the
motor at the interested frequecies which are higher than the resonance frequency.
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