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Summary

The primary purpose of this work was to develop control laws for three axis stabilization
of a magnetic actuated satellite. This was achieved by a combination of linear and non-
linear system theory. In order to reach this goal new theoretical results were produced in
both fields. The focus of the work was on the class of periodic systems reflecting orbital
motion of the satellite. In addition to a theoretical treatment, the thesis contains a large
portion of application considerations. The controllers developed were implemented for
the Danish Qrsted satellite.

The control concept considered was that interaction between the Earth’s magnetic field
and a magnetic field generated by a set of coils in the satellite can be used for actuation.
Magnetic torquing was found attractive for generation of control torques on small satel-
lites, since magnetic control systems are relatively lightweight, require low power and are
inexpensive. However, this principle is inherently nonlinear and difficult to use, because
control torques can only be generated perpendicular to the geomagnetic field vector. So
far, this has prevented control in all three axes using magnetorquers only.

A fact that the geomagnetic field changed periodically when a satellite is on a near po-
lar low Earth orbit was used throughout this thesis. Confined computer capacity and a
limit on electrical power supply were separate obstacles. They demanded computational
simplicity and power optimality from the attitude control system. The design of quasi
optimal controllers for a real-time implementation was a subject of considerations in the
part on linear control methods for a satellite with a gravity gradient boom. Both time
varying and constant gain controllers were developed and their performance was tested
via simulation.

The nonlinear controller for a satellite without appendages was given in the second part
of the thesis. Its design was based on sliding mode control theory. The essence of the
sliding control presented in the thesis was to split the controller design into two steps: a
sliding manifold design and a sliding condition design. The emphasis was on the sliding
condition design, which was stated as a continuous function of the state. A control law
for magnetic actuated satellite was proposed.

Complete comprehension of the nature of the satellite control problem required a new ap-
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viii Summary

proach merging the nonlinear control theory with physics of the rigid body motion and
an extension of earlier results in this field using the theory of periodic systems. The Lya-
punov stability theory was employed based on the potential and kinetic energy of the
rigid satellite. A velocity controller, that contributes to dissipation of both kinetic and
potential energy, was proposed. The velocity control was shown to provide four stable
equilibria, one of which was the desired orientation. It was explained how the equilibria
depended on the ratio of the satellite’'s moments of inertia. It was further investigated
how to control the attitude, such that the satellite was globally asymptotically stable in
the desired orientation, avoiding the undesired equilibria.

The main contribution of this work was to show that three axis control can be achieved
with magnetorquers as sole actuators in a low Earth orbit. A rigorous stability analysis
was presented, and detailed simulation results showed convincing performance over the
entire envelope of operation of the Danish @rsted satellite. The key results have also been
published in international papers.



Synopsis

Det overordnede ai’med dette arbejde har vaeret at udvikle kontrolsystemer inden-
for treakse-stabilisering af magnetisk styrede satellitter. Foaatatfe mal, matte nye
teoretiske resultater udvikles inden foad€ linezer og ikke-linezer systemteori. De
er anvendt p’den type af periodiske differentialligninger, som beskriver satellittens
beveegelse i en bane. De udviklede regulatorer er implemented&mpbanske @rsted
Satellit.

Magnetisk styring af satellitter fungerer ved interaktion mellem Jordens magnetiske felt
0g et kunstigt genereret magnetisk moment i satellitten, som frembringes ved hjeelp af
elektriske spoler. Dette princip kan med fordel anvendes i mindre satelkitigampsr taet

pa Jorden. Anvendelse af spoler er atraktiv, de indeholder ingen bevaegelige dele, deres
el-forbrug minimalt sammenlignet med andre aktuatorer, f.eks. momentumhjul, og deres
veegt er relativt lille. Det er dog problematisk at designe reguleringsstrategier med tradi-
tionelle metoder, da et styringsmoment kun kan generes vinkamdep geomagnetiske
felt-vektor. R grund af de teoretiske vanskeligheder har man ikke tidligere anvendt mag-
netiske spoler for treakse-stabilisering.

Ved praktiske implementering opstder yderligere vanskeligheder i form af begreensede
system-ressourcer. Krav om begreenset styreeffekt, lille regnekapacitet og snesevre
greenser for brug af computerlager skal opfyldes for at en teoretisk Igsning kan im-
plementeres. Afhandlingen bidrager med at leadebdet teoretiske og implemente-
ringsmaessige problem. Dette er aphi afsnittet om linesere reguleringsmetoder ved

en optimal retningstyring implementeret i realtid. Tidsvarierende kontrol parametre de-
signes udfra den periodiske karakter af det geomagnetiske felt i en poleer bane satellit,
sdledes at realtids algoritmen simplificeres vaesentligt. Designet er evalueret via simule-
ring af en ikke-linesere bevaegelsemodel for satellitten. Det vises at en regulator baseret
pa linsere metoder er velegnet for en satellit med udfoldet bom.

Inden bommen udfoldelse ligger satellittens inertimomeradsst’@ hinanden, at ikke-
linezere led bliver dominerende for beskrivelsen af dens bevaegelse. | denne tilstand er en
ikke-lineaer regulator gkraevet. Anvendelsen af ikke-linezere kontrol metoder og teori
for periodiske systemer samt en fysisk faedSe af satellittens bevaegelse preesenteres
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for at give et indblik i de centrale problemer med retningstyring. Lyapunovs stabilitets-
analyse anvendessatellittens potentielle og kinetiske energi. Resultatet er en vinkel-
hastighedsregulator, som mindsker den totale energi i systemet. Det vises, at vinkel-
hastighedsregulatoren har fire stabile ligevaegts-punkter, som er bestemt af satellittens
inertimomenter. Et af ligeveegtspunkterne svarer til den gnskede retning for satellitten.
Der er desuden designet en global stabil regulator, som garanterer, at satellitten ikke en-
der i et af de ugnskede ligevaegts-punkter.

Arbejdet bidrager med at vise, at treakse-stabilisering kan®plene ved hjeelp af mag-

netisk styring, og at de udviklede principper velegnet tibsafellitter i polzere baner taet

pa Jorden. Der praesenteres en gennemarbejdet stabilitetsanalyse med design af regula-
torer og detaljerede simuleringsresultater giver et overbevisende billede af styresystemet
anvendt p’den Danske @rsted Satellit. Udover at veere indeholdt i afhandlingen er de
vigtigste resultater publiceret internationalt som separate papers.
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Nomenclature

Glossary

Space Terminology

Apogeeis the point at which a satellite in orbit around the Earth reaches its farthest distance
from the Earth.

Attitude of a spacecraft is its orientation in a certain coordinate system.
Altitude is the distance from a referengeoidto the satellite.

Boom is upright boom tip is above horizon.

Boom is upside-downboom tip is below horizon.

Ecliptic is the mean plane of the Earth’s orbit around the Sun.

Eclipseis a transit of the Earth in front of the Sun, blocking blocking all or a significant part
of the Sun'’s radiation.

Geoidis an equipotential surface that coincides with mean sea level in the open ocean.

Latitude is the angular distance on the Earth measured north or south of the equator along
the meridian of a satellite location.

Longitude is the angular distance measured along the Earth’s equator from the Greenwich
meridian to the meridian of a satellite location.

Mean Anomaly is the angle from thperigeeto the satellite moving with a constant angular
speed ¢rbital rate w,) required for a body to complete one revolution in an orbit. Mean
anomaly,M, isw,At, whereAt is the time since last perigee passage.

Orbital rate is the mean angular velocity of the satellite rotation about the Earth.

Pitch, Roll, Yaw are the angle describing satellite attitude. Pitch is referred to the rotation
about the x-axis of a reference coordinate system, roll to the y-axis, and yaw to the z-axis.

Perigeeis the point at which a satellite in orbit around the Earth most closely approaches
the Earth.

Vernal Equinox is the point where thecliptic crosses the Earth equator going from south
to north.

Zenith is a unit vector in the Control Coordinate System along the line connecting the satel-
lite centre of gravity and the Earth centre pointing away from the Earth.

XXV
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Mathematics and Control Theory

e Autonomous systema system which is time invariant.

e Class Ka functionf : Ry — Ry is of class K if it is continuous, strictly increasing, and
£(0) =0.

e Class La functionf : Ry — Ry is of class L if it is continuous, strictly decreasing,
f(0) < oo, andlim, , f(r) = 0andf(0) = 0.

e Connected sef set is connected if it is not disconnected. ASés called disconnected if
S = AU B, whereA and B are are disjoint sets i, for every subsetsl, B C S.

e Decrescent functiona functionf : Ry x R® — R is said to be decrescent in a neighbour-
hood B, if there exist a constamt > 0 and a functiorg of class Ksuch that for each > 0
and for eachx € B,

ft,x) < Bl = [])-

e Locally positive definite function a functionf : Ry x R* — R is said to be locally
positive definite in a neighbourhod8, if it is continuous, furthermore for al > 0 the
function f (¢, 0) = 0, and there exist a constant> 0 and a function of class Ksuch that
for eacht > 0 and for eactx € B,

a(ll x ) < f(t,x).

e Negative definite functiona functionf : Ry x R® — R is said to be negative definite if
— f is positive definite function.

e Non autonomous systena system which is time dependent.

e Positive definite functiona functionf : Ry x R™ — R is said to be positive definite if it
is locally positive definitefor all x € R™

e Radially unboundeda positive definite function f : Ry x R® — R is said to be radially
unbounded if there exists a continuous functiosuch thaty(r) — co asr — co.

Acronyms and Abbreviations

ACS Attitude Control Subsystem,

CSs Coordinate System,

CSC Compact Spherical Coil, Magnetometer,
GPS  Global Positioning System,

LEO Low Earth Orbit,

rh.s. right hand side,

I.h.s. left hand side,

rpm  revolutions per minute,

w.r.t  with respect to.
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Notation

Vectors and Matrices

Av
Cv, 0v7 ’UJV

Yoz, Voy, Voz

matrices and vectors are written in bold type,
vectorv resolved in Control CS, Orbit CS or World CS respectively,
X, ¥, and z components of vectey,

P>=0 a matrixP is positive semidefinite,

P>0 a matrixP is positive definite,

P, > P, the difference of matrice®; — P») is positive definite,

diag([a1 a2 ... an]’) diagonal matrix with components on diagonal corresponding to

[a1 as ... an]T and zero off-diagonal components.

List of Symbols

Qcw angular velocity of Control CS w.r.t. World CS,

Qo angular velocity of Control CS w.r.t. Orbit CS,

Qow angular velocity of Orbit CS w.r.t. World CS,

°q attitude quaternion representing rotation of Control CS w.r.t. Orbit CS,

q,qa vector part and scalar part 9,

A(5q) attitude matrix based djy,

ir,jo, ko  UNit vector along x-, y-, z-axis of Orbit CS,

dq small perturbation of vector part of attitude quaternigam,

oQ small perturbation of angular velociff.,,

Wo orbital rate,

T period of orbit,

h, angular momentum due to satellite revolution about the Earth,

M mean anomaly,

I inertia tensor of the satellite,

I.,I,,I. moments of inertia about x-,y- and z-principal axes,

Netri control torque,

Nyg gravity gradient torque,

Nyist disturbance torques,

Nero aerodynamic drag torque,

Eiin kinetic energy,

Eqq energy due to gravity gradient,

Egyro energy due to satellite revolution about Earth,

m magnetic moment generated by set of coils,

B magnetic field of Earth,

B matrix representation of produB x,

B control matrix averaged within one orbit,

Teoil number of coil windings,

coil area,
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leoil current in coil,
x(t,to,x0) solution of non autonomous differential equatiott) = (¢, x(¢))
at time t for initial conditionsx(to) = xo,

x(t, xo0) solution of autonomous differential equatig(t) = f£(x(¢)) at time t
for initial conditionsxg,

| x || Euclidean norm of vectax,

| x |2 L, norm of vectorx,

Ry set of all positive real numbers together with

ct f € C* means that function f is continuously differentiable
(f has continuous partial derivatives),

B, open ball of radius r and a certain centre specified in the text,

®4(ty,to)  transition matrix of linear non autonomous systers: A (t)x evaluated
from timet, to timet;,
W4 (to) monodromy matrix of periodic systefn= A (t)x evaluated at timéy,
Sliding variable,
Sliding manifold,
quaternion gain in operational mission phase algorithm,
limit of stability of quaternion gain,
guaternion gain in boom upside-down algorithm,
nxn n X n identity matrix.
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Chapter 1

Introduction

1.1 Background

The aim of this Ph.D. thesis is to develop control algorithms for a magnetic actuated satel-
lite. The work has been motivated and supported by the @rsted Satellite Project and the
Faculty of Technology and Science at Aalborg University. The @rsted satellite is a 60 kg
auxiliary payload scheduled to be launched by a MD-Delta Il launch vehicle in the late
1997 into a 450 x 850 km orbit with a 96 degree inclination. The satellite is developed by
a consortium of Danish research organizations and space industries. Details of the orbit
parameters and the satellite system are listed in Table 1.1.

The purpose of the @rsted satellite is to conduct a research program in the discipline of
the magnetic field of the Earth. The scientific payload fulfills two major objectives. The
primary is to measure and collect data of the Earth’s magnetic field. The secondary is
to provide measurements of radiation from the high energy particles. The @rsted satel-
lite will carry five science experiments in order to meet these objectives: a CSC magne-
tometer (providing 3-axis measurements of the local geomagnetic field), an Overhauser
magnetometer (a scalar magnetometer providing the amplitude of the magnetic field of
the Earth), particle detectors (detecting electrons, protons and alpha particles), two GPS
receivers (used for position determination), a star imager (measuring the satellite attitude
relative to an inertial coordinate system). Furthermore, a set of wide angle sun sensors
measuring the Sun incident angle has been added to the instrument set solely for the pur-
pose of Attitude Control Subsystem (ACS). Table 1.2 gives an overview of the sensors
and actuators used by the ACS.

The Qrsted satellite’s main body is box shasf), mm high X450 mm wide x340 mm
deep. The solar arrays cover all sides except the bottom. The satellite separation mech-
anism, which is the interface with the launch vehicle, is mounted on the bottom side of
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Table 1.1: The @rsted satellite mission

Iltem Description

Body size H 680 x W 450 x D 340 mm
Boom 8 m Deployable

Mass

Moments of inertia about principal axe
boom deployed
boom stowed

Apogee

Perigee

Inclination

Nodal drift

5

61.8 kg

X 181.78,Y 181.25, Z 1.28 kgm?
X 3.428, Y 2.904, Z 1.275 kgm?
850km

450km

96.4deg

0.77deg/day

Table 1.2: Sensors and actuators used for the @rsted satellite attitude control

Item Description

Star Imager Provides attitude estimates with the angular resolufion

of 10 arc sec w.r.t. the Word CS,
Set of Sun Sensors| Provides the x,y, and z components of the sun vector
within 47 steradian coverage,
CSC Magnetometer Measures the x, y and z components of the magnefjic
field with an accuracy of.5 nT (RMS).

GPS Receiver Provides time, local position and velocity estimates
with accuracyl 00 m (2RMS),0.2 m /s respectively,

Magnetorquers 3 electromagnetic coils mounted on the X, y and z

facets of the satellite main body providing maximu
magnetic moment of 2@m?2.

|

the satellite body.

After separation from the launch vehicle the ACS shall acquire the satellite from a ran-
dom tumbling. This mission phase is called the detumbling phase. When the satellite is
firmly stabilized and the ground contact is established anlong boom is deployed
by ground command. The boom carries the scientific instruments that must be displaced
from the electro-magnetic disturbances presentin the main body of the satellite. The part
of the mission after boom deploymentis referred to as the normal operation or the science
observation phase. The @rsted satellite configuration after boom deployment is depicted
in Fig. 1.1.
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Overhauser
scalar magnetometer

Gondola
Star Tracker
CSC vector magnetometer

Magnetorquers

Charged particle detectors
Solar panels

Sun sensor

GPS receiver
Computers/Electronics

Figure 1.1: The @rsted satellite consists of a main body and an 8 m long scientific boom.

Stabilization of the @rsted satellite is accomplished by active use of a set of mutu-
ally perpendicular coils called magnetorquers. Magnetic control systems are relatively
lightweight, require low power and they are inexpensive. The coils are mounted in the X,
y, and z facets of the satellite main body. A maximum producible magnetic momentis 20
Am?. The interaction between external magnetic field of the Earth and the magnetic field
generated in the coils produces a mechanical torque, which is used to correct the attitude,
i.e. the rotation of the satellite relative to a reference coordinate system. The maximum
mechanical torque produced by the coils is approximaltélyl 0~ N'm above the equa-

tor, and1.2 - 10~3 Nm above the Poles. The current sent into the magnetorquer coils by
the controlleris dependent on the attitude and angular velocity information obtained from
the attitude determination system Batkal. (1996). The attitude determination system
uses measurements from the star imager, or alternatively magnetometer and sun sensor
data in an extended Kalman filter.

The control objectives vary dependent on the mission phase. Following separation from
the launch vehicle, the satellite will rotate with a comparatively large angular velocity (up
to 2 rpm). The attitude determination system is inactive in detumbling phase due to lack
of position information. The only attitude information is the local geomagnetic field. A
rate detumbling control is activated in this mission phase Wisniewski @994e rate
detumbling controller is required to despin the satellite from an arbitrary initial tumbling
and turns the satellite in the direction opposite to the geomagnetic field vector, making
boom deployment over Denmark viable. After boom deployment the normal operation
phase controller is activated. The satellite shall be three axis stabilized with its boom
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pointing outwards. Referring to Fig. 2.1, a certain coordinate system fixed in the satellite
structure shall coincide with a reference coordinate system fixed in orbit. The pointing
accuracy is required to be within 10 degrees in pitch, roll, and 20 degrees in yaw.

During science observation the satellite attitude is influenced by a gravity gradient torque
which causes an oscillatory motion around either of two equilibria, boom upright or boom
upside-down. This is called libration. A sum of potential and kinetic energy for librating
satellite is maintained, and the system is only marginally stable.

If the boom should be upside-down, control action is required to turn the satellite. This
is considered as a contingency mission phase.

Therefore, investigation of both linear and nonlinear methods is necessary. A linear
model of the satellite can be successfully applied in the science observation phase, be-
cause nominally the satellite motion is about the reference, but nonlinear control is re-
quired for large angle recovery of the satellite. Development of attitude control methods
for three axis stabilization of a low Earth orbit satellite is the subject of this thesis. A key
challenge in this work is the fact that the mechanical torque can only be produced in a
plane perpendicular to the local geomagnetic field vector.

1.2 Previous Work

Several control methods have been developed over the past years since the first satellite
was launched in 1957. Generally speaking those techniques may be classified as active
or passive. The most common passive techniques are spin stabilization, in which a bias
angular momentum is producible, such that the satellite spin axis is approximately fixed
in inertial space; and gravity gradient stabilization, in which the satellite is fixed relative

to the zenith. Active techniques are needed for missions where high pointing accuracy is
required, and typical actuators are: reaction or momentum wheels for precision control
combined with gas jets and/or electromagnetic coils for wheel despin by angular momen-
tum dumping.

Magnetic torquing is attractive for generation of control torque on small, cheap satellites

in low Earth orbits where sub degree pointing accuracy is not required. This is the main

reasons to suggest this actuation principle for the Danish @rsted satellite mission in an
early phase when a spin stabilized mission, i.e. two-axis control, was foreseen. Later re-
definition of the scientific objectives demanded an alteration of the control requirements

to three axis stabilization. The challenge was that three axis control was not possible with
an actuation principle that leaves the system controllable in only two degrees of freedom
since the control torque can only be generated perpendicular to the local magnetic field
of the Earth.

There is extensive literature covering satellite attitude control design. Most of the algo-
rithms assume application of reaction wheels and/or thrusters for three axis stabilization,
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though. Attitude control with sole use of magnetorquers has the significant challenge
that the system is only controllable in two axes at any point in time with the axes being
perpendicular to the local geomagnetic field vector.

The number of internationally published papers on magnetic attitude control is still rather
small. The available literature on nonlinear control for 3-axis stabilization of satellites
includes Yon-Pin and Shih-Che (1993), and Cavatlal. (1993). Both of these papers
consider application of the sliding mode control. In the first paper the use of gas jets
was investigated. A configuration with two magnetic coils and a reaction wheel were
analysed in the latter. A geometric control approach to a satellite actuated by a set of
two thruster jets was addressed in Byrnes and Isidori (1991). A general framework for
the analysis of the attitude tracking control problem using Lyapunov theory for a rigid
body was presented in Wen and Kreutz-Delgado (1991). Time invariant systems were
considered, and magnetic torquing was outside the scope of this paper. However, salient
features of proportional-derivative controllers for attitude control were found. The prob-
lem of three axis magnetic control was addressed in Mattal. (1988), where a lin-
earized time varying satellite motion model was approximated by a linear time invariant
counterpart. Another linear approach was given by Musser and Ward (1989). The local
stabilization of the satellite was achieved via implementation of the infinite time horizon
linear quadratic regulator.

1.3 Structure of Thesis

The thesis deals with linear and nonlinear methods for magnetic attitude control.The
work is divided into four main parts. The first part, Chapter 2, cope with the develop-
ment of a mathematical model of a low Earth orbit satellite. The second part, Chapters 3
and 4, considers the satellite as a linear periodic system, and provides variety of locally
stable attitude controllers. Chapter 3 deals with theoretical aspects of a class of periodic
linear systems. Findings from this investigations are applied in Chapter 4. In the third
part, Chapters 5, 6, and 7, local and global stability analysis of the satellite is made from
the point of view of the nonlinear control theory and a family of proportional-derivative
feedback cross product with the local geomagnetic field is presented. Chapter 5 gives
general theoretical foundations, and Chapters 6 and 7 treats the problem of the attitude
control. The fourth and the last part, Chapter 8 carries out simulation tests of those con-
trollers, which are implemented for the @rsted satellite. This chapter constitutes a sum-
mary of the @rsted Attitude Control System. Advantages and disadvantages of the @rsted
controllers are discussed.

In Chapters 4, 6 and 7 general theoretical results are examined via simulation tests in
ideal conditions, i.e. the orbit is circular, atmospheric density is zero. The @rsted satel-
lite’s moments of inertia about the x and y axes are roughly equal. In order to evaluate
theoretical findings the moment of inertia about the y principal axis is made 25 per cent
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smaller in simulation studies in Chapter 7. A detailed simulation test is performed for
realistic disturbances of the @rsted satellite in elliptic orbit in Chapter 8.

e Chapter 2, Satellite Motion Model

This chapter provides definitions of coordinate systems used throughout the thesis.
Detailed description of the satellite motion is given, and linearization of the satel-
lite dynamics/kinematics using multiplicative nature of the quaternion calculus is
presented. Environment models are briefly reviewed in the last part of the chapter.

e Chapter 3, Periodic Linear Systems

This chapter gives introductory information about periodic systems. Floquet the-
ory is introduced. The infinite quadratic cost problem is investigated, and it is
shown that the steady state solution to the periodic Riccati equation is periodic.
The finite quadratic cost problem is then presented. The major part of this chapter
is concerned with an investigation of the influence of the final condition of the pe-
riodic Riccati equation on stability of the receding horizon controller. Application
of Picard’s method of successive approximation to periodic systems is investigated
in the last section of this chapter.

e Chapter 4, Three Axis Attitude Control: Linear Approach

This chapter is devoted to the design issues of the linear attitude control. It is
shown that a low Earth orbit satellite actuated by a set of perpendicular magne-
torquers may indeed be considered as a periodic system. An infinite horizon peri-
odic controller is implemented, which gain is parameterized by the mean anomaly.
Eventually, final horizon and constant gain controllers are proposed.

e Chapter 5, Periodic Nonlinear Systems

Important definitions and concepts of stability are given in this chapter. The Lya-
punov direct method and Krasovskii-LaSalle theory of nonlinear periodic systems
are reviewed.

e Chapter 6, Three Axis Attitude Control: Sliding Mode Control

The essence of the sliding controller design for magnetic actuated satellite is given
in this chapter. A three dimensional sliding manifold is proposed, and it is shown
that the satellite motion on the sliding manifold is asymptotically stable. An ideal
case of the sliding condition development is when the control torque is producible
in X, y, and z directions independently. Firstly, a solution to this control problem
is proposed, then a sliding condition for the magnetic generated control torque is
addressed.

e Chapter 7, Three Axis Attitude Control: Energy Approach
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This chapter plays a fundamental role for this thesis. Attitude stabilization at large
is considered, and an angular velocity controller is introduced. This control prin-
ciple is proved to be asymptotically stable around four equilibria. This results are
extended to a locally stabilizing controller with velocity and attitude information.

A velocity/attitude feedback cross product with the local geomagnetic field vector
makes the desired reference attitude the only stable equilibrium. This analysis is
extended to a globally stable controller in the last section.

e Chapter 8, @rsted Attitude Control

The attitude controllers implemented for the @rsted satellite are simulated in a
realistic space environment. The major part of this chapter deals with an inves-
tigation of the influence of an inertia error, ellipticity of the @rsted orbit and aero-
dynamic drag torque on the performance of the attitude control. Pros and cones of
the drsted satellite controllers are given.

e Chapter 9, Conclusions and Recommendations
This chapter contains the concluding remarks and the recommendations for future
work.

e Appendix A: Orbit and Atmospheric Density Models
High fidelity models of the aerodynamic drag, orbit propagator, and the geomag-
netic field are outlined in this appendix.

e Appendix B: Rate Detumbling Controller

The theory behind the rate detumbling controller for the @rsted satellite is given
in this appendix.

1.4 Contributions of This Thesis

A number of new solutions to the attitude control problem are provided in this work. A
list of the main contributions is given below.

¢ In Section 2.6 the multiplicative linearization of the unit quaternion for the attitude
control purpose is proposed. Similar technique has been used earlier but for an
extended Kalman filter Psiakt al. (1990).

¢ In Chapters 4 and 5 the magnetic actuated satellite is considered periodic, and
methods for linear and nonlinear periodic systems are applied. Floquet stability
analysis is used in Chapter 4, and Krasovski-LaSalle theory of periodic systems is
used in the proofs of theorems in the parts dealing with nonlinear attitude control
methods, Section 7.1.
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Itis proved in Chapter 3 that the steady state solution to the periodic Riccati equa-
tion is periodic. Furthermore, it is shown that the choice of a final condition of
the periodic Riccati equation in a receding horizon controller has an influence
on stability of the systems with time-varying and bounded parameters. Attitude
controllers based on these findings are designed in Chapter 4 and published Wis-
niewski (199%).

Itis demonstrated in Section 3.5 that the ad-hock method presented in btatel
(1988), proposing substitution of a non autonomous system by its time invariant
counterpart, has a theoretical basis.

Itis shown in Section 4.2 that the time varying coefficients of the optimal attitude
controller can be parameterized by the mean anomaly (orbital position). The find-
ings are published in Wisniewski (1997).

A sliding mode controller for the magnetic actuated satellite is designed in Section
6.1. Asliding manifold is proposed in the state space of the attitude quaternion and
satellite angular velocity. A modified sliding condition incorporating time varia-
tion of the geomagnetic field. This is published in Wisniewski (19%hd Wis-
niewski and Blanke (1994.

It was demonstrated in Section 7.1 that a low Earth orbit satellite actuated by the
velocity feedback cross product with the geomagnetic field has four locally asymp-
totically stable equilibria. This is published in Wisniewski and Blanke (1996

A method consisting of a plot of the root locus of the characteristic multipliers pa-
rameterized by the quaternion gain was proposed in Sections 4.4 and 7.2. This is
published in Wisniewski and Blanke (1996

The potential/kinetic energy dissipation control for three axis magnetic attitude
control is developed in Section 7.3. This results are published in Wisniewski and
Blanke (1996)

A globally stable control law was proposed in Section 7.4. The controller is not
only asymptotically stable for attitudes such that the boom is upright, but it rescues
the satellite when the the boom is upside-down. This is also part of the publication
Wisniewski and Blanke (19%%.



Chapter 2

Satellite Motion Model

This chapter presents definitions of coordinate systems used throughout the thesis. A
thorough description of the satellite motion is provided in Sections 2.2 and 2.3. A de-
scription of kinetic and potential energy of a low Earth satellite (LEO) is given in Sec-
tion 2.4. Controllability issues of a magnetic actuated satellite are outlined in Section
2.5. Finally, in the last Section 2.6 the linearized equations of motion are given, where
the hybrid of the additive and multiplicative linearization of the dynamics and kinematics

is considered.

2.1 Coordinate Systems

The coordinate systems used in the thesis are a Control Coordinate System (CS), built on
the satellite principal axes, a Body CS corresponding to the satellite structure, an Orbit
CS referring to the current position of the satellite in orbit, and a World CS, which is an
inertial coordinate system. The formal definitions of these coordinate systems are

e The Control CSis a right orthogonal coordinate system built on the principal axes
of the satellite with the origin placed in the centre of mass. The x axis is the axis
of the maximum moment of inertia, and the z axis is the minimum, Fig. 2.1.

e The Body CSis a right orthogonal coordinate system with the origin in the centre
of gravity. The z axis is parallel to the boom direction and points towards boom
tip. The x axis is perpendicular to the shortest edge of the bottom of the satellite
body, and points away from the boom canister. The y axis is perpendicular to the
longest edge of the bottom satellite body, Fig. 2.2. It is the reference coordinate
system for attitude measurements and the magnetorquers.



10 Satellite Motion Model

Earth

Figure 2.1: Definition of the Control CS in the Orbit CS. The Control CS is built on the
principal axes of the satellite, whereas the Orbit CS is fixed in orbit.

Body CS /
X

Control CS

‘Xg
Geometrical

reference

Figure 2.2: Definition of the Body CS. The Body CS refers to geometry of the satellite
main body, its axes are perpendicular to the satellite facets.
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e The Orbit CS is a right orthogonal coordinate system fixed in the centre of mass
of the satellite. The z axis points at the zenith (is aligned with the centre of the
Earth and points away from the Earth), the x axis points in the orbital plane nor-
mal direction and its sense coincides with the sense of the orbital angular velocity
vector. The Orbit CS is the reference for the attitude control system.

e The World CS is an inertial right orthogonal coordinate system with origin in the
centre of mass of the satellite. The z axis is parallel to the rotation axis of the Earth
and points towards the North Pole. The x axis is parallel to the line connecting the
centre of the Earth with Vernal Equinox and points towards Vernal Equinox (Vernal
Equinox s the point where the ecliptic crosses the Earth equator going from South
to North on the first day of spring).

2.2 Quaternions

This section gives an introduction to a unit quaternion, providing a singularity-free repre-
sentation of kinematics. Information included in this section is based primarily on Wertz
(1990).

Rotation of coordinate systems can be described by means of a quaternion. A salient fea-
ture of quaternionsis that they provide a convenient product rule for successive rotations
and a simple form of kinematics.

The four parameterg; ¢- g3 g4]” form the components of the quaterniép defined as
follows

a=iq +Jjg+kag+aq, (2.1)
wherei, j, andk are hyper imaginary numbers satisfying the condition

==k =%l

ij = &ji =k
jk = ki =i
ki = ik = j. (2.2)

The first three componenig,= [¢1 ¢2 g3]7, form a vector part of the quaternion and the
quantity,q, is a scalar part. Thus the quaterni@n= [¢; ¢2 g3 g4]7 may be written as

[q” qi]”.
The inverse ofj is defined as
QP =6q ikt (2.3)

The norm of quaternio§ is given by

lal = \/Q*QZ\/q%’+q§+q§+qi- (2.4)




12 Satellite Motion Model

The construction of the unit quaternion arises from an observation by Euler and Hamilton
that the rotation of coordinate systems can be uniquely described by a unit weetor,

[e1 ez e3]T giving an axis of rotation as well as its sense, and an angle of rotatidhe
quaterniong, has four parameters:

Q = e sin?
2
@ = egsing (2.5)
q3 = €3$Z.TL?
2
qQu = cos?.
2

The norm of the quaternion defined according to Eq. (2.8) iBurthermore, the same
attitude can be described by two quaterniqrad<q, the first is given when the angle
of rotation is¢, and the latter for the angfar + ¢.

Quaternions provide simple methods for calculation of successive rotations. Let the
quaternion reflecting the rotation of the Control CS in the Orbit CS and the quaternion
describing transformation from the World CS to the Orbit CS be given. Then the product
quaternion in Egs. (2.6) provides an elegant method for calculation of the total transfor-
mation from the World CS to the Control CS.

»4=R(5,9)54, (2.6)
where

qa q3 <42 q1

~ <93 qa q1 q2
R = 2.7
(q) g2 g1 qa q3 ( )

g1 G2 g3 Q4

Moreover, the following equalities are true
R(QR' (@) = R"(@R(@) = " qBsxs. (2.8)

The relation between the attitude quaternion and the direction cosine matrix is also useful.
The direct cosine matrix from the Orbit CS to the Control CS is given as

CA=["1 %o ko ], (2.9)

where‘i,, “j,, °k,, see Fig. 2.1, are the unit vectors of the x, y, and z axes of the Orbit
CS, respectively, projected on the coordinates of the Control CS.

The unit vectorsi,, “j,, °k, may be parameterized by the attitude quaterrfjgn,
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T

‘e = [dended+ad 2neene) 2na+ea) |,
. T
o = [ 2@ +wa) G+ ea+a 2eseaa) |, (2.10)
T
ke = [ 2a3 ©0w) 2(@e+aa) €6 SG+ G+ 4 ]

Now, the transformation of a vecterobserved in Orbit CS’¢) to the vectow observed

in the Control CS{v) is simply given by'v = ¢A°v.

Frequently, it is necessary to obtain the inverse transformation, i.e. from the Control
CS to the Orbit CS. The inverse transformation is given by the conjugate of the attitude
quaternion

cq=oq". (2.11)

2.3 Equations of Motion

The mathematical model of a satellite is described by dynamic and kinematic equations
of motion, see Wertz (1990). The dynamics relates torques acting on the satellite to the
satellite’s angular velocity in the World CS. The kinematics provides integration of the
angular velocity. In the thesis the attitude is parameterized by four components of a
quaternion describing rotation of the Control CS in the Orbit CS.

2.3.1 Dynamics

The dynamic equation of motion of a rigid satellite in low Earth orbit is

I (1) = Qe (t) X Iy (8) 4+ Ny (t) + “Ngg () + “Ngis(t).
(2.12)

The summandQ.,, (t) x I°Q2.,, (t) represents a cross coupling between the components
of the angular velocity vectof§2.,,(t). It arises due to the fact that the dynamics is de-
scribed in a rotating coordinate system (the Control CS), in an inertial coordinate system
this summand disappears.

Control torque is generated by an interaction of the geomagnetic field with the magne-
torquer current(t) which gives rise to a magnetic momentt)

m(t) = Necoil Z.coil(t) Acoil- (2.13)

The electromagnetic coils are placed perpendicular to the x, y and z axes of the Body CS,
thus the vector representing entire magnetic moment producible by all three coils is given
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in the Body CS. The transformation from the Body CS to the Control CS (the coordinate
system in which the dynamics is described) is necessary

‘m = {A’m. (2.14)
The control torque acting on the satellite is then
‘Nt () = ‘m(t) x “B(¢). (2.15)

The magnetic moment given in the Control G8, will be considered as the control sig-
nal throughout the thesis.

According to Wertz (1990) the gravity gradient torque is given as

‘Nyy = ;’f (“Rem x I'Rem), (2.16)

wherey is the Earth gravitational constarit,.,,, is the distance from the centre of the
Earth to the satellite’s centre of gravitiR(,, is a subject of variation, when an elliptic
orbit is considered¥R.,, is the zenith.

Observe that the zenith is equivalent to the unit vetkgrand the constan};;— = w2,
wherew, is the orbital rate. Now, the gravity gradient torque is '

‘Nyy = 3w (k, x I k,). (2.17)

The disturbance torque is mainly due to the aerodynamic drag, see Section 2.7.

2.3.2 Kinematics

The kinematics describes the body’s orientation in space and is obtained through integra-
tion of the angular velocity. The kinematic equations are expressed by separate integra-
tions of the vector and the scalar part of the attitude quaternion

1 1
q = §Cﬂcoq4 <:>§C(lco X q,
. 1
qs = <:>§CQCO ' q. (218)

Itis convenientto represent Eq. (2.18) by an equivalentbilinear form as stated in Morton
(1993)

. 1
zq = §R(CQco)zqa (219)

ISee Space Terminology in Nomenclature.
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wherecQ,, = [*QZ 0]7, andR (") is given in Eq. (2.7).

A relation between the satellite angular velocity w.r.t. to the Word CS and the angular
velocity w.r.t. the Orbit CS is given by

CQCO = cﬂcw <::’Wocio- (220)

The orbital ratew, is constant for a circular orbit, but time varying for an elliptic orbit.
The eccentricity of the rsted orbit is comparatively small and the variatiop o&n be
disregarded.

Remark 2.3.1 In summary a satellite motion is characterized by the 7th order nonlin-
ear differential equation (Egs. (2.12), (2.15), (2.17), (2.18), and (2.20)). The quaternion
representation of the attitude provides one redundant equation in kinematics. The ad-
vantage is that the description of the kinematics is free from any singularity. Note that a
singularity is observed in the attitude parameterization if the Euler angles are used, see
Wertz (1990).

2.4 Kinetic and Potential Energy

The objective of the present section is to derive the kinetic and potential energy, which
will be extensively used in the chapter on nonlinear control methods.

2.4.1 Kinetic Energy

The standard kinetic energy of the satellite is a quadratic form relating the satellite ve-
locity in the World CS. In this study we focus only on the rotation of the satellite w.r.t the
reference coordinate system, i.e. the Orbit CS.

The total angular velocity of the satellite relative to the Word CS is a sum of the satellite
angular velocity w.r.t the Orbit CS and the angular velocity of the satellite’s revolution
aboutthe Earth (the orbital rate). Itis assumed that the orbit is circular and thus the orbital
rate,w, is constant. The kinetic energy of the rotary motion is then

1
Epin = 5" Q1" Qe (2.21)
Note that the eccentricity of the @rsted orbitis= 0.025, thusw, is constant within 3
percent.
2.4.2 Potential Energy

The potential energy due to the gravity gradient is minimu#p, (= 0) when the sci-
entific boom is ideally aligned with the z axis of the Orbit CS, since there is no gravity
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gradient acting on the satellite. Its maximum value is reached when the satellite attitude
is such that the z axis of the Orbit CS coincides with the x axis of the Control CS.

The potential energy associated with the gravity gradient is represented as

Ey = gwg’(ffkg“lfko &), (2.22)
where the vectofk, is a unit vector along the z axis of the Orbit CS projected on the
axes of the Control CS. The unit vecttk, is parameterized by the attitude quaternion
asin Eq. (2.11).

The potential energy has also a component originating from the revolution of the satellite
aboutthe Earth. Consider the summésd,, (¢) xI “Q..,, () in the equation of dynamics
(2.12). Using Eq. (2.20) this can be rewritten as

Qo) X T Qewp(t) = “Quo(t) X I Quo(t) + wo “io x T “Qeo(t)
W “Qo(t) X T %y + w? iy x I %y, (2.23)

where‘i, is a unit vector on the x axis of the Orbit CS resolved in the Control CS, see
Eq. (2.11).

The summand? “i, xI ¢i, is not dependent on the satellite’s angular velocity, and hence
gives a contribution only to the potential energy. The potential energy due to the revolu-
tion of the satellite about the Earth is

1 Tres
Egyro = iwg(fw &°ilT4,). (2.24)

The minimum of this energy is obtained when the x axis of the Control CS is aligned with
the x axis of the Orbit CS, and maximum when the x axis of the Orbit CS coincides with
the z axis of the Control CS.

2.5 Controllability

The satellite actuated by a set of magnetorquers has a serious limitation. The mechani-
cal torque, produced by the interaction of the geomagnetic field and the magnetic field
generated by the magnetorquers, is always perpendicular to the geomagnetic field vector.
Thus the direction parallel to the geomagnetic field vector is not controllable. The geo-
magnetic field changes its orientation in the Orbit CS when the satellite moves in orbit.
This implies that e.g. yaw is not controllable over the poles but only a quarter of orbit
later, i.e. over the equator, it reaches controllability, see Fig. 2.3.
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pitch, roll
control possible

yaw, pitch

aw, pitch
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control possible

Figure 2.3: Control torque is always perpendicular to the geomagnetic field vector. This
implies that yaw is not controllable over poles, and roll is not controllable over equator.

2.6 Linearized Equation of Motion

A linearized time-varying model of the satellite motion will be used in the chapter on
application of the linear periodic systems to the attitude control, Chapter 4.

The satellite motion is considered in a neighbourhood of the following reference: the
angular velocity of the satellite rotation w.r.t. the Orbit CS is zéfd.{, = 0), and the
attitude is such that the Control CS coincides with the Orbit 5= [0 0 0 1]7).

Linearization of the angular velocity is commonplace and based on the first order exten-
sion of the Taylor series. The angular velocify.,, from Eq. (2.20) is

Qe = SAlwo 00]T + 69, (2.25)

whered 2 is a small perturbation of the angular velocif..,, from the reference.

Linearization of the attitude quaternion is different due to the multiplicative transforma-
tion in Eqg. (2.6) is needed to describe a rotation. Two successive rotations are used, the
first one is a transformation from the Orbit CS to a reference coordinate system, the sec-
ond from the reference coordinate system to the Control CS. The reference coordinate
system is the Orbit CS in the thesis, thus the rotation from the Orbit CS to the reference
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coordinate system is trivially given by the identity operation.
ca=Q([0001]7)éq = 44, (2.26)

wheredq is a small perturbation of the attitude quaterniga, from the reference, and
according to Eq. (2.6) is

L)

elsin% oq1
- es8in > 6 | _ | dq
0q = ~ = . 2.27
q €3S’L.7’L% dq3 [ 1 ] ( )
cos% 1

Remark 2.6.1 Consider a certain reference coordinate system the Reference CS , such
that the quaterniorjq of the transformation from the Orbit CS to the Reference CS is
constant. The linearization of the angular velocity w.r.t. the Reference CS is then

Qe = SA TAfwp 00]7 + 69, (2.28)
and the linerization of the attitude quaternion is as follows

0d = Q(a)dq. (2.29)

The linearized dynamics and kinematics based on the hybrid approach of the multiplica-
tive and additive linearization will be derived in the next two subsections.

2.6.1 Linearized Dynamics

The equation of dynamics is divided into the cross coupling, the contribution of the grav-
ity gradient torque and the part due to control torque. The disturbance drgules pri-

marily dependent on the satellite position w.r.t the Sun and the Earth, therefore it is not
included in the linear model of the satellite.

450 = d(Cross Coupling+ I *§(Gravity Gradient Torque+ I &(Control Torqueé.

dt (2.30)
2.6.1.1 Linearization of Cross Coupling
Uwcwcwycwcw: 0
Cross Coupling= | 0y wew:Wewe | & | oywodws |, (2.31)
Uzcwcwzcwcwy Uzwo(SWy
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where
I, &1 I, &1 I, &1,
Oy = yIz =, oy = T 2 o, = ””IZ v (2.32)
and .
0= [&uw dwy 5w;] .
2.6.1.2 Linearization of Gravity Gradient Torque
&20¢ 21,02
Gravity Gradient Torque ~  3w? | 20¢1 | x | 2I,6q
1 I,
i (Iz <:;’Iy)(s%
~ 6w | (LeL)ig |, (2.33)
i 0
where .
dq = [5(]1 dg> 5113] .
2.6.1.3 Linearization of Control Torque
Control Torque= ‘m x SA°B =~ “m x °B <2°m x (dq x °B),
(2.34)

but the summané‘m x (dq x °B) diminishes when a linear feedback is implemented

as it is a term of second order approximatioand finally

Control Torquex~ “‘m x °B.

2.6.2 Linearized Kinematics

2.6.2.1 Linearized Kinematic Equation

d 1. 1, 1.
%q - 5 Qcoq4 <:>5 Qco Xqr 5 Qco-
Now, according to Egs. 2.20 and 2.25 the linearized kinematics is
d 1 1 1| Owe Ewo
200 =509 @5[%00]7’ S8q x [w, 00]" = = | dw, + 263w,

ow, &20¢sw,

2The summan@m x (6q x °B) becomes2 (K(t) (62 6q]T) X (6q x °B).

(2.35)

(2.36)

] (2.37)
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2.6.3 Linearized Equation of Satellite Motion

The matrix form of the linearized satellite motion abé@., = 0, andq = [00 0 1]7
is

d [ 6Q 5Q
— =A B(t)1k 2.38
dt{aq} [5q]+()m’ (2.38)
where -
0 0 0 &2ko, 0 O
0 0 wo, 0 2k, O
0 wyo, 0 0 0 0
A= : 0 0 0 0o 0 |’
0 3 0 0 0w
0 0 : 0 “w, 0
{ 0 &B.(t)  °By(t) '|
I! [ °B.(t) 0 & B, (t) J
_ S By(t)  °Ba(t) 0
B(t) = 00 0
000
000 |

2.7 Environmental Models

A concise description of environmental models is addressed in this section. Our empha-
sis is on the geomagnetic field, and the primary disturbance torque for LEO satellites,
which is the aerodynamic torque. The periodic properties of the geomagnetic field will
be usedin Chapter 4, treating the linear controller design. An aerodynamictorque is mod-
eled in a simulation program. The performance test of the attitude controllers in Section
8 is executed with the aerodynamic torque present. Further details on modeling of the
space environment is provided in Appendix A.

2.7.1 Aerodynamic Drag
The interaction of the upper atmosphere molecules with satellite’s surface introduces an
aerodynamic torque. Assuming that the energy of the molecules is totally absorbed on
impact with the spacecraft, the fordé, ..., on a surface elemeqt4 is described by
1
dfyero = <:>§CDp’U2(fl - V)VdA, (2.39)

wheren is an outward normal to the surface,is the unit vector in the direction of
the translational velocity of the surface element relative to the incident stream of the
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%107 Geomagnetic field [T]

Orbits

Figure 2.4: The geomagnetic field vector in the @rsted Orbit CS propagated by a 10th
order spherical harmonic model during a period of 24 h in April 1997.

molecules. The atmospheric density is denoteg, land the drag coefficient iyp. The

total aerodynamic torque is determined by integration over the total spacecraft surface.
A detailed description of the modeling of the aerodynamic drag for the @rsted satellite
can be found in Wisniewski (199%.

The Jacchia-Roberts atmospheric model described in Cappellari (1976), was adopted in
the simulation programs. The atmospheric density is determined as a function of the
satellite altitude and the exospheric temperature. The exospheric temperature is param-
eterized by the daily average 10.7-centimetre solar fizx,;, as observed in the solar
observatory at Ottawa, Canada, and a geomagnetic activity index: the geomagnetic plan-
etary index K.

2.7.2 Geomagnetic Field

The geomagnetic field is essentially that of a magnetic dipole. The south pole is in the
northern hemisphere at abai®° N latitude and290° E longitude. There are certain de-
viations from the dipole model called anomalies. The largest anomalies are encountered
over Brazil and Siberia, see Fig. 2.5 from Wertz (1990).

Let a near polar orbit be considered. The geomagnetic field observed in this orbit, i.e.
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Figure 2.5: Total magnetic field intensity at the Earth’s surfac€lin

seen in the Orbit CS, has large y and z components, while the x component is compar-
atively small. The orbit position is fixed in the World CS, thus the rotation of the Earth

is visible via fluctuations of the geomagnetic field vector’s x component with frequency
1/24 1/hour. An example of geomagnetic field variation on orbit is given in Fig. 2.4.
The geomagnetic field has been computed using 10th order spherical harmonic model,
see Wertz (1990).

The observation that the geomagnetic field on near polar orbit is approximately periodic
with periodT = 27 /wy is used in the design of a constant gain and a time varying linear
controller.



Chapter 3

Periodic Linear Systems

Both linear and nonlinear methods can be implemented for the attitude controller design.
The adequacy of a particular technique is highly dependent on the satellite mission phase.
During scientific observation, the satellite motion can be regarded as in the vicinity of
the reference. Thus an application of a linear model of the satellite equations of motion
is reasonable. In contrast, a nonlinear control method is required for the inverted boom
mission phase. The next two chapters cope only with the linear control methods. This
chapter deals with theory development, the next with implementation issues.

It was already mentioned that due to the actuation principle, the satellite is only control-
lable in two degrees of freedom at any given position in orbit. The geomagnetic field
varies along the orbit and this time variation can be utilized for controller design. Incor-
porating time variation of system parameters into the structure of the attitude controller
requires some background of methods for time varying linear systems. The class of all
time varying systems can be furthermore limited to periodic systems from the observa-
tion, that the geomagnetic field seen from the Orbit CS is periodic.

Stability theory for periodic systems is not widely known in the engineering community,
therefore a few necessary results in this field are first presented, where Floquet theory de-
scribed in Section 3.1 plays the fundamental role. An objective is to design a controller
with a time varying gain. Consequently, the problems of the optimal and quasi optimal
controllers are formulated. Both finite and infinite cost problems are investigated in Sec-
tions 3.3 and 3.4. The properties of a steady state equilibrium and a transient solution
to the periodic Riccati equation are examined. A novel method for periodic controller
design is elaborated. Further work presented in this chapter is inspired by tzatel
(1988), who proposed a PD attitude controller with parameters based on an average value
of the geomagnetic field along the orbit. An issue of application of Picard’s method of
successive approximations for the design of a constant gain control law is considered in
Section 3.5. The result is a time invariant approximation to the satellite linear periodic

23
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model, appearing to be similar to the one proposed by Mattal. (1988).

The references used for preparation of this chapter are mentioned in the beginning of each
sections dealing with a particular theory. Most of theorems are given without proofs, only
results , which are contributions of this thesis are provided with proofs.

The following linear T-periodic system is considered in this chapter
x(t) = A@®)x(t) +B(t)u(t),
y(t) = CHx(. (3.1)

wherex(t) € R", u(t) € R™ are state and input vector respectivedyt), B(t) are
periodic matrices of perio@

A(t+T)=A(t), B(t+T) = B(t). (3.2)

3.1 Floquet Theory

This section highlights key results from the theory of Floquet on linear differential equa-
tions with periodic coefficients. The stability of a periodic system is to be considered
over time, therefore the transition matrix calculated within one period, fgamt, + 7',

plays a significant role in the stability analysis. Namely, placement of its eigenvalues in
the open unit disk determines whether the system is stable. The material in this section
is based on Mohler (1991).

Consider the system in Eq. (3.1) with zero input vector
x(t) = A(t)x(t). (3.3)

The transition matrix of the system in Eq. (3.3) is denotedhy(¢, o), wheret, is the
time when the initial state is applied ands the time when the state is observed. The
following holds

Pt +T,t0) = Palt,t0)C, (3.4)
whereC is a constant matrix.
To check this equality, it is enough to calculate the time derivativé gft + T, to)

BA(t+ T, to) = Pat,t0)C = A(t)® (L, 10)C = A(t + T)®A(t + T, tp),
(3.5)

since )
by = A(t)‘I’A.

There exists a constant matiik such that

C = RT, (3.6)
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From the equality® 4 (to, to) = I and Eq. (3.4) it follows that
P o(to +T,to) = eRT. 3.7

Thus the state transition matrix consists of a periodically modulated exponential matrix
function. The matrix@® 4 (to+T', to) is named the monodromy matrixégtand is denoted

by ¥ 4(to). Itis concluded from Eq. (3.7) that the eigenvalues of the monodromy matrix
are independent af,.

The system (3.3) is asymptotically stable if, and only if the eigenvalues of the riatrix

all have negative real parts. The eigenvalueR @fre defined as characteristic exponents

of A(t). One can alternatively examine, whether the eigenvalues of the monodromy ma-
trix belong to the open unit disk. The eigenvalues of the monodromy matrix are called
characteristic multipliers oA (¢).

3.2 Structural Properties of Periodic Systems

Once the concept of characteristic multipliers has been established, itis importantto clar-
ify the definitions of the structural properties of a periodic system as reachability, observ-
ability, stabilizability and detectability. The following definitions of unreachable and un-
observable characteristic multipliers are available in Bittanti (1991).

Definition 3.2.1 A characteristic multiplierA of A(¢) in Eq. (3.1) is said to be
(A(t), B(t)) unreachable if

Wa(to)'x =2x, x£0 = B(t)T®4(t,t0)"'x =0, forallt € [to,to + T).
(3.8)

A characteristic multiplier ofA(¢) is said to be(A(t),B(¢)) reachable if it is not
(A(t), B(t)) unreachable. The pairA (¢), B(t)) is said to be reachable if all the char-
acteristic multipliers ofA (¢) are (A (¢), B(t)) reachable.

Definition 3.2.2 A characteristic multiplierA of A(¢) in Eq. (3.1) is said to be
(A(t), C(t)) unobservable if

‘I’A(to)x = AX, X ;é 0 = C(t)@A(to,t)X =0, forall t € [to,to + T]
(3.9)

A characteristic multiplier ofA(t) is said to be(A(t), C(t)) observable if it is not
(A(t), C(t)) unobservable. The paiA (¢), C(t)) is said to be observable if all the char-
acteristic multipliers ofA (¢) are (A(t), C(t)) observable.
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Definition 3.2.1 can be explained in the following way. A characteristic multiplier is un-
reachable if the eigenvector corresponding to this characteristic multiplier determines a
direction which is not controllable in the whole envelope of time frgrto to + 7.

A test for reachability of the paifA.(¢), B(¢)) can by derived from Eq. (3.8). The fol-
lowing reasoning is used.

If the controllability gramian matrixG.(to + 7', to)
t
G.(t,7) = / ®(t,s)B(s)BT (s)® (¢, 5)ds (3.10)

is not singular, then the statement
B(t)T®%(t,t0)x = 0, forallt e [to, to + T]. (3.11)

is false for any nonzero vectar and the paifA(t), B(t)) is reachable. Therefore, it is
concluded that the paifA(t), B(t)) is reachable, ifz.(7, 7 + T') is nonsingular.

Reachability is a property of a periodic system evaluated within one period. The system
is reachable if the controllability gramia@,. is not singular. If a non autonomous system
is considered at a fixed timeg,

x(t) = A(t.)x + B(to)u, (3.12)

controllability rank condition may not be fulfilled. The system (3.12) is then partitioned
into a uncontrollable part and a part which is completely controllable. According to
Kwakernaak and Sivan (1972), there exists a transformation niEtrix

x(t) = T 'x(t), (3.13)

such that the state differential equation (3.12) is transformed into the controllability
canonical form

k(1) = Al iggi] %(t) + [Blétf)} u(), (3.14)

hereA (t.)is ak x k matrix, and the paifA+ (t.), B1 (t.)) is completely controllable.

Remark 3.2.1 A necessary condition for controllablity at fixed time of a LEO satellite

is that the control torque can be independently generated in X, y, and z directions of the
Control CS. However, the magnetic actuated satellite produces the control torque, which
is perpendicular to the local geomagnetic field, see Fig. 2.3. Thus, there exists an eigen-
value which is completely uncontrollable at any fixed position in orbit i.e. any single
instant.
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In the next sections both a constant gain and a time varying gain control are investigated.
Stability issues are in the focus. If a constant gain controller is applied, the characteristic
multipliers of the closed loop system

x(t) = A (t)x(1), (3.15)

whereA . (t) = A(t)+B(t)K, shall lie in the open unit disk. Picard’s method of succes-
sive approximations will be used for the synthesis of a constant gain controller in Section
3.5.

Stability of the system (3.1) with a time varying control gd¢) is determined by Ly-
punov direct method, Chapter 5.

Consider the following Lyapunov function

v(t) = %XT(t)P(t)X(t), (3.16)
whereP (t) is a positive definite, symmetric x n matrix.

The time derivative of the Lyapunov function is

o(t) = xT(P(Bx(t) + %XT(t)P(t)x(t). (3.17)
If the matrix P(¢) is a solution to the following differential equation
P () = Al (P (1) + P(t)Ac(t) + Q(1), (3.18)
whereQ(t) is a positive definites x n matrix, theno(t) is
o(t) = @%XT(t)Q(t)X(t). (3.19)

From Eq. (3.19)(¢) is negative definite, thus the closed-loop system is stable. Eg.
(3.18) is called the Lyapunov equation and will be discussed in more detail in Subsec-
tion 3.3.2. Time varying optimal controllers are investigated in Sections 3.3 and 3.4.

Remark 3.2.2 Consider an attitude controller for magnetic actuated satellite that stabi-
lizes the controllable part at fixed time, This is equivalentto a projection of the desired
control torque, which stabilizes the entire state of the satellite on the plane perpendicular
to the local geomagnetic field. The stability of such a controller cannot be satisfied since
only the first summand of r.h.s. of Eq. (3.17)

x! ()P (H)x(1)

is made negative definite, leaving

LxT (0P (1)x(t)

undermined, as the resuli(t) cannot be negative definite.
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3.3 Infinite Quadratic Cost Problem

The design of a linear time varying controller is the primary goal of this section. The first
approach refers to the optimal control problem. Precisely, an issue of a periodic solution
to the Riccati equation derived from the infinite quadratic cost problem is analysed in the
sequel.

There are only few methods constructing a stabilizing periodic control law
u(t) = K(t)x(t) (3.20)

for the system in Eqg. (3.1). One method which is most commonly used, relies on mini-
mization of the infinite time quadratic cost function

J(u) = /OO[XT(t)Q(t)X(t) + ul (t)u(t)]dt, (3.21)

whereQ(t) is a T-periodic, piecewise continuous positive semidefinites matrix func-

tion.

According to Anderson and Moore (1989) the optimal and stabilizing solution to the
time-varying regulator problem is given by

u(t) = <B()P(t)x(t), (3.22)
whereP () is a solution to the Riccati equation

&P (t) = P(A(t) + AT(t)P(t) P(t)B(t)BT (t)P(t) + Q(t),
(3.23)

with a certain final condition.

The computational burden to calculate this controller is very heavy. The aim of the next
subsections is to find a periodic solution to the Riccati equation providing a stable control
law. This approach limits necessary calculations to only one period. The analysis of the
Riccati equation is complex due to its nonlinear (quadratic) nature, however a numeric
algorithm can be successfully implemented as described below.

3.3.1 QuasiLinearization of Riccati Equation

Lack of linear features of the Riccati equation makes its analysis complex. An iterative
method for finding the solution to the Riccati equation based on a Newton-type algorithm
(Bellman’s quasi linearization) is given in Bittanti (1991). The solution of the Riccati
equation is reduced to an iterative solution to the Lyapunov equation, which is linear and
has analytic solution.
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Consider an operator

Ric: P(t) & P(t) + AT(HP(t) + P()A(t) &P (1)B(H)B” ()P(t) + Q(t).
(3.24)

A symmetric solution to the Riccati equation satisfies the operator equation
Ric(P(t)) = 0. (3.25)

Suppose thaP;(t) is a symmetric matrix function approximating the solution to Eq.
(3.25) with a certain accuracy. A Newton algorithm can then be used for computing a
new and more accurate approximation

Pii1(t) = Pi(t) + AP;(2). (3.26)
PreciselyP ;1 (t) is computed fronP;(¢) by solving the differential equation

&P (t) = AT (P (1) + Pir (DA () + Q1) + KT (DK (1),
(3.27)

where
A;(t) = A(t) «B(H)K;(t),
K;(t) = BT (t)P;(t). (3.28)

It turns out that Eq. (3.27) is a Lyapunov equation. A number of features of this type
of differential equations are given in the next section. Some of these properties can be
extended to the Riccati equation as a limit of the series of the Lyapunov equations.

3.3.2 Periodic Lyapunov Equation

The Lyapunov equation plays an important role in the analysis of the Riccati equation.
Therefore, some space in this thesis is devoted to its analysis. The major issue is whether
a periodic solution to the Lyapunov equation exists.

Consider a system described by Eq. (3.3). The Lyapunov equation is defined as
&P(t) = AT(H)P(t) + P(HA(t) + Q(1), (3.29)

whereQ(t) is a positive semidefinite matrix function. The solution to the Lyapunov
equation is given by the celebrated formula

P(t) =4>£(tf,t)P(tf)q>A(tf,t)+/tf@ﬁ(a,t)Q(a)m(a,t)da. 550

Let us now refer to the periodic Lyapunov lemma, which states that a T-periodic solution
to the Lyapunov equation exists.
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Lemma 3.3.1 (Extended Lyapunov Lemma in Bittanti (1991))A (¢) is stable if and
only if, for any symmetric periodic, and positive semidefi@te) such thal A(¢), Q(t))

is detectable, there exists a symmetric, periodic and positive definite saR(ipto the
Lyapunov equation.

It is worthwhile to examine whether the steady state solution to the Lyapunov equation
is periodic. The answer is provided in the next lemma.

Lemma 3.3.2 LetP(ty) be a solution to the Lyapunov Equation (3.29) at tigéor the
final conditionP (to + kT') = P, where k is a natural numbek, — co, andP is any

n X n matrix. Furthermore, Ief’(to) be the periodic solution to Eq. (3.29) defined in
the Extended Lyapunov Lemma (Lemma 3.3.1) attymien

P(to) = P(to).

Proof of Lemma 3.3.2 According to Eq. (3.30) the solutioR(¢) to the Lyapunov
Equation (3.29) for the final conditidA(¢, + T') is given by

to+T
P(to) :wﬁ(to)P(toJrT))\I/A(toH/t ’ @E(o,to)Q(a)éA(a,to)da(?, ”

and the T-periodic solutioR (¢,) to Eq. (3.29) is

3 to+T
B to) = 7 (1) P (t0) W a(t) + / 87 (0, 10)Q(0) B 4 (0, t0)do
to (3.32)

Now, definee(ty) = P(ty) <P(ty), and notice that
e(to+T) =Pty + T) ©P(to + T) = P(to + T) ©P(ty).
Eq. (3.32) is subtracted from Eq. (3.31) and the following formulas are apparent
e(to) = W (to)e(to + T) W 4(to) (3.33)
and
e(to + (k ©1)T) = O (to)e(to + kT)® 4(to), (3.34)

but
limg_ooe(to + kT) = Py &P (ty).

Moreover A (t) is stable, thus characteristic multipliers of the monodromy marix¢)
lie in the open unit circle, thus(ty) = 0. [ |
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In other words, the lemma says that for any final condition the solution to the Lyapunov
equation will pointwise converge to the periodic solution.

Having established conditions for the existence of a periodic solution to the Lyapunov
equation, the question of the existence of a periodic solution to the Riccati equation is
posed in the next subsection.

3.3.3 Periodic Riccati Equation

This subsection is devoted to the analysis of a symmetric positive semidefinite solution
to the Riccati Equation (3.23). The main objective is to demonstrate that the steady state
solution to the Riccati equation is periodic.

Firstly, it is shown that the stabilizability ¢fA (¢), B(t)) is sufficient for the existence
of a periodic solution to the Riccati equation.

Theorem 3.3.1 (Theorem 6.2 in Bittanti (1991))Suppose thatA(t), B(t)) is stabi-
lizable and consider the sequence of periodic Lyapunov equations defined in (3.27) and
(3.28). LetK(t) be a T-periodic matrix such that(t) is stable. Then

1. Foreach > 0, there exists a uniqgue symmetric periodic and semidefinite solution

P,1(t) to (3.27) andA ;4 (¢) is stable.

2. The sequencfP;(t)} is a monotonically non increasing sequence of symmetric
periodic positive semidefinite matrices, i@.< P;11(t) < P;(?).

3. The sequencfP;(t)} is such thalim;_,. P;(t) = Py (t), whereP y(t) is a
maximal and strong solution to the Riccati equation (i.e. the characteristic multi-
pliers of A.(t) = A(t) ©B(t)BY(t)P(t) belong to the closed unit disk).

Remark 3.3.1 Similar theorem can be formulated for convergence of the sequence
{P;(t)} in Egs. (3.27) and (3.28) toward®(t), whereP(t) is a strong solution to the
Riccati equation for positive semidefinite final condit®p (the solutionP () need not

be periodic). The proof of this statement is analogous to the proof of Theorem 3.3.1, Bit-
tanti (1991). This remark will be used in the proof of Theorem 3.4.2

Notice, that the solutiof® 5, (¢) need not guarantee stability &f.(t), since there may
exist characteristic multipliers on the unit circle. The following theorem gives an answer
to the question whether a periodic and stabilizing solution to the Riccati equation exists.

Theorem 3.3.2 (Theorem 6.3 in Bittanti (1991))There exists a stabilizing symmetric
periodic solutionP | (¢) to the Riccati Equation (3.23) if, and only A (¢), B(t))) is
stabilizable and no unit-modulus characteristic multipliers\qf) are (A.(t), Q(t)) un-
observable.
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The ultimate objective of this section is to show that the steady state solution to the Ric-
cati equation is periodic. This statement is a conclusion from Lemma 3.3.2 and Theorem
3.3.1. This is formalized in the following theorem.

Theorem 3.3.3 LetP(t) be solution to the Riccati Equation (3.23) for positive semidef-
inite final condition defined at infinity aridl,/(¢) be the periodic solution to the Riccati
equation defined in Theorem 3.3.1, then

lim P(t) = P ().

t—0

Proof of Theorem 3.3.3 Consider the sequendd®;(t)} defined in Egs. (3.27) and
(3.28), such that

lim P;(t) = P(¢),

1— 00

and the sequendé;(t)} defined in Theorem 3.3.1 such that

hm p,(t) = pM(t)
1— 00
According to Lemma 3.3.2 3
lim Pl(t) = Pl (t)
t—0
and thus ~
lim P(t) = Py (2).

t—0

Theorem 3.3.3 will be used in the next chapter for design of a periodic attitude controller.

3.4 Finite Quadratic Cost Problem

Computation of the periodic steady state equilibrium is demanding, especially when on
board calculation of the controller gain is necessary. Therefore, a new controller based
on a transient solution to the Riccati equation is proposed in this section. The control law
consists of two subsequent steps:

1. Calculate off-line time varying solution to the Riccati equation within one period
subject to a given final condition.

2. Apply anoptimal controller based on the solution to the Riccati equation calculated
in the first step.
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This control procedure is recognized in the literature on optimal control as a receding

horizon control. However, the name, periodic receding horizon will be used in the sequel

to emphasize that the controller is evaluated for one period. The contents of this section
is based on Wisniewski (1985

Consider again the Riccati Equation (3.23). Bdt) be its solution evaluated on an in-
terval (r < T, 7] subject to the final conditio®®(7) = P;. Furthermore, define the
following matrix functionP (¢)

o _ [ P@) frelT<t<lr
P(t) = { 0 otherwise. (3.35)
The periodic extensior® (t) is now defined as
P(t) =Y P(t<kT), k=0,1,2,--- (3.36)
k=0

Notice that the periodic extension is a solution to the Riccati equation calculated for one
period, and then applied not only during this period but also extended to subsequent ones.

The control law based on the periodic extension, i.e the periodic receding horizon control
is given by

u(t) = <BT (1) P(t)x(t). (3.37)

The control algorithm then has two steps. The first is to calculate the time varying solu-
tion to the Riccati equation within one period subject to the final condiion) = P.
The second is to apply the control law (3.37).

It is important to recognize that the control law in Egs. (3.35) to (3.37) minimizes the
performance index

J(u) = Z xT (1 @kT)Pix(r ©kT) + /OO[XT(t)Q(t)x(t) +u” (t)u(t)]dt.
k=0 0 (3.38)

The system with this control law is not energy optimal, since it has an extra part, i.e. the
first summand of Eq. (3.38), which appears owing to the solution to the Riccati equation
is forced to have valuP; at each time- <£T', wherek = 0,1,2, ...

Furtherinvestigation focuses on an issue whether such a control law is stable. The answer
is that the periodic receding horizon may not provide stabilizing control law in general.
The necessary condition for stability is that the differeie) < P(r <T) is posi-

tive semidefinite. A formal description of this statement is formulated in the following
theorem below, which was first established in DeNicolao (1994).

Theorem 3.4.1 LetP(¢) be the solution to the Riccati Equation (3.23) with final condi-
tionsP(r) = Py > 0 (positive semidefinite) and assume that
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(1)) is stabilizable

)

1. (A®#),B
2. (A(t),Q(t)) is detectable
3.

F = P(r) ©P(r &T) is positive semidefinite

Then the periodic matrix functidR(t) (see Egs. (3.35) and (3.36)) is stabilizing, i.e. the
control law (3.37) is stable.

Proof of Theorem 3.4.1 The proof of Theorem 3.4.1 is equivalent to the proof of The-
orem 3 in DeNicolao (1994) if the following property is applied(£(¢), Q(t)) is de-
tectable therfA(t), Q(t), F) is D-detectable. [ |

Remark 3.4.1 In the next chapter on implementation of the finite and infinite quadratic
cost problems, the weight mati@ will be time invariant. Notice that the pajA (¢), Q)
is detectable ifQ has the full rank.. Consider the observability gramian

G,(t,7) = /t &7 (5, 7)QTQ® (s, T)ds. (3.39)

The matrixG, (7, t) has rankn, since

rank(G,(7,t)) >= rcmk(<I>T(T, 7QTQ®(r, 7)) = rank(QT Q) = n.
(3.40)

3.4.1 Choice of Final Condition

The critical issue of a periodic receding horizon controller design is the choice of the final
conditionP; such thatf" > 0 (F is positive semidefinite). A suitable value of the final
condition can be found via numerical simulation. Lemma 3.4.1 gives a hint for a heuristic
final condition search algorithm, which is given at the end of this subsection. The lemma
states that if a periodic solution and a solution to the Riccati equation are given such that
the difference between the final conditions is positive semidefinite, then the difference
between these solutions is positive semidefinite for all time.

Lemma 3.4.1 Suppose thatA (-), B(-)) is stabilizable and IeP 5, (t) be the T-periodic
solution to the Riccati Equation (3.23) and I{t) be a solution to the Riccati equation.
Moreover letP (1) > P (1) for somer thenP(t) > Py, (¢) forall ¢ < 7.

Proof of Lemma 3.4.1 Let P{¥) (t) = P(t) &P;(t), whereP;(¢) is defined in Theorem
3.3.1and let

P(t) = lim Py(t) (3.41)

i—00
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Comparing Egs. (3.23) and (3.27), (3.28) the following Lyapunov equation is derived

<P = (AW eBOBTOP1)TPL (1) + PLT(1)(A(1)  (3.42)
& B(®BT()P;(1) + (Pi(t) ©P(1))B(t)BT (1) (Pi(t) ©P(1)).

The Lyapunov Equation (3.42) has positive semidefinite finite condmézgf ) ) > 0.
According to Theorem 3.3.1 the closed loop syste(t) <B(t)B” (t)P;(t)) |s stable.
The matring’;rl) (t) is positive semidefinite as the solution to the Lyapunov equation,
see Extended Lyapunov Lemma in Section 1.1.2. Thus, the quattiyy=P s (t) =

lim; 00 PYQ) (t) is also positive semidefinite, a®l(t) > Py, (¢) forall t < 7. |

A procedure for finding the final conditions of the Riccati equation stabilizing the reced-
ing horizon will be derived in the following. According to Lemma 3.3.3 the periodic
equilibriumP ,(¢) is

}l_ﬂ% P(t) =Pup(t). (3.43)
Recognize that, iP(7) > P (7) then from Lemma 3.4.1 and Eq. (3.4B)(r &T) <
P(r),i.e. F = P(r) ©&P(r ©T) is positive semidefinite. In other words, the neces-
sary condition for stability of the periodic receding horizon control is that the difference
betweenP; and the periodic equilibrium of the Riccati equation at times positive
definite.

Remark 3.4.2 The final condition matrixP(7) can be chosen such that it is positive
definite and converges to infinity, th&ris positive definite, indeed.

Kwon and Pearson (1977) demonstrate that instead of consid&ingfinitely large
one can choos8; = P;l = 0. The matrixS(-) = P~!(-) satisfies the following
Riccati differential equation

&S(t) = A (1)S(t) S(H)AT () + B(t)BT (t) ©S(t)Q(t)S(t),
(3.44)

with the final condition
S(r) =0.

The solutiorS (7 <nT) is positive definite according to Kwon and Pearson (1977), thus
P(r &nT) = S~(r ©&nT) is defined.

LargeP is desired to fulfill stability conditions, but it indicates that the resultant control
signal is unnecessarily large, therefore a tradeoff between these two issues shall be found.
The following design procedure for finding an appropriate final condition can now be
adopted.
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Procedure 3.1
1. Choose large value of the final conditid(r) > 0.

2. Find the solution to the Riccati equation backwardsfeenT (n > 1).

3. Apply this solution as the final conditi@y in the receding horizon controller.

3.4.2 Quasi Periodic Receding Horizon

An issue of applicability of the periodic receding horizon to a system, where either the
system or the control matrices are not perfectly periodic, is in the focus of this subsection.
The investigation is motivated by the magnetic attitude control problem. The control ma-
trix, B(¢) in Eq. (2.38) is not ideally periodic within one orbit, due to certain perturba-
tions caused by rotation of the Earth in the World CS. A quasi periodic horizon controller
investigated in this subsection corresponds to the periodic horizon controller except that
the Riccati equation is computed for each interval of time (7 + iT,7 + (i + 1)T
separately.

Formally, a quasi periodic system is of the form
x(t) = A(t)x(t) + B(t)u(t), (3.45)

wherex(t) € R", u(t) € R™, the system matrixA (¢) and the control matrice®B ()
are time varying and limited.

The obijective of this subsection is to show when the following control law is stable.
Procedure 3.2
1. Calculate the solutio®(?) (¢) to the Riccati Equation (3.23) in the intervale

(1 44T, 7 + (i + 1)T] with the final conditiorP® (1 + (i + 1)T') = P, where
i=1,2,3,...

2. Apply the control law
u(t) = <B(t)P(1)x(t). (3.46)
where

P(t) = PO () fort € (1 +iT, 7 + (i + 1)T). (3.47)

The control law given above will be called the quasi periodic receding horizon control.
Itis essentially the same as the periodic receding horizon control, except that it is applied
to a quasi periodic system. It is demonstrated in Theorem 3.4.2 that the quasi periodic
receding horizon control is stablelf; = Py <P;(r + iT) is positive semidefinite for

all 4.
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Theorem 3.4.2 Consider a quasi periodic system in Eq. (3.45). [Att),B(t)) be
stabilizable and A (¢), Q(t)) observable. LeP(¢) be defined as

9%

P(t) = PO (t)fort € (1 +iT, 7 + (i + 1)T],

where P()(t) is the solution to the Riccati Equation (3.23) with the final condition
PO(r + (i + 1)T) = P;. Furthermore, ifF) = P; &P (r 4 iT) is positive
semidefinite, then the control law (3.46) is stable.

Proof of Theorem 3.4.2 The theorem is proved using Lyapunov’s direct method, Sec-
tion 5.2.

For each solution to the Riccati equatiBff) consider a sequem{P,(j)} of the solutions
to the Lyapunov equations defined in Eqgs. (3.27) and (3.28). In accordance with Remark
331

0 <P{),(t) <Py (1) and lim P{(1) = PO (1),
—00

whereP!? s computed fronPEf) by solving the Lyapunov differential equation

k+1

&P (1) = AP ®)TPYL (1) + PYL (DAY (1) + Q) + K () TKY (4),

(3.48)
and
AP (M) = A() eBOK (1),
K@) = B'(1PL () (3.49)

Chooseék such that . ,
F\) = P; &P (1 +iT)

is positive semidefinite for all This index .k exists since the difference
F=P; oPO(r +iT)

is positive semidefinite for allandP\” (¢) converges t@ () ().

Define a Lyapunov candidate function
v(t) = x(O) P (1)x(2),

where 5 '
Pi(t) =PV () fort € (r +iT, 7+ (i + 1)T]

andletty < ts, tp € [r+ (I )T, 7 +IT)andty € [t + (j ©1)T, 7+ jT),1 < j.
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v(t)4

X(t+T)

(-1)
k+1

X (THT) F

»
>

+HT t

Figure 3.1: The Lyapunov function(t) = x7 (t)P(¢)x(t) is discontinuous at time =
T+ 3T.
Now, it is demonstrated thalt ;) <v(to) is negative definite

v(ty) Suv(to) =

THIT
| G oxolar +

0 dt THIT

T+(+1)T d - 0
D P, (x(tlat + -

ty d .
+ / T PY Y (0)x(B)]dt + xT (1 + IT)FY, Dx(r +1T)
(-7 dt

(3.50)
+xT(r+ (U + D)DFY) x(r + 1+ DT) + - --
+xT(r+ (j &DTFY, 2 x(r + (j ©1)T).
The last three summands on the r.h.s of Eq.(3.50) are due to discontinuity of the matrix
functionP(t) attimer + iT', see Fig. 3.1.

Furthermore, the differenedt;) <v(to) is bounded from above
THIT

v(ts) Sulty) < & xTOPY (6)BBT (HOPY (1) + Q()]x(1)dt

& / T e BOBT P (1) + QU -
B (3.51)

= T @R @BHBTORY V() + QU
T+(j—1)T



3.4 Finite Quadratic Cost Problem 39

Notice that the following equality was used in Eq. (3.51)

EXT P 0x(t) = 2" (WP ()AL (x(1)
ax"(t)(AY P (1) +PLL AL (1) +Q+ PV (BOBT ()P, (1)x(t)
=x"(1)(Q+P{ "V (BHBT ()P (£)x(t).

If the statex(¢) in Eq. (3.51) is substituted by

x(t) = @y (t,t0)x(to), (3.52)
where
B (t,t0) = 8\ (1, t0), fort € (1 +iT, 7 + (i + 1)T] (3.53)

and@,(ci)(-) is the state transition matrix of the closed loop systelﬁ? in Eq. (3.49),
then

v(ty) ©u(to) <

&x (to) / o &7 (t,t0) [Py ()BOBT (1)PY () + Q(1)]®x (¢, to)dt x(to)

ex!(r4+1T) /T+(l+1)T @{(t, - lT)[Pg) (t)B(t)BT(t)Pg) ()
THIT
+ Q)| @ (t, 7 + IT)dt x(7 + IT) &- - (3.54)
ex'(r+ (j &1)T) /tf a7 (t, 7+ (j o1T)PY D OBOBT)PY (1)
rHG-1T

+ Q)| ®r(t, T+ ( 1)T)dt x(7 + (j &1)T).

Finally, from Eq. (3.54) the following inequality is true

THIT
v(ty) u(to) < @XT(to)/ ] (t,t0)Q(t) P (t, to)dt x(to)
to
()T
@XT@+JT)/ B7(t, 7+ IT)QO)Bx(t, 7+ IT)dt x(7 + IT) &-
T+HIT
! ty (3.55)
@gﬁr+(¢@nT)/ 8T(t,7 + (j SV)T)QU) By (7 + (j & 1)T)dt
T+(j—-1)T

x(t+ (je)T).

The system{A(+), Q(+)) is observable thus also the closed loop systan(-), Q(-)) is
observable, and the gramian matrix

t
Guaotto) = [ BL(n QBT t0)dr

to
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is positive definite. According to Lyapunov’s direct method, Section ﬁ;;’(t) is stabi-
lizing, and y y
lim Py (t) = P(t),

k—o0

thusP(t) is stabilizing as well. |

So far, time varying controllers have been investigated. Their common feature is that
a solution to the Riccati differential equation specifies the control gain. The computer
burden associated with these controllers is very heavy. It is thus worthwhile to design a
constant gain controller stabilizing a linear periodic periodic system.

3.5 Constant Gain Control for Linear Periodic Systems

This section gives theoretical fundamentals for the design of a constant gain controller for
a periodic system. The constant gain control is very attractive for satellites, which com-
puter capacity is limited. The concepts investigated in this section are applied in Section
4.4 dealing with constant gain controller for a LEO satellite with a gravity gradient boom.

The work is motivated by Zhanret al. (1996), where it is proved that there exists a time
invariant controller for every linear periodic system, that provides béfteand H,
performance than that of the periodically time varying controller.

It seems promising to base the design of a controller for the system (3.1) on the Floquet
theory. The objective is to design a linear constant gain controller such that the charac-
teristic multipliers belong to the open unit circle. The method presented in the sequel is
derived from Picard’s method of Successive Approximations. The contents of this sec-
tion is based on Wisniewski (198%

Consider system (3.1) actuated according to a constant gain control law
x(t) = Ac()x(t), (3.56)

where
A.(t)=A(t) + B(tH) K.

Itis necessary to calculate the monodromy madrix_(¢,) and its characteristic multi-
pliers to check stability of the system (3.56). Deriving an analytic formula for the mon-
odromy matrix is in general tedious and often even impossibldence, an approximate
solution to (3.56) is of the interest. Picard’s method of successive approximationsis then
applied in the sequel.

INotice that the monodromy matri 4 (to) of system 3.3 is¥F 4 (to) = exp f:oo’LT A(o)do if and

only if A(t1)A(t2) = A(t2)A(t1), which is not the case in general (certainly not for the magnetic actu-
ated satellite).
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3.5.1 Picard’s Method of Successive Approximations

Solution to an ordinary differential equation can by calculated using Picard’s method of
successive approximations Matwiejew (1982).

Consider two continuous, Lipschitz ordinary differential equations

dy dz
E - fl(tayaz)a dt — fQ(tayaz) (357)
with initial conditions
y(to) = yo, 2z(to) = 2o- (3.58)

The solutiong(t), z(t) are given by the following iterative procedure

e First approximation is

t

y ) =yo+ [ fit,yo,z0)dt,
to
¢
2 =20+ [ falt,yo, 20)dt (3.59)

to

e Second approximation is

t
y(2) (t) = Yo + fl(tay(l)az(l))dta
to
t
W) =2+ [ folt,y™,2W)dt (3.60)

to

e n-th approximation is
t
vy (&) =yo+ [ filt,y™, 2 D),
to

t
At =20+ [ folt,y™ D, 2 )dt (3.61)
to

e The solutiong(t), z(t) are

y(t) = lim y™, 2(t) = lim 2" (3.62)

n—o0 n—0o0

Now, the monodromy matriX¥ 4_(to) is approximated by the Picard’s method of suc-
cessive approximations.
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3.5.2 Monodromy Matrix Approximation

The following differential equation describes the time propagation of the transition ma-
trix ® 4, (¢, to) of the system (3.56)

D4 (t,t0) = Ac(t)® 4, (t,to)
with the initial condition
® 4 (to, to) =L (3.63)
Application of Picard’s method of successive approximation gives
e First approximations is

t

@V (tto) =T+ [ Ac(t)dt (3.64)
to
e n-th approximation is
t
0 (tt0) =T+ [ A()®Y V(1 to)dt (3.65)

to

As mentioned in Section 3.1, the transition matrix evaluated within one period ie=for

to + T is defined as the monodromy matrix, which characteristic multipliers determine
stability of the periodic system (3.56). The n-th approximation of the monodromy matrix
\I!(jc) (to) can be related to the monodromy matrix of the system with constant coefficients

x = Ax, (3.66)
where

N 1 to+T L
A= / A ()@ (1, to)dt. (3.67)
to

Notice that the monodromy matrix of the system (3.66) is
wA:eAT:1+A+%A2T2+... (3.68)
Comparing Eq. (3.65) with Eqg. (3.68) it is concluded that the monodromy nﬁﬁﬁ}(

is the first order approximation of the monodromy mat#x,.

Aninteresting issue is whether stability of the system (3.66) implies stability of the mon-
odromy matriX\Ilff). The eigenvalues of the system (3.68) are given by the equation

c

det(\ ;E &A) =0, (3.69)
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whereas
det(\yE ©E &TA) =0 (3.70)

is the equation of the characteristic multiplier of the monodromy m&rfﬁg).
It follows from Egs. (3.69) and (3.70) that

Ao =TA;+1, (3.71)

but the monodromy matriiliﬁ) is stable if its characteristic multipliers satisfjas | <
1, thus

p
&5 <Az <0, (3.72)

Hence, the time constants of the time invariant counterpart (3.66) shall be Iargéjr than
in order to fulfill the stability condition for the periodic system, or in other words the band
width in all channels of the system (3.66) shall be less t%lan

3.5.3 Calculation of Constant Gain Control

The first order approximation of the monodromy matrix derived in the previous subsec-
tion is used in the following to generate a constant gain control law.

Consider the time invariant system (3.66) foe= 1

to+T to+T
x(t) = (% /t A(t)dt) x(t) + (% /t B(t)dt K) x(1). 75

The system in Eq. (3.73) is time invariant, and the standard methods of the linear control
theory can be applied for finding a stabilizing control law.

Note that stability of the system (3.1) is not guaranteed, since the systems (3.1) and (3.73)
are equivalent only to the first order approximation. Therefore, additionally Floquet sta-
bility analysis is to be performed.

Consider the procedure below for the design of a constant gain controller.

Procedure 3.3
1. Calculate the equivalent system with constant coefficients

x(t) = Ax(t) + Bu(t), (3.74)

where

to+T
/ B(t)dt. (3.75)
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2. Find the control gairK for the system (3.74).
3. Compute the characteristic multipliers for the system (3.56).

4. If the characteristic multipliers do belong to the open unit circle then the feedback
system is stable.

Practical realization of the Procedure 3.3 is provided in the next chapter.

Remark 3.5.1 The system (3.1) is equivalent to the system (3.74) if the maticesd
B are time invariant.

Remark 3.5.2 The differential Equation (3.74) can be viewed as a system with averaged
parameters within one period relative to the periodic system (3.1). The effects of low fre-
quency disturbances on a periodic system and its time invariant counterpart are similar,
whereas high frequency responses are very much different. The periodic system may not
even be controllable at fixed time (magnetic attitude control problem).

3.6 Discussion of Results

The theoretical foundations for the magnetic attitude controller design were provided in
this chapter. First, time varying optimal control was investigated. The infinite horizon
controller was presented, which gain was calculated based on the periodic solution to
the Riccati equation. This solution can be calculated off-line and stored in the computer
memory. The controller assumed ideally periodic system parameters. This is violated in
the magnetic attitude control problem, since the geomagnetic field is not ideally periodic
during one orbital passage. In order to overcome this baseline, quasi periodic receding
horizon was proposed, which can solve the Riccati equation for a realistic geomagnetic
field model. The computer power associated with this controller is heavy. The most at-
tractive for satellites with limited computer resources was the constant gain controller,
which theoretical basis was thoroughly elaborated. The findings are implementto a LEO
satellite with a gravity gradient boom in the next chapter.



Chapter 4

Three Axis Attitude Control:
Linear Approach

The satellite trajectory during the science observation mission phase must remain in a
window of 10 deg pitch/roll, and20 deg yaw about the reference and the angular veloc-

ity must remain quite small.. Therefore, it is reasonable to base design of the attitude
controller on a linear approach. Later chapters will discuss operation outside the speci-
fied window.

The system adopted in this chapter is linear and time varying. Itwas mentioned already in
Chapter 2 that the satellite is not controllable when considered at fixed time. Availability
of design methods for time varying systems is very limited. Nevertheless, a solution of
the Riccati equation gives an excellent frame for further investigations.

An observation that the geomagnetic field changes approximately periodically when a
satellite is on a near polar LEO is used throughout this chapter. Confined computer ca-
pacity and a limit on electrical power supply are factors which constrains possible so-
lutions. Computational simplicity and power optimality are therefore required from the
attitude control system. The design of optimal controllers for a real-time implementation
is the subject of this chapter. Three types of attitude controllers are proposed: a) an in-
finite horizon, a finite horizon, and a constant gain controller. Time varying controllers,
i.e. the infinite horizon controller, and the finite horizon controller are developed in Sec-
tions 4.2 and 4.3. The constant gain controller is designed in Section 4.4. Performance
of the attitude controllers is validated via simulation. Simulation tests are performed for
the Drsted satellite on its elliptic orbit. The satellite motion is influenced by a moderate
aerodynamic drag torque corresponding to normal solar activity.

The contents of this chapter is based on Wisniewski (a984d Wisniewski (1995).
The theoretical background for the design and analysis was elaborated in Chapter 3.

45
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4.1 Satellite as Linear Periodic System

It has been mentioned several times that the control torque of the magnetic actuated satel-
lite always lies perpendicular to the geomagnetic field vector, and a magnetic moment
generated in the direction parallel to the local geomagnetic field has no influence on the
satellite motion. This can be explained by the following equality

Nt (t) = (Cm,(t) + “my () x °B = ‘m (t) x °B, (4.1)

where‘m, is the component dfm parallel to°B, whereasm  is perpendicular to the
local geomagnetic field.

Concluding, the necessary condition for power optimality of a control law is that the mag-
netic moment lies on a 2-dimensional manifold perpendicular to the geomagnetic field
vector.

Consider the following mapping

o~ e e _ ‘mx°B

m— ‘m : ‘m B’ (4.2)
where‘m represents a new control signal for the satellite. Now, the magnetic moment,
“m, is perpendicularto the local geomagnetic field vector and control theory for a system
with unconstrained inpdin can be applied. The direction of the signal veétar(con-
trary to“m) can be chosen arbitrary by the controller. From practical point of view, the
mapping (4.2) selects the componentdaf which is perpendicular to the local geomag-
netic field vector. The efficiency of the control is improved by this re-formulation. The
reason is that currents sent into the magnetorquer coils will always give rise to a magnetic
control moment which is exactly perpendiculari®.

Linearization of the satellite motion in terms of the first three components of the attitude
quaternionwas elaborated in Section 2.6. The only difference between the linear satellite
modelin Section 2.6 and the linear system with the new control sigh& that the cross
product operatiofim x °B is substituted by the double cross prodieh x °B) x °B.

The linearized equation of motion from Egs. (2.38) and (4.2) is

d | 6Q 0Q
— =A B(t)‘nx 4.3
dt{aq} [5q]+()m’ 43)
where
0 0 0 KLko, 0 0
0 0 wo, 0 2ko, O
|1 0 weo, 0 0 0 0
A=11 0 o 0 o 0 |’
o 1 o0 0 0w
0 0 L 0  &w, 0
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Iy el _Lel, LI,
Oy Iz 5 O'y = Iy , Oz Iz ,
@032( ) &°B2(t)  °By(1)°B,(t) ?B,(t)°B:(t)
I'H | °By(t)°By(t)  «°Bi(t) ©°Bi(t)  °By(t)°B.(t)
B, (t)?B-(t) °By(t)°B.(t)  «B3(t) &°B;(t)

0 0 0
0 0 0
0 0 0

Our attention is on the matriB(¢) consisting of a time varying and a constant part. The
time varying part represents the double cross product operatiBiit) x ("B(t) x). The
matrix B(t) is approximated by a periodic matdX(¢) in the next subsections.

4.2 Infinite Horizon Periodic Controller

The geomagnetic field is essentially that of a magnetic dipole with the largest anoma-
lies over Brazil and Siberia. The geomagnetic field in the Orbit CS, has large y and z
components, while the x component is comparatively small. The rotation of the Earth
is visible via fluctuations of the geomagnetic field vector’s x component with frequency
1/24 1/hours, see Fig. 2.4 in Subsection 2.7.2. The following observation is used for
the design of an attitude controller. The geomagnetic field on a near polar orbit is approx-
imately periodic with a period™ = 27 /wy.

Due to periodic nature of the geomagnetic field, seen from the Orbit CS, the linearized
model of the satellite can be considered as periodic. Itis though necessary to find an ide-
ally periodic counterpart of the real magnetic field of the Earth. Thisis done by averaging
the geomagnetic field ovey = 15 number of orbits covering4 hours. Furthermore,

the geomagnetic field is parameterized by the mean anahialjince the geomagnetic

field and the mean anomaly have the common pé€fiod

Bave(M) = Z "B(M (4.4)

An averaged B-field vectdB,,. (M (t)) is depicted in Fig. 4.1. The resultant linear pe-
riodic system is

smlalm] s

whereB (M) is given in Eq. (4.5) after substituting the symii{¢) for B(M), and the
components of the vectéB(t) for the components ofB,,.(M).
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x107° Averaged geomagnetic field [T]
G T T
— Bx
- -By
4r ‘Bz b
2 )\ t | I ! it v " o " h I

Orbits

Figure 4.1: An averaged B-field vector in the Orbit CS. Compare with the realistic mag-
netic field of the Earth in Fig. 2.4 .

The difference between the time varying matx¢) and the ideal periodic counterpart

B(M(t)) used for the controller design is considered an additional external disturbance
torque acting on the satellite.

The controller gain is calculated from the steady state solution of the Riccati equation,
which is periodic. The solution to the Riccati equation is calculated off-line and stored
in the computer memory.

The results from Section 3.3 are applied for the design of a periodic attitude controller.
According to Theorem 3.3.2, if the paiA, B(M)) is stabilizable then there exists a
stabilizing symmetric periodic solutidR (¢) of the Riccati equation

SPL(t) = PL(DA + ATP, (1) &P ()\B(M)BT (M)P4 (1) + Q.
(4.6)

The periodic solution of the Riccati equatid™, (¢) is found from the periodic extension
of the steady state solutid (¢).

{ Po(t) if0O<t<T 4.7)

0 otherwise
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Figure 4.2: The time history of the (1,1) componenPuof. Notice that ;. has a period
equivalent to the orbit period.

P.(t) = i P(t <kT) (4.8)
k=0

The solutionP () is calculated using backward integration of the Riccati equation for
an arbitrary final condition. This solution converges to the periodic solution. The matrix
functionP . (t) corresponding to one orbital passage is stored in the computer memory,
and then used for the subsequent orbits.

An example of the periodic matrix functidR_ (¢) is illustrated in Fig. 4.2.P, (o)

at fixed timet, is a 6 x 6 positive definite matrix. The figure depicts the time history
of P, (1,1), which is typical for the diagonal components. Off-diagonal components
change their amplitudes between positive and negative values.

Again, the mean anomaly/ can be used for parameterization®f (1), since both
P, (t) and M (t) are T-periodic. Furthermore, the controller gain matrix is also T-
periodic and parameterized with respect to M

K. (M) = <B(M)P. (M), 4.9)
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4.2.1 Implementation

The mean anomaly dependent control gain maKix(M) is computed off-line and
stored in the computer memory. The control sighal(t) is then calculated according
to

“m(t) = K.y (M) { oo (1) ] , (4.10)

and finally, the magnetic momefiin(¢) is obtained by

ex(t) x °B(?)

™m0 = EEE |

(4.11)

Another option is to represei{ (M) in terms of the Fourier coefficients, benefiting

in a reduction of the data stored. A satisfactory approximation of the gain n¥trix

has been obtained with 16th order Fourier series, see Fig. 4.3. The required capacity of
computer memory given in floating point numbers is

Period x No.of elemntsin K, x Order of Fourier series
Memory = - - .
Sampling time
For example with a sampling time of 10 sec and the orbital period 6000 sec , then 172800
floating point memory is required.

Simulation results of the infinite horizon attitude control are presented in Figs. 4.4, 4.5
and 4.6. Fig. 4.4 illustrates performance of the attitude controller for the linear model of
the satellite motion with an ideally periodic geomagnetic field simulator. Fig. 4.5 depicts
performance of the infinite horizon attitude controller for the @rsted satellite in a circular
orbit. In Fig. 4.6, the @rsted satellite is simulated in its elliptic orbit. The satellite motion
is affected by the aerodynamic drag for normal solar activity. Additionally, the realistic
geomagnetic field is applied in both Figs. 4.5 and 4.6.

Disturbances due to eccentricity of the orbit and the aerodynamic drag torque act in the
pitch direction. Therefore, both the first component of the quaternion and the first com-
ponent of the angular velocity, which for small angles correspond to the pitch and pitch
rate, are punished slightly more than the remaining components of the state. A diagonal
weight matrixQ with the diagonal10 6 6 10 6 6]7 has been implemented for both linear

and nonlinear models of the satellite. Initial values of the attitude are the same in both
examples corresponding40 deg pitch, <40 deg roll, and80 deg yaw.

The simulations show that the controller is stable for a wide range of operating points,
also very much outside the reference. However, the performance of the infinite horizon
controller is relatively poor outside vicinity of the reference, due to influence of the non-
linearities. This can be observed as large variations of the third and fourth component of
the attitude quaterniopz andg, in Figs. 4.5 and 4.6. The result of the disturbance torque
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Fourier series approximation of the (1,1) component of the gain matrix [Am”2 s/rad]
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Figure 4.3: An approximation of the (1,1) component of the gain m&rixby 16th
order Fourier series. The discrepancy betwlerand its Fourier approximationreaches
1.5 per cents at most.

due to a difference between the geomagnetic field and its periodic counterpart imple-
mented in the attitude controller is the steady state attitude error in Fig. 4.5. Performance
of the infinite horizon attitude controller for the Jrsted satellite affected by the aerody-
namic torque is illustrated in Fig. 4.6. The satellite motion is influenced by a moderate
aerodynamic drag torque corresponding to normal solar activity. The aerodynamic drag
is equal0.9 10~° N'm at perigee. The attitude errordsdeg of pitch and roll, whereas

yaw angle varies withi deg.

A computational expense for the infinite horizon controller lies in the off-line numeric
solution to the Riccati equation, but relatively large computer memory is required for
keeping the gain data for one orbit. The controller gives a nonzero steady state error also
for simulations without external disturbance torques. Itis concluded that the infinite hori-
zon magnetic controller is applicable for missions with low pointing requirements. The
steady state performance could be improved by the finite horizon controller, which in-
corporates a realistic model of the geomagnetic field.
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0.7

0.6} —ql
| e

Orbits

Figure 4.4: Performance of the infinite horizon controller for a satellite modeled as a
linear object. The simulation is carried out for “ideally periodic” geomagnetic field. The
initial attitude is40 deg pitch, <40 deg roll and80 deg yaw.

4.3 Finite Horizon Periodic Controller

The linearized model of the satellite motion is only approximately periodic. There is a
certain difference between the ideal periodic model of the geomagnetic field developed
in Section 4.2, and the real magnetic field of the Earth. The controller performance could
be improved by incorporating the time history of the real geomagnetic field into the con-
troller structure.

A new attitude controller based on a transient solution of the Riccati equation is there-
fore investigated. Theoretical basis for the quasi periodic receding horizon controller was
given in Section 3.4. The control algorithm is summarized as:

Procedure 4.1
1. Calculate the time varying solution of the Riccati differential equation in the time
intervalt € (1 T, 7]

&P(t) = ATP(t) + P(tH) A <P (1)B(t)BY (1)P(t) + Q(¢)
(4.12)

with the final condition
P(r) =Py. (4.13)
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Figure 4.5: Performance of the infinite horizon controller for the @rsted satellite on a

circular orbit. The initial attitude is the same as in Fig. 4.4. The steady state attitude
error is belowl deg.

2. Implement controller

() = BT (1P (1) [ (; } (4.14)

fort € (r T, 1]

3. Calculate magnetic moment from the equation

c “m(t) x “B(t)
m(t) = 2 =
= —1Bu

4. T becomes + T.

5. goto 1.
Itwas stated in Section 3.4 that if the differedte- P <P (r<4T) is positive semidef-

inite for £ > 0 then the procedure given above provides a stable control law (Theo-
rem 3.4.1). The final conditior®; is chosen sufficiently large such thitis positive
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Figure 4.6: Performance of the infinite horizon controller for the @rsted satellite on its
elliptic orbit. The initial attitude is the same as in Fig. 4.4. The satellite is influenced by
the aerodynamic drag for normal solar activity. The attitude error is b&ldwy of pitch

and roll. Yaw varies withirg deg.

semidefinite independently on the deviation of the geomagnetic field from its periodic
model. It should be noted that the lard®y, the larger is the control torque. The con-
troller shall comply with the power constraints imposed on the attitude control system,
therefore the maximum value of the final condition shall be confined. A heuristic algo-
rithm searching for an acceptality was given in Subsection 3.4.1. The final condition

is considered as a design parameter, that can be iterated by means of computer simula-

tion.

The attitude control system based on the final horizon control is illustrated in Fig. 4.7.
The orbit model provides position of the satellite in orbit in terms of longitude, latitude
and altitude. This information is used by the on board geomagnetic field model (here
10th order spherical harmonic model). The Riccati equation is computed for the subse-
quent orbit. The controller gain is computed and parameterized by the mean anomaly.
The controller gain is stored in a buffer. This procedure is activated once per orbit. The
control gain matrix is taken from the buffer on the basis of the mean anomaly associated
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Figure 4.7: Attitude control system based on finite horizon control.

with position of the satellite in orbit. The controller gain is updated every sampling cycle,
and is implemented in the control loop.

4.3.1 Implementation

The quasi periodic receding horizon controller has been validated through computer sim-
ulation. The results are depicted in Figs. 4.8 and 4.9. Control parameters have been
found empirically. Weight matrix) has been set tt) E, and the final conditio’ ; has

been calculated from the steady state solut®p:= P(7) = 2P (7). Initial values of

the attitude have again been assignediXdeg pitch, <40 deg roll and80 deg yaw.

Fig. 4.8 depicts the Drsted satellite motion on a circular orbit, i.e. there are no exter-
nal disturbances. The satellite attitude is seen to converge asymptotically to the refer-
ence. The performance of the quasi periodic receding horizon controller for the satellite
disturbed by the aerodynamic torque is comparable with the performance of the infinite
horizon controller, see Figs. 4.9 and 4.6. This is due to the impact of the aerodynamic
torque is seen to be much larger than the influence of the torque due to the discrepancy
between the geomagnetic field and its periodic counterpart.

The steady state performance of the infinite horizon controller on a circular orbit is much
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Figure 4.8: Performance of the quasi periodic receding horizon controller for the @rsted

satellite on circular orbit. The attitude converges asymptotically to the reference, i.e.
c T
‘q—[0001]".

better than infinite horizon, however they are seen to have the same performance for a
satellite in an elliptic orbit effected by the aerodynamic drag. The computational burden
for the finite horizon controller is heavy due to the Riccati equation shall be solved on
board (alternatively uploaded to the on board computer during every ground station pas-
sage). Therefore, the infinite horizon controller is preferable for the missions like @rsted
with low pointing accuracy. The necessary computer power could be additionally lim-

ited if the constant controller was implemented, and had the same performance as the
time varying controllers.

4.4 Constant Gain Control

Computation of the infinite and finite horizon attitude controllers are tedious and difficult

to implement on a real-time platform. A simple constant gain attitude controller could
be an alternative which is investigated in this section.
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Figure 4.9: Performance of the quasi periodic receding horizon controller for the @rsted
satellite on the elliptic orbit. The satellite is influenced by the aerodynamic torque. Per-
formance of the receding horizon is comparable with efficiency of the infinite horizon

attitude controller in Fig. 4.6.

The design algorithm consists of replacing the time varying parameters of the satellite
by its averaged values evaluated over a period of one orbit. The theoretical basis of the
method was given in Section 3.5, and the design procedure was outlined in Subsection

3.5.3.
The time invariant counterpart of the time varying linearized satellite motion was

d | 6Q 0o o~
[0 al 0] (419
where
1 (7.
B= ?/ B(M(t))dt, (4.16)

andT is the orbit period, an# (/) is the control matrix in Eq. (4.5).
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A linear quadratic regulator (LQR) is used for the constant gain controller design. The
system is linear, time invariant and controllable thus a control law can be based on the
solution of the steady state Riccati equation, see Kwakernaak and Sivan (1972). The op-
timal control is given by

oQ
[ T
m=«B P[&q]’ (4.17)
whereP satisfies the Riccati algebraic equation
PA + ATP sPBB'P+Q =0. (4.18)

Once the control vectdin in Eq. (4.17) is calculated, the magnetic momént,is com-
puted according to Eq. (4.2).

Stability of the control law in Egs. (4.17) and (4.2) for the time varying linear model

of the satellite in Eq. (2.38) is determined using Floquet theory. This check is neces-
sary, since stability of the time varying system and its time invariant counterpart are not
equivalent. The time invariant system is only the first order approximation of the satel-
lite. Furthermore, the sensitivities of those systems are not equivalent neither, e.g. the
disturbance torque acting on the satellite in the direction of yaw in a zone near the North
nor South poles remains unaffected by the attitude controller (due to lack of controlla-
bility), whereas it can be arbitrarily damped by an LQ controller for the time invariant
counterpart.

The following closed-loop system is considered for the Floquet analysis
d { oQ

— 4.1
dt | 6q (4.19)

} = (A BT (M(1))P) { o8 ] .

dq

As seen from Egs. (4.18) and (4.19) stability of the closed-loop system is dependent on
the weight matriXQ. Fig. 4.10 depicts locus of the characteristic multipliersge) =

eEg 6 , Wheree changes from to 80 '. The satellite becomes unstable for: 52. For

e = 18, the largest characteristic multiplier is closest to the origin.

Notice that the averaged geomagnetic field is implemented for the Floquet analysis.
Therefore, an ultimate test is the Monte Carlo simulation for the nonlinear model of the
satellite with realistic disturbances.

4.4.1 Simulation

The constant gain control demonstrated stability for the entire envelope of the expected
satellite initial attitudes and angular velocities in the science observation mission phase.

1The weight matrixQ(e) acts on the state spaf@Q dq]”. Q2 is provided inrad/s anddq is given
without units.
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Figure 4.10: Locus of the characteristic multiplieis) for e changing froml to 80 is
evaluated for the closed loop system in Eq. (4.19).The satellite becomes unstable for
e = 52, for e = 18 the largest characteristic multiplier is closest to the origin.

The control parameter: the weight matiy,has been found empirically. Its value has
been settd8- Eg.g. The simulation results for the @rsted satellite on the circular orbit

in Fig. 4.11 show large amplitude of yaw oscillations. A new diagonal weigh matrix
with diagonal[18 18 90 18 18 90]” is proposed. The amplitude of the yaw fluctuations

is reduced, see Fig. 4.12. The last Fig. 4.13 illustrates the satellite motion on impact
of the aerodynamic drag and the torque due to the eccentricity of the @rsted orbit. The
performance of the constant gain controlleris very much the same as the infinite and finite
horizon attitude controllers in Figs. 4.6 and 4.9. The attitude error is withiry, which
complies with required bond at10 deg of pitch and roll,20 deg of yaw.

4.5 Discussion of Results

Three attitude controllers were designed and evaluated in this chapter: the finite horizon,
the infinite horizon, and the constant gain controllers. Their performances were compa-
rable for a satellite in an elliptic orbit effected by the aerodynamic drag. The computer
expense was however smallest for the constant gain controller, which is chosen for on
board implementation. This controller is seen to be stable for a wide envelope of initial
values of the attitude. This satisfactory performance achieved for the nonlinear model
of the satellite inspired an investigation of attitude controllers with PD type structure in
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Figure 4.11: Performance of the constant gain controller for the @rsted satellite on cir-
cular orbit, i.e. without external disturbances. The weigh ma®ikas valud 8 - Eg .
Large amplitude of the yaw oscillations is encountered. The initial attitude itg
pitch, <40 deg roll and80 deg yaw.
80

— pitch
—— roll
-~ yaw

[deg]

_60 Il L L
0 4
Orbits

Figure 4.12: Performance of the constant gain controller for @rsted satellite on circular
orbit. The initial conditions are the same as in Fig. 4.11. The diagonal weight natrix
with diagona[18 18 90 18 18 90]7 is implemented. The amplitude of the yaw oscillation

is reduced comparing with. Fig. 4.11.
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Figure 4.13: Performance of the constant gain controller for the @rsted satellite on the el-
liptic orbit influenced by the aerodynamic drag. The initial conditions are as in Fig. 4.11.

The resultant attitude is withi® deg.

Chapter 7. The approach presented here was tested for a broad range of initial values such
that the instrument boom was upright. There are, however, certain transitions and contin-
gency phases that the satellite can not be considered as the rotation about the reference,
owing to the nonlinear terms in the equations of kinematics and dynamics become domi-
nant, e.g. atumbling satellite or a satellite in a boom upside-down orientation. Nonlinear
methods for magnetic attitude control are investigated in the next part of this work.






Chapter 5

Periodic Nonlinear Systems

A considerable part of the thesis has been devoted to development of the linear methods
for the satellite attitude control. The nonlinear magnetic control techniques presented in
this and the next two chapters comprise the central part of the work however. The non-
linear theory provides not only methods for globally stable control law but fused with the
knowledge of the nature of the satellite motion it explains why simple linear controllers
developed in the previous chapter are stable for initial values of the attitude very much
outside the reference.

The satellite trajectory is expected to be in the vicinity of the reference for the most of
the operational time, but there are certain transitions and contingency phases, where the
satellite motion cannot be considered as rotation in the neighbourhood of a reference, and
the nonlinear terms in Egs. (2.12) to (2.20) become dominant. The problemis, thus, in-
herently nonlinear and nonlinear control methods are needed. The most important of the
transition phases is when the satellite is released from the launcher, and will experience
a random tumbling motion in space, with known bounds on the angular velocity.

A background of the nonlinear control theory is established in this chapter. However, it
is notintended, that the chapter comprises a thorough tutorial, but it consists of a number
of theorems, findings and conclusions, that are used in the subsequent part treating the
design issues of a nonlinear controller for a near polar LEO satellite. The reader is also
referred to the literature listed in the text.

Fundamental definitions of stability and asymptotic stability are first recalled in Section
5.1. Afterwards, Lyapunov’s direct method is presented in Section 5.2. This is a ba-
sic tool for satellite motion analysis used throughout the remainder of the thesis. This
method is extended to periodic nonlinear systems in Section 5.3. The reason for this ef-
fortis to utilize an observation that the satellite actuated by a set of electromagnetic coils
can be modeled as a system, with the period of the geomagnetic field.

63
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5.1 Concepts of Stability

The concept of stability of nonlinear systems differs remarkably from the definition of
stability used for the linear plants. Stability and asymptotic stability are introduced. Fur-
thermore, the variation of the system parameters in time demands an application of new
notions of the uniform stability and the uniform asymptotic stability.

A concept of local stability defines properties of the system near the equilibrium. Global
stability is an extension of the previous notion to the entire state space.

A general description of a nonlinear time varying (non autonomous) system is given in
aform
x(t) = £(t,x(t)), (5.1)

wherex(t) € R". The functionf : R, x R* — R" is continuous and satisfies a
global Lipschitz condition, thus the solution to the differential equation (5.1) exists and
is unique.

Furthermore, the solution to Eq. (5.1) for the initial conditiqny) = x, is denoted as
x(t,to,Xo). Recall that a vectax, is an equilibrium if
vt > 0f(t,x.) =0, (5.2)

i.e. if the system starts in the equilibrium, then it stays there.
The fundamental definition of the stability is provided below.

Definition 5.1.1 (Definitions 9,10 in Vidyasagar (1993)he equilibriumx, is stable
if, for eache > 0 and each, € Ry, there exists @ = §(e, tp) such that

|| X0 ©%c ||< 0(€,t0) = VE >0 || x(t,10,X0) &, ||< €. (5.3)
It is uniformly stable if, for eacl > 0, there exists @ = 6(¢) such that
|| x0 &%, ||< d(e) =Vt >0 || x(¢,t0,%0) ©X¢ ||< €. (5.4)
The equilibrium is unstable if it is not stable.

Definition 5.1.1 states that if the solution trajectary, to, xo) starts inside a ball of ra-
diusd and centre, then it always stays inside a new ball of radiuand the same centre,
X., See Figure 5.1. Uniform stability is a special case of stability, for which the radius
is only dependent oa(independent on the initial time).

For uniformly stable systems the following is true, an arbitrary small perturbations of
the initial statex, from x, results in arbitrary small perturbations of the corresponding
solution trajectoryx(¢, to, Xo)-
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stability asymptotic stability

Figure 5.1: An illustration of stability and asymptotic stability

It is often interesting to investigate if the solution trajectory with the initial conditions
outside the equilibriumx., finally will converge toward the equilibrium. The system
having this property is recognized as asymptotically stable.

Definition 5.1.2 (Definition 31 in Vidyasagar (1993))The equilibriumz, is asymptot-
ically stable if it is stable and for eacfy € R there is am(tg) > 0 such that

| xo &xc ||< n(to) = x(t + to,t0,%0) — X @St — o0. (5.5)

The equilibriumz, is uniformly asymptotically stable if it is uniformly stable and there
is a numbemn > 0 such that

|| xo0 ©xe ||< 7 = x(t + to, to, Xo) — X @St — oo uniformly inxg, to.
(5.6)

The nature of Definition 5.1.2 is local since only the behaviour of the solution trajectories
starting from initial states near the equilibrium is taken into account. The definition of a
globally uniformly asymptotically stable system is given below.

Definition 5.1.3 (Definitions 38 in Vidyasagar (1993))The equilibriumx. is globally
uniformly asymptotically stable if it is uniformly stable, for each arbitrarily laye
Furthermore, there exists a finife(M, ¢) for each arbitrarily smalle, such that

|| Xp &Xe ||< Ma tO =Vt Z T(Ma 6)5 || X(tat[)aXO) ||< €. (57)

As mentioned in the introduction to this chapter the satellite, actuated by the set of elec-
tromagnetic coils with a certain state feedback, is periodic due to periodic nature of the
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geomagnetic field. Therefore, a vital part of this chapter will be devoted to investigation
of stability of a periodic system.

Formally, the satellite may be described by Eq. (5.1) with an additional property
Vt>0,x € R* £(t + T,x) = £(t, %), (5.8)

whereT is the period of the geomagnetic field.
Notice also that for periodic systems, the following is true

Vit >ty > O,VXO e R X(t + T, to + T, Xo) = X(t,to,Xo). (59)

The solution to the system in Eq. (5.1) at timfor the initial conditionsx(¢y) = xo,
is the same as the solution to the same system atiting for the initial conditions,
X(to + T) = Xp-

The concept of stability for periodic systems is in many details like that for time invariant
(autonomous) systems. It will be shown that the behaviour of a periodic system resem-
bles more an autonomous system than a non autonomous one. This statement is con-
firmed in the following theorem, which was first proposed by Hahn (1967).

Theorem 5.1.1 Consider a periodic system fulfilling Eq. (5.8). Then an equilibrium is
uniformly asymptotically stable if and only if it is asymptotically stable.

Mostly the concept of asymptotically stable periodic systems will be investigated in the
sequel. Note that the autonomous systems can be considered as periodic with an arbitrary
period.

5.2 Lyapunov’s Direct Method

Lyapunov’s direct method is comparatively simple, but involves well understanding of
the system in hand. The idea is to define a continuously differentiable, positive definite
function reflecting energy in the system. This function is called a Lyapunov candidate
function in the following. If the initial energy is dissipated the system is considered as
stable.

Without loss of generality the equilibriufnis considered instead of an arbitrary equilib-
rium x.. As a motivation, consider a substituti&n= x <x.. Recognize that ik has
the equilibriumx,, thenx has0 as an equilibrium.

First, the celebrated theorem on stability of a general class of time-varying systems is
provided.

Theorem 5.2.1 (Theorem 38 in Vidyasagar (1993)The equilibriun® of the systemin
Eq. (5.1) is stable if there exists a function R, x R” — R, which is continuously
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differentiable and locally positive definite. Furthermore, there exists a constant)
such that
Vi x|<r o(tx) <O0.

The fundamental theorem on global asymptotic uniform stability of the equilib@iisn
as follows.

Theorem 5.2.2 (Theorem 56 in Vidyasagar (1993)The equilibriun0 of the system in
Eqg. (5.1) is globally uniformly asymptotically stable if there exists dunctionv: R, x
R™ — R, that is positive definite, decrescent and radially unboundedyaachegative
definite.

Remark 5.2.1 Recognize that if the positive definiteness is substituted by local positive
definiteness, and the condition on radially unboundedness is released, Theorem 5.2.2
gives conditions for a local asymptotically stable equilibrium.

5.3 Periodic Extension of Lyapunov Stability

So far, the standard Lyapunov method was recaptulated. The technique is applicable to
the general class of nonlinear systems. Our attention in this section is, however, on peri-
odic systems. It will be demonstrated that more specific stability tools can be developed
for this class of systems, like in a theorem below stating that if the solution trajectory of
a periodic system belongs to dn-space then the system is uniformly asymptotically
stable ta0.

Theorem 5.3.1 Consider a periodic system described by the non autonomous differen-
tial equation (5.1) with bounded r.h.s. Furthermore, 3gt, ¢y, x¢) € L2[0, o) for all
to > 0 and|| xo ||< 7, thenO is a locally uniformly asymptotically stable equilibrium.

Barbalat’s lemma is used in the proof of Theorem 5.3.1.

Lemma 5.3.1 (Barbalat's lemma in Popov (1973))f ¢ is a real function of the real
variablet, defined and uniformly continuous for> 0, and if the limit of the integral
f(f ¢(7)dr ast tends to infinity exists and is a finite number, then

lim (1) = 0. (5.10)

Proof of Theorem 5.3.1 From the definition of thd.,-space, the following inequality
involving the solution to the differential equation (5.1) is valid

[ee]
Vxo,to,t > to, / || x(t,t0,%0) ||? dt < o0. (5.12)
to
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The r.h.s of the differential equation (5.1) is limited, hence the soluti@nty, xo) is
uniformly continuous. Then according to Barballat's lemma

. 2_
tllg.lo || X(tat[)aXO) || - Oa (512)

thus
tlggo x(t,t0,%o) = 0, (5.13)

The inequality (5.11) implies that
Vxo,t0,t > to || x(¢,%0,%0) ||< co. (5.14)

Therefore, it is concluded that the system is asymptotically stable, but the differential
equation (5.1) was assumed to be periodic, hence according to Theorem 5.1.1 the system
is also uniformly asymptotically stable. |

Before introducing the next lemma dealing with stability of nonlinear periodic systems
a definition of an invariant set will be given. The invariant set is characterized as a set,
such that for every initial state in the set and some appropriate initialtjimie entire
solution trajectory belongs to this set. A formal definition is given below.

Definition 5.3.1 [Definition 25 in Vidyasagar (1993)] A sé C R" is called an in-
variant set of the differential equation (5.1) if for eagh € W there exists &, € R,
such that

Vit > to, X(t,to,Xo) e Ww.

Another vital notion is a concept of a level set, which is defined below.
Definition 5.3.2 A level setl, (¢) is the connected subset of a set

My(c) = {x € R" : 3t > 0 such that(¢,x) < c}, (5.15)
that contains the equilibriurg.

An example of the level sef,, (c) is depicted in Figure 5.2. The s&f, (c) consists of
two subsets. The level sd, (¢) is the subset o}/, (c), which contains the equilibrium.

The major findings of this section are stated in the lemma and the theorem below treating
stability analysis of a periodic nonlinear system. The foundations of this investigation are
given in Krasovskii (1963)
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L(c)
M,(c)

Figure 5.2: An example of level sdt,(c). The setM,(c) consists of two subsets,
whereas the level sek,, (¢) is the subset ol/,, (c), which is containing the equilibrium.

Lemma 5.3.2 (Krasovskii-LaSalle) Consider the periodic system in Eq. (5.1) with the
property as in Eq. (5.8). Suppose there exists'dunctionv : R, x R® — R such that

v is periodic with the same period as the systerns, locally positive definite, moreover
there exists an open neighbourhadidof 0 such that

Vt > 0,¥x € N, o(t,x) < 0. (5.16)

Choose a constant > 0 such that the level sét,(c¢) is bounded and contained iN.
Finally let

U = {x € Ly(c) : 3t > 0 such thati(¢,x) = 0}, (5.17)
and
Ay(e) ={x € Ly(c) : Yt > 0w(t,x) < c}, (5.18)
and letWV denotes the largest invariant set of the system in hand contairiéd Tihen
Xg € Ay(e),to > 0= tlirgo d(x(t,to,x0), W) =0, (5.19)
whered(y, W) denotes the distance from the poynto the sefl’.

It is beneficial to combine Lemma 5.3.2 with Theorem 5.2.1 to give a very useful result
of uniformly asymptotic stability of periodic nonlinear systems.

Theorem 5.3.2 (Krasovskii-LaSalle) Suppose the system (5.1) is periodic. Suppose
there exists &' locally positive definite function : R, x R® — R having the same
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period as the system, and an open neighbourhodf 0 such that Eq. (5.16) holds.
Choose a constant > 0 such that the level sdt,(c) is bounded and contained iN,
and defing/ as in Eq. (5.17). Under these conditionsljifcontains no trajectories of
the system other than the trivial trajectovy, > 0 x(¢) = 0, then the equilibriun® is
uniformly asymptotically stable.

In other words Theorem 5.3.2 states that if the stable system converges to a certain set
U, instead of being convergent to the equilibridpthen it is essential to check what the
largest invariant seii’, a subset of the séf, is. If the setiW’ has only one component

x = 0, thenO is a locally asymptotically stable equilibrium. This interpretation will be
used in the next sections treating the attitude controller design.

The theoretical findings from this section will be applied in the next two chapters dealing
with satellite magnetic attitude control using nonlinear methods.



Chapter 6

Three Axis Attitude Control:
Sliding Mode Control

The last but not least approach to the attitude control for a magnetic actuated satellite is
based on nonlinear methods. The control strategy presented in this chapter is based on
the sliding mode control. The controller is developed for a satellite without appendages,
since the concept was originally formulated for the @rsted satellite during the boom pre-
release phase. A characteristic feature of this configuration is that the principal moments
of inertia are of the same order of magnitude.

After release from the launch vehicle the satellite is tumbling randomly with known
bounds on the initial angular velocity. The objectives of the attitude control are to first
damp the high angular velocity, then to stabilize the satellite in three axis with respect to
the Orbit CS. Linearized equations of motion cannot be applied, since a control strategy
satisfying global stability of the satellite motion is necessary.

The essence of the sliding controller design is outlined in Section 6.1. The design algo-
rithm is split into two steps: the sliding manifold design and the sliding condition design.
Athree dimensional sliding manifold is proposed in Section 6.2. Furthermore, motion of
the satellite on the sliding manifold is shown to be asymptotically stable. Anideal case of
the sliding condition development is when the control torque is producible in x, y, and z
directions independently. A solution to this control problem is given in Section 6.3. Sec-
tions 6.4 and 6.5 consider a sliding condition for the magnetic generated control torque.
Itis illustrated that a stable discontinuous sliding condition cannot be generated by the
magnetorquers, therefore a continuous sliding condition must be applied. Furthermore,
it is proved that a control design strategy, consisting of a sliding manifold design and
a continuous sliding condition development, provides an asymptotically stable attitude
controller. Finally, a control law for the magnetic actuated satellite is stated in Section

71
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6.5. The simulation study shows that the sliding control is stable for satellites, which the
principal moments of inertia are of the same order of magnitude. The contents of this
chapter is based on the findings from Wisniewski (19%hd Wisniewski and Blanke
(1996n).

6.1 Sliding Mode Control

A sliding mode controller is implemented for the attitude corrections using magnetic
torquing. The objective of the attitude control is to turn the satellite such that the Control
CS coincides with the Orbit CS, i.€2., converges td, the vector part of the attitude
quaterniong, converges t@®, and the scalar par,, approaches.

The design strategy of the sliding mode controller adopted in this thesis consists of two
steps, see Utkin (1992), Slotine and Li (1991):

1. Sliding manifold design.
2. Sliding condition design.

Consider a manifold, a 3 dimensional hyperplane, in the state space of a 6th order system
[°©2., q]T. The sliding manifold is designed in such a way that the satellite trajectory, if
on the hyperplane, converges to the reference. However, the satellite motion is not con-
fined to the 3 dimensional hyperplane in general. Therefore, a control law forcing the
satellite motion towards the manifold is necessary for achieving stable satellite motion.
The sliding condition keeps decreasing the distance from the state to the sliding mani-
fold, such that every solutioff2.,, q originating outside the sliding manifold tends to

it. The manifold is an invariant set of the satellite motion and the trajectory of the system
converges to the reference.

The result of the sliding condition design is a desired control torque. When the desired
control torque is implemented the satellite trajectory converges to the sliding manifold.
Now, the trajectory converges to the reference, since the satellite motion is stable on the
sliding manifold.

The magnetic actuated satellite possesses one serious obstacle: the magnetic control
torque is confined to lie perpendicular to the geomagnetic field vector and may not com-
ply with the control torque which is desired to turn the satellite towards the sliding man-
ifold. This control problem is addressed in Section 6.5

6.2 Sliding Manifold Design

It will be shown that the satellite motion on a certain 3 dimensional hyperplane in the 6-
dimensional state space of the vector part of the attitude quaterpiand the satellite
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angular velocity°Q,,, is stable.
First, let a sliding variabl€s, be defined as in Eq. (6.1)
°s = Qo + Ayq, (6.1)

whereA, is a positive definite matrix.

The sliding manifold is the subspace of the state space, where the sliding variable equals
0

S ={q,Q, : °s = 0}. (6.2)

The definition of the sliding variablés, in Eq. (6.1) guarantees convergenceydb
zero andy, to 1 with an exponential rate. To show this, consider a Lyapunov candidate
function

v =4 a+ (1 oq)?, (6.3)
which is equivalent to
vy = 2(1 &), (6.4)

sinceq’q + ¢2 = 1.

The time derivative of the Lyapunov candidate function is calculated applying the kine-
matics in Eq. (2.18)

'[}q = qT Cﬂco, (65)
but¢Q., = ©A,q thus

8y = 4" Aq. (6.6)

The time derivative of the Lyapunov function is negative definite, skagis the positive
definite matrix. According to Lyapunov’s direct method Theorem 5.2.2, the equilibrium
°cq = [000 17, °©2., = 0 is asymptotically stable if the satellite is on the sliding
manifold,“s.

Remark 6.2.1 Recognize that only the vector part of the attitude quaternion is used in
the definition of the sliding variable. Therefore, it is sufficient to describe satellite motion
in the state space quTO q”]", and the order of the differential equation describing
satellite motion is thus reduced from 7 to 6.

Remark 6.2.2 Notice that the equilibriunjq = [000 <1]7, °Q,., = 0 is unstable
even thoughq = [000 <1]7 andSq = [0 00 1]7 represent the same attitude (Control
CS coincides with Orbit CS). Furthermore, if the sliding variable is defined as

‘s = Q. ©Ayq, (6.7)
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it is possible to show using the Lyapunov candidate function
ve=q"q+ (1+aq), (6.8)

that the equilibriunfq = [0 00 <1]7, °Q., = 0 is asymptotically stable and the
equilibriuméq = [000 1], °€Q2., = 0 is unstable.

6.3 Sliding Condition Development

The objective of the analysis covered in this section is to derive the desired control torque
turning the satellite trajectory towards the sliding manifold. An ideal case is considered
first: It is assumed that the control torque is producible independently in the direction of
the x, y, and z axes. In the next sections the magnetic generated control torque will be
considered.

The satellite motion can be described in the space of the sliding variablé, salient
feature of this approach is that a reduced 3rd order system is considered. The attitude
control problem is equivalent to that of making stable the equilibfisra: 0. The rep-
resentation of the satellite motion in the space of the sliding variable is calculated by dif-
ferentiation of the sliding variablés(t) w.r.t. time, which describes projection of the
satellite motion on the space of the sliding variable (the s-space)

s = °Qpyy ©Wo°ly + Ay (6.9)

The derivatives of the satellite angular velocity and the attitude quaternion are calculated
according to the equations of kinematics and dynamics, Egs. (2.18) and (2.12)

I = &Qu X I°Q, + 3w2%, x Ik, ©w,I(“i, x “Qe,)

1
+ SIAG("Reogs + Qo x @) + “Netr. (6.10)

Assume that the satellite trajectory is on the sliding manifold. An equivalent torque is a
control torque necessary to keep the satellite on the sliding manifold. In other words, if
the control torque is equal to the equivalent torque then the time derivative of the sliding
variable equals zero. If the satellite is not on the sliding manifold, a desired control torque
equals the sum of the equivalent torque and a part making the sliding variable converge
to 0 in finite time

“Nges = ‘Neg A5 sign s, (6.11)
where); is a positive constant number, and the equivalent torgNe, is
‘Neoy = Qe X I°Q0,, 302 (°k, x I°K,) + w,I(“iy X ‘)
& TIA( Qoo + ey x ). (6.12)
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If the control torque was producible in the X, y, and z directions independently the desired
control torquefN 4. could be substituted in Eq. (6.10) for the control torg€ ...
As the result, the time derivative of the sliding varialskewould be

°s = e\ I ! sign °s. (6.13)
g

The system described by the differential equation (6.13) is stable, hence the sliding con-
dition is fulfilled. According to Utkin (1992) a system is stable if the control torque com-
plies with the desired torque in Eq. (6.11). However, the magnetic generated torque is
perpendicular to the local geomagnetic field vector and can only partly conform with the
desired torque. A modified sliding condition for magnetic actuated satellite is provided
in Section 6.5.

Remark 6.3.1 Consider a design case such that the moments of inertia are known with
a known toleranced ;. ThenA ; will propagate in Eq. (6.12) resulting in an errak.,

of the equivalent torque. The design parametecan be chosen sufficiently large such
that

As > 5(Aey), (6.14)

whereg is maximum singular value, and the resultaft) is guaranteed to be negative
definite.

6.4 Continuous Sliding Condition Development

Before a sliding condition for a magnetic actuated satellite will be formulated it is illus-
trated that the electromagnetic torque cannot generate stable discontinuous sliding con-
dition. Instead a continuous sliding condition is proposed.

A compensation of the desired torque applying the magnetorquer coils is in the focus of
this section. The desired torque may be given by a discontinuous function like in Eq.
(6.11) or a continuous counterpart

“Nies = Ny A,

It was concluded in Chapter 4 that a magnetic moment providing nonzero control torque
lies on a 2-dimensional manifold perpendicular to the local geomagnetic field.

The following control law fulfills this requirement
_ “Nges x ‘B

The magnetic momentm in Eq. (6.15) is0 if the desired torque is parallel to the local
geomagnetic field. In this case the the control torque cannot be generated in the direction
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of the desired torque due to lack of controllability in the directioriBf If °N 4., and
°B are perpendicular the control torque complies with the desired torque.

Stability of the magnetic actuation according to Eq. (6.15) is investigated both for con-
tinuous and discontinuous formulation of the desired torque. Itis assumed in this section
that the equivalent torque, i.€N., = 0 can be disregarded. This baseline is imposed
only for the sake of simplicity and corresponds to a statement that the equivalent control
can always be compensated by the control torque (ideal case).

6.4.1 Discontinuous Sliding Condition

The desired control torque, the result of the discontinuous sliding condition design from
Eq. (6.11)is

“Nyges = s sign s, (6.16)

since’N,, was assumed to ke The control torque which is to compensate the desired
control torque is generated according to

“Netrg = “m x CB,

where the magnetic momeénh is givenin Eq. (6.15). Thenthe projection of the satellite
motion on the s-space is

1
‘s = WI—l(CB X \s sign °s) x °B. (6.17)

The following Lyapunov candidate function is suggested

Vs = %CSTICS. (6.18)

The derivative oy, w.r.t. time gives

As .
Vg = @W(CB x ‘s) - (‘B x sign °s). (6.19)

It will be shown that there exist vectats and®B such that; > 0. Consider an angle
between the vectofs andsign °s. Recognize that belongs to the intervdks7, 7). If
the angle betweetB and‘s belongs tq0, 7 ) then itis possible to find a satellite attitude
(i.e. the Control CS) such that the angle betwdrandsign “s belongstq <7, 0), Fig.
6.1. Therefore("B x “s) - (“B x sign “s) < 0, andog > 0.

In the next chapter a continuous sliding condition is proposed, and it is shown that it is
asymptotically stable.
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Figure 6.1: The angle betweéB and‘s belongstq0, 7). Itis possible to find a Control
CS such that the angle betwed andsign “s belongs to(<7%,0), and(‘B x “s) -
(‘B x sign °s) < 0.

6.4.2 Continuous Sliding Condition

The discontinuous sliding condition can be substituted by a continuous counterpart
CNdes = CNeq <:>>\scs, (620)

where); is a positive scalar. However, it was assumed in the introduction to this chapter
that°N., = 0, hence

“Nies = S\s°s. (6.21)

Let the magnetic moment be generated according to Eq. (6.15). Now, the projection of
the satellite motion on the s-plain is
1

6= ———T'(°B x A\ s) x °B. (6.22)
1B |2

Again, the stability properties are analyzed using the Lyapunov candidate function in Eq.
(6.18). The time derivative af; is
As

Vs = @W(CB X CS) . (CB X CS). (623)
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The derivative of the Lyapunov function is negative semidefinite and time varying. It

is equal to zero if the vectof8 and‘s are parallel. Note that, if these two vectors are
parallel then the magnetic moment, and hence the control torque is also equal to zero. The
equations of motion of the satellite actuated by a set of electromagnetic coils are periodic
because the geomagnetic field changes periodically in the Orbit CS, see Subsection 2.7.2,
and the Krasovskii-LaSalle Theorem 5.3.2 can be applied. Thé geiTheorem 5.3.2
contains suclis and{q that“B and‘s are parallel

U ={%,¢Sq:3t>0°B(t) parallel to°s(¢)}. (6.24)
The geomagnetic field vector and the vec€tocan be resolved in the Orbit CS, therefore
‘B parallel to°s < °B parallel to°s. (6.25)
But the statement
Jto Vt > to °B parallel to’s for ‘m = 0 (6.26)

is false, since the equation of the torque free motion of the satellite does not correspond to
the geomagnetic field variation, see Wertz (1990). The geomagnetic field in the Orbit CS
depends only on the satellite position (longitude, latitude, altitude), whésebepends

on the satellite attitude and angular velocity. It is concluded that the largest invariant set
contained in’ is °s = 0, and according to the Krasovskii-LaSalle theorem the satellite
motion projected in the s-space is globally uniformly asymptotically stabie to

In plain words, the total energy of the satellite is dissipaté@Bifand®s are not parallel.

The energy is maintained constant if the two vectors are parallel. However, this does not
hold permanently, since the local geomagnetic field changes its direction in time. There-
fore, the total energy of the satellite motion will decrease to zero.

6.4.3 Sliding Mode Control with Continuous Sliding Condition

In the previous subsections a stable sliding manifold was designed, and a continuous
sliding condition was formulated. The objective of this subsection is to demonstrate
that the design procedure: first design a sliding manifold and then design a continu-
ous sliding condition, provides an asymptotically stable controller with equilibrium in
7, q"]" = 0.

Consider the following Lyapunov candidate function

v=q q+ (1 equ) (6.27)

The time derivative ob is
0 =q’ Q..
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The satellite trajectory converges asymptotically to the sliding manifold, and the sliding
variables converges t®

v =q’ (s ©A,q), (6.28)
since‘Q., = ‘s &A,q.
Note that if°’s = 0 then Eq. (6.28) is equivalent to Eq. (6.6).
The derivativey, is bounded by

og Slall s [l X Tal?, (6.29)

where), is the minimum singular value of the matrh, .
Both sides of Eq. (6.29) are now integrated

t t
valt) Svy(te) < SN, / all? dt+ / lalll“slld,  (6.30)
tg tO
thus
t t
A / ||q||2dt<:>/ a1l s || dt S,(to) <0, (6.31)
to tO

sincew, (t) is positive definite.
According to Hlder’s inequality, Rudin (1987), the following holds

t t t
lallll s |l di < \// Il []* dt \// | °s [|dt. (6.32)
to to to

The definition of the norm id.,-space is

t
Ixlla= /[ % I at (6.33)
to

Eq. (6.31) is rewritten using dlder’s inequality
M llalll ellallz [l s [l2 ©v,(to) < 0. (6.34)

Finally,

Vs[5 +42v,(t0) L sl
2), N,

lall< (6.35)

Recognize thats converges td, since the sliding condition is satisfied, ndw €
Ls[tg, 00). From the inequality (6.35) € Lslto, o), as well. Furthermorey is uni-
formly continuous, since r.h.s. of the kinematic equation (2.18) is bounded w.r.t. the
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time variable (due tés, q € L[to, o0)). Therefore, it is claimed that according to The-
orem5.3.1, the referen¢&’ <q”1" = [0000001]” is globally uniformly asymptot-

ically stable. The design procedure consisting of the sliding manifold and the continuous
sliding condition design provides a stable attitude controller, indeed.

Remark 6.4.1 Itis worthwhile mentioning that the design algorithm for the sliding mode
controller with continuous sliding condition resembles the feedback linearization tech-
niques in Isidori (1994).

6.4.4 Influence of Modeling Errors

A model of the satellite motion is provided with a certain parametric uncertainty, e.g. the
moments of inertia are determined with finite accuracy. This indicates that the equiva-
lent torque in Eq. (6.12) is not perfectly known. An influence of modeling errors on the
sliding mode controller design was already discussed in Remark 6.3.1. A discontinuous
sliding condition that rejects the influence of uncertainty in moments of inertia was pro-
posed. Influence of the modeling errors on a continuous sliding controller is addressed
in this subsection.

The sliding control introduced in the previous section provides the desired control torque
that equals the sum of the equivalent torque and the part making the sliding variable con-
vergent to zero. An effect of this uncertainty can be modeled by a certain limit value
on the sliding variable, such that the desired control torque makes the sliding variable
convergent to some nonzero constant vesgorThis implies that the satellite attitude
converges to the reference with a bias veggar

Let the sliding variabl€’s(t) converge to a vecta, then the satellite trajectory is on a
manifold given by

Qo+ Ayqg &sp =0. (6.36)

The objective of the following analysis is to provide approximate value of the bias vec-
tor qgp. The vectos, is considered to be small, therefore it is appropriate to analyze the
satellite motion in the vicinity of the reference. The satellite angular velodity, and

the first three components of the attitude quaternipare small, while the scalar com-
ponentg, can be approximated Hy It was shown in Subsection 2.6.2 that the first order
approximation of the kinematics is given by

1
4= 3 Q. (6.37)

The linear approximation of the sliding manifold is then

29+ Ayq &sp = 0. (6.38)
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Finally, the satellite motion on the sliding manifold is given by
q= A;1S0 + e_%A‘I(t_to)q(to), (6.39)
thus the biagyy equals
qo = A 'sp. (6.40)

Recognize that the larger the components of the ma#iare, the smaller is the bias,
q0-

6.5 Modified Sliding Condition

An ultimate sliding condition for a magnetic stabilized satellite is discussed in this sec-
tion. Preliminary results were already established in the last chapter, and superiority of
a continuous over discontinuous sliding condition was demonstrated.

The satellite appears uncontrollable if fixed at any instant of time due to the magnetic
torque vector is constrained to always lie perpendicular to the local geomagnetic field
vector. Therefore, it is necessary to select only those components of the desired con-
trol torque, which have an influence on the stability of the satellite motion. The desired
control torque is resolved into two components: perpendicular and parallel to the sliding
variable vector. Magnetic generated control torque is due to compensate only the com-
ponent parallel to the sliding variable vector.

The desired control torque is the result of the continuous sliding condition design. The
definition of the desired control torque adopted in this section is

Clw—des = cI\qu <:>>\scsa (641)

where); is a positive scalar arfdN,, is given in Eq. (6.12)

Consider orthogonal projection of the desired control tor§e,. (¢) onto the instant
sliding variable vectorés(t), Fig. 6.2. The desired control torqueN ., (t) has two
components: parallefN?" (¢), and perpendiculafIN?"? (), to the vectofs(t).

des des

The control torque;N.;,; only needs to compensat®’" | since?N*"” does not de-
crease the distance from the satellite trajectory to the sliding manifold. This control prin-
ciple has an intuitive interpretation. The compon@Xt’ is responsible for diminish-

ing of the sphere radius in Fig. 6.2, wheréa§;” is responsible for movement on the
sphere surface (sphere radius remains unchanged). This claim is formalized in Theorem

6.5.1.

Theorem 6.5.1 The control torque that compensaf@é’". makes the distance from the
state[*Q., (t) q(t)]” to the sliding manifold in Egs. (6.2) and (6.1) converge to zero, and
the sliding condition is satisfied.
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Figure 6.2: The desired control torque is resolved in the s-space. The comﬁNZ@bt
is responsible for diminishing of the sphere radius, whef@&#3" is responsible for
movement on the sphere surface.

Proof of Theorem 6.5.1 Construct a Lyapunov candidate function

Vs = %c Tyes. (6.42)

The motion in the s-space is described by the equation
I°s = ©cNeq + chtrla (643)

but the control torque compensates o‘mﬁ” thus

es!?
I°6 = ©\,Cs + °NP'P, (6.44)

where*INP"? is the sum of the componentsdX,, and°N,,, that are perpendicular to
the vectors(t).

Finally, the time derivative of the Lyapunov candidate function is given by

'1.13 — CST(";»\SCS + chrp) — "F)CSASCS. (6.45)
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cthrl
Figure 6.3: LargéN,,, is necessary to compensate srﬁhﬂg:i, if °B and‘’s are near
to be parallel, and the magnitude of the control signal can be very large.

The time derivative of the Lyapunov candidate function is negative definite. The con-
ditions of Theorem 5.2.2 are hence fulfilled, and the equilibrsug 0 is globally uni-
formly asymptotically stable. |

The control law which has to compens&é;’’ with use of magnetic coils is only feasi-

ble if the geomagnetic field is never perfectly aligned with the sliding variabldf °B

andcs are close to parallel the amplitude of the control signal can be very large, since the
large control torquéN ., is desired to compensate even smnlF"! Fig. 6.3. In prac-

des’

tice, the magnetic moment is confined, and ideal compensatiﬁﬁgﬁ9 is not possible.
Therefore, an approximate compensation is introduced

‘NP cB
— des
‘m = 7||CB||2 , (6.46)
where
Nyes - s
c rl des c
NZ&S = W S. (647)

Notice that the control law in Eq. (6.46) compenséﬂﬁgzls very well, if °B is perpen-
dicular or nearly perpendicular tg, and produces small control torque wHdhands
are near to be parallel.

The control law based on the approximate compensation of the desired control torque in
Eq. (6.46) has been observed to be locally asymptotically stable for small values of the
gainA,. Additionally, global stability was obtained when the principal moments of in-
ertia are of the same order of magnitude, i.e. the @rsted satellite is in the boom stowed
configuration. In this case the magnetic moment generated according to Eq. (6.46) con-
sists of the cross product &2, with the local geomagnetic field vecté6B, plus a small
perturbation of the satellite attitude, since the equivalent control torque is small.

This phenomenon inspired further work on proportional-derivative feedback cross prod-
uct with the local geomagnetic field vector treated in the next chapter.
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Figure 6.4: Performance of the sliding mode attitude controller in Eq. (6.46) for a
satellite in a circular orbit. The plot shows the angular velo¢i€¥,, and the attitude
quaterniorfq. The attitude quaternion converges to the referénée) 1]7.

Remark 6.5.1 It was mentioned that the large gaik, can provide unstable satellite
motion, but according to Section 6.4.4 large valuegfis necessary to maintain the re-
quired accuracy of convergence. This tradeoff can be solved by Monte Carlo simulation.

6.6 \Validation of Sliding Mode Attitude Control

The sliding mode attitude controllerin Eq. (6.46) was validated by the Monte Carlo sim-
ulation for the Drsted satellite in boom stowed configuration. Various initial values of the
angular velocity and the attitude were tested. The controller was evaluated for the initial
values of the attitude, both in the neighbourhood of the reference and for the z principal
axis pointing up-side down w.r.t. the z axis of the Orbit CS.

e P d _ N
The control parameters were found empiricalty; = 0.002-E 222, A = 0.003 =2%¢.

sec’

Fig. 6.4 shows simulation of the angular velocity and the attitude quaternion. The at-
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Figure 6.5: The simulation test corresponds to Fig. 6.4. The attitude is represented by
the Euler angles. Already after 2 orbits pitch, roll and yaw are witllileg. Plot of
magnetic moment refers to power utilization of the sliding mode attitude controller.

titude is represented by pitch, roll, and yaw angles in Fig. 6.5. The initial value of
pitch is60 deg, roll is 100 deg, and yaw is=100 deg. Initial angular velocity“ Q. is
[<0.002 0.002 0.002]” %1. Already after 2 orbits pitch, roll and yaw are withifi deg.

The plot of the magnetic moment used for attitude correction depicted in Fig. 6.5 shows
that the sliding mode attitude controller is power efficient.

Simulation of the @rsted satellite motion in its elliptic orbit with the aerodynamic drag
torque acting on the satellite structure is depicted in Fig. 6.6. The sliding mode attitude
controller keeps the steady state attitude error withdndeg.

6.7 Discussion of Results

The sliding control law for three axis stabilization of a tumbling satellite was described
and analysed in this chapter. Both sliding manifold and continuous sliding condition
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Figure 6.6: Performance of the sliding mode attitude controller in Eq. (6.46) for the

@rsted satellite on its elliptical orbit. Motion is influenced by the aerodynamic drag. The

initial values of the attitude and the angular velocity are the same as in Fig. 6.5. The
steady state attitude error is withd8 deg.

were designed. The properties of the moments of inertia of a satellite body, when a grav-
ity gradient boom is stowed, were used to provide the final control law. The controller
was evaluated by simulations for the @rsted satellite in realistic space environment. The
controller shows to be applicable for satellites with pointing accuracy largeiBthas.

The controller is seen in the Monte Carlo simulation to be globally stable, however only
approximate stability study was given.

There is still an unsolved issue, stabilization of the satellite after boom deployment for
initial values of the attitude such that the boom is pointing upside-down. The sliding
mode controller does not provide satisfactory results, since large influence of the gravity
gradient in the boom deployed configuration heavily perturbs the satellite motion from
the sliding manifold, and the magnetic control torque is not capable to compensate for
this disturbances. A globally stabilizing controller based on an energetic approach for
the satellite in this configuration is investigated in the next chapter.



Chapter 7

Three Axis Attitude Control:
Energy Approach

An attitude with the boom pointing upside-down in the science observation phase is
likely. This could be caused by a considerable impact of the aerodynamic torque on the
satellite body or an unexpected behaviour during the boom deployment phase. A globally
stable attitude controller is therefore necessary. The development of nonlinear strategies
for the satellite attitude control is addressed in this chapter.

Complete comprehension of the nature of the satellite control problem requires a new ap-
proach merging the control theory with physics of the rigid body motion and an extension
of the earlier results in these fields using findings from the theory of periodic systems.
The Lyapunov stability theory is employed, and a Lyapunov function based on the poten-
tial and kinetic energy of the satellite motion is formulated. Section 7.1 considers attitude
stabilization at large, introduces a velocity controller applying a vector product between
the angular velocity and the local geomagnetic field. The velocity controller contributes
to dissipation of both kinetic and potential energy. It provides four stable equilibria of the
system, one of which is the reference. It is shown how the equilibria depend on the ratio
of the satellite moments of inertia. The resultant controller is shown to be only locally
asymptotically stable. The reason not to achieve global three axis stabilization is found
to be the lack of attitude information in the control law. The extension with attitude in-
formation is made in Section 7.2. The energy necessary to change the satellite attitude
between the equilibria is calculated in Section 7.3. Section 7.4 provides the desired sta-
bility properties and presents a family of controllers which can achieve three axis attitude
stabilization using only magnetorquers. Simulations are shown to confirmed the perfor-
mance of the proposed controllers to be very satisfactory and applicable in two mission
phases: the velocity controller in a tumbling phase of the satellite, and three axis atti-
tude stabilization in the normal science observation phase. These results are presented

87
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in Section 7.7.

The energy based approach to magnetic attitude control covered in this section is based
on Wisniewski and Blanke (198 and Wisniewski and Blanke (1966

7.1 Attitude Stability at Large

A magnetic generated mechanical torque is always perpendicular to the geomagnetic
field vector as seen from Eq. (2.15). The consequence is that the satellite is only control-
lable in two directions at any single point in time. With the geomagnetic field varying
along an orbit this implies, e.g. that in the Earth’s polar regions the yaw angle is uncon-
trollable, whereas it can be controlled again when the satellite is in the equatorial regions.
Since the control torque is always perpendicular to the geomagnetic field vector, it is de-
sirable that the magnetic moment is also perpendicular to the geomagnetic field vector,
as only this component produces a non-zero control torque, Section 4.1.

Itis concluded that magnetic control moment must include information about the angu-
lar velocity of the satellite, and also about time propagation of the geomagnetic field. A
candidate for generation of the magnetic moment is an angular velocity feedback

‘m(t) = h°Qu(t) x °B(t), (7.1)

whereh is a positive constant.
There are two main reasons to suggest this feedback:

1. It contributes to dissipation of kinetic energy of the satellite.

2. It provides four stable equilibria depicted in Fig. 7.1. The equilibria are such that
the z axis of the Control CS (the axis of the minimal moment of inertia) points in
the direction of the z axis of the Orbit CS, and the unit vector of the x axis of the
Control CS (the axis of the largest moment of inertia) is parallel to the x axis of the
Orbit CS. One of these equilibria is the desired reference.

These claims will be proved below.

The magnetic torquing obviously introduces time dependency in the equations of the
satellite motion. This time variation has periodic nature, see Fig. 2.4. Therefore, the
theory of nonlinear periodic systems introduced in Section 5.3 can also be applied in this
chapter.

Global stability of the control law (7.1) can be expressed in the following theorem.

Theorem 7.1.1 Consider the control law

m(t) = h°Quo(t) x °B(t),
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Figure 7.1: Four locally stable equilibria of the angular velocity feedback (7.1)

then the satellite, Egs. (2.12) to (2.20) has 4 asymptotically stable local equilibria
{(°Qeo, ko, “1p) : (0, £°k,, +%,)}. (7.2)

Proof of Theorem 7.1.1 Consider a Lyapunov candidate function expressing the total
energy of the satellite. The total energy derived in Section 2.4 is the sum of kinetic en-
ergy of rotary motion, potential energy generated by the gravity gradient and the energy
originating from revolution of the satellite around the Earth

Etot = Ekln + Egg + Egyro-
This leads to
1cTc 32cTc 12 csTyes
Etot = 5 QCOI QCO + 5(4}0( ko I ko <:>I;) + iwo(Iw IS4 1, I 10). (73)

Recall thatl,, is the satellite maximal moment of inertia, ahds the minimal one, thus
positive definiteness of the Lyapunov function is fulfilled.

The time derivative oF;,; will be shown to be negative semidefinite

Eior = QL T1°Q,, + 3w2°kT Tk, + w2l T, (7.4)
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Egs. (2.12) to (2.20) are substituted into Eq. (7.4) yielding

Bt = °QF (&5, X I°Quy + 302 kL x I°k, 4 “Neyr) &
Wt T(Ciy X “Qeo) + 32 kI T(°k, X °Qeo) & (7.5)

w2eilT(°i, x Q).
Recognize that from Eq. (2.20) the following equality holds
QL ("o x I°Q) = 0o QL (i X I°Q) + w2 “QL (1, x I°1,),  (7.6)
hence Eq. (7.5) is reduced to a simple expression
Etor = “Q, Nt (7.7)

If the proposed control law (7.1) is applied then Eq. (7.7) becomes

Eror = ©h(“B x “Qe)T (‘B x °Q,,), (7.8)
or
Eio = <h’Ql BTBQ,,. (7.9)

Herijs the skew symmetric matrix representing a cross product opefdor: The
matrixB” B is positive semidefinite anfdwas a positive constant. The derivative of the
total energy is thus negative semidefinite.

The Krasovskii-LaSalle theorem is applicable in this proof since the control law (7.1) is
periodic. The sel/ in Theorem 5.3.2 contains such eleméif®s,, ¢q that°€2., and°B
are parallel{B x “€2., = 0)

U ={Qco,5q: 3t > 0°B parallel to°Q,, }. (7.10)

It will be proved by contradiction that the sitis not an invariant set.

Assume that the vectéB(t) was parallel to'Q2.,(t) for eacht > t,. This could be
described by

Vt > to >0, ‘B(t) = a“Qe,(t), a # 0. (7.11)
Expressing Eq. (7.11) in the Orbit CS gives

Vt > to >0, °B(t) = aAT (Sq)° Qe (1). (7.12)
Recognize the magnetic moment and hence the control torque are equal zero since

‘m = h°Q., x °B = ha®Q, x °Q,, = 0. (7.13)
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The angular velocity;Q2.,, is given by the dynamic equations (2.12), (2.15), and (2.20)
for °N.y = 0. The geomagnetic field determines the veé¢®r Its time propaga-

tion in the Orbit CS is depicted in Fig. 2.4. The geomagnetic field is only dependent
on the satellite position in orbit, whereas the angular veld€y, depends on the state
[cQ” cqT]T, and is completely independent on the orbital position. HetBend<2.,
cannot be parallel all the time, and Eq. (7.11) is not valid. This shows the contradiction.

Therefore, the largest invariant set contained’irs the trajectory€2., = 0. The an-
gular velocity is zero for alt > 0 if the trajectory is in an equilibrium. Finally, it is
concluded that the equilibrig(°Q2.,, °k,, “ip) : (0, +°k,, +°i,)} are locally uniformly
asymptotically stable. [ |

Remark 7.1.1 If h was changed in Eqg. (7.1) from a positive scalar to a positive definite
matrix h, then the time derivative of the Lyapunov candidate function would be

Eior = <fQL h'BTBQ,,. (7.14)

Due to the operation: positive definite matrix times positive semidefinite matrix does not
necessary give a semipositive definite matrix, it follows that the velocity feedback can
only use scalar gain in order to prove asymptotic stability.

Remark 7.1.2 The control law (7.1) can be used for three axis magnetic stabilization of
the satellite in a neighbourhood of one of 4 equilibria stated in Theorem 7.1.1, thus also
in the neighbourhood of the reference/jf> I,, > I..

Remark 7.1.3 The differential equations describing the satellite motion actuated ac-
cording to Eq. (7.1) are uniformly continuous, therefore a small perturbation of the con-
trol law in a form of the attitude quaternion feedback provides a locally asymptotically
stable control action.

Remark 7.1.4 If the velocity controller (7.1) is applied for a limited time interval during
an orbit, then the solution trajectory of the satellite motion still converges to one of four
equilibriain Theorem 7.1.1, since the total energy from Eq. (7.7) is constant if the control
torque is zero, and is dissipated when the controller is active.

This control strategy is very useful if the attitude control can only take place via telecom-
mand from a ground station, and time of radio contact is limited. The controller is also
beneficial for a satellite with an attitude determination algorithm based on a sun sensor,
since the attitude information may not be available when the satellite is in the eclipse. In
both cases the controller (7.1) is activated when the feedback signals are available and
switched off otherwise. This control law is still stable.

It was proved that the satellite with the control law (7.1) is asymptotically stable around
four equilibria (7.2). The objective of the next sections is to design a controller that makes
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all equilibria but the reference unstable. The desired reference considered in the sequel
is

{(*Qeo, ko, “io) : (0, ko, %io)} (7.15)

7.2 Local Attitude Stability

The operational mission phase of the @rsted satellite is such that the boom is upright, i.e.
the boom tip is above the horizon. The attitude controller designed for this mission phase
shall be stable towards the reference (7.15) for all initial attitude such that the boom tip

is above the horizon. This is done by inserting perturbations of the attitude in the control

law (7.1). This is feasible since the maximum of the potential en&lgy, in Eq. (7.3)

is three times smaller than the maximum potential energy due to the gravity gradient.

Hence, a shift from the equilibrig(°Q.,, °k,, ‘i,) : (0, £°k,, < 1i,)}t0(0, £°

k,, °i,) requires less energy than a jump fr¢éy <°k,, +°i,)to (0, °k,, £°1i,).

A scrutiny of the necessary energy to be generated by a controller in order to change
between the equilibria, is provided in the next section.

The three axis attitude stabilization can be accomplished when some attitude information
is added into the velocity control law. A proposed control law is

m(t) = h°e,(t) x °B(t) Seq(t) x °B(t), (7.16)

whereh ande are positive constants. The properties of the control law (7.16) will be
analyzed using linear control theory.

In equation (7.16) a small perturbation of the vector part of the attitude quaternion is
added comparing with the control law (7.1). For smathe satellite is stable in the
neighbourhood of the referendé*Q2.,, °k,, “i,) : (0, °k,, °i,)}, since the differ-
ential equations describing motion of the satellite are well posed. At this point of the
analysis the gaif has been fixed. The next step of the design is to compute the: gain
for a givenh such that the system is still locally stable and the domain of local stability
is extended.

The system is first linearized. The satellite motion is considered in a neighbourhood of
the following reference: the angular velocity of the satellite rotation w.r.t. the Orbit CS
is zero (2., = 0), and the attitude is such that the Control CS coincides with the Orbit
CS €q =[000 1]T), Section 2.6.

The linearized equations of motion (2.12) to (2.20) using Eq. (7.16) as control law are

d | oQ
el — A
dt[éOI]

o0
dq

} + B(t)(hoS2 + €dq), (7.17)

where the system and control matricAsandB(¢), respectively, are given in Eq. (4.3).
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Since the geomagnetic field is periodic, see Fig. 2.4, local stability of the satellite is an-
alyzed with use of Floquet theory, Section 3.1.

Consider the following form of Eq. (7.17)

i Al(e, t)x, (7.18)

where
A(G,t) = A + B(t)[hE3><3 €E3><3],

Ez.3isthe3 x 3 identitx matrix,hjs considered to be a constant value, whersas
parameter. Furthermord,(e,t) = A(e,t + T), for T = 2T,

It was a result from the Floquet theory in Section 3.1 that the system (7.18) is asymptoti-
cally stable if all characteristic multipliers, i.e. the eigenvalues of the monodromy matrix
W ; (to, €) for a certain value of

det[IN U (tg,€)] =0 (7.19)
satisfy the following inequality

Ni(e)| < 1,i=1,...n. (7.20)

Now, all e are found for which the linearized satellite system (7.17), with a certain fixed
value of the positive scalar, is stable by plotting a locus for the characteristic multipliers
as a function ok. An example is shown in Fig. 7.2. The value of the velocity gain,
h, was chosen equal - 108%. Then the locus of the characteristic multipliere

[0, 7- 105]AT’”2 was plotted. The gaid=5 - 105ATm2 is the limit of stability. Hence, a
certainé may be chosen for which the satellite motion is guaranteed to be asymptotically
stable about the reference. Notice thatust satisfy the inequality/ < é. Fore = 0 the
controller (7.16) is equivalent to the velocity controller, which is also seen to be stable.

7.2.1 Simulation Results

A Monte Carlo simulation was made to investigate stability towards the reference (7.15).
The initial state is random with the nominal condition as mean. The envelope for
the Monte Carlo simulation includes all values of the attitude above the horizon, i.e.
ko, > 0 and2., = 0. The attitude controller implemented has velocity gdin=

1- 108422 and the quaternion gain= 3 - 105AT’”2.

One example is the simulation in Fig. 7.3 which is started at the equilibrium
{(°R%0, ko, “ip) : (0, °k,, ©°i,)}. Already after one orbit the trajectory is within
the margin ofl0 deg from the reference. This is far better than required. Additional at-
titude information in the controller made the equilibriff0, °k,, <°1i,)} unstable,
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Figure 7.2: The locus for the characteristic multiphée) fore € [0,7- 105]AT’”2, h=
1. 108% using Eg. (7.16) as control law.

and thus extending the region of convergence to all initial values of the attitude such that
the boom is above the horizon and the initial satellite angular velocity in the Orbit CS is
zero.

7.3 Energy Dissipation Control

It was proved that the satellite with the control law (7.1) is asymptotically stable around
four equilibria (7.2). The objective of this section is to design a globally stable controller
that makes all other equilibria but the reference (7.15) unstable.

Two control principles are analysed in this section: an angular velocity feedback and a
rate/attitude control. The first one is similar to that of Eq. (7.1), the latter resembles the
feedback (7.16), except it is only activated in a defined area in state space around the
reference point.

Consider first the following preliminary control concept.
Procedure 7.1

1. Divide the state space int@;, i« = 1,2, 3,4 four regions of convergence to the
equilibria (7.2) of the control law (7.1),

2. Let the angular velocity controller (7.1) (or alternatively rate/attitude controller
(7.16)) be activated only in the regidrh, which is the subset of the state space
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Figure 7.3: The satellite trajectory converges from the equilibdyfe2.,, °k,, ‘i,) :
(0, °k,, <fi,)} to the reference.

containing the reference (7.15).

If the trajectory is in the regiofi; the entire energy of the satellite is dissipated. Other-
wise it is maintained at the same level. Therefore, it is anticipated that if the trajectory is
onceinthe region’; the entire energy of the satellite angular motion will be decreased to
zero. It will be shown in this section that this control procedure is stable to the reference.

The region of convergence about the reference (7.15) is determined from potential en-
ergy, since it comprises a measure of the distance from the actual state to an equilibrium.

Potential energy according to Section 2.4 consists of energy due to gravity gradient and
energy originated from the revolution of the satellite about the Earth. In order to reach
overall comprehension of the system behaviour these two types of potential energy are
considered separately in Subsections 7.3.1 and 7.3.2. Total energy is investigated in Sub-
section 7.3.3. Last, but not least a control strategy for dissipation of the entire energy of

a LEO satellite will be investigated in Subsection 7.3.4.

7.3.1 Potential Energy due to Gravity Gradient

Consider the following geometrical interpretation. Potential energy due to the gravity
gradient,E,,, varies from0 to 2wZ(I, < I.). It is minimum when the z axis of the
Control CS is parallel to the z axis of the Orbit CS. The maximum value is reached when

the z axis of the Control CS is in the horizontal plane (perpendicular to the z axis of the
Orbit CS). The baseline of this analysis is tiaf, is the only component of potential
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Figure 7.4: Pointsi, B, C are (5% + I.), - (335 + L), - (5% + I.), respec-
tively. The unit vectofk, evolves on the intersection of the sphere°(7.23) and the ellip-
soid (7.22). At the energy levél > gwg(fy <1I,) the intersection ellipse is of the type
illustrated in the I.h.s. drawing. The r.h.s. drawing illustrates the intersection ellipse at
energy level < 2w2(I, &1.).

energy, which is relaxed in Subsection 7.3.3.

Consider a certain constant value of potential eneflgyErom the expression for poten-
tial energy of the gravity gradient

-3

E = 5wg(Ckg’ Ik, 1), (7.21)
the unit vectofk, will satisfy two equations: an equation of an ellipsoid

2F
w3

K, Ik, = —— + I, (7.22)

and an equation of a sphere
19 ko [|= 1. (7.23)
The unit vectofk, evolves on the intersection of the sphere with the ellipsoid in Fig. 7.4.

The Orbit CS’s z axis in the Control CS may initially evolve on the intersection ellipse of
the type depicted on the L.h.s. of Fig. 7.4. If the total energy of the satellite is dissipated



7.3 Energy Dissipation Control 97

then the potential energy due to the gravity gradient is decreased. At the energy level
E < gwg (I, < 1) the intersection ellipse is of the type illustrated on the r.h.s. of
Fig. 7.4. Notice that, if additionally kinetic and potential energy due to revolution of the

satellite about the Earth are taken into accounti.e.
. 3
E = Egin + Egg + Egyro < EWZ(Iy &l.),

then the z axis of the Orbit CS evolves always above the intersection ellipse on the r.h.s.
of Fig. 7.4.

The projection of the unit vectoik, on the z axis of the Orbit CSk,. provides the
information whether the z axis of Control CS (the boom axis) is upright or upside-down.
A proposed control law is to activate the controller (7.1) whenékgr > 0, then the
satellite trajectory tends to one of two equilibria

{(Cﬂcoa cko, Cio) : (0, Oko, icio)}, (724)

both defining the attitude of the satellite with the boom axis upright.

This can be explained as follows. If the z axis of the Control CS is in the horizontal plane,
perpendicular tdk,, potential energy changes frofy, = gwg(ly <1,), when the z

axis of the Control CS coincides with the y axis of the Orbit CIfp = 321, 1),

when the z axis of the Control CS is parallel to the x axis of the Orbit CS. If the total
energy (in this subsection a sumigf;, andE,, ) is aboveEy, kinetic energy has a bias,
due to which the satellite will tumble from the boom axis upside-down to upright. If the
total energy is belowE , and the initial attitude is such that the z axis of the Control CS
is upright, the solution trajectory will never cross the horizon, i.e. it will stay with the
Control CS’s z axis upright for ever.

There s still an unsolved issue for the energy level betwggrandEY, . The boom axis

can stay upright or upside-down or even change between the attitude above and below
the horizon. The differenca,, = E7, < E}, is approximately for I, ~ I,. Thus,

the controller (7.1) activated whenevér,, > 0 provides two locally stable equilibria
(7.24) for the satellite witd, > I, >> I..

7.3.2 Energy due to Revolution of Satellite about Earth

Analogously, consider potential energy due to revolution of the satellite about the Earth.
A constant value of this energy, in the interval fronf) to the maximum valué&;, ., =

tw2(I, &1.), is investigated. The unit vectéi, evolves in Fig. 7.5 on the intersection
of the sphere

1710 =1 (7.25)
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Figure 7.5: Pointsi, B, C are (I, 24), 7 (L &2L5), H(I, ©2£), respec-
tively. The unit vectofi, evolves on the intersection of the sphere (7.250) and the ellip-
soid (7.26). At the energy levéd > %wf([z &1,) the intersection ellipse is of the type
illustrated on the |.h.s. of the drawing. The drawing on r.h.s. illustrates the intersection
ellipse at energy levell < Lw?2(I, &1,).

with the ellipsoid

cs fJcs QE
i,I, =1, <:}>W—g (7.26)
If potential energy is less that), ., = tw2(I,<1,), the x axis of the Orbit CS observed

in the Control CS (or the unit vectéi,) evolves on an ellipse illustrated on the I.h.s of
Fig. 7.5. Otherwise, the motion of the unit vectpin the Control CS is on the ellipse on
the r.h.s. of Fig. 7.5. If additionally kinetic and potential energy of the gravity gradient
are taken into accounti.e.

E = Eyin + Egg + Egyro < EY, .,

then the x axis of the Orbit CS evolves always above the intersection ellipse on the l.h.s.
of Fig. 7.5.
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7.3.3 Total Energy

If the total energy,E:,:, the sum ofE,,, E,,., and Ey;, is above the energy level
E;, + E;,., (the maximum potential energy required for the boom axis to cross the

horizontal plane), then the kinetic energy has a nonzero bias, and the satellite will tum-
ble, i.e. the boom axis will evolve between upright and upside-down attitude. Whereas,
if the total energy is belowE?, (the minimum potential energy necessary to cross the

horizontal plane), and the initial attitude is such that the boom axis is above the horizon,
then it moves above the horizon for ever. The time propagation of the solution trajectory

for the energy level betweeli], + E;, ., andEY,, where the energy gafy;, is

. 3
Agor = Egg + E;yro <:>Effg = 2(“)3(]90 <:;’Iz) 4:;’5“)3(]1/ <:;’Iz);

(7.27)

remains undetermined. The control algorithm proposed in the next subsection takes this
gap into account.

7.3.4 Energy Dissipation Controller

The objective of this section is to formulate a control law making the reference asymptot-
ically stable for initial kinetic energy above levef, + E7, ,.,. This control law can be
used for a tumbling satellite and constitutes an intermediate solution towards a globally
stable controller investigated in the next section.

The angular velocity feedback (7.1) activated fbg, > 0 provides two locally stable
equilibria (7.24). The reason for this is a lack of the attitude information in the control
law. A recipe is to add a small perturbation of the attitude to the velocity control. This
technique was already discussed in Section 7.2, and it was concluded that the attitude
controllerin Eq. (7.16) is asymptotically stable for all initial values of the attitude such
that the boom axis is upright. Based on these results, a proposed control algorithm for
dissipation of the entire energy, i.Byn, + Egq + Egyro, IS

Procedure 7.2
o Activate the rate/attitude controller in Eq. (7.16) when the satellite attitude is in
C, where
= {Qcmgq t ko > O}
(7.28)

e Otherwise send zero magnetic moména (= 0).

The essence of Procedure 7.2 is to make the satellite convergent towards the reference if
the boom is above the horizon, and keep the total energy constant if the boom is below
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it. Monte Carlo simulation tests show that the reference is asymptotically stable for the
initial kinetic energy abovésy + E7, ..., indeed. This control principle has performed
very satisfactory in the simulation study, though there still exists an uncertainty. The so-
lution trajectory of the satellite at the energy level betwggpandE;, + E7, ., has not

gyro
been found. A modified control law taking this uncertainty into account is

Procedure 7.3

o If Evor > Ej, + E, ., activate the angular velocity controller (7.1).

e Else wait until°k,, changes the sign from negative to positive, then activate the
rate/attitude control (7.16) fofk,. > 0.

The first stage of Procedure 7.3 is to diminish the total energy using the angular velocity
feedback (7.1) tothe levél] + E; ., then wait with the attitude controller disactivated
until the boom axis crosses the horizon plane from upside-down to upright. At this mo-
ment the rate/attitude controller (7.16) takes over. The controller needs only to dissipate
a small amount of energ;,; in order to keep the boom axis above the horizon for ever.
Hence, the solution trajectory converges asymptotically to the reference.

The simulation study presented in the next subsection has shown that from a practical
point of view both Procedures 7.2 and 7.3 can be implemented for control of a tumbling
satellite to the desired refered¢éf..,, °k,, “ip) : (0,° k,,°1i,)}.

The last but not least control issue is to turn the boom axis from the upside-down to up-
right attitude, which is investigated in Section 7.4.

7.3.5 Simulation Results

The controllers for energy dissipation were validated in a detailed simulation study. An
example of atestis depicted in Figs. 7.6 to 7.9. The initial angular velocity in the exam-
ple is®€2., = [0.005 0.003 «0.003]7 %‘1 pitch, yaw and roll ard0 deg, <40 deg, and

80 deg, respectively. The velocity gain applied in the simulation study4s 1-10% %.

The velocity controller in Fig. 7.6 is active all the time, and the satellite trajectory con-
verges to the equilibriurd(°Q2.,, °k,, “ip) : (0,<%k,, <°i,)}. The angular velocity
controller in Fig. 7.7 is only active until the total energy is beléi, + E7,.,. The
satellite at this energy level is still tumbling. Performance of Procedures 7.2 and 7.3 is
depicted in Figs. 7.8 and 7.9. The rate/attitude controller implemented in these proce-
dures has velocity gaih, = 1 - 108%, and the quaternion gaia, = 3 - 105AT’”2.

These gains are equivalent to a proportional band in the angular veloeity-dﬂ—3%i
and1.48 in the attitude quaternion with a maximum control valu@®fdm? and an av-
erage amplitude of the geomagnetic field vectot.6f- 10~5 T'. The rate/attitude con-
troller in Fig. 7.8 is disactivated whenevét,. < 0. In Fig. 7.9, the rate controller

is applied first, then the the rate/attitude controller takes over. The satellite trajectory in
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Figure 7.6: Simulation using the angular velocity controller. The controller is active all
the time. ¢k, characterizes convergencef, towards’k,, whereasi,, character-
izes convergence 61, to °i,. The satellite trajectory converges towards the equilibrium
{(°R%0, ko, “ip) : (0,<°k,, <1,) }, SinCe’k,, and®i,, converge to=l.

both examples converges to the refereficg = 1 and“i,, = 1, which corresponds to
{(Cﬂco, Cko, CiO) : (0,0 koao io)}-

7.4 Globally Stabilizing Controller

The control law in Procedure 7.3 was shown to be locally stable in the sense that if the
boom axis is upside-down and the total energy is belgfy + E7, ., (more precisely
belowEY ) there are no means to turn the boom axis upright. A globally stable controller,
turning the boom axis from the upside-down to upright attitude, is the ultimate goal. The
main obstacle is again the cross product with the geomagnetic field vector.
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Figure 7.7: The velocity controller is active unf,; < Ef, +E; ., - The satellite at
this energy level is still tumbling.

7.4.1 Idealized Quaternion Feedback

If it was possible to produce a control torque proportional to the quaternion error, a glob-
ally stable controller would result. This is shown in the following theorem.

Theorem 7.4.1 The control law
“Newri(t) = (h°Q0 (1) x “B(t)) x ‘B(t) eoq(t), (7.29)

whereh ande are positive scalars, makes the system globally asymptotically stable at
the referencd (°Q.,, ko, “i,) : (0, %k,, °io)}.

Note that the control law (7.29) is given in the form of the desired control torque, which
is not producible by the magnetorquers, since the t€r(¥) does not have to be perpen-
dicular to the local geomagnetic field. The idea does give some useful hints, however.

Proof of Theorem 7.4.1 The Lyapunov candidate function resembles the total energy in
Eq. (7.3) (Proof of Theorem 7.1.1), however an extra attitude quaternion term has been
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Figure 7.8: Performance of the attitude controllerin Procedure 7.2. The rate/attitude con-
troller is activated only in the regidik,. > 0. The satellite trajectory converges to the
referenc€k,. = 1 and®,, = 1.

added

Eip = 1@ 1°Q., + 202 (kT Tk, & 1,)
+302 (L &1 T%,) + el + 65 + a3 + (1 ©q)?). (7.30)

The attitude quaternion satisfies the constraint equation- - - + ¢3 = 1, thus

C

1 1
Eior = §CQTOICQCO + gwg’(CkZICko &)+ §wg(Iz &AlT4,) + 26(1 &q4q).

(7.31)
The time derivative of Eq. (7.31) gives
Etot = CQZ;Cthrl + GCQZ; Sq- (732)

Applying the control law defined in Eq. (7.2%,,: is

Eir = ©h°QI BTBQ,.,. (7.33)
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Figure 7.9: Performance of the attitude controller in Procedure 7.3. First, the rate con-
troller is activated, then the the rate/attitude controller takes over. The satellite trajectory
converges to the referenék,, = 1 and®i,, = 1.

This complies with Eq. (7.9). Thus the satellite with control law (7.29) would be glob-
ally asymptotically stable at the referengéQ.,, °k,, i,) : (0, °k,, °i,)} orin the
quaternion notatiof(°Q2.,, ¢q) : (0,[0 00 1]7)} if the desired control torque could be
produced. |

Achievable control with magnetorquers involves the cross product with the geomagnetic
field, and it would be a very significant step forward if one could derive a global stabi-
lizing control algorithm under this limitation. This is considered in the next section.

7.4.2 Quaternion Feedback with Magnetic Torquing

The attitude of the @rsted satellite such that the boom is pointing towards the centre of
the Earth may likely occur due to considerable influence of the aerodynamictorque. This
undesired attitude is to be corrected by the attitude control system. It was illustrated in
Section 7.2 that the linear attitude controller performs satisfactory for all initial value
of attitudek,, > 0 (boom is upright). If the satellite is tumbling the nonlinear con-
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troller (7.1) can be implemented, and the resultant attitude is either of the four equilib-
ria {(°Q.,, ko, “i,) : (0, £°k,, £°1i,)}. The last but not least attitude control
problem is to turn the satellite from the upside-down attitude i.e. from the equilibria
{(°Qc0, ko, “i,) : (0, < k,, *+°i,)} to the upright attitudeik,, > 0.

First, the following control law is considered
‘m(t) = h*Qc,(t) x “B(t) + €(t)sa(t) x “B(1), (7.34)

whereh is a positive constant ant) is a piecewise continuous positive scalar function
satisfying

€(t) =const >0, t € (kTs, (k+1)Ts), k=1,2,...
e(kTs) > e((k+ 1)T5) > 0, (7.35)

whereT’s is a positive constant. Recognize thatthe controllaw (7.34) has the time varying
attitude gaire(t) comparing with the control law (7.16).

Before the features of the control law (7.34) are given, the following theorem is pre-
sented.

Theorem 7.4.2 Consider the control law (7.34) then the satellite, given by Eqgs. (2.12)
to (2.20), has 4 asymptotically stable local equilibria

{(°Qeo, ko, “1p) : (0, £%k,, £%1,)}.

Proof of Theorem 7.4.2 For simplicity of notation the equations of satellite Egs. (2.12)
to (2.20) with controller (7.1) are represented by

x(t) = £(x(), 1), (7.36)

and the equations of satellite motion with controller (7.34), for consf@it= e(kT),
are denoted as

x(t) = £ (x(t), 1). (7.37)

Furthermore, the differential equation (7.36) for the initial conditidty) = x, has the
solutionx(t, to, X0 ), and the differential equation (7.37) for the initial conditioft,) =
X has the solutioxy (¢, t, Xo).

The kinematic and dynamic differential equations are Lipschitz, and the following is true
if limg—oofr (x(t),t) = f(x(t),t) then

limg—ooXk (t, to, X0) = x(t, to, Xo),
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thus
if lims—oox(t,t0,%0) = yy then

limt—)ooxk (t7 th XO) = yf .
This means, ilim;_,~e(t) = 0, each trajectory of the satellite actuated by the control

law (7.34) converges to one of the equilibrid“Q.,, k., i,) : (0, £°k,, +°i,)}.
[ |

The stability analysis demonstrated that the equilibrf0m°k,,, °i,) is locally stable if

e(t) = € < € whereé is the limit of stability for the control law (7.16). On the other
hand ife(t) = € is large enough so that the quaternion feedback is the most significant
componenton ther.h.s. of Eq. (2.12)

I°Q,, ~ é(q x °B) x °B (7.38)
then the vector¥Q2., and(q x °B) x ‘B become parallel, and
1°Q7,((q(t) x “B) x °B) > 0. (7.39)

It was assumed in Eqg. (7.39) that the vectdBsandq are not parallel. This conjecture

is viable, since the controller can be activated when the most favourable conditions in
orbital motion for boom upside-down algorithm occur, see Fig. 7.10. It follows from
Eq. (7.39) that

QT ((q x °B) x °B) > 0, (7.40)

sincel is positive definite.

If Eq. (7.39) is always satisfied, then the satellite is asymptotically stable about the ref-
erence{(°Q.,, ko, ‘iy) : (0, °k,, °i,)}. The proof of this statement is similar to the
proof of asymptotic stability of the control law (7.29). The Lyapunov candidate function
is

1 3 1 Tres
Eipt = 5093;16900 + ZW2(kITK, o 1L) + iwg(lx =ilT,)
+ (gl +d +a + (1eq)?). (7.41)

The time derivative of the Lyapunov candidate function is

Etot = CQZochm + 77092 2‘1- (7.42)
Finally, E;,; is
Byt = €h*QL BB Q,, ¢l B"B°q +1°Q), q, (7.43)

which is negative definite for sufficiently small valuespfor sufficiently larges). No-
tice that Eq. (7.39) is satisfied only until the angular velocity termin Eq. (2.12) becomes



7.4 Globally Stabilizing Controller 107

q c %/’
ls
1 @ 1t

Earth
l B

Figure 7.10: Boom upside-down algorithm is recommended to be activated in the regions
of North or South Poles.

dominant. The objective of this investigation, however, is not to derive a complete glob-
ally stabilizing controller in one step, but rather to get a control law providing necessary
acceleration to turn the satellite from the upside down to upright attitude.

It was assumed that the vectdi8 andq are not parallel. This implies that the boom
upside-down algorithm must be triggered in the zones near the North or South Poles. As
mentioned in Section 2.2 the vector part of the attitude quatergjaetermines the axis

of rotation from the Orbit CS to the Control CS. If the boom is upside-down, ¢hisn
perpendicular to the z-axis of the Orbit CS (the zenith). The zenith though is parallel to
the geomagnetic field vector over the poles, see Fig. 7.10.

From the analysis carried out so far it follows that £6t) = € large enough the satellite
trajectory is turned from the boom upside-down towards the boom upright attitude. For
practical implementatioa shall be chosen larger than

mam(” N!]!] ||) ~9. 105 Nm
min([| °B [?) T

such that the control torque is larger than the gravity gradient.

Concluding, ife(t) = ¢ the system is asymptotically stable for all values of attitude
such that the boom tip is above the horizon.c(f) = € the satellite boom axis is
turned from upside-down to upright. Furthermores(if) satisfies Eq. (7.35) then the
satellite is locally asymptotically stable towards four equilibf@2.,, “k,, “i,)
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(0, £°k,, £°1i,)}. The following algorithm is now straightforward. If the boom tip

is below the horizorfk,. < 0, implement control law (7.34) with(t) = €. The satellite
reaches a boom upright attitudé;,, > 0, ande(¢) shall gradually decrease froarto

é. Nevertheless, due to the possibility of a large angular velocity the satellite may again
end up to be upside-down. Nowi,. < 0 the magnetic momentm, is set to0 until

the boom is upright once again. Similarities between this approach and the Procedure
7.2 are striking.

Note that that this strategy rejects the equiliffé.,, °k,, i,) : (0, <%k,, £%1,)},

since no control torque is generated when the boom tip is below the horizon. Further-
more, the equilibriungo, °k,, <¢1i,) is also unstable sinegt) converges to a constant
nonzero valué. Finally, only one equilibriunfo, °k,, °i,) remains asymptotically sta-

ble, thus it is globally asymptotically stable.

7.4.3 Simulation Results

A simulation study has confirmed our hypothesis that the boom upside-down con-
trol algorithm provides globally asymptotically stable satellite motion. Simulation re-
sults are shown in Figs. 7.11 to 7.13. The initial conditions are such that the satel-
lite has the upside-down attitude corresponding to the equilib{i(fife.,, °k,, “i,) :

(0, < k,,%1,)}. The velocity gainish = 1 - 108%, and the quaternion gain is cho-
sené = 15 - 105AT’”2. The controller is quite convincing. It takes less than half an or-
bit to turn the satellite up, and it is stabilized to the operational region within 6 orbits.
This is rather satisfactory considering that the available mechanical torque is less than
1.2 - 10=% Nm, which is only three times more than the magnitude of the maximum
gravity gradient torque for this satellite. A simulation for the same initial conditions as
before but with a new attitude gain= 27 - 105“Tm2 is depicted in Fig. 7.14. The accel-
eration imposed by the attitude controller is high enough to turn the boom upright, but
the controller is not able to decelerate the motion whign > 0, and the satellite turns
upside-down again. The attitude controller is now be activated, ofily,if > 0. This
control action is globally asymptotically stable.

The controller for acquisition of the satellite attitude from the boom upside-down was
developed in this section. It is, however, an advantage to design a boom upside-down
controller applying the existing energy of the satellite motion, and in this way decreas-
ing electrical energy utilized by the control system. This issue is addressed in the next
section.
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Figure 7.11: The velocity gaihis 1 - 108%. The attitude gain is time varying and
initially e(to) is 15 - 10° 422 |t converges t@ = 3 - 105 A,
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Figure 7.12<k,, characterizes convergence s, towards’k,, (if “k,, < 0 satellite is
upside-down), whereds,, characterizes convergence‘ef towards’i,



110 Three Axis Attitude Control: Energy Approach

0.8r

0.6

04r

—ql

- - g3

-1 L L L L L

3
Orbits

Figure 7.13: The attitude quaternidgjy converges td0 0 0 1]7 from an upside-down
attitude.
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Figure 7.14: The velocity and attitude gains aré0® 4226 and27-10° 422 respectively.
The attitude controller is activated whek,, > 0 (if °k,. < 0then®m = 0).
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7.5 Alternative Boom Upside-Down Control

An alternative boom upside-down algorithm is investigated in this section. A control
concept is to apply a destabilizing controller when the gravity gradient boom is upside-
down and a stabilizing when it is above the horizon.

The idea of an algorithm is to generate a mechanical torque in the direction of the mini-
mum potential energy until the boom axis appears above the horizon, then to apply Pro-
cedures 7.2 or 7.3.

A proposed control algorithm is

Procedure 7.4
¢ Ifthe boom axis is upside-down (below the horizon) generate the magnetic moment
according to Eq. (7.44) untilk,, > 0

‘m = g ‘i, x °B, (7.44)
whereg is a positive or negative constant, a design parameter,
then

e Use Procedure 7.2 or 7.3.

There are two reasons to propose this algorithm as it will be explained below.

¢ A minimum effort controller is a controller which generates a control torque per-
pendicular to the local geomagnetic field. The unit vetig(t) is approximately
perpendicular t6B(t) for all ¢, since it is perpendicular to the orbit plane. The
resultant control torque generated according to Egs. (7.44) and (2.15) is parallel
to ¢i, (t) and therefore perpendicular to the local geomagnetic field.

e The minimum potential energy necessary to turn the boom axis upright is the ro-
tation about the pitch axis, which is at most

2 1

E,=Ej, +E},, = gwﬁ(Iy ol,) + §w§(Iz &), (7.45)

The potential energy necessary to turn the satellite about the roll axis is at most
— Lz z _ 2
E.=E], +E;,., =2w,(I; &I.). (7.46)
The meaning of the constant® , EY , andE;, ., were explained in Section 7.3,
whereas )
EY,., = iwg(lgg &1,).

Procedure 7.4 can be improved by utilization of the angular momentum due to the satel-
lite revolution about the Earthh,. The design parameteris strictly positive, thus the
angular momenturh, acts in the same direction as the control torque, and the necessary
effort to turn the satellite upright is decreased.
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Figure 7.15: Performance of the attitude controller in Procedure 7.4. First, the destabi-
lizing controller in Eq. (7.44) is activated, then afteorbit the rate/attitude controller
takes over. The satellite trajectory converges to the referdnee= 1 and®i,, = 1.

7.5.1 Simulation Results

An example of the simulation test carried out for Procedure 7.4 is depicted in Fig. 7.15.
The gaing = 5.2 10° % of the destabilizing controller is chosen empirically. The re-
maining control parameters coincide with those implemented in the test study described
in Subsection 7.3.5. The initial attitude is again such that the boom axis is upside-down
{(°R%0, ko, i) : (0, <° ko, °i,)}. First, the destabilizing controller in Eq. (7.44)

is activated, then aft%f orbit the boom is above the horizon, and the rate/attitude con-
troller takes over. The satellite trajectory converges to the refefénce= 1, “i,, = 1,

i.e. {(°Qco, ko, “i,) : (0, °k,, °i,)}.

The performance of this controller and the controller (7.34 ) is similar. Both algorithms
are simple for on board implementation, therefore both are equally well suitable for a
magnetic actuated satellite.
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Controller type Features |
‘m(t) = h°Q.,(t) x °B(t) | Locally stable about 4 equilibria
{(°Qco, ko, “io) 1 (0, £2k,, £°1i5)}

‘m(t) = h*Q..(t) x °B(t) | Locally stable about reference for all
—l—eoq(t) ( ) attitude such thaik,, > 0 and smalf€2,,
‘m(t) = h¢ QCO( ) x ‘B(t) | Globally stable about referenc€t) decays
+e(t)sa(t) x °B(t) frometoé

‘m = ¢g°i, x ‘B Destabilizing controller used for turning

boom axis upright

Table 7.1: A summary of the properties of the magnetic attitude control.

7.6 Summary of Magnetic Attitude Control

This chapter contributes to the development of proportional-derivative feedback control
based only on magnetic torquing for low Earth orbit satellites. Both locally and globally
stabilizing controllers were proposed, and a rigorous stability analysis was carried out.
The velocity controller cross product with the local geomagnetic field provided four sta-
ble equilibria, one of which was the reference. A number of methods for perturbing the
satellite motion from three undesired equilibria, such that the satellite is globally asymp-
totically stable to the reference, were presented. Simulation results showed the profi-
ciency of the proposed controllers, even in the upside-down configuration, which is the
worst case situation for a satellite.

A summary of the properties of the attitude control laws derived in this chapter is given
in Table 7.1.

7.7 Mission Scenarios

This section provides attitude control algorithms for a number of the @rsted mission sce-
narios. The features of the magnetic attitude control listed in the previous sections are
combined giving globally stable control action. The similarities between the locally and
globally stable controllers are striking. The only difference is the gain fa€tpr This
makes implementation exceptionally simple.

7.7.1 Nominal Operation

The boom tip is detected to be above the horizon kg, > 0. The control law (7.34)
with constant value of(t) = ¢, € < éis implemented.
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7.7.1.1 Tumbling Satellite

The satellite is detected to tumble, i.e. it rotates with the angular velocity above an op-
erational limit, the following algorithm may be implemented:

¢ Activate the angular velocity controller (7.1).

e If the total energy is beloww? (I, <I.) and the boom axis is detected above the
horizon activate the rate/attitude controller (7.16).

7.7.2 Boom is Upside-Down

A large disturbance torque impacts on the satellite body or temporary malfunction occurs
on board. As the consequence the boom tip remains below the horizon.

¢ Activate the boom upside-down algorithm, Eq. (7.34), whétg¢ = €. Start the
algorithm when the boom is over South or North Poles.

e If °k,. > 0 apply Eq. (7.34), where
€x+1 = Leg, 0 < L <1, ¢g =E.

The gaine is updated every sampling time‘k,, > 0, and it is kept constant
otherwise.

o If °k,, < 0 apply’m = 0.
Alternatively

¢ If the boom axis is upside-down (below the horizon) then generate the magnetic
moment according to Eq. (7.44).

e If B,y > 2w2(I, &1,) activate the rate controller (7.1).

e Else wait until°k,, changes the sign from negative to positive and activate the
rate/attitude control (7.16) f6k,. > 0.



Chapter 8

@rsted Attitude Control

The objective of this chapter is to summarize and evaluate performance of the control
algorithms chosen forimplementation in the @rsted attitude control system. The baseline
for the design in the previous chapters was that the satellite was in a circular orbit and
an influence of the aerodynamic drag was rejectable. In this chapter performance of the
attitude control system is a subject of simulation test in the realistic environment.

Complete disturbance rejection is not feasible due to lack of controllability in the direc-
tion of the local geomagneticfield. As an example consider a disturbance torque actingin
the direction of nadir during the satellite passage in the polar regions. The geomagnetic
field is parallel to the disturbance torque resulting in large amplitude of yaw oscillations.
The design criterion is to adjust the control parameters such that deviations of pitch, roll,
yaw from the reference are within specified values (pitdi) deg, roll £10 deg, yaw

+20 deg).

Two independent approaches: linear and nonlinear to the magnetic attitude control were
presented in this thesis. The linear methods focused on periodic character of the sys-
tem’s parameters. The result was the family of energy optimal periodic controllers. The
proposed control algorithm were, however, relatively complex, since it was necessary to
solve the Riccati differential equation. The nonlinear part of the work gave a deep insight
into physics of the rigid body motion. The finding of the nonlinear analysis was a number
of globally and locally stable controllers. All of them had similar structure of PD regu-
lator vector product with the local geomagnetic field vectors. These attitude controllers
were chosen for furtherimplementation in the @rsted attitude control system, due to their
simplicity, efficiency, and independence on exact knowledge of the system parameters as
moments of inertia.

Dependent on the mission phase three separate attitude controllers are implemented:

¢ Rate Detumbling Controller

115



116

@rsted Attitude Control
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Figure 8.1: Architecture of the attitude control system consisting of the rate detumbling
controller, the science observation controller and the continence operation controller for
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the inverted boom.

The rate detumbling controller is used just after release from the launch vehicle.
Kinetic energy is dumped and the satellite is stabilized relative to the local geo-
magnetic field. The feedback signal is the rate of the local geomagnetic field.

vYvYy Y

Magne-
torquers

e Controller for Science Observation Phase

After boom deployment the satellite is three axis stabilized. Attitude is measured
from the star imager or alternatively from the magnetometer and the sun sensor,
see Bak (1994) and Bak (1996).

¢ Contingency Operation for Inverted Boom

The objective of the controller is to acquire the satellite from the boom upside
down. Attitude is obtained from the magnetometer and the sun sensor.

The structure of the control system is illustrated in Fig. 8.1 The algorithms are summa-

rized and the performance is investigated in the next sections.

The baselines for the simulation study are given in Tables 8.1 and A.1. The aerodynamic
drag torque implemented in the simulator, see Appendix A, corresponds to atmospheric

density in April 1997.
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ltem Description

Body size H 680 x W 450 x D 340 mm
Boom 8 m Deployable

Mass 61.8 kg

Moments of inertia about principal axes:

- boom deployed X 181.78,Y 181.25, Z 1.28 kgm?
- boom stowed X 3.428,Y 2.904, Z 1.275 kgm?
Maximum amplitude of magnetic moment20 Am?

Apogee 850 km

Perigee 450 km

Eccentricity 0.028599

Argument of Perigee 0

Inclination 96.1 deg

RAAN 105.2 deg

Nodal drift 0.77 deg/day

Epoch 3 April 1997 at 1200 UTC

8.1 Rate Detumbling Controller

8.1.1 Objectives

The objective of the rate detumbling controller is to generate a magnetic moment, such
that the kinetic energy of the satellite is dissipated and it is turned in the negative direction
of the local geomagnetic field vector. Hence, radio contact with the ground stations in
Copenhagen and Aalborg is viable.

8.1.2 Control Law
The following control law is implemented
‘m = <k°B < Meonst, (8.1)

Wheremconst = [0 0 mconst]T-

The first summand contributes to kinetic energy dissipation, whereas the second is a bias
term. The satellite acts like a compass needle which tends to align with the local geo-
magnetic field, while adequate angular velocity damping is retained. More details about
the rate detumbling control can be found in Appendix B.
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Figure 8.2: Rate detumbling simulation. The controller decreases initially high angular
velocity 1.6 - 107! 224 to absolute value belo- 10—* 244

8.1.3 Control Coefficients

The control coefficients, that is the gaihand the bias magnetic moment,,,,s; were

found empirically. The best performance was obtainedkfo= 5 - 10° A%zs and
Meonst = 3 Am?.

8.1.4 Simulation Evaluation

The algorithm for the rate detumbling controller has been verified by a simulation study
in realistic environment of the gravity gradient and the aerodynamic drag torques acting
on the satellite body. Figures 8.2 to 8.4 show simulation results for the initial value of
the satellite angular velocit®..,(t) = [0.10 0.10 0.09] rad/s, which is above the
upper limit of2 rpm for the tumbling satellite after release from the launcher. The an-
gular velocity w.r.t. the World CS depicted in Fig. 8.2 is decreased to absolute value
below5 - 103 %d. The second figure shows the time history of satellite attitude. The
satellite tracks the inverse direction of the geomagnetic field. The inclination angle be-
tween the z principal axis and the local geomagnetic field is influenced by the increase of
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Figure 8.3: Rate detumbling simulation. Satellite tracks the inverse geomagnetic field.
The inclination angle between the z principal axis and the local geomagnetic field is in-
fluenced by the increase of the geomagnetic field rate over equdtod &, 2, and2.5
orbits.
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Figure 8.4: Rate detumbling simulation. The plot shows the steady state deviation of the
boom axis from the zenith for one orbit. The deviation is beddwdeg at56 deg North,
which is the latitude of Denmark.
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the geomagnetic field rate over equator. This phenomena is depicted by periodic peaks
of the inclination angle, here at approximateélyl.5, 2, and2.5 orbits. The last figure

8.4 shows the deviation of the boom axis from the zenith for one orbit. The deviation
is below20 deg at56 deg North, which is the latitude of Denmark. Thus, the boom de-
ployment for the satellite stabilized with use of the biased rate detumbling controller is
feasible.

8.1.5 Pros and Cons
Advantages of the rate detumbling controller are:

e simple implementation,
¢ no three axis attitude information is necessary,
¢ deployment of the boom over Denmark is feasible,

¢ very rough knowledge of moments of inertia is required.

The main disadvantage is that the rate detumbling is not three axis stabilizing controller
thereby alignment of the z axis of the Control CS with the z axis of the Orbit CS, the ideal
situation for the boom deployment, is reached only withi2 deg over Denmark. The
three axis attitude control is possible using the sliding mode control approach described
in Chapter 6, however the necessary attitude information is not available in this mission
phase.

8.2 Science Observation Controller

8.2.1 Objectives

The aim of the science observation control is to provide three axis stabilization of the
satellite after boom deployment. The controller corrects all initial values of the attitude
with the boom uprightto the reference. The referenceis such thatthe boom axis is aligned
with the zenith, and x axes of the Control and the Orbit CSs coincide. Furthermore, an
optional yaw reference for the attitude controller is added.

8.2.2 Control Law
The general structure of the attitude controller for the science observation is as follows

‘m(t) = (H°Q.(t)) x °B(t) < (eq(t)) x °B(t), (8.2)
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where“€2.,. is the angular velocity of the Control CS w.r.t. a Reference Coordinate Sys-
tem. The Reference CS is defined relatively to the Orbit CS by rotation about the z axis
of anangld. q is the vector part dfq, i.e. a quaternion, representing the transformation
from the Reference CS to the Control &$.ande are matrices of control coefficients.

The quaternioriq, see Appendix C, is given by

4= Q(5q)rq, (8.3)

whereQ(-) was defined in Section 2.2 and

ﬁq:[O 0 @%sinﬁ %COSQ]T, (8.4)

finally, 6 is the desired yaw reference.
The angular velocity2... is calculated according to

Qo = “Qow + A7) Qo (8.5)

where™Q,.., = w, [cos 0 <sinf O]T.
Note that the yaw referen€eand180 deg comply with the stable equilibria discussed in
Chapter 7.

8.2.3 Control Coefficients

A proper choice of control parameters is a crucial issue. The moments of inertia for the
Orsted satellite are approximately the same about the x and y principal axes, therefore
zero yaw is no longer a stable equilibrium. Even small perturbations about the boom axis
heavily disturbs yaw from the reference, since the moment of inertia about the z principal
axis is nearly 200 times smaller than ones about other axes. Hence, the influence of the
same torque acting in the direction of the boom axis is 200 times more severe than e.g.
in the direction of the x principal axis.

The control parameteH ande are computed using LQR/Floquettechnique as described

in Section 4.4, however the system and the control matrices are slightly modified in or-
der to incorporate a new yaw reference if necessary, see Appendix C. The weight ma-
trix Q = diag([18 900 18000 18 900 18000]%) was applied for zero yaw reference.
The weight matrix has large values of the components corresponding to yaw and its rate,
Q(3,3),Q(6,6)'. This helps to avoid large fluctuations of the rotation about the boom
axis. Pitch and roll motion is marginally stable due to considerable influence of the grav-
ity gradient torque, but roll and yaw are coupled through dynamics. Therefore, some ad-
ditional punishment on roll and its rat€)(2, 2), Q(5, 5)) is imposed. The weight ma-

trix Q provides the following control gain matrices for the nominal reference (complying

I Notice that for small angles pitch, roll, yaw complies with g2, g3 components of the attitude quaternion.
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Figure 8.5: Simulation of the science observation controller. The plot shows time history
of pitch, roll, yaw for the @rsted satellite influence by the aerodynamic drag torque. The
initial attitude is extreme, pitcRO deg, roll <50 deg, and yaws10. The initial angular
velocity isQ2..,(to) = 0. The steady state deviation is beld®deg in all directions. The
lower plot depicts the Euclidean norm of the magnetic moment, which is much below the

limit of 20 Am?2.
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Recognize also that pitch feedback has pure derivative charactere$indg = 0.

8.2.4 Simulation Evaluation

The controller was evaluated for a large envelope of initial conditions. An examples of
the extreme initial attitude when the boom is only slightly above the horizontal plane
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Figure 8.6: Plot of the aerodynamic drag torque against latitude corresponding to the
attitude as in Fig. 8.5. The amplitude of the aerodynamic torque is maximum at perigee
(latitude45 deg North).
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Figure 8.7: The figure shows time history of the @rsted satellite attitude. The yaw refer-
ence is set t@ = 45 deg. The initial attitude is pitcks80 deg, roll <50 deg, and yaw
10 deg. The initial angular velocity i€2.,(tp) = 0.
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Figure 8.8: The figure shows time history of the @rsted satellite attitude. The yaw ref-
erence is set t6 = 90 deg. The initial attitude is pitch=80 deg, roll 50 deg, and yaw
<10 deg. The initial angular velocitf2,, (o) = 0.

is given in Fig. 8.5. The motion is heavily influenced by the aerodynamic drag torque
plotted in Fig. 8.6. This causes in the steady state motion of pitch, roll, and yaw just
below10 deg. Performance of the science observation controlledfodeg and90 deg

yaw reference is depicted in Figs. 8.7 and 8.8.

Steady state behaviour of the controller is evaluated in Figs. 8.9 to 8.11. Fig. 8.9 shows
steady state motion of the satellite durthgrbits. Deviation of pitch, roll, and yaw from

the nominal reference are plotted as functions of latitude. Particularly good performance
is reached in equatorial regions (latitudes redeg). The largest deviation of the Eu-

ler angles is observed near the North Pole (latit@@léeg), due to prominent influence

of the aerodynamic drag torque encountered at latitiidéeg North and lack of yaw
controllability in the polar regions.

Much attention was devoted to empirical sensitivity analysis of the controller towards un-
certainties of the moments of inertia. Fig. 8.10 depicts steady state performance of the
science observation controller for the moment of inertia about the y principal axis being
10 percent smaller than anticipated for the controller design. The difference befween
andI, is enlarged. Thus, the reference is now the stable equilibrium and much better
performance of yaw is attained. Fig. 8.11 presents steady state performance of the con-
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Figure 8.9: The figure shows steady state performance of the science observation con-
troller during8 orbits. Deviation of pitch, roll, and yaw are plotted as functions of lati-
tude. Well performance is reached in equatorial regions, latitude®aear The largest
deviation of the attitude angles is observed near the North Pole (lafitudey), due to
prominentinfluence of the aerodynamic drag torque at latidde g North and lack of

yaw controllability in the polar regions.

troller when the moment of inertig, is 10 percent larger than assumed for the controller
design. The difference betweépn andl, is negative, therefore the reference is not an
equilibrium and the amplitude of yaw fluctuation is increased.

8.2.5 Pros and Cons
Advantages of the science observation controller are:

o the controller is robust to uncertainties of the moments of inertia,
e it is stable for very wide envelope of initial attitudes,
e itis power efficient,

e itis easy to implement.
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Figure 8.10: The figure shows steady state performance of the science observation con-
troller for the moment of inertia about the y principal axigis 10% smaller than antic-

ipated for the controller design. The difference betwgeandl, is enlarged. Now, the
reference is the stable equilibrium and much better performance of yaw is attained.

The drawback of the controller is that high pointing accuracy is not viable for a satellite
subject to large influence of the aerodynamic drag torque in elliptic orbit. This is due to
the magnetic torquing is lacking controllability in the direction of the local geomagnetic
field.

8.3 Contingency Operation for Inverted Boom

8.3.1 Objectives

The inverted boom controller is activated when the satellite boom is detected to be
upside-down. The objective of the controller is to turn the boom upright, and then
coarsely stabilize the satellite in three axes. Afterwards, the science observation con-
troller takes over.
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Figure 8.11: The figure shows steady state performance of the science observation con-
troller when moment of inerti, is 10% larger than anticipated for the controller design.

The difference betweeh, andI, is negative, therefore the reference is not an equilib-
rium and the performance of yaw is deteriorated.

8.3.2 Control Law

The following control law is implemented

m(t) = {chw(t) X B(®) +e()ialt) x B) i ko >0, oo

0 otherwise.

whereH is a matrix of control parameters, whereais a piecewise continuous matrix
function

€ =€ + €, (8.7)

whereey, is updated in every sampling cycle according to

Lep_q if ¢k, >0,
€ = .
k €h_1 otherwise,

€. is another matrix of control parameters, dang L < 1.
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Figure 8.12: Simulation of the inverted boom controller. The first plot shows time his-
tory of the inclination angle between the z axis of Control CS and the z axis of Orbit
CS. The second plot depicts the inclination between the x axes of the Control and Or-
bit CSs. Finally, the third one illustrates the magnetic moment used for attitude control.
Initial attitude is pitch180 deg, roll and yaw are zeros. The initial angular velocity is
Q.,(to) = 0. It takes quarter of an orbit to turn the satellite boom from upside-down to
upright.

8.3.3 Control Coefficients

The velocity gain was chosen empiricaly = 1 - 10 Ez«3 A}”s. Initial value of the

quaternion gaimy (t,) must be large enough to turn the satellite boom from upside-down
to upright attitudeg;, = 9-10° nggATmz. Furthermore, the forgetting factar= 0.995,

ande. = 3 - 10° Egy 3 Am°,

8.3.4 Simulation Evaluation

The inverted boom controller was evaluated for a large number of initial conditions, both
for the satellite boom pointing ideally toward the Earth centre and just below the hori-
zontal plane. The result of simulation study is summarized in Figs. 8.12 to 8.15. The
simulation for the initial conditions of pitch80 deg, roll 0, yaw0, and the angular ve-
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Figure 8.13: Simulation of the inverted boom controller with the initial conditions cor-
responding to ones in Fig. 8.12. The moment of inertia about the y principal axis is in-
creased by 10 percent. The time necessary to turn the boom upright is approximately
the same as in Fig. 8.12, however, the steady state performance of the inverted boom
controller is now degraded.

locity .,(tp) = 0 is depicted in Fig. 8.12. The first plot shows time history of the
inclination angle between the z axis of Control CS and the z axis of Orbit CS. The sec-
ond plot depicts the inclination between the x axes of the Control and Orbit CSs. Finally,
the third one illustrates the magnetic moment used for attitude control. It takes quarter
of an orbit to turn the satellite boom from upside-down to upright.

Uncertainty of moments of inertia has very little influence on the controller performance.
The moment of inertia about the y principal axis is increased by 10 percent in Fig. 8.13.
The time necessary to turn the boom uprightis roughly the same as in Fig. 8.12, however,
the steady state performance of the inverted boom controller is now degraded.

The energy necessary to turn the satellite from upside-down to upright is minimal when
rotation takes place about the x principal axis. This case is depicted in Fig. 8.14. Initial
attitude is roll180 deg, pitch and yaw are zeros, the initial angular velocit@is, (o) =

0. The controller makes the satellite to rotate about the x principal axis, hence the energy
necessary to turn the satellite boom from upside-down to upright is minimal. The control
system generates too much kinetic energy, and the boom rotates upright, then upside-
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Figure 8.14: Inverted boom controller simulation. Initial attitude is 18l) deg, pitch

and yaw are zeros. The initial angular velocitfds,(to) = 0. The controller makes the
satellite to rotate about the x principal axis, hence energy necessary to turn the satellite
boom from upside-down to upright is minimal. The controller generates to much energy,
such that the boom rotates upright and then upside-down once again. The controller is
disactivated whefik,. < 0 and waits until the boom is above the horizon. As soon as
°ko» > 0, itis switched on and the remaining portion of energy is dissipated.

down once again. The controller is disactivated when < 0 and waits until the boom
is above the horizon. As soon &s,. > 0, it is switched on and the remaining portion
of energy is dissipated.

Simulation for the initial attitude such that the boom is just below the horizon plane
is shown in Fig. 8.15 (the initial values of the attitude and the angular velocity: pitch
100 deg, roll 30 deg, yaw 40 deg and“Q2..,(to) = 0). Acceleration imposed by the at-
titude controller is large. The satellite starts to tumble slightly, however, after one orbit
the attitude is acquired and the solution trajectory converges to the reference.

8.3.5 Pros and Cons

The boom inverted controller is easy to implement, its structure is essentially the same
as one for the science observation controller, except that a varying attitude gain matrix
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Figure 8.15: The inverted boom controller is activated for the following initial values of
the attitude and angular velocity: pit¢h0 deg, roll 30 deg, yaw40 deg and®€2.,(ty) =

0 (the boom is just below the horizon). The acceleration imposed by the attitude con-
troller causes the satellite to tumble immediately, and after one orbit the attitude is ac-
quired and the solution trajectory converges to the reference.

is applied. The controller performance is independent on exact knowledge of moments

of inertia.






Chapter 9

Conclusions and
Recommendations

9.1 Conclusions

The main results of the work are summarized in this chapter. The primary purpose of the
research was to develop control laws for three axis stabilization of a magnetic actuated
satellite. Chapters 2 to 8 discussed the following

e Model of a low Earth orbit satellite was presented in terms of the quaternion at-
titude parameterization. Potential and kinetic energy was established. Model of
motion was linearized using multiplicative nature of quaternion calculus.

¢ Introduction to periodic linear system was provided, where central part was de-
voted to the periodic differential Riccati equation. A number of control algorithms
were elaborated including the infinite horizon, finite horizon and constant gain op-
timal controllers.

¢ Introduction to stability theory of nonlinear periodic systems was given.

¢ Sliding mode controller for a satellite actuated by a set of magnetic coils was es-
tablished. A sliding manifold was designed, and a coninuous sliding condition was
developed. The controller was tested in simulation test study.

¢ Both locally and globally stabilizing controllers based on energy dissipation tech-
nigues were proposed, and a rigorous stability analysis was carried out. Simulation
results showed the proficiency of the new controller in the upside-down configu-
ration, the worst case situation for the satellite.
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e The attitude controllers implemented for the @rsted satellite were tested in the
realistic space environment simulator. Simulation was based on high fidelity mod-
els of the satellite dynamics and environmental disturbances.

The overall performance of the attitude controllers given in this thesis indicated applica-
bility of the magnetic actuation on low Earth near polar orbit satellites, which pointing
requirements are not very high. The magnetorquing was found especially useful on cir-
cular orbit for which influence of the aerodynamic drag is marginal.

9.2 Recommendations

The following topics are not covered in this work but it is believed that future investiga-
tion could be beneficial.

¢ Design of the magnetic attitude control based on robust techniques needs to be in-
vestigated. This issue is not trivial, due to the system is time varying and lacking
controllability in the direction of the local geomagnetic field vector. Some theoret-
ical work based on the frequency shaping method has already been initiated, e.g.
Zhanget al. (1996).

¢ It seems promising to design an attitude controller based on fuzzy logic and the
energetic approach covered in Chapter 7. An anticipated control structure is pro-
portional derivative vector product with the local geomagnetic field vector. The
control parameters are dependent on the attitude, and are determined by a fuzzy
logic technique.

e Performance of the attitude control system can be increased by adding a reaction
wheel in the direction of the x principal axis. Now, rejection of external distur-
bances is viable since the aerodynamic drag and the torque due to ellipticity of an
orbit act predominantly on pitch. It is expected that the methods described in this
thesis are still applicable with some necessary modifications.
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Appendix A

Orbit and Atmospheric Density
Models

Simulation is based on high fidelity models of satellite dynamics and environmental dis-
turbances. The focus in this appendix is on the models of the aerodynamic drag torque,
orbit propagation, and geomagnetic field model.

A.1 Modeling of Satellite Geometry

An approximation of the satellite structure by a collection of simple geometrical figures
has been assumed. The aerodynamic force on each element according to Wertz (1990)
is determined by integrating the following equation

1
dfaero = <:>§CDP"L’2 (ﬁ ' ‘A’)dA, (Al)

wheredA is the surface element, is an outward normal to the surface,is the unit
vector in the direction of translational velocity C'p is the drag coefficient, angis the
atmospheric density.

The total aerodynamic torque in Wisniewski (189% the vector sum of the torques
acting on individual parts of the satellite

k
Naero = Zri X Fi, (A2)
i=1
wherer; is the vector from the spacecraft centre of mass to the centre of pressure of the
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Figure A.1: Satellite structure decomposed into simple geometrical figures

ith element as in Figure A.1. The individual parts of the Jrsted satellite assembly are
given in Table A.1.

A.2 Atmospheric Density Model

The NASA/GSFC Jacchia-Roberts Cappellari (1976) thermospheric density model is an
empirical model of the neutral thermosphere and lower exosphere (86 to 2000 km). The
atmospheric density modelled by Jacchia-Roberts is dependent on:

e solar activity,

geodetic latitude,

longitude,

universal time,

magnetic activity,

semiannual, semidiurnal, terdiurnal, and diurnal variations.
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Table A.1: Model of drsted satellite geometry

Part Shape | Dimension[m]| CoP [m]

Main body cuboid | height: 0.182 | 0.35
length: 0.125
width: 0.34

Lower boom segment cylinder | diam.: 0.024 | 3.40
length: 5.385

Lower platform cylinder | diam.: 0.195 | 6.25
length: 0.34

Upper boom segment cylinder | diam.: 0.018 | 7.37
length: 1.884

Upper platform cylinder | diam.: 0.182 | 8.37
length: 0.125

A.3 Orbit Propagation Model

The Norad SGP-4 orbital model Hoots and Roehrich (1980) is assumed. SGP-4 is an
analytical model for prediction of satellite position and velocity for LEO satellites. The
model incorporates perturbations due to:

e Atmospheric drag (based on a static, non rotating, spherically symmetric atmo-
sphere described by a power density function),

¢ Fourth-order zonal geopotential harmonics (J2, J3, and J4),
e Spin-orbit resonance effects for synchronous and semi-synchronous orbits,

e Solar and lunar gravitational effects to first order.

A.4 Geomagnetic Field Model

The 10th order IGRF (International Geomagnetic Reference Field) spherical harmonic
model is implemented Wertz (1990). The Earth’s magnetic field is represented as the gra-
dient of a scalar potential function given by a series of a spherical harmonics multiplied
by empirically determined Gaussian coefficients.



Appendix B

Rate Detumbling Controller

The objectives of the rate detumbling control is to decrease kinetic energy and to turn
the satellite in the direction of the local geomagnetic field. The controller utilizes only
measurements of the geomagnetic field vector. The baseline for the design is that the
influence of the gravity gradientand aerodynamic drag torque are negligible. The gravity
gradient torque is small since the principal moments of inertia are of the same order of
magnitude, furthermore the active area of the satellite in the boom stowed configurationis
small, thus the influence of the aerodynamic torque is insignificant. The work presented
in this appendix is based on Wisniewski (1894

A proposed control law is
‘m = kB Smeonst, (B.1)
wherem.,,s: = [0 0 mconst]”, then the control torque is given by
‘Netrt = (5B ©meppst) X °B. (B.2)
Information about the satellite rotation in an inertial coordinate system can be extracted
from the rate of the local geomagnetic field
‘B =B x“Qy +5AYB ~ °B x “Qy. (B.3)

This assumption is valid for the rate of the geomagnetic field in the regions near the North
and the South Poles, sin€@ is smallest, however near the Equator the rate of geomag-
netic field reaches its maximum value

[“B]| ~ 3.8["B||w, (B.4)

Recall that the boom deployment is to be executed from the Danish ground stations, and
therefore the objective is to derive control law which is as accurate as possible near the
North Pole or more precisely over Denmark.
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The Lyapunov direct method covered in Chapter 5 is used in this analysis to design con-
trol law for despinning the satellite from an arbitrary initial tumbling. It is proved that
kinetic energy of the satellite rotation is dissipated.

The Lyapunov function represents energy in a physical system, here the sum of kinetic
energy and potential energy. The kinetic energy’@T 1°Q.,,, Wwhereas the potential

cw

energy can be representedas.,,,:||°B|+mZ  _,¢B, whichis proportionalto the incli-

nation angle between the z axis of the Control CS and the local geomagnetic field vector.
Finally, the entire energy of the satellite motion and a Lyapunov candidate function is

]'C C c c
E = 5 QL 1°Q., + [Meonst||°Bl + mZ B, (B.5)

Applying the dynamics in Eqg. (2.12) and neglectiNg, the derivative of the Lyapunov
function is
Ep ~ QL N +mZ B, (B.6)

since the magnitude of the geomagnetic field vector in the polar regions is approximately
constant.

Using Eq. (B.3) the time derivative of the satellite energy is

E,= kBT Bem! B+ m! ,°B=«ckBT°B, (B.7)
which is negative semidefinite. This corresponds to Eq. (7.9) in Section 7.1, hence it is
concluded that the energy (B.5) is dissipated, indeed.

The approximate analysis of the rate detumbling control law was provided. The antic-

ipated results are such that kinetic energy is dissipated and the satellite well tracks the
geomagnetic field in the polar regions. Some deviations from the desired performance
are expected over the equator, compare this with simulation results given in Section 8.1.



Appendix C

Yaw Reference

The moments of inertia about the x and y principal axes are approximately equal, there-
fore an arbitrary yaw reference in the @rsted attitude control system could be imple-
mented. Now, the objective of the controller is to turn the satellite such that the Control
CS coincides with a Reference Coordinate System. The Reference CS is defined rela-
tively to the Orbit CS as rotation about the z axis of the desired yaw refefence

C.1 Reference Coordinate System and Its Rate

The orientation of the Reference CS w.r.t. the Orbit CS is given by a quat€jgioh

unit quaternion according to Section 2.2 is given by the axis of rotation with the unit
vectore and the angle of rotatiop. For rotation about the z principal axishas only the
third component different from zero, furthermore the angmrresponds to the desired
yaw referencé

T
"q= [O 0 sin g cos g] . (C.1)

Now, the rotation of the Control CS in the Reference CS is
+4=Q(q)7q, (C.2)

whereQ(-) was defined in Section 2.2, afid = [0 0 <»sin £ cos £]7 is the inverse of
04

The reference for the angular velocity'®.,, = 0. Having the satellite angular velocity
w.r.t. the World CS¢£Q,,. is calculated

Cﬂcr = Cﬂcw + A(iq)rﬂrw, (C3)
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where”™Q2,.,, is the angular velocity of the Reference CS w.r.t. the World CS, which is

" = ACA)°Qrw = ACQ)°Qow = wo [cos 0 &sinf O]T.
(C.4)

The findings of the linear attitude control methods developed in Chapters 3 and 4 are
directly applicable, however, a new linearization about the reference quatégéom
angular velocity €2,.,, is needed.

The linearization method is the same as in Section 2.6. The linearization of the angular
velocity is based on the first order extension of the Taylor series, whereas the multiplica-
tive linearization of the attitude quaternipq is applied, and a small perturbation of the
attitude quaternion is

“qn [‘51“] | (€5)

C.2 Linearized Dynamics

The equation of dynamics is divided into the cross coupling, the contribution of the grav-
ity gradient torque and the part due to control torque

%69 = §(Cross Coupling+ I~'§(Gravity Gradient Torque+ I~'§(Control Torque.

(C.6)
C.2.1 Linearization of Cross Coupling
Oz “Wewy “Wews Eo,wedwssin 6
Cross Coupling= | 0, wew:“Wews | =~ Oywodw,cos ,
0 “Wewa “Wewy 0:Wo(0wycos § &dwy sin )
(C.7)
where
I, &I, I.&1, I, &1,
Tz — ; - , Oz = C.8
o I, oy 7, o T, (C.8)

C.2.2 Linearization of Gravity Gradient Torque

@26QQ <:>2[x6QQ (I; <:>Iy)6q1
Gravity Gradient Torques 3w? | 201 | x | 2L,6q1 | =6w2 | (I, ©1,)dq
1 I, 0.
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C.2.3 Linearization of Control Torque

Control Torque= “m x A(7q)"B ~ ‘m x "B &2°m x (dq x "B) ~ ‘m x "B,
(C.10)

where"B = A("q) °B is the local geomagnetic field vector resolved in the Reference
CSs.

C.3 Linearized Kinematics

C.3.1 Linearized Kinematic Equation

d 1 1 1
—q==°Q., ~cQ,., ~=Q,. C.11
7475 IS xq~ (C.11)

Now, according to Eq. C.4 the linearized kinematics is

d

T
704 ]

1 1
= 569 <:>§ [wocos 0 <w,sin b O]T Sdq X [wocos 0 wysinf 0
dwy Sw,ocos 0 + 2w,dqzsin 6 -|
- dwy + wosin 0 + 2wydqscos 0 . (C.12)
[ dw, ©2w,0q2c080 &2w,q1sin 6 J

C.4 Linearized Equation of Satellite Motion

The matrix form of the linearized satellite motion is

d | 69 0
— =A B(t)‘'nx C.13
dt{sq} [5q]+()m’ (€13)
where
0 0 Ewooysinfd  Lko, 0 0
0 0 Wo0y oS 0 0 2koy 0
A= Ewoo.8inl  w,o.cos O 0 0 0 0
o % 0 0 0 0 wesin @ |’
0 % 0 0 0 wycos 0
0 0 % Ew,sin f Sw,cos 0 0
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