
 

  

 

Aalborg Universitet

Satellite Attitude Control Using Only Electromagnetic Actuation

Wisniewski, Rafal

Publication date:
1997

Document Version
Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):
Wisniewski, R. (1997). Satellite Attitude Control Using Only Electromagnetic Actuation. Aalborg
Universitetsforlag.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 27, 2020

https://vbn.aau.dk/da/publications/bd5a44c0-0034-11da-b4d5-000ea68e967b


Satellite Attitude Control Using
Only Electromagnetic Actuation

Ph.D. Thesis

Rafał Wi śniewski
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Summary

The primary purpose of this work was to develop control laws for three axis stabilization
of a magnetic actuated satellite. This was achieved by a combination of linear and non-
linear system theory. In order to reach this goal new theoretical results were produced in
both fields. The focus of the work was on the class of periodic systems reflecting orbital
motion of the satellite. In addition to a theoretical treatment, the thesis contains a large
portion of application considerations. The controllers developed were implemented for
the Danish Ørsted satellite.

The control concept considered was that interaction between the Earth’s magnetic field
and a magnetic field generated by a set of coils in the satellite can be used for actuation.
Magnetic torquing was found attractive for generation of control torques on small satel-
lites, since magnetic control systems are relatively lightweight, require low power and are
inexpensive. However, this principle is inherently nonlinear and difficult to use, because
control torques can only be generated perpendicular to the geomagnetic field vector. So
far, this has prevented control in all three axes using magnetorquers only.

A fact that the geomagnetic field changed periodically when a satellite is on a near po-
lar low Earth orbit was used throughout this thesis. Confined computer capacity and a
limit on electrical power supply were separate obstacles. They demanded computational
simplicity and power optimality from the attitude control system. The design of quasi
optimal controllers for a real-time implementation was a subject of considerations in the
part on linear control methods for a satellite with a gravity gradient boom. Both time
varying and constant gain controllers were developed and their performance was tested
via simulation.

The nonlinear controller for a satellite without appendages was given in the second part
of the thesis. Its design was based on sliding mode control theory. The essence of the
sliding control presented in the thesis was to split the controller design into two steps: a
sliding manifold design and a sliding condition design. The emphasis was on the sliding
condition design, which was stated as a continuous function of the state. A control law
for magnetic actuated satellite was proposed.

Complete comprehensionof the nature of the satellite control problem required a new ap-
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viii Summary

proach merging the nonlinear control theory with physics of the rigid body motion and
an extension of earlier results in this field using the theory of periodic systems. The Lya-
punov stability theory was employed based on the potential and kinetic energy of the
rigid satellite. A velocity controller, that contributes to dissipation of both kinetic and
potential energy, was proposed. The velocity control was shown to provide four stable
equilibria, one of which was the desired orientation. It was explained how the equilibria
depended on the ratio of the satellite’s moments of inertia. It was further investigated
how to control the attitude, such that the satellite was globally asymptotically stable in
the desired orientation, avoiding the undesired equilibria.

The main contribution of this work was to show that three axis control can be achieved
with magnetorquers as sole actuators in a low Earth orbit. A rigorous stability analysis
was presented, and detailed simulation results showed convincing performance over the
entire envelope of operation of the Danish Ørsted satellite. The key results have also been
published in international papers.



Synopsis

Det overordnede m˚al med dette arbejde har været at udvikle kontrolsystemer inden-
for treakse-stabilisering af magnetisk styrede satellitter. For at n˚a dette m˚al, måtte nye
teoretiske resultater udvikles inden for b˚ade lineær og ikke-lineær systemteori. De
er anvendt p˚a den type af periodiske differentialligninger, som beskriver satellittens
bevægelse i en bane. De udviklede regulatorer er implementeret p˚a den Danske Ørsted
Satellit.

Magnetisk styring af satellitter fungerer ved interaktion mellem Jordens magnetiske felt
og et kunstigt genereret magnetisk moment i satellitten, som frembringes ved hjælp af
elektriske spoler. Dette princip kan med fordel anvendes i mindre satellitter p˚a baner tæt
på Jorden. Anvendelse af spoler er atraktiv, de indeholder ingen bevægelige dele, deres
el-forbrug minimalt sammenlignet med andre aktuatorer, f.eks. momentumhjul, og deres
vægt er relativt lille. Det er dog problematisk at designe reguleringsstrategier med tradi-
tionelle metoder, da et styringsmoment kun kan generes vinkelret p˚a den geomagnetiske
felt-vektor. På grund af de teoretiske vanskelighederhar man ikke tidligere anvendt mag-
netiske spoler for treakse-stabilisering.

Ved praktiske implementering opst˚ar der yderligere vanskeligheder i form af begrænsede
system-ressourcer. Krav om begrænset styreeffekt, lille regnekapacitet og snævre
grænser for brug af computerlager skal opfyldes for at en teoretisk løsning kan im-
plementeres. Afhandlingen bidrager med at løse b˚ade det teoretiske og implemente-
ringsmæssige problem. Dette er opn˚aet i afsnittet om lineære reguleringsmetoder ved
en optimal retningstyring implementeret i realtid. Tidsvarierende kontrol parametre de-
signes udfra den periodiske karakter af det geomagnetiske felt i en polær bane satellit,
således at realtids algoritmen simplificeres væsentligt. Designet er evalueret via simule-
ring af en ikke-lineære bevægelsemodel for satellitten. Det vises at en regulator baseret
på linære metoder er velegnet for en satellit med udfoldet bom.

Inden bommen udfoldelse ligger satellittens inertimomenter s˚a tæt på hinanden, at ikke-
lineære led bliver dominerende for beskrivelsen af dens bevægelse. I denne tilstand er en
ikke-lineær regulator p˚akrævet. Anvendelsen af ikke-lineære kontrol metoder og teori
for periodiske systemer samt en fysisk forst˚aelse af satellittens bevægelse præsenteres
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x Synopsis

for at give et indblik i de centrale problemer med retningstyring. Lyapunovs stabilitets-
analyse anvendes p˚a satellittens potentielle og kinetiske energi. Resultatet er en vinkel-
hastighedsregulator, som mindsker den totale energi i systemet. Det vises, at vinkel-
hastighedsregulatoren har fire stabile ligevægts-punkter, som er bestemt af satellittens
inertimomenter. Et af ligevægtspunkterne svarer til den ønskede retning for satellitten.
Der er desuden designet en global stabil regulator, som garanterer, at satellitten ikke en-
der i et af de uønskede ligevægts-punkter.

Arbejdet bidrager med at vise, at treakse-stabilisering kan opn˚as alene ved hjælp af mag-
netisk styring, og at de udviklede principper velegnet til sm˚a satellitter i polære baner tæt
på Jorden. Der præsenteres en gennemarbejdet stabilitetsanalyse med design af regula-
torer og detaljerede simuleringsresultater giver et overbevisende billede af styresystemet
anvendt p˚a den Danske Ørsted Satellit. Udover at være indeholdt i afhandlingen er de
vigtigste resultater publiceret internationalt som separate papers.
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2

T
. : : : : : : : : : : : : 109

7.12 ckoz characterizes convergence ofcko towardsoko (if ckoz < 0 satellite is
upside-down), whereasciox characterizes convergence ofcio towardsoio : : : 109

7.13 The attitude quaternion,coq converges to[0 0 0 1]T from an upside-down attitude. 110

7.14 The velocity and attitude gains are1 � 108 Ams
T

and27 � 105 Am
2

T
respectively.

The attitude controller is activated whenckoz > 0 (if ckoz � 0 thencm = 0). : 110

7.15 Performance of the attitude controller in Procedure 7.4. First, the destabilizing
controller in Eq. (7.44) is activated, then after1

3
orbit the rate/attitude controller

takes over. The satellite trajectory converges to the referenceckoz = 1 and
ciox = 1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112

8.1 Architecture of the attitude control system consisting of the rate detumbling con-
troller, the science observation controller and the continence operation controller
for the inverted boom.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : 116

8.2 Rate detumbling simulation. The controller decreases initially high angular ve-
locity 1:6 � 10�1 rad

s
to absolute value below5 � 10�3 rad

s
: : : : : : : : : : : 118

8.3 Rate detumbling simulation. Satellite tracks the inverse geomagnetic field. The
inclination angle between the z principal axis and the local geomagnetic field is
influenced by the increase of the geomagnetic field rate over equator at1 , 1:5, 2,
and2:5 orbits. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 119

8.4 Rate detumbling simulation. The plot shows the steady state deviation of the
boom axis from the zenith for one orbit. The deviation is below20 deg at56 deg
North, which is the latitude of Denmark.: : : : : : : : : : : : : : : : : : : : 119

8.5 Simulation of the science observation controller. The plot shows time history of
pitch, roll, yaw for the Ørsted satellite influence by the aerodynamic drag torque.
The initial attitude is extreme, pitch80 deg, roll�50 deg, and yaw�10. The ini-
tial angular velocity is
co(t0) = 0. The steady state deviation is below10 deg
in all directions. The lower plot depicts the Euclidean norm of the magnetic mo-
ment, which is much below the limit of20 Am2. : : : : : : : : : : : : : : : : 122

8.6 Plot of the aerodynamic drag torque against latitude corresponding to the attitude
as in Fig. 8.5. The amplitude of the aerodynamic torque is maximum at perigee
(latitude45 deg North). : : : : : : : : : : : : : : : : : : : : : : : : : : : : 123

8.7 The figure shows time history of the Ørsted satellite attitude. The yaw reference
is set to� = 45 deg. The initial attitude is pitch�80 deg, roll�50 deg, and yaw
�10 deg. The initial angular velocity is
co(t0) = 0. : : : : : : : : : : : : : 123

8.8 The figure shows time history of the Ørsted satellite attitude. The yaw reference
is set to� = 90 deg. The initial attitude is pitch�80 deg, roll 50 deg, and yaw
�10 deg. The initial angular velocity
co(t0) = 0. : : : : : : : : : : : : : : 124



List of Figures xxi

8.9 The figure shows steady state performance of the science observation controller
during8 orbits. Deviation of pitch, roll, and yaw are plotted as functions of lati-
tude. Well performance is reached in equatorial regions, latitudes near0 deg. The
largest deviation of the attitude angles is observed near the North Pole (latitude
90 deg), due to prominent influence of the aerodynamic drag torque at latitude
45 deg North and lack of yaw controllability in the polar regions.: : : : : : : 125

8.10 The figure shows steady state performance of the science observation controller
for the moment of inertia about the y principal axis,Iy is 10% smaller than an-
ticipated for the controller design. The difference betweenIx andIy is enlarged.
Now, the reference is the stable equilibrium and much better performance of yaw
is attained.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 126

8.11 The figure shows steady state performance of the science observation controller
when moment of inertiaIy is 10% larger than anticipated for the controller de-
sign. The difference betweenIx andIy is negative, therefore the reference is not
an equilibrium and the performance of yaw is deteriorated.: : : : : : : : : : : 127

8.12 Simulation of the inverted boom controller. The first plot shows time history of
the inclination angle between the z axis of Control CS and the z axis of Orbit CS.
The second plot depicts the inclination between the x axes of the Control and Or-
bit CSs. Finally, the third one illustrates the magnetic moment used for attitude
control. Initial attitude is pitch180 deg, roll and yaw are zeros. The initial angu-
lar velocity is
co(t0) = 0. It takes quarter of an orbit to turn the satellite boom
from upside-down to upright. : : : : : : : : : : : : : : : : : : : : : : : : : 128

8.13 Simulation of the inverted boom controller with the initial conditions correspond-
ing to ones in Fig. 8.12. The moment of inertia about the y principal axis is in-
creased by 10 percent. The time necessary to turn the boom upright is approx-
imately the same as in Fig. 8.12, however, the steady state performance of the
inverted boom controller is now degraded.: : : : : : : : : : : : : : : : : : : 129

8.14 Inverted boom controller simulation. Initial attitude is roll180 deg, pitch and yaw
are zeros. The initial angular velocity is
co(t0) = 0. The controller makes the
satellite to rotate about the x principal axis, hence energy necessary to turn the
satellite boom from upside-down to upright is minimal. The controller generates
to much energy, such that the boom rotates upright and then upside-down once
again. The controller is disactivated whenckoz � 0 and waits until the boom
is above the horizon. As soon asckoz > 0, it is switched on and the remaining
portion of energy is dissipated.: : : : : : : : : : : : : : : : : : : : : : : : : 130

8.15 The inverted boom controller is activated for the following initial values of the
attitude and angular velocity: pitch100 deg, roll 30 deg, yaw 40 deg and
c
co(t0) = 0 (the boom is just below the horizon). The acceleration imposed
by the attitude controller causes the satellite to tumble immediately, and after one
orbit the attitude is acquired and the solution trajectory converges to the reference.131

A.1 Satellite structure decomposed into simple geometrical figures: : : : : : : : : 140





List of Tables

1.1 The Ørsted satellite mission: : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.2 Sensors and actuators used for the Ørsted satellite attitude control: : : : : : : : 2

7.1 A summary of the properties of the magnetic attitude control.: : : : : : : : : : 113

A.1 Model of Ørsted satellite geometry: : : : : : : : : : : : : : : : : : : : : : : 141

xxiii





Nomenclature

Glossary

Space Terminology

� Apogeeis the point at which a satellite in orbit around the Earth reaches its farthest distance
from the Earth.

� Attitude of a spacecraft is its orientation in a certain coordinate system.

� Altitude is the distance from a referencegeoid to the satellite.

� Boom is upright boom tip is above horizon.

� Boom is upside-downboom tip is below horizon.

� Ecliptic is the mean plane of the Earth’s orbit around the Sun.

� Eclipseis a transit of the Earth in front of the Sun, blocking blocking all or a significant part
of the Sun’s radiation.

� Geoid is an equipotential surface that coincides with mean sea level in the open ocean.

� Latitude is the angular distance on the Earth measured north or south of the equator along
the meridian of a satellite location.

� Longitude is the angular distance measured along the Earth’s equator from the Greenwich
meridian to the meridian of a satellite location.

� Mean Anomaly is the angle from theperigeeto the satellite moving with a constant angular
speed (orbital rate !o) required for a body to complete one revolution in an orbit. Mean
anomaly,M , is!o�t, where�t is the time since last perigee passage.

� Orbital rate is the mean angular velocity of the satellite rotation about the Earth.

� Pitch, Roll, Yaw are the angle describing satellite attitude. Pitch is referred to the rotation
about the x-axis of a reference coordinate system, roll to the y-axis, and yaw to the z-axis.

� Perigeeis the point at which a satellite in orbit around the Earth most closely approaches
the Earth.

� Vernal Equinox is the point where theecliptic crosses the Earth equator going from south
to north.

� Zenith is a unit vector in the Control Coordinate System along the line connecting the satel-
lite centre of gravity and the Earth centre pointing away from the Earth.
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Mathematics and Control Theory

� Autonomous systema system which is time invariant.

� Class K a functionf : R+ ! R+ is of class K if it is continuous, strictly increasing, and
f(0) = 0.

� Class L a functionf : R+ ! R+ is of class L if it is continuous, strictly decreasing,
f(0) <1, andlimr!1 f(r) = 0 andf(0) = 0.

� Connected seta set is connected if it is not disconnected. A setS is called disconnected if
S = A [ B, whereA andB are are disjoint sets inS, for every subsetsA;B � S.

� Decrescent functiona functionf : R+ �R
n
! R is said to be decrescent in a neighbour-

hoodBr if there exist a constantr > 0 and a function� of class Ksuch that for eacht > 0

and for eachx 2 Br

f(t;x) � �(k x k):

� Locally positive definite function a functionf : R+ � R
n
! R is said to be locally

positive definite in a neighbourhoodBr if it is continuous, furthermore for allt � 0 the
functionf(t; 0) = 0, and there exist a constantr > 0 and a function� of class Ksuch that
for eacht > 0 and for eachx 2 Br

�(k x k) � f(t;x):

� Negative definite functiona functionf : R+ � R
n
! R is said to be negative definite if

�f is positive definite function.

� Non autonomous systema system which is time dependent.

� Positive definite functiona functionf : R+ � R
n
! R is said to be positive definite if it

is locally positive definitefor all x 2 Rn

� Radially unboundedapositive definite functionf : R+ �R
n
! R is said to be radially

unbounded if there exists a continuous function
 such that
(r)!1 asr!1.

Acronyms and Abbreviations

ACS Attitude Control Subsystem,
CS Coordinate System,
CSC Compact Spherical Coil, Magnetometer,
GPS Global Positioning System,
LEO Low Earth Orbit,
r.h.s. right hand side,
l.h.s. left hand side,
rpm revolutions per minute,
w.r.t with respect to.
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Notation

Vectors and Matrices

A;v matrices and vectors are written in bold type,
cv; ov;wv vectorv resolved in Control CS, Orbit CS or World CS respectively,
vox; voy; voz x, y, and z components of vectorvo,
P >= 0 a matrixP is positive semidefinite,
P > 0 a matrixP is positive definite,
P1 > P2 the difference of matrices(P1 �P2) is positive definite,
diag([a1 a2 : : : an]

T ) diagonal matrix with components on diagonal corresponding to
[a1 a2 : : : an]

T and zero off-diagonal components.

List of Symbols


cw angular velocity of Control CS w.r.t. World CS,

co angular velocity of Control CS w.r.t. Orbit CS,

ow angular velocity of Orbit CS w.r.t. World CS,
c
oq attitude quaternion representing rotation of Control CS w.r.t. Orbit CS,
q; q4 vector part and scalar part ofcoq,
A(coq) attitude matrix based oncoq,
io; jo;ko unit vector along x-, y-, z-axis of Orbit CS,
�q small perturbation of vector part of attitude quaternion,c

oq,
�
 small perturbation of angular velocityc
co,
!o orbital rate,
T period of orbit,
ho angular momentum due to satellite revolution about the Earth,
M mean anomaly,
I inertia tensor of the satellite,
Ix; Iy; Iz moments of inertia about x-,y- and z-principal axes,
Nctrl control torque,
Ngg gravity gradient torque,
Ndist disturbance torques,
Naero aerodynamic drag torque,
Ekin kinetic energy,
Egg energy due to gravity gradient,
Egyro energy due to satellite revolution about Earth,
m magnetic moment generated by set of coils,
B magnetic field of Earth,
~B matrix representation of productB�,
B̂ control matrix averaged within one orbit,
ncoil number of coil windings,
Acoil coil area,
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icoil current in coil,
x(t; t0;x0) solution of non autonomous differential equation_x(t) = f(t;x(t))

at time t for initial conditionsx(t0) = x0,
x(t;x0) solution of autonomous differential equation_x(t) = f(x(t)) at time t
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(f has continuous partial derivatives),
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S Sliding manifold,
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Chapter 1

Introduction

1.1 Background

The aim of this Ph.D. thesis is to develop control algorithms for a magnetic actuated satel-
lite. The work has been motivated and supported by the Ørsted Satellite Project and the
Faculty of Technology and Science at Aalborg University. The Ørsted satellite is a 60 kg
auxiliary payload scheduled to be launched by a MD-Delta II launch vehicle in the late
1997 into a 450 x 850 km orbit with a 96 degree inclination. The satellite is developed by
a consortium of Danish research organizations and space industries. Details of the orbit
parameters and the satellite system are listed in Table 1.1.

The purpose of the Ørsted satellite is to conduct a research program in the discipline of
the magnetic field of the Earth. The scientific payload fulfills two major objectives. The
primary is to measure and collect data of the Earth’s magnetic field. The secondary is
to provide measurements of radiation from the high energy particles. The Ørsted satel-
lite will carry five science experiments in order to meet these objectives: a CSC magne-
tometer (providing 3-axis measurements of the local geomagnetic field), an Overhauser
magnetometer (a scalar magnetometer providing the amplitude of the magnetic field of
the Earth), particle detectors (detecting electrons, protons and alpha particles), two GPS
receivers (used for position determination), a star imager (measuring the satellite attitude
relative to an inertial coordinate system). Furthermore, a set of wide angle sun sensors
measuring the Sun incident angle has been added to the instrument set solely for the pur-
pose of Attitude Control Subsystem (ACS). Table 1.2 gives an overview of the sensors
and actuators used by the ACS.

The Ørsted satellite’s main body is box shaped,680mm high x450mmwide x340mm

deep. The solar arrays cover all sides except the bottom. The satellite separation mech-
anism, which is the interface with the launch vehicle, is mounted on the bottom side of

1
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Table 1.1: The Ørsted satellite mission

Item Description
Body size H 680 x W 450 x D 340mm

Boom 8m Deployable
Mass 61:8 kg
Moments of inertia about principal axes:
boom deployed X 181:78, Y 181:25, Z 1:28 kgm2

boom stowed X 3:428, Y 2:904, Z 1:275 kgm2

Apogee 850km
Perigee 450km
Inclination 96.4deg
Nodal drift 0.77deg=day

Table 1.2: Sensors and actuators used for the Ørsted satellite attitude control

Item Description
Star Imager Provides attitude estimates with the angular resolution

of 10 arc sec w.r.t. the Word CS,
Set of Sun Sensors Provides the x,y, and z components of the sun vector

within 4� steradian coverage,
CSC Magnetometer Measures the x, y and z components of the magnetic

field with an accuracy of1:5 nT (RMS).
GPS Receiver Provides time, local position and velocity estimates

with accuracy100m (2RMS),0:2m=s respectively,
Magnetorquers 3 electromagnetic coils mounted on the x, y and z

facets of the satellite main body providing maximum
magnetic moment of 20Am2.

the satellite body.

After separation from the launch vehicle the ACS shall acquire the satellite from a ran-
dom tumbling. This mission phase is called the detumbling phase. When the satellite is
firmly stabilized and the ground contact is established, an8 m long boom is deployed
by ground command. The boom carries the scientific instruments that must be displaced
from the electro-magnetic disturbances present in the main body of the satellite. The part
of the mission after boom deployment is referred to as the normal operation or the science
observation phase. The Ørsted satellite configuration after boom deployment is depicted
in Fig. 1.1.
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Gondola
Star Tracker
CSC vector magnetometer
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Magnetorquers
Charged particle detectors
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Figure 1.1: The Ørsted satellite consists of a main body and an 8 m long scientific boom.

Stabilization of the Ørsted satellite is accomplished by active use of a set of mutu-
ally perpendicular coils called magnetorquers. Magnetic control systems are relatively
lightweight, require low power and they are inexpensive. The coils are mounted in the x,
y, and z facets of the satellite main body. A maximum producible magnetic moment is 20
Am2. The interaction between external magnetic field of the Earth and the magnetic field
generated in the coils produces a mechanical torque, which is used to correct the attitude,
i.e. the rotation of the satellite relative to a reference coordinate system. The maximum
mechanical torque produced by the coils is approximately0:6�10�3Nm above the equa-
tor, and1:2 � 10�3 Nm above the Poles. The current sent into the magnetorquer coils by
the controller is dependent on the attitude and angular velocity information obtained from
the attitude determination system Baket al. (1996). The attitude determination system
uses measurements from the star imager, or alternatively magnetometer and sun sensor
data in an extended Kalman filter.

The control objectives vary dependent on the mission phase. Following separation from
the launch vehicle, the satellite will rotate with a comparatively large angular velocity (up
to 2 rpm). The attitude determination system is inactive in detumbling phase due to lack
of position information. The only attitude information is the local geomagnetic field. A
rate detumbling control is activated in this mission phase Wisniewski (1994a). The rate
detumbling controller is required to despin the satellite from an arbitrary initial tumbling
and turns the satellite in the direction opposite to the geomagnetic field vector, making
boom deployment over Denmark viable. After boom deployment the normal operation
phase controller is activated. The satellite shall be three axis stabilized with its boom
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pointing outwards. Referring to Fig. 2.1, a certain coordinate system fixed in the satellite
structure shall coincide with a reference coordinate system fixed in orbit. The pointing
accuracy is required to be within 10 degrees in pitch, roll, and 20 degrees in yaw.

During science observation the satellite attitude is influenced by a gravity gradient torque
which causes an oscillatory motion aroundeither of two equilibria, boom upright or boom
upside-down. This is called libration. A sum of potential and kinetic energy for librating
satellite is maintained, and the system is only marginally stable.

If the boom should be upside-down, control action is required to turn the satellite. This
is considered as a contingency mission phase.

Therefore, investigation of both linear and nonlinear methods is necessary. A linear
model of the satellite can be successfully applied in the science observation phase, be-
cause nominally the satellite motion is about the reference, but nonlinear control is re-
quired for large angle recovery of the satellite. Development of attitude control methods
for three axis stabilization of a low Earth orbit satellite is the subject of this thesis. A key
challenge in this work is the fact that the mechanical torque can only be produced in a
plane perpendicular to the local geomagnetic field vector.

1.2 Previous Work

Several control methods have been developed over the past years since the first satellite
was launched in 1957. Generally speaking those techniques may be classified as active
or passive. The most common passive techniques are spin stabilization, in which a bias
angular momentum is producible, such that the satellite spin axis is approximately fixed
in inertial space; and gravity gradient stabilization, in which the satellite is fixed relative
to the zenith. Active techniques are needed for missions where high pointing accuracy is
required, and typical actuators are: reaction or momentum wheels for precision control
combined with gas jets and/or electromagnetic coils for wheel despin by angular momen-
tum dumping.

Magnetic torquing is attractive for generation of control torque on small, cheap satellites
in low Earth orbits where sub degree pointing accuracy is not required. This is the main
reasons to suggest this actuation principle for the Danish Ørsted satellite mission in an
early phase when a spin stabilized mission, i.e. two-axis control, was foreseen. Later re-
definition of the scientific objectives demanded an alteration of the control requirements
to three axis stabilization. The challenge was that three axis control was not possible with
an actuation principle that leaves the system controllable in only two degrees of freedom
since the control torque can only be generated perpendicular to the local magnetic field
of the Earth.

There is extensive literature covering satellite attitude control design. Most of the algo-
rithms assume application of reaction wheels and/or thrusters for three axis stabilization,
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though. Attitude control with sole use of magnetorquers has the significant challenge
that the system is only controllable in two axes at any point in time with the axes being
perpendicular to the local geomagnetic field vector.

The number of internationally published papers on magnetic attitude control is still rather
small. The available literature on nonlinear control for 3-axis stabilization of satellites
includes Yon-Pin and Shih-Che (1993), and Cavalloet al. (1993). Both of these papers
consider application of the sliding mode control. In the first paper the use of gas jets
was investigated. A configuration with two magnetic coils and a reaction wheel were
analysed in the latter. A geometric control approach to a satellite actuated by a set of
two thruster jets was addressed in Byrnes and Isidori (1991). A general framework for
the analysis of the attitude tracking control problem using Lyapunov theory for a rigid
body was presented in Wen and Kreutz-Delgado (1991). Time invariant systems were
considered, and magnetic torquing was outside the scope of this paper. However, salient
features of proportional-derivative controllers for attitude control were found. The prob-
lem of three axis magnetic control was addressed in Martelet al. (1988), where a lin-
earized time varying satellite motion model was approximated by a linear time invariant
counterpart. Another linear approach was given by Musser and Ward (1989). The local
stabilization of the satellite was achieved via implementation of the infinite time horizon
linear quadratic regulator.

1.3 Structure of Thesis

The thesis deals with linear and nonlinear methods for magnetic attitude control.The
work is divided into four main parts. The first part, Chapter 2, cope with the develop-
ment of a mathematical model of a low Earth orbit satellite. The second part, Chapters 3
and 4, considers the satellite as a linear periodic system, and provides variety of locally
stable attitude controllers. Chapter 3 deals with theoretical aspects of a class of periodic
linear systems. Findings from this investigations are applied in Chapter 4. In the third
part, Chapters 5, 6, and 7, local and global stability analysis of the satellite is made from
the point of view of the nonlinear control theory and a family of proportional-derivative
feedback cross product with the local geomagnetic field is presented. Chapter 5 gives
general theoretical foundations, and Chapters 6 and 7 treats the problem of the attitude
control. The fourth and the last part, Chapter 8 carries out simulation tests of those con-
trollers, which are implemented for the Ørsted satellite. This chapter constitutes a sum-
mary of the Ørsted Attitude Control System. Advantages and disadvantages of the Ørsted
controllers are discussed.

In Chapters 4, 6 and 7 general theoretical results are examined via simulation tests in
ideal conditions, i.e. the orbit is circular, atmospheric density is zero. The Ørsted satel-
lite’s moments of inertia about the x and y axes are roughly equal. In order to evaluate
theoretical findings the moment of inertia about the y principal axis is made 25 per cent
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smaller in simulation studies in Chapter 7. A detailed simulation test is performed for
realistic disturbances of the Ørsted satellite in elliptic orbit in Chapter 8.

� Chapter 2, Satellite Motion Model

This chapter provides definitions of coordinate systems used throughout the thesis.
Detailed description of the satellite motion is given, and linearization of the satel-
lite dynamics/kinematics using multiplicative nature of the quaternion calculus is
presented. Environment models are briefly reviewed in the last part of the chapter.

� Chapter 3, Periodic Linear Systems

This chapter gives introductory information about periodic systems. Floquet the-
ory is introduced. The infinite quadratic cost problem is investigated, and it is
shown that the steady state solution to the periodic Riccati equation is periodic.
The finite quadratic cost problem is then presented. The major part of this chapter
is concerned with an investigation of the influence of the final condition of the pe-
riodic Riccati equation on stability of the receding horizon controller. Application
of Picard’s method of successive approximation to periodic systems is investigated
in the last section of this chapter.

� Chapter 4, Three Axis Attitude Control: Linear Approach

This chapter is devoted to the design issues of the linear attitude control. It is
shown that a low Earth orbit satellite actuated by a set of perpendicular magne-
torquers may indeed be considered as a periodic system. An infinite horizon peri-
odic controller is implemented, which gain is parameterized by the mean anomaly.
Eventually, final horizon and constant gain controllers are proposed.

� Chapter 5, Periodic Nonlinear Systems

Important definitions and concepts of stability are given in this chapter. The Lya-
punov direct method and Krasovskii-LaSalle theory of nonlinear periodic systems
are reviewed.

� Chapter 6, Three Axis Attitude Control: Sliding Mode Control

The essence of the sliding controller design for magnetic actuated satellite is given
in this chapter. A three dimensional sliding manifold is proposed, and it is shown
that the satellite motion on the sliding manifold is asymptotically stable. An ideal
case of the sliding condition development is when the control torque is producible
in x, y, and z directions independently. Firstly, a solution to this control problem
is proposed, then a sliding condition for the magnetic generated control torque is
addressed.

� Chapter 7, Three Axis Attitude Control: Energy Approach
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This chapter plays a fundamental role for this thesis. Attitude stabilization at large
is considered, and an angular velocity controller is introduced. This control prin-
ciple is proved to be asymptotically stable around four equilibria. This results are
extended to a locally stabilizing controller with velocity and attitude information.
A velocity/attitude feedback cross product with the local geomagnetic field vector
makes the desired reference attitude the only stable equilibrium. This analysis is
extended to a globally stable controller in the last section.

� Chapter 8, Ørsted Attitude Control

The attitude controllers implemented for the Ørsted satellite are simulated in a
realistic space environment. The major part of this chapter deals with an inves-
tigation of the influence of an inertia error, ellipticity of the Ørsted orbit and aero-
dynamic drag torque on the performance of the attitude control. Pros and cones of
the Ørsted satellite controllers are given.

� Chapter 9, Conclusions and Recommendations

This chapter contains the concluding remarks and the recommendations for future
work.

� Appendix A: Orbit and Atmospheric Density Models

High fidelity models of the aerodynamic drag, orbit propagator, and the geomag-
netic field are outlined in this appendix.

� Appendix B: Rate Detumbling Controller

The theory behind the rate detumbling controller for the Ørsted satellite is given
in this appendix.

1.4 Contributions of This Thesis

A number of new solutions to the attitude control problem are provided in this work. A
list of the main contributions is given below.

� In Section 2.6 the multiplicative linearization of the unit quaternion for the attitude
control purpose is proposed. Similar technique has been used earlier but for an
extended Kalman filter Psiakiet al. (1990).

� In Chapters 4 and 5 the magnetic actuated satellite is considered periodic, and
methods for linear and nonlinear periodic systems are applied. Floquet stability
analysis is used in Chapter 4, and Krasovski-LaSalle theory of periodic systems is
used in the proofs of theorems in the parts dealing with nonlinear attitude control
methods, Section 7.1.
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� It is proved in Chapter 3 that the steady state solution to the periodic Riccati equa-
tion is periodic. Furthermore, it is shown that the choice of a final condition of
the periodic Riccati equation in a receding horizon controller has an influence
on stability of the systems with time-varying and bounded parameters. Attitude
controllers based on these findings are designed in Chapter 4 and published Wis-
niewski (1995b).

� It is demonstrated in Section 3.5 that the ad-hock method presented in Martelet al.
(1988), proposing substitution of a non autonomous system by its time invariant
counterpart, has a theoretical basis.

� It is shown in Section 4.2 that the time varying coefficients of the optimal attitude
controller can be parameterized by the mean anomaly (orbital position). The find-
ings are published in Wisniewski (1997).

� A sliding mode controller for the magnetic actuated satellite is designed in Section
6.1. A sliding manifold is proposed in the state space of the attitude quaternion and
satellite angular velocity. A modified sliding condition incorporating time varia-
tion of the geomagnetic field. This is published in Wisniewski (1994b) and Wis-
niewski and Blanke (1996a).

� It was demonstrated in Section 7.1 that a low Earth orbit satellite actuated by the
velocity feedback cross product with the geomagnetic field has four locally asymp-
totically stable equilibria. This is published in Wisniewski and Blanke (1996c).

� A method consisting of a plot of the root locus of the characteristic multipliers pa-
rameterized by the quaternion gain was proposed in Sections 4.4 and 7.2. This is
published in Wisniewski and Blanke (1996c).

� The potential/kinetic energy dissipation control for three axis magnetic attitude
control is developed in Section 7.3. This results are published in Wisniewski and
Blanke (1996b)

� A globally stable control law was proposed in Section 7.4. The controller is not
only asymptotically stable for attitudes such that the boom is upright, but it rescues
the satellite when the the boom is upside-down. This is also part of the publication
Wisniewski and Blanke (1996b).



Chapter 2

Satellite Motion Model

This chapter presents definitions of coordinate systems used throughout the thesis. A
thorough description of the satellite motion is provided in Sections 2.2 and 2.3. A de-
scription of kinetic and potential energy of a low Earth satellite (LEO) is given in Sec-
tion 2.4. Controllability issues of a magnetic actuated satellite are outlined in Section
2.5. Finally, in the last Section 2.6 the linearized equations of motion are given, where
the hybrid of the additive and multiplicative linearization of the dynamics and kinematics
is considered.

2.1 Coordinate Systems

The coordinate systems used in the thesis are a Control Coordinate System (CS), built on
the satellite principal axes, a Body CS corresponding to the satellite structure, an Orbit
CS referring to the current position of the satellite in orbit, and a World CS, which is an
inertial coordinate system. The formal definitions of these coordinate systems are

� The Control CS is a right orthogonal coordinate system built on the principal axes
of the satellite with the origin placed in the centre of mass. The x axis is the axis
of the maximum moment of inertia, and the z axis is the minimum, Fig. 2.1.

� The Body CSis a right orthogonal coordinate system with the origin in the centre
of gravity. The z axis is parallel to the boom direction and points towards boom
tip. The x axis is perpendicular to the shortest edge of the bottom of the satellite
body, and points away from the boom canister. The y axis is perpendicular to the
longest edge of the bottom satellite body, Fig. 2.2. It is the reference coordinate
system for attitude measurements and the magnetorquers.

9
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Figure 2.1: Definition of the Control CS in the Orbit CS. The Control CS is built on the
principal axes of the satellite, whereas the Orbit CS is fixed in orbit.
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Figure 2.2: Definition of the Body CS. The Body CS refers to geometry of the satellite
main body, its axes are perpendicular to the satellite facets.
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� The Orbit CS is a right orthogonal coordinate system fixed in the centre of mass
of the satellite. The z axis points at the zenith (is aligned with the centre of the
Earth and points away from the Earth), the x axis points in the orbital plane nor-
mal direction and its sense coincides with the sense of the orbital angular velocity
vector. The Orbit CS is the reference for the attitude control system.

� The World CS is an inertial right orthogonal coordinate system with origin in the
centre of mass of the satellite. The z axis is parallel to the rotation axis of the Earth
and points towards the North Pole. The x axis is parallel to the line connecting the
centre of the Earth with Vernal Equinox and points towards Vernal Equinox (Vernal
Equinox is the point where the ecliptic crosses the Earth equator going from South
to North on the first day of spring).

2.2 Quaternions

This section gives an introduction to a unit quaternion, providing a singularity-free repre-
sentation of kinematics. Information included in this section is based primarily on Wertz
(1990).

Rotation of coordinate systems can be described by means of a quaternion. A salient fea-
ture of quaternions is that they provide a convenient product rule for successive rotations
and a simple form of kinematics.

The four parameters[q1 q2 q3 q4]T form the components of the quaternion,~q, defined as
follows

~q � i q1 + j q2 + k q3 + q4; (2.1)

wherei, j, andk are hyper imaginary numbers satisfying the condition

i2 = j2 = k2 = �1

ij = �ji = k

jk = �kj = i

ki = �ik = j: (2.2)

The first three components,q = [q1 q2 q3]
T , form a vector part of the quaternion and the

quantity,q4 is a scalar part. Thus the quaternion~q = [q1 q2 q3 q4]
T may be written as

[qT q4]
T .

The inverse of~q is defined as

~q� � �i q1 � j q2 � k q3 + q4: (2.3)

The norm of quaternion~q is given by

j~qj �
p
~q�~q =

q
q21 + q22 + q23 + q24 : (2.4)
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The construction of the unit quaternion arises from an observation by Euler and Hamilton
that the rotation of coordinate systems can be uniquely described by a unit vector,e =
[e1 e2 e3]

T giving an axis of rotation as well as its sense, and an angle of rotation�. The
quaternion,~q, has four parameters:

q1 � e1sin
�

2

q2 � e2sin
�

2
(2.5)

q3 � e3sin
�

2

q4 � cos
�

2
:

The norm of the quaternion defined according to Eq. (2.6) is1. Furthermore, the same
attitude can be described by two quaternionsq and�q, the first is given when the angle
of rotation is�, and the latter for the angle2� + �.

Quaternions provide simple methods for calculation of successive rotations. Let the
quaternion reflecting the rotation of the Control CS in the Orbit CS and the quaternion
describing transformation from the World CS to the Orbit CS be given. Then the product
quaternion in Eqs. (2.6) provides an elegant method for calculation of the total transfor-
mation from the World CS to the Control CS.

c
wq = R(owq)

c
oq; (2.6)

where

R(~q) =

2
664

q4 q3 �q2 q1
�q3 q4 q1 q2
�q2 �q1 q4 q3
�q1 �q2 �q3 q4

3
775 (2.7)

Moreover, the following equalities are true

R(~q)RT (~q) = RT (~q)R(~q) = ~qT ~qE4�4: (2.8)

The relation between the attitude quaternionand the direction cosine matrix is also useful.
The direct cosine matrix from the Orbit CS to the Control CS is given as

c
oA =

�
cio

cjo
cko

�
; (2.9)

wherecio, cjo, cko, see Fig. 2.1, are the unit vectors of the x, y, and z axes of the Orbit
CS, respectively, projected on the coordinates of the Control CS.

The unit vectorscio, cjo, cko may be parameterized by the attitude quaternion,c
oq
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cio =
�
q21 � q22 � q23 + q24 2(q1q2 � q3q4) 2(q1q3 + q2q4)

�T
;

cjo =
�
2(q1q2 + q3q4) �q21 + q22 � q23 + q24 2(q2q3 � q1q4)

�T
; (2.10)

cko =
�
2(q1q3 � q2q4) 2(q2q3 + q1q4) �q21 � q22 + q23 + q24

�T
:

Now, the transformation of a vectorv observed in Orbit CS (ov) to the vectorv observed
in the Control CS (cv) is simply given bycv = c

oA
ov.

Frequently, it is necessary to obtain the inverse transformation, i.e. from the Control
CS to the Orbit CS. The inverse transformation is given by the conjugate of the attitude
quaternion

o
cq = c

oq
�: (2.11)

2.3 Equations of Motion

The mathematical model of a satellite is described by dynamic and kinematic equations
of motion, see Wertz (1990). The dynamics relates torques acting on the satellite to the
satellite’s angular velocity in the World CS. The kinematics provides integration of the
angular velocity. In the thesis the attitude is parameterized by four components of a
quaternion describing rotation of the Control CS in the Orbit CS.

2.3.1 Dynamics

The dynamic equation of motion of a rigid satellite in low Earth orbit is

Ic _
cw(t) = �c
cw(t)� I
c
cw(t) +

cNctrl(t) +
cNgg(t) +

cNdis(t):
(2.12)

The summandc
cw(t)�I
c
cw(t) represents a cross coupling between the components

of the angular velocity vector,c
cw(t). It arises due to the fact that the dynamics is de-
scribed in a rotating coordinate system (the Control CS), in an inertial coordinate system
this summand disappears.

Control torque is generated by an interaction of the geomagnetic field with the magne-
torquer currenti(t) which gives rise to a magnetic momentm(t)

m(t) = ncoil icoil(t) Acoil: (2.13)

The electromagnetic coils are placed perpendicular to the x, y and z axes of the Body CS,
thus the vector representing entire magnetic moment producible by all three coils is given
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in the Body CS. The transformation from the Body CS to the Control CS (the coordinate
system in which the dynamics is described) is necessary

cm = c
bA

bm: (2.14)

The control torque acting on the satellite is then

cNctrl(t) =
cm(t)� cB(t): (2.15)

The magnetic moment given in the Control CS,cm, will be considered as the control sig-
nal throughout the thesis.

According to Wertz (1990) the gravity gradient torque is given as

cNgg =
3�

R3
cm

(cR̂cm � I
cR̂cm); (2.16)

where� is the Earth gravitational constant,Rcm is the distance from the centre of the
Earth to the satellite’s centre of gravity (Rcm is a subject of variation, when an elliptic
orbit is considered),cR̂cm is the zenith1.

Observe that the zenith is equivalent to the unit vectorcko and the constant�
R3
cm

= !2o ,
where!o is the orbital rate. Now, the gravity gradient torque is

cNgg = 3!2o(
cko � I

cko): (2.17)

The disturbance torque is mainly due to the aerodynamic drag, see Section 2.7.

2.3.2 Kinematics

The kinematics describes the body’s orientation in space and is obtained through integra-
tion of the angular velocity. The kinematic equations are expressed by separate integra-
tions of the vector and the scalar part of the attitude quaternion

_q =
1

2
c
coq4 �

1

2
c
co � q;

_q4 = �
1

2
c
co � q: (2.18)

It is convenient to represent Eq. (2.18) by an equivalent bilinear form as stated in Morton
(1993)

c
o _q =

1

2
R(c ~
co)

c
oq; (2.19)

1See Space Terminology in Nomenclature.
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wherec ~
co = [c
T
co 0]

T , andR(�) is given in Eq. (2.7).

A relation between the satellite angular velocity w.r.t. to the Word CS and the angular
velocity w.r.t. the Orbit CS is given by

c
co =
c
cw � !o

cio: (2.20)

The orbital rate,!o is constant for a circular orbit, but time varying for an elliptic orbit.
The eccentricity of the Ørsted orbit is comparatively small and the variation of!o can be
disregarded.

Remark 2.3.1 In summary a satellite motion is characterized by the 7th order nonlin-
ear differential equation (Eqs. (2.12), (2.15), (2.17), (2.18), and (2.20)). The quaternion
representation of the attitude provides one redundant equation in kinematics. The ad-
vantage is that the description of the kinematics is free from any singularity. Note that a
singularity is observed in the attitude parameterization if the Euler angles are used, see
Wertz (1990).

2.4 Kinetic and Potential Energy

The objective of the present section is to derive the kinetic and potential energy, which
will be extensively used in the chapter on nonlinear control methods.

2.4.1 Kinetic Energy

The standard kinetic energy of the satellite is a quadratic form relating the satellite ve-
locity in the World CS. In this study we focus only on the rotation of the satellite w.r.t the
reference coordinate system, i.e. the Orbit CS.

The total angular velocity of the satellite relative to the Word CS is a sum of the satellite
angular velocity w.r.t the Orbit CS and the angular velocity of the satellite’s revolution
about the Earth (the orbital rate). It is assumed that the orbit is circular and thus the orbital
rate,!o is constant. The kinetic energy of the rotary motion is then

Ekin =
1

2
c
T

coI
c
co: (2.21)

Note that the eccentricity of the Ørsted orbit ise = 0:025, thus!o is constant within 3
percent.

2.4.2 Potential Energy

The potential energy due to the gravity gradient is minimum (Egg = 0) when the sci-
entific boom is ideally aligned with the z axis of the Orbit CS, since there is no gravity
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gradient acting on the satellite. Its maximum value is reached when the satellite attitude
is such that the z axis of the Orbit CS coincides with the x axis of the Control CS.

The potential energy associated with the gravity gradient is represented as

Egg =
3

2
!2o(

ckTo I
cko � Iz); (2.22)

where the vectorcko is a unit vector along the z axis of the Orbit CS projected on the
axes of the Control CS. The unit vectorcko is parameterized by the attitude quaternion
as in Eq. (2.11).

The potential energy has also a component originating from the revolution of the satellite
about the Earth. Consider the summandc
cw(t)�I

c
cw(t) in the equation of dynamics
(2.12). Using Eq. (2.20) this can be rewritten as

c
cw(t)� I
c
cw(t) = c
co(t)� I

c
co(t) + !o
cio � I

c
co(t)

+ !o
c
co(t)� I

cio + !2o
cio � I

cio; (2.23)

wherecio is a unit vector on the x axis of the Orbit CS resolved in the Control CS, see
Eq. (2.11).

The summand!2o
cio�I

cio is not dependenton the satellite’s angular velocity, and hence
gives a contribution only to the potential energy. The potential energy due to the revolu-
tion of the satellite about the Earth is

Egyro =
1

2
!2o(Ix �

ciTo I
cio): (2.24)

The minimum of this energy is obtained when the x axis of the Control CS is aligned with
the x axis of the Orbit CS, and maximum when the x axis of the Orbit CS coincides with
the z axis of the Control CS.

2.5 Controllability

The satellite actuated by a set of magnetorquers has a serious limitation. The mechani-
cal torque, produced by the interaction of the geomagnetic field and the magnetic field
generated by the magnetorquers, is always perpendicular to the geomagnetic field vector.
Thus the direction parallel to the geomagnetic field vector is not controllable. The geo-
magnetic field changes its orientation in the Orbit CS when the satellite moves in orbit.
This implies that e.g. yaw is not controllable over the poles but only a quarter of orbit
later, i.e. over the equator, it reaches controllability, see Fig. 2.3.
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Figure 2.3: Control torque is always perpendicular to the geomagnetic field vector. This
implies that yaw is not controllable over poles, and roll is not controllable over equator.

2.6 Linearized Equation of Motion

A linearized time-varying model of the satellite motion will be used in the chapter on
application of the linear periodic systems to the attitude control, Chapter 4.

The satellite motion is considered in a neighbourhood of the following reference: the
angular velocity of the satellite rotation w.r.t. the Orbit CS is zero (c
co = 0), and the
attitude is such that the Control CS coincides with the Orbit CS (c

oq = [0 0 0 1]T ).

Linearization of the angular velocity is commonplace and based on the first order exten-
sion of the Taylor series. The angular velocityc
cw from Eq. (2.20) is

c
cw = c
oA[!0 0 0]

T + �
; (2.25)

where�
 is a small perturbation of the angular velocityc
cw from the reference.

Linearization of the attitude quaternion is different due to the multiplicative transforma-
tion in Eq. (2.6) is needed to describe a rotation. Two successive rotations are used, the
first one is a transformation from the Orbit CS to a reference coordinate system, the sec-
ond from the reference coordinate system to the Control CS. The reference coordinate
system is the Orbit CS in the thesis, thus the rotation from the Orbit CS to the reference
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coordinate system is trivially given by the identity operation.

c
oq = Q([0 0 0 1]T )�~q = �~q; (2.26)

where�~q is a small perturbation of the attitude quaternion,c
oq, from the reference, and

according to Eq. (2.6) is

�~q =

2
664

e1sin
��

2

e2sin
��
2

e3sin
��

2

cos ��
2

3
775 �

2
664

�q1
�q2
�q3
1

3
775 �

�
�q

1

�
: (2.27)

Remark 2.6.1 Consider a certain reference coordinate system the Reference CS , such
that the quaternionroq of the transformation from the Orbit CS to the Reference CS is
constant. The linearization of the angular velocity w.r.t. the Reference CS is then

c
cw = c
rA

r
oA[!0 0 0]

T + �
; (2.28)

and the linerization of the attitude quaternion is as follows

c
oq = Q(roq)�~q: (2.29)

The linearized dynamics and kinematics based on the hybrid approach of the multiplica-
tive and additive linearization will be derived in the next two subsections.

2.6.1 Linearized Dynamics

The equation of dynamics is divided into the cross coupling, the contribution of the grav-
ity gradient torque and the part due to control torque. The disturbance torqueNdis is pri-
marily dependent on the satellite position w.r.t the Sun and the Earth, therefore it is not
included in the linear model of the satellite.

d

dt
�
 = �(Cross Coupling) + I�1�(Gravity Gradient Torque) + I�1�(Control Torque):

(2.30)

2.6.1.1 Linearization of Cross Coupling

Cross Coupling=

2
4 �x

c!cwy
c!cwz

�y
c!cwz

c!cwx
�z

c!cwx
c!cwy

3
5 �

2
4 0

�y!o�!z
�z!o�!y

3
5 ; (2.31)
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where

�x =
Iy � Iz

Ix
; �y =

Iz � Ix

Iy
; �z =

Ix � Iy

Iz
; (2.32)

and
�
 =

�
�!x �!y �!z

�T
:

2.6.1.2 Linearization of Gravity Gradient Torque

Gravity Gradient Torque � 3!2o

2
4 �2�q2

2�q1
1

3
5�

2
4 �2Ix�q2

2Iy�q1
Iz

3
5

� 6!2o

2
4 (Iz � Iy)�q1

(Iz � Ix)�q2
0

3
5 ; (2.33)

where
�q =

�
�q1 �q2 �q3

�T
:

2.6.1.3 Linearization of Control Torque

Control Torque= cm� c
oA

oB � cm� oB� 2cm� (�q� oB);
(2.34)

but the summand2cm� (�q� oB) diminishes when a linear feedback is implemented
as it is a term of second order approximation2, and finally

Control Torque� cm� oB: (2.35)

2.6.2 Linearized Kinematics

2.6.2.1 Linearized Kinematic Equation

d

dt
q =

1

2
c
coq4 �

1

2
c
co � q �

1

2
c
co: (2.36)

Now, according to Eqs. 2.20 and 2.25 the linearized kinematics is

d

dt
�q =

1

2
�
�

1

2
[!o 0 0]

T � �q� [!o 0 0]
T =

1

2

2
4 �!x � !o

�!y + 2�q3!o
�!z � 2�q2!o

3
5 :

(2.37)

2The summand2cm� (�q � oB) becomes2
�
K(t)

�
�
 �q

�T�
� (�q� oB).
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2.6.3 Linearized Equation of Satellite Motion

The matrix form of the linearized satellite motion aboutc
co = 0, andcoq = [0 0 0 1]T

is

d

dt

�
�


�q

�
= A

�
�


�q

�
+B(t)c ~m; (2.38)

where

A =

2
6666664

0 0 0 �2k�x 0 0
0 0 !o�y 0 2k�y 0
0 !o�z 0 0 0 0
1
2

0 0 0 0 0
0 1

2
0 0 0 !o

0 0 1
2

0 �!o 0

3
7777775
;

B(t) =

2
6666664
I�1

2
4 0 �oBz(t)

oBy(t)
oBz(t) 0 �oBx(t)
�oBy(t)

oBx(t) 0

3
5

2
40 0 0
0 0 0
0 0 0

3
5

3
7777775
:

2.7 Environmental Models

A concise description of environmental models is addressed in this section. Our empha-
sis is on the geomagnetic field, and the primary disturbance torque for LEO satellites,
which is the aerodynamic torque. The periodic properties of the geomagnetic field will
be used in Chapter 4, treating the linear controllerdesign. An aerodynamic torque is mod-
eled in a simulation program. The performance test of the attitude controllers in Section
8 is executed with the aerodynamic torque present. Further details on modeling of the
space environment is provided in Appendix A.

2.7.1 Aerodynamic Drag

The interaction of the upper atmosphere molecules with satellite’s surface introduces an
aerodynamic torque. Assuming that the energy of the molecules is totally absorbed on
impact with the spacecraft, the forcedfaero on a surface elementdA is described by

dfaero = �
1

2
CD�v

2(n̂ � v̂)v̂dA; (2.39)

wheren̂ is an outward normal to the surface,v̂ is the unit vector in the direction of
the translational velocity of the surface element relative to the incident stream of the
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Figure 2.4: The geomagnetic field vector in the Ørsted Orbit CS propagated by a 10th
order spherical harmonic model during a period of 24 h in April 1997.

molecules. The atmospheric density is denoted by�, and the drag coefficient byCD . The
total aerodynamic torque is determined by integration over the total spacecraft surface.
A detailed description of the modeling of the aerodynamic drag for the Ørsted satellite
can be found in Wisniewski (1995a).

The Jacchia-Roberts atmospheric model described in Cappellari (1976), was adopted in
the simulation programs. The atmospheric density is determined as a function of the
satellite altitude and the exospheric temperature. The exospheric temperature is param-
eterized by the daily average 10.7-centimetre solar flux,F10:7, as observed in the solar
observatory at Ottawa, Canada, and a geomagnetic activity index: the geomagnetic plan-
etary index,Kp.

2.7.2 Geomagnetic Field

The geomagnetic field is essentially that of a magnetic dipole. The south pole is in the
northern hemisphere at about79�N latitude and290�E longitude. There are certain de-
viations from the dipole model called anomalies. The largest anomalies are encountered
over Brazil and Siberia, see Fig. 2.5 from Wertz (1990).

Let a near polar orbit be considered. The geomagnetic field observed in this orbit, i.e.
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Figure 2.5: Total magnetic field intensity at the Earth’s surface innT

seen in the Orbit CS, has large y and z components, while the x component is compar-
atively small. The orbit position is fixed in the World CS, thus the rotation of the Earth
is visible via fluctuations of the geomagnetic field vector’s x component with frequency
1=24 1/hour. An example of geomagnetic field variation on orbit is given in Fig. 2.4.
The geomagnetic field has been computed using 10th order spherical harmonic model,
see Wertz (1990).

The observation that the geomagnetic field on near polar orbit is approximately periodic
with periodT = 2�=!0 is used in the design of a constant gain and a time varying linear
controller.



Chapter 3

Periodic Linear Systems

Both linear and nonlinear methods can be implemented for the attitude controller design.
The adequacy of a particular technique is highly dependent on the satellite mission phase.
During scientific observation, the satellite motion can be regarded as in the vicinity of
the reference. Thus an application of a linear model of the satellite equations of motion
is reasonable. In contrast, a nonlinear control method is required for the inverted boom
mission phase. The next two chapters cope only with the linear control methods. This
chapter deals with theory development, the next with implementation issues.

It was already mentioned that due to the actuation principle, the satellite is only control-
lable in two degrees of freedom at any given position in orbit. The geomagnetic field
varies along the orbit and this time variation can be utilized for controller design. Incor-
porating time variation of system parameters into the structure of the attitude controller
requires some background of methods for time varying linear systems. The class of all
time varying systems can be furthermore limited to periodic systems from the observa-
tion, that the geomagnetic field seen from the Orbit CS is periodic.

Stability theory for periodic systems is not widely known in the engineering community,
therefore a few necessary results in this field are first presented, where Floquet theory de-
scribed in Section 3.1 plays the fundamental role. An objective is to design a controller
with a time varying gain. Consequently, the problems of the optimal and quasi optimal
controllers are formulated. Both finite and infinite cost problems are investigated in Sec-
tions 3.3 and 3.4. The properties of a steady state equilibrium and a transient solution
to the periodic Riccati equation are examined. A novel method for periodic controller
design is elaborated. Further work presented in this chapter is inspired by Martelet al.
(1988), who proposed a PD attitude controller with parameters based on an average value
of the geomagnetic field along the orbit. An issue of application of Picard’s method of
successive approximations for the design of a constant gain control law is considered in
Section 3.5. The result is a time invariant approximation to the satellite linear periodic

23
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model, appearing to be similar to the one proposed by Martelet al. (1988).

The references used for preparationof this chapter are mentioned in the beginningof each
sections dealing with a particular theory. Most of theorems are given without proofs, only
results , which are contributions of this thesis are provided with proofs.

The following linear T-periodic system is considered in this chapter

_x(t) = A(t)x(t) +B(t)u(t);

y(t) = C(t)x(t): (3.1)

wherex(t) 2 R
n , u(t) 2 R

m are state and input vector respectively,A(t), B(t) are
periodic matrices of periodT

A(t+ T ) = A(t); B(t+ T ) = B(t): (3.2)

3.1 Floquet Theory

This section highlights key results from the theory of Floquet on linear differential equa-
tions with periodic coefficients. The stability of a periodic system is to be considered
over time, therefore the transition matrix calculated within one period, fromt0 to t0+T ,
plays a significant role in the stability analysis. Namely, placement of its eigenvalues in
the open unit disk determines whether the system is stable. The material in this section
is based on Mohler (1991).

Consider the system in Eq. (3.1) with zero input vector

_x(t) = A(t)x(t): (3.3)

The transition matrix of the system in Eq. (3.3) is denoted by�A(t; t0), wheret0 is the
time when the initial state is applied andt is the time when the state is observed. The
following holds

�A(t+ T; t0) = �A(t; t0)C; (3.4)

whereC is a constant matrix.

To check this equality, it is enough to calculate the time derivative of�A(t+ T; t0)

_�A(t+ T; t0) = _�A(t; t0)C = A(t)�A(t; t0)C = A(t+ T )�A(t+ T; t0);
(3.5)

since
_�A = A(t)�A:

There exists a constant matrixR such that

C � eRT : (3.6)
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From the equality�A(t0; t0) = I and Eq. (3.4) it follows that

�A(t0 + T; t0) = eRT : (3.7)

Thus the state transition matrix consists of a periodically modulated exponential matrix
function. The matrix�A(t0+T; t0) is named the monodromymatrix att0 and is denoted
by	A(t0). It is concluded from Eq. (3.7) that the eigenvalues of the monodromy matrix
are independent oft0.

The system (3.3) is asymptotically stable if, and only if the eigenvalues of the matrixR

all have negative real parts. The eigenvalues ofR are defined as characteristic exponents
ofA(t). One can alternatively examine, whether the eigenvalues of the monodromy ma-
trix belong to the open unit disk. The eigenvalues of the monodromy matrix are called
characteristic multipliers ofA(t).

3.2 Structural Properties of Periodic Systems

Once the concept of characteristic multipliers has been established, it is important to clar-
ify the definitions of the structural properties of a periodic system as reachability, observ-
ability, stabilizability and detectability. The following definitions of unreachable and un-
observable characteristic multipliers are available in Bittanti (1991).

Definition 3.2.1 A characteristic multiplier� of A(t) in Eq. (3.1) is said to be
(A(t);B(t)) unreachable if

	A(t0)
Tx = �x; x 6= 0 ) B(t)T�A(t; t0)

Tx = 0; for all t 2 [t0; t0 + T ]:
(3.8)

A characteristic multiplier ofA(t) is said to be(A(t);B(t)) reachable if it is not
(A(t);B(t)) unreachable. The pair(A(t);B(t)) is said to be reachable if all the char-
acteristic multipliers ofA(t) are (A(t);B(t)) reachable.

Definition 3.2.2 A characteristic multiplier� of A(t) in Eq. (3.1) is said to be
(A(t);C(t)) unobservable if

	A(t0)x = �x; x 6= 0 ) C(t)�A(t0; t)x = 0; for all t 2 [t0; t0 + T ]:
(3.9)

A characteristic multiplier ofA(t) is said to be(A(t);C(t)) observable if it is not
(A(t);C(t)) unobservable. The pair(A(t);C(t)) is said to be observable if all the char-
acteristic multipliers ofA(t) are (A(t);C(t)) observable.
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Definition 3.2.1 can be explained in the following way. A characteristic multiplier is un-
reachable if the eigenvector corresponding to this characteristic multiplier determines a
direction which is not controllable in the whole envelope of time fromt0 to t0 + T .

A test for reachability of the pair(A(t);B(t)) can by derived from Eq. (3.8). The fol-
lowing reasoning is used.

If the controllability gramian matrixGc(t0 + T; t0)

Gc(t; �) �

Z t

�

�(t; s)B(s)BT (s)�T (t; s)ds (3.10)

is not singular, then the statement

B(t)T�T
A(t; t0)x = 0; for all t 2 [t0; t0 + T ]: (3.11)

is false for any nonzero vectorx, and the pair(A(t);B(t)) is reachable. Therefore, it is
concluded that the pair(A(t);B(t)) is reachable, ifGc(�; � + T ) is nonsingular.

Reachability is a property of a periodic system evaluated within one period. The system
is reachable if the controllability gramian,Gc is not singular. If a non autonomoussystem
is considered at a fixed timetc,

_x(t) = A(tc)x+B(tc)u; (3.12)

controllability rank condition may not be fulfilled. The system (3.12) is then partitioned
into a uncontrollable part and a part which is completely controllable. According to
Kwakernaak and Sivan (1972), there exists a transformation matrixT

~x(t) � T�1x(t); (3.13)

such that the state differential equation (3.12) is transformed into the controllability
canonical form

_~x(t) =

�
~A11(tc) ~A12(tc)

0 ~A22(tc)

�
~x(t) +

�
~B1(tc)
0

�
u(t); (3.14)

here~A11(tc) is ak� k matrix, and the pair( ~A11(tc);B1(tc)) is completely controllable.

Remark 3.2.1 A necessary condition for controllablity at fixed time of a LEO satellite
is that the control torque can be independently generated in x, y, and z directions of the
Control CS. However, the magnetic actuated satellite produces the control torque, which
is perpendicular to the local geomagnetic field, see Fig. 2.3. Thus, there exists an eigen-
value which is completely uncontrollable at any fixed position in orbit i.e. any single
instant.
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In the next sections both a constant gain and a time varying gain control are investigated.
Stability issues are in the focus. If a constant gain controller is applied, the characteristic
multipliers of the closed loop system

_x(t) = Ac(t)x(t); (3.15)

whereAc(t) = A(t)+B(t)K, shall lie in the open unit disk. Picard’s method of succes-
sive approximations will be used for the synthesis of a constant gain controller in Section
3.5.

Stability of the system (3.1) with a time varying control gain,K(t) is determined by Ly-
punov direct method, Chapter 5.

Consider the following Lyapunov function

v(t) =
1

2
xT (t)P(t)x(t); (3.16)

whereP(t) is a positive definite, symmetricn� n matrix.

The time derivative of the Lyapunov function is

_v(t) = xT (t)P(t) _x(t) +
1

2
xT (t) _P(t)x(t): (3.17)

If the matrixP(t) is a solution to the following differential equation

� _P(t) = AT
c (t)P(t) +P(t)Ac(t) +Q(t); (3.18)

whereQ(t) is a positive definiten� n matrix, then_v(t) is

_v(t) = �
1

2
xT (t)Q(t)x(t): (3.19)

From Eq. (3.19)_v(t) is negative definite, thus the closed-loop system is stable. Eq.
(3.18) is called the Lyapunov equation and will be discussed in more detail in Subsec-
tion 3.3.2. Time varying optimal controllers are investigated in Sections 3.3 and 3.4.

Remark 3.2.2 Consider an attitude controller for magnetic actuated satellite that stabi-
lizes the controllable part at fixed time,tc. This is equivalent to a projection of the desired
control torque, which stabilizes the entire state of the satellite on the plane perpendicular
to the local geomagnetic field. The stability of such a controller cannot be satisfied since
only the first summand of r.h.s. of Eq. (3.17)

xT (t)P(t) _x(t)

is made negative definite, leaving

1

2
xT (t) _P(t)x(t)

undermined, as the result,_v(t) cannot be negative definite.
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3.3 Infinite Quadratic Cost Problem

The design of a linear time varying controller is the primary goal of this section. The first
approach refers to the optimal control problem. Precisely, an issue of a periodic solution
to the Riccati equation derived from the infinite quadratic cost problem is analysed in the
sequel.

There are only few methods constructing a stabilizing periodic control law

u(t) =K(t)x(t) (3.20)

for the system in Eq. (3.1). One method which is most commonly used, relies on mini-
mization of the infinite time quadratic cost function

J(u) =

Z
1

�

[xT (t)Q(t)x(t) + uT (t)u(t)]dt; (3.21)

whereQ(t) is a T-periodic, piecewise continuous positive semidefiniten�nmatrix func-
tion.
According to Anderson and Moore (1989) the optimal and stabilizing solution to the
time-varying regulator problem is given by

u(t) = �B(t)P(t)x(t); (3.22)

whereP(t) is a solution to the Riccati equation

� _P(t) = P(t)A(t) +AT (t)P(t) �P(t)B(t)BT (t)P(t) +Q(t);
(3.23)

with a certain final condition.

The computational burden to calculate this controller is very heavy. The aim of the next
subsections is to find a periodic solution to the Riccati equation providing a stable control
law. This approach limits necessary calculations to only one period. The analysis of the
Riccati equation is complex due to its nonlinear (quadratic) nature, however a numeric
algorithm can be successfully implemented as described below.

3.3.1 Quasi Linearization of Riccati Equation

Lack of linear features of the Riccati equation makes its analysis complex. An iterative
method for finding the solution to the Riccati equation based on a Newton-type algorithm
(Bellman’s quasi linearization) is given in Bittanti (1991). The solution of the Riccati
equation is reduced to an iterative solution to the Lyapunov equation, which is linear and
has analytic solution.
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Consider an operator

Ric : P(t) 7�! _P(t) +AT (t)P(t) +P(t)A(t) �P(t)B(t)BT (t)P(t) +Q(t):
(3.24)

A symmetric solution to the Riccati equation satisfies the operator equation

Ric(P(t)) = 0: (3.25)

Suppose thatPi(t) is a symmetric matrix function approximating the solution to Eq.
(3.25) with a certain accuracy. A Newton algorithm can then be used for computing a
new and more accurate approximation

Pi+1(t) = Pi(t) + �Pi(t): (3.26)

Precisely,Pi+1(t) is computed fromPi(t) by solving the differential equation

� _Pi+1(t) = AT
i (t)Pi+1(t) +Pi+1(t)Ai(t) +Q(t) +KT

i (t)Ki(t);
(3.27)

where

Ai(t) = A(t) �B(t)Ki(t);

Ki(t) = BT (t)Pi(t): (3.28)

It turns out that Eq. (3.27) is a Lyapunov equation. A number of features of this type
of differential equations are given in the next section. Some of these properties can be
extended to the Riccati equation as a limit of the series of the Lyapunov equations.

3.3.2 Periodic Lyapunov Equation

The Lyapunov equation plays an important role in the analysis of the Riccati equation.
Therefore, some space in this thesis is devoted to its analysis. The major issue is whether
a periodic solution to the Lyapunov equation exists.

Consider a system described by Eq. (3.3). The Lyapunov equation is defined as

� _P(t) = AT (t)P(t) +P(t)A(t) +Q(t); (3.29)

whereQ(t) is a positive semidefinite matrix function. The solution to the Lyapunov
equation is given by the celebrated formula

P(t) = �
T
A(tf ; t)P(tf )�A(tf ; t) +

Z tf

t

�
T
A(�; t)Q(�)�A(�; t)d�:

(3.30)

Let us now refer to the periodic Lyapunov lemma, which states that a T-periodic solution
to the Lyapunov equation exists.
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Lemma 3.3.1 (Extended Lyapunov Lemma in Bittanti (1991))A(t) is stable if and
only if, for any symmetric periodic, and positive semidefiniteQ(t) such that(A(t);Q(t))
is detectable, there exists a symmetric, periodic and positive definite solution~P(t) to the
Lyapunov equation.

It is worthwhile to examine whether the steady state solution to the Lyapunov equation
is periodic. The answer is provided in the next lemma.

Lemma 3.3.2 LetP(t0) be a solution to the Lyapunov Equation (3.29) at timet0 for the
final conditionP(t0 + kT ) = Pf ; where k is a natural number,k !1, andPf is any
n � n matrix. Furthermore, let~P(t0) be the periodic solution to Eq. (3.29) defined in
the Extended Lyapunov Lemma (Lemma 3.3.1) at timet0, then

P(t0) = ~P(t0):

Proof of Lemma 3.3.2 According to Eq. (3.30) the solutionP(t0) to the Lyapunov
Equation (3.29) for the final conditionP(t0 + T ) is given by

P(t0) =	T
A(t0)P(t0 + T ))	A(t0) +

Z t0+T

t0

�T
A(�; t0)Q(�)�A(�; t0)d�

(3.31)

and the T-periodic solution~P(t0) to Eq. (3.29) is

~P(t0) =	T
A(t0)

~P(t0)	A(t0) +

Z t0+T

t0

�T
A(�; t0)Q(�)�A(�; t0)d�

(3.32)

Now, definee(t0) = P(t0)� ~P(t0), and notice that

e(t0 + T ) = P(t0 + T )� ~P(t0 + T ) = P(t0 + T )� ~P(t0):

Eq. (3.32) is subtracted from Eq. (3.31) and the following formulas are apparent

e(t0) = 	
T
A(t0)e(t0 + T )	A(t0) (3.33)

and

e(t0 + (k � 1)T ) = 	T
A(t0)e(t0 + kT )	A(t0); (3.34)

but
limk!1e(t0 + kT ) = Pf � ~P(t0):

Moreover,A(t) is stable, thus characteristic multipliers of the monodromymatrix	A(t)
lie in the open unit circle, thuse(t0) = 0: �
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In other words, the lemma says that for any final condition the solution to the Lyapunov
equation will pointwise converge to the periodic solution.

Having established conditions for the existence of a periodic solution to the Lyapunov
equation, the question of the existence of a periodic solution to the Riccati equation is
posed in the next subsection.

3.3.3 Periodic Riccati Equation

This subsection is devoted to the analysis of a symmetric positive semidefinite solution
to the Riccati Equation (3.23). The main objective is to demonstrate that the steady state
solution to the Riccati equation is periodic.

Firstly, it is shown that the stabilizability of(A(t);B(t)) is sufficient for the existence
of a periodic solution to the Riccati equation.

Theorem 3.3.1 (Theorem 6.2 in Bittanti (1991))Suppose that(A(t);B(t)) is stabi-
lizable and consider the sequence of periodic Lyapunov equations defined in (3.27) and
(3.28). LetK0(t) be a T-periodic matrix such thatA0(t) is stable. Then

1. For eachi � 0, there exists a unique symmetric periodic and semidefinite solution
~Pi+1(t) to (3.27) andAi+1(t) is stable.

2. The sequencef~Pi(t)g is a monotonically non increasing sequence of symmetric
periodic positive semidefinite matrices, i.e.,0 � ~Pi+1(t) � ~Pi(t).

3. The sequencef~Pi(t)g is such thatlimi!1
~Pi(t) = ~PM (t), where~PM (t) is a

maximal and strong solution to the Riccati equation (i.e. the characteristic multi-
pliers ofAc(t) � A(t)�B(t)BT (t) ~PM (t) belong to the closed unit disk).

Remark 3.3.1 Similar theorem can be formulated for convergence of the sequence
fPi(t)g in Eqs. (3.27) and (3.28) towardsP(t), whereP(t) is a strong solution to the
Riccati equation for positive semidefinite final conditionPf (the solutionP(t) need not
be periodic). The proof of this statement is analogous to the proof of Theorem 3.3.1, Bit-
tanti (1991). This remark will be used in the proof of Theorem 3.4.2

Notice, that the solution~PM (t) need not guarantee stability ofAc(t), since there may
exist characteristic multipliers on the unit circle. The following theorem gives an answer
to the question whether a periodic and stabilizing solution to the Riccati equation exists.

Theorem 3.3.2 (Theorem 6.3 in Bittanti (1991))There exists a stabilizing symmetric
periodic solution~P+(t) to the Riccati Equation (3.23) if, and only if ((A(t);B(t))) is
stabilizable and no unit-modulus characteristic multipliers ofA(t) are(A(t);Q(t)) un-
observable.
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The ultimate objective of this section is to show that the steady state solution to the Ric-
cati equation is periodic. This statement is a conclusion from Lemma 3.3.2 and Theorem
3.3.1. This is formalized in the following theorem.

Theorem 3.3.3LetP(t) be solution to the Riccati Equation (3.23) for positive semidef-
inite final condition defined at infinity and~PM (t) be the periodic solution to the Riccati
equation defined in Theorem 3.3.1, then

lim
t!0

P(t) = ~PM (t):

Proof of Theorem 3.3.3 Consider the sequencefPi(t)g defined in Eqs. (3.27) and
(3.28), such that

lim
i!1

Pi(t) = P(t);

and the sequencef~Pi(t)g defined in Theorem 3.3.1 such that

lim
i!1

~Pi(t) = ~PM (t):

According to Lemma 3.3.2
lim
t!0

Pi(t) = ~Pi(t)

and thus
lim
t!0

P(t) = ~PM (t):

�

Theorem 3.3.3 will be used in the next chapter for design of a periodic attitude controller.

3.4 Finite Quadratic Cost Problem

Computation of the periodic steady state equilibrium is demanding, especially when on
board calculation of the controller gain is necessary. Therefore, a new controller based
on a transient solution to the Riccati equation is proposed in this section. The control law
consists of two subsequent steps:

1. Calculate off-line time varying solution to the Riccati equation within one period
subject to a given final condition.

2. Apply an optimal controller based on the solution to the Riccati equation calculated
in the first step.
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This control procedure is recognized in the literature on optimal control as a receding
horizon control. However, the name, periodic receding horizon will be used in the sequel
to emphasize that the controller is evaluated for one period. The contents of this section
is based on Wisniewski (1995b).

Consider again the Riccati Equation (3.23). LetP(t) be its solution evaluated on an in-
terval (� � T; � ] subject to the final conditionP(�) = Pf . Furthermore, define the
following matrix functionP̂(t)

P̂(t) �

�
P(t) if � � T < t � �

0 otherwise.
(3.35)

The periodic extension,~P(t) is now defined as

~P(t) �

1X
k=0

P̂(t� kT ); k = 0; 1; 2; � � � (3.36)

Notice that the periodic extension is a solution to the Riccati equation calculated for one
period, and then applied not only during this period but also extended to subsequent ones.

The control law based on the periodic extension, i.e the periodic receding horizon control
is given by

u(t) = �BT (t) ~P(t)x(t): (3.37)

The control algorithm then has two steps. The first is to calculate the time varying solu-
tion to the Riccati equation within one period subject to the final conditionP(�) = Pf .
The second is to apply the control law (3.37).

It is important to recognize that the control law in Eqs. (3.35) to (3.37) minimizes the
performance index

J(u) =

1X
k=0

xT (� � kT )Pfx(� � kT ) +

Z
1

0

[xT (t)Q(t)x(t) + uT (t)u(t)]dt:
(3.38)

The system with this control law is not energy optimal, since it has an extra part, i.e. the
first summand of Eq. (3.38), which appears owing to the solution to the Riccati equation
is forced to have valuePf at each time� � kT , wherek = 0; 1; 2; : : :

Further investigation focuses on an issue whether such a control law is stable. The answer
is that the periodic receding horizon may not provide stabilizing control law in general.
The necessary condition for stability is that the differenceP(�) � P(� � T ) is posi-
tive semidefinite. A formal description of this statement is formulated in the following
theorem below, which was first established in DeNicolao (1994).

Theorem 3.4.1LetP(t) be the solution to the Riccati Equation (3.23) with final condi-
tionsP(�) = Pf � 0 (positive semidefinite) and assume that
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1. (A(t);B(t)) is stabilizable

2. (A(t);Q(t)) is detectable

3. F � P(�) �P(� � T ) is positive semidefinite

Then the periodic matrix function~P(t) (see Eqs. (3.35) and (3.36)) is stabilizing, i.e. the
control law (3.37) is stable.

Proof of Theorem 3.4.1 The proof of Theorem 3.4.1 is equivalent to the proof of The-
orem 3 in DeNicolao (1994) if the following property is applied: if(A(t);Q(t)) is de-
tectable then(A(t);Q(t);F) is D-detectable. �

Remark 3.4.1 In the next chapter on implementation of the finite and infinite quadratic
cost problems, the weight matrixQwill be time invariant. Notice that the pair(A(t);Q)
is detectable ifQ has the full rankn. Consider the observability gramian

Go(t; �) �

Z t

�

�T (s; �)QTQ�(s; �)ds: (3.39)

The matrixGo(�; t) has rankn, since

rank(Go(�; t)) >= rank(�T (�; �)QTQ�(�; �)) = rank(QTQ) = n:

(3.40)

3.4.1 Choice of Final Condition

The critical issue of a periodic receding horizon controller design is the choice of the final
conditionPf such thatF � 0 (F is positive semidefinite). A suitable value of the final
condition can be found via numerical simulation. Lemma 3.4.1 gives a hint for a heuristic
final condition search algorithm, which is given at the end of this subsection. The lemma
states that if a periodic solution and a solution to the Riccati equation are given such that
the difference between the final conditions is positive semidefinite, then the difference
between these solutions is positive semidefinite for all time.

Lemma 3.4.1 Suppose that(A(�);B(�)) is stabilizable and let~PM (t) be the T-periodic
solution to the Riccati Equation (3.23) and letP(t) be a solution to the Riccati equation.
Moreover letP(�) � ~PM (�) for some� thenP(t) � ~PM (t) for all t � � .

Proof of Lemma 3.4.1 LetP(i)
12 (t) =P(t)� ~Pi(t), where~Pi(t) is defined in Theorem

3.3.1 and let

~PM (t) = lim
i!1

~Pi(t) (3.41)
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Comparing Eqs. (3.23) and (3.27), (3.28) the following Lyapunov equation is derived

� _P
(i+1)
12 (t) = (A(t)�B(t)BT (t) ~Pi(t))

TP
(i+1)
12 (t) +P

(i+1)
12 (t)(A(t) (3.42)

� B(t)BT (t) ~Pi(t)) + (~Pi(t)�P(t))B(t)B
T (t)(Pi(t)�P(t)):

The Lyapunov Equation (3.42) has positive semidefinite finite condition,P
(i+1)
12 (�) � 0.

According to Theorem 3.3.1 the closed loop system(A(t)�B(t)BT (t) ~Pi(t)) is stable.
The matrixP(i+1)

12 (t) is positive semidefinite as the solution to the Lyapunov equation,
see Extended Lyapunov Lemma in Section 1.1.2. Thus, the quantityP(t) � PM (t) =

limi!1P
(i)
12 (t) is also positive semidefinite, andP(t) � PM (t) for all t � � . �

A procedure for finding the final conditions of the Riccati equation stabilizing the reced-
ing horizon will be derived in the following. According to Lemma 3.3.3 the periodic
equilibrium ~PM (t) is

lim
t!0

P(t) = ~PM (t): (3.43)

Recognize that, ifP(�) � ~PM (�) then from Lemma 3.4.1 and Eq. (3.43),P(� � T ) �
P(�), i.e. F = P(�) � P(� � T ) is positive semidefinite. In other words, the neces-
sary condition for stability of the periodic receding horizon control is that the difference
betweenPf and the periodic equilibrium of the Riccati equation at time� is positive
definite.

Remark 3.4.2 The final condition matrix,P(�) can be chosen such that it is positive
definite and converges to infinity, thenF is positive definite, indeed.

Kwon and Pearson (1977) demonstrate that instead of consideringPf infinitely large
one can chooseSf = P�1f = 0. The matrixS(�) = P�1(�) satisfies the following
Riccati differential equation

� _S(t) = �A(t)S(t)� S(t)AT (t) +B(t)BT (t)� S(t)Q(t)S(t);
(3.44)

with the final condition
S(�) = 0:

The solutionS(� �nT ) is positive definite according to Kwon and Pearson (1977), thus
P(� � nT ) = S�1(� � nT ) is defined.

LargePf is desired to fulfill stability conditions, but it indicates that the resultant control
signal is unnecessarily large, therefore a tradeoff between these two issues shall be found.
The following design procedure for finding an appropriate final condition can now be
adopted.
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Procedure 3.1
1. Choose large value of the final condition,P(�) � 0.

2. Find the solution to the Riccati equation backwards for� � nT (n � 1).

3. Apply this solution as the final conditionPf in the receding horizon controller.

3.4.2 Quasi Periodic Receding Horizon

An issue of applicability of the periodic receding horizon to a system, where either the
system or the control matrices are not perfectly periodic, is in the focus of this subsection.
The investigation is motivated by the magnetic attitude control problem. The control ma-
trix, B(t) in Eq. (2.38) is not ideally periodic within one orbit, due to certain perturba-
tions caused by rotation of the Earth in the World CS. A quasi periodic horizon controller
investigated in this subsection corresponds to the periodic horizon controller except that
the Riccati equation is computed for each interval of timet 2 (� + iT; � + (i + 1)T ]
separately.

Formally, a quasi periodic system is of the form

_x(t) = A(t)x(t) +B(t)u(t); (3.45)

wherex(t) 2 R
n , u(t) 2 R

m , the system matrix,A(t) and the control matrices,B(t)
are time varying and limited.

The objective of this subsection is to show when the following control law is stable.

Procedure 3.2
1. Calculate the solutionP(i)(t) to the Riccati Equation (3.23) in the intervalt 2

(� + iT; � + (i+ 1)T ] with the final conditionP(i)(� + (i+ 1)T ) = Pf , where
i = 1; 2; 3; : : :

2. Apply the control law

u(t) = �B(t) �P(t)x(t): (3.46)

where

�P(t) � P(i)(t) for t 2 (� + iT; � + (i+ 1)T ]: (3.47)

The control law given above will be called the quasi periodic receding horizon control.
It is essentially the same as the periodic receding horizon control, except that it is applied
to a quasi periodic system. It is demonstrated in Theorem 3.4.2 that the quasi periodic
receding horizon control is stable ifFi � Pf �Pi(� + iT ) is positive semidefinite for
all i.
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Theorem 3.4.2Consider a quasi periodic system in Eq. (3.45). Let(A(t);B(t)) be
stabilizable and(A(t);Q(t)) observable. Let�P(t) be defined as

�P(t) � P(i)(t) for t 2 (� + iT; � + (i+ 1)T ];

whereP(i)(t) is the solution to the Riccati Equation (3.23) with the final condition
P(i)(� + (i + 1)T ) = Pf . Furthermore, ifF(i) � Pf � P(i)(� + iT ) is positive
semidefinite, then the control law (3.46) is stable.

Proof of Theorem 3.4.2 The theorem is proved using Lyapunov’s direct method, Sec-
tion 5.2.

For each solution to the Riccati equationP(i) consider a sequencefP(i)
k g of the solutions

to the Lyapunov equations defined in Eqs. (3.27) and (3.28). In accordance with Remark
3.3.1

0 � P
(i)

k+1(t) � P
(i)

k (t) and lim
k!1

P
(i)

k (t) = P(i)(t);

whereP(i)
k+1 is computed fromP(i)

k by solving the Lyapunov differential equation

� _P
(i)
k+1(t) = A

(i)
k (t)TP

(i)
k+1(t) +P

(i)
k+1(t)A

(i)
k (t) +Q(t) +K

(i)
k (t)TK

(i)
k (t);

(3.48)

and

A
(i)
k (t) = A(t)�B(t)K

(i)
k (t);

K
(i)
k (t) = BT (t)P

(i)
k (t) (3.49)

Choosek such that
F
(i)
k � Pf �P

(i)
k (� + iT )

is positive semidefinite for alli. This index,k exists since the difference

F � Pf �P
(i)(� + iT )

is positive semidefinite for alli andP(i)
k (t) converges toP(i)(t).

Define a Lyapunov candidate function

v(t) = x(t) �Pk+1(t)x(t);

where
�Pk(t) � P

(i)
k (t) for t 2 (� + iT; � + (i+ 1)T ]

and lett0 � tf , t0 2 [� + (l � 1)T; � + lT ) andtf 2 [� + (j � 1)T; � + jT ), l � j.
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v(t)

tτ+jΤ
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1

Figure 3.1: The Lyapunov functionv(t) = xT (t) �P(t)x(t) is discontinuous at timet =
� + jT .

Now, it is demonstrated thatv(tf )� v(t0) is negative definite

v(tf )� v(t0) =Z �+lT

t0

d

dt
[xT (t)P

(l�1)

k+1 (t)x(t)]dt +

Z �+(l+1)T

�+lT

d

dt
[xT (t)P

(l)

k+1(t)x(t)]dt + � � �

+

Z tf

�+(j�1)T

d

dt
[xT (t)P

(j�1)
k+1 (t)x(t)]dt + xT (� + lT )F

(l�1)
k+1 x(� + lT )

+ xT (� + (l + 1)T )F
(l)
k+1x(� + (l + 1)T ) + � � �

+ xT (� + (j � 1)T )F
(j�2)
k+1 x(� + (j � 1)T ):

(3.50)

The last three summands on the r.h.s of Eq.(3.50) are due to discontinuity of the matrix
function �P(t) at time� + iT , see Fig. 3.1.

Furthermore, the differencev(tf )� v(t0) is bounded from above

v(tf )� v(t0) � �

Z �+lT

t0

xT (t)[P
(l�1)
k (t)B(t)BT (t)P

(l�1)
k (t) +Q(t)]x(t)dt

�

Z (�+l+1)T

�+lT

xT (t)[P
(l)
k (t)B(t)BT (t)P

(l)
k (t) +Q(t)]x(t)dt � � � �

�

Z tf

�+(j�1)T

xT (t)[P
(j�1)
k (t)B(t)BT (t)P

(j�1)
k (t) +Q(t)]x(t)dt:

(3.51)
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Notice that the following equality was used in Eq. (3.51)

d

dt
xT (t)P

(l�1)
k+1 (t)x(t) = 2xT (t)P

(l�1)
k+1 (t)A

(i)
k (t)x(t)

� xT (t)(A
(i)
k (t)P

(l�1)
k+1 (t) +P

(l�1)
k+1 (t)A

(i)
k (t) +Q+P

(l�1)
k (t)B(t)BT (t)P

(l�1)
k+1 (t))x(t)

= xT (t)(Q+P
(l�1)

k (t)B(t)BT (t)P
(l�1)

k+1 (t))x(t):

If the statex(t) in Eq. (3.51) is substituted by

x(t) = �k(t; t0)x(t0); (3.52)

where

�k(t; t0) � �
(i)
k (t; t0); for t 2 (� + iT; � + (i+ 1)T ] (3.53)

and�(i)
k (�) is the state transition matrix of the closed loop system,A

(i)
k in Eq. (3.49),

then

v(tf )� v(t0) �

� xT (t0)

Z �+lT

t0

�
T
k (t; t0)[P

(l�1)
k (t)B(t)BT (t)P

(l�1)
k (t) +Q(t)]�k(t; t0)dt x(t0)

� xT (� + lT )

Z �+(l+1)T

�+lT

�T
k (t; � + lT )[P

(l)
k (t)B(t)BT (t)P

(l)
k (t)

+Q(t)]�k(t; � + lT )dt x(� + lT )� � � �

� xT (� + (j � 1)T )

Z tf

�+(j�1)T

�
T
k (t; � + (j � 1)T )[P

(j�1)
k (t)B(t)BT (t)P

(j�1)
k (t)

+Q(t)]�k(t; � + (j � 1)T )dt x(� + (j � 1)T ):

(3.54)

Finally, from Eq. (3.54) the following inequality is true

v(tf )� v(t0) � �x
T (t0)

Z �+lT

t0

�T
k (t; t0)Q(t)�k(t; t0)dt x(t0)

� xT (� + lT )

Z �+(l+1)T

�+lT

�
T
k (t; � + lT )Q(t)�k(t; � + lT )dt x(� + lT )� � � �

� xT (� + (j � 1)T )

Z tf

�+(j�1)T

�
T
k (t; � + (j � 1)T )Q(t)�k(t; � + (j � 1)T )dt

� x(� + (j � 1)T ):

(3.55)

The system(A(�);Q(�)) is observable thus also the closed loop system(Ai(�);Q(�)) is
observable, and the gramian matrix

G(A;Q)(t; t0) =

Z t

t0

�T
k (�; t0)Q(t)�k(�; t0)d�
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is positive definite. According to Lyapunov’s direct method, Section 5.2.�Pk(t) is stabi-
lizing, and

lim
k!1

�Pk(t) = �P(t);

thus �P(t) is stabilizing as well. �

So far, time varying controllers have been investigated. Their common feature is that
a solution to the Riccati differential equation specifies the control gain. The computer
burden associated with these controllers is very heavy. It is thus worthwhile to design a
constant gain controller stabilizing a linear periodic periodic system.

3.5 Constant Gain Control for Linear Periodic Systems

This section gives theoretical fundamentals for the design of a constant gain controller for
a periodic system. The constant gain control is very attractive for satellites, which com-
puter capacity is limited. The concepts investigated in this section are applied in Section
4.4 dealing with constant gain controller for a LEO satellite with a gravity gradient boom.

The work is motivated by Zhanget al. (1996), where it is proved that there exists a time
invariant controller for every linear periodic system, that provides betterH2 andH1
performance than that of the periodically time varying controller.

It seems promising to base the design of a controller for the system (3.1) on the Floquet
theory. The objective is to design a linear constant gain controller such that the charac-
teristic multipliers belong to the open unit circle. The method presented in the sequel is
derived from Picard’s method of Successive Approximations. The contents of this sec-
tion is based on Wisniewski (1995b).

Consider system (3.1) actuated according to a constant gain control law

_x(t) = Ac(t)x(t); (3.56)

where
Ac(t) = A(t) +B(t)K:

It is necessary to calculate the monodromy matrix	Ac
(t0) and its characteristic multi-

pliers to check stability of the system (3.56). Deriving an analytic formula for the mon-
odromy matrix is in general tedious and often even impossible1. Hence, an approximate
solution to (3.56) is of the interest. Picard’s method of successive approximations is then
applied in the sequel.

1Notice that the monodromy matrix	A(t0) of system 3.3 is	A(t0) = exp
R t0+T
t0

A(�)d� if and

only if A(t1)A(t2) = A(t2)A(t1), which is not the case in general (certainly not for the magnetic actu-
ated satellite).
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3.5.1 Picard’s Method of Successive Approximations

Solution to an ordinary differential equation can by calculated using Picard’s method of
successive approximations Matwiejew (1982).

Consider two continuous, Lipschitz ordinary differential equations

dy

dt
= f1(t; y; z);

dz

dt
= f2(t; y; z) (3.57)

with initial conditions

y(t0) = y0; z(t0) = z0: (3.58)

The solutionsy(t), z(t) are given by the following iterative procedure

� First approximation is

y(1)(t) = y0 +

Z t

t0

f1(t; y0; z0)dt;

z(1)(t) = z0 +

Z t

t0

f2(t; y0; z0)dt (3.59)

� Second approximation is

y(2)(t) = y0 +

Z t

t0

f1(t; y
(1); z(1))dt;

z(2)(t) = z0 +

Z t

t0

f2(t; y
(1); z(1))dt (3.60)

� n-th approximation is

y(n)(t) = y0 +

Z t

t0

f1(t; y
(n�1); z(n�1))dt;

z(n)(t) = z0 +

Z t

t0

f2(t; y
(n�1); z(n�1))dt (3.61)

� The solutionsy(t), z(t) are

y(t) = lim
n!1

y(n); z(t) = lim
n!1

z(n) (3.62)

Now, the monodromy matrix	Ac
(t0) is approximated by the Picard’s method of suc-

cessive approximations.
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3.5.2 Monodromy Matrix Approximation

The following differential equation describes the time propagation of the transition ma-
trix �Ac

(t; t0) of the system (3.56)

_�Ac
(t; t0) = Ac(t)�Ac

(t; t0)

with the initial condition

�Ac
(t0; t0) = I: (3.63)

Application of Picard’s method of successive approximation gives

� First approximations is

�
(1)
Ac

(t; t0) = I+

Z t

t0

Ac(t)dt (3.64)

� n-th approximation is

�
(n)
Ac

(t; t0) = I+

Z t

t0

Ac(t)�
(n�1)
Ac

(t; t0)dt (3.65)

As mentioned in Section 3.1, the transition matrix evaluated within one period i.e. fort =
t0 + T is defined as the monodromy matrix, which characteristic multipliers determine
stability of the periodic system (3.56). The n-th approximation of the monodromy matrix
	

(n)
Ac

(t0) can be related to the monodromymatrix of the system with constant coefficients

_x = ~Ax; (3.66)

where

~A =
1

T

Z t0+T

t0

Ac(t)�
(n�1)
Ac

(t; t0)dt: (3.67)

Notice that the monodromy matrix of the system (3.66) is

	 ~A = e
~AT = I+ ~A+

1

2
~A2T 2 + : : : (3.68)

Comparing Eq. (3.65) with Eq. (3.68) it is concluded that the monodromy matrix	
(n)
Ac

is the first order approximation of the monodromy matrix	 ~A.

An interesting issue is whether stability of the system (3.66) implies stability of the mon-
odromy matrix	(n)

Ac
. The eigenvalues of the system (3.68) are given by the equation

det(� ~AE�
~A) = 0; (3.69)
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whereas

det(�	E�E� T ~A) = 0 (3.70)

is the equation of the characteristic multiplier of the monodromy matrix	
(n)
Ac

.

It follows from Eqs. (3.69) and (3.70) that

�	 = T� ~A + 1; (3.71)

but the monodromy matrix	(n)
Ac

is stable if its characteristic multipliers satisfiesj�	j <
1, thus

�
2

T
< � ~A < 0: (3.72)

Hence, the time constants of the time invariant counterpart (3.66) shall be larger thanT
2

in order to fulfill the stability condition for the periodic system, or in other words the band
width in all channels of the system (3.66) shall be less than2

T
.

3.5.3 Calculation of Constant Gain Control

The first order approximation of the monodromy matrix derived in the previous subsec-
tion is used in the following to generate a constant gain control law.

Consider the time invariant system (3.66) forn = 1

_x(t) =

 
1

T

Z t0+T

t0

A(t)dt

!
x(t) +

 
1

T

Z t0+T

t0

B(t)dtK

!
x(t):

(3.73)

The system in Eq. (3.73) is time invariant, and the standard methods of the linear control
theory can be applied for finding a stabilizing control law.

Note that stability of the system (3.1) is not guaranteed, since the systems (3.1) and (3.73)
are equivalent only to the first order approximation. Therefore, additionally Floquet sta-
bility analysis is to be performed.

Consider the procedure below for the design of a constant gain controller.

Procedure 3.3
1. Calculate the equivalent system with constant coefficients

_x(t) = Âx(t) + B̂u(t); (3.74)

where

Â =
1

T

Z t0+T

t0

A(t)dt; B̂ =
1

T

Z t0+T

t0

B(t)dt: (3.75)
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2. Find the control gainK for the system (3.74).

3. Compute the characteristic multipliers for the system (3.56).

4. If the characteristic multipliers do belong to the open unit circle then the feedback
system is stable.

Practical realization of the Procedure 3.3 is provided in the next chapter.

Remark 3.5.1 The system (3.1) is equivalent to the system (3.74) if the matricesA and
B are time invariant.

Remark 3.5.2 The differential Equation (3.74) can be viewed as a system with averaged
parameters within one period relative to the periodic system (3.1). The effects of low fre-
quency disturbances on a periodic system and its time invariant counterpart are similar,
whereas high frequency responses are very much different. The periodic system may not
even be controllable at fixed time (magnetic attitude control problem).

3.6 Discussion of Results

The theoretical foundations for the magnetic attitude controller design were provided in
this chapter. First, time varying optimal control was investigated. The infinite horizon
controller was presented, which gain was calculated based on the periodic solution to
the Riccati equation. This solution can be calculated off-line and stored in the computer
memory. The controller assumed ideally periodic system parameters. This is violated in
the magnetic attitude control problem, since the geomagnetic field is not ideally periodic
during one orbital passage. In order to overcome this baseline, quasi periodic receding
horizon was proposed, which can solve the Riccati equation for a realistic geomagnetic
field model. The computer power associated with this controller is heavy. The most at-
tractive for satellites with limited computer resources was the constant gain controller,
which theoretical basis was thoroughly elaborated. The findings are implement to a LEO
satellite with a gravity gradient boom in the next chapter.



Chapter 4

Three Axis Attitude Control:
Linear Approach

The satellite trajectory during the science observation mission phase must remain in a
window of10 deg pitch/roll, and20 deg yaw about the reference and the angular veloc-
ity must remain quite small.. Therefore, it is reasonable to base design of the attitude
controller on a linear approach. Later chapters will discuss operation outside the speci-
fied window.

The system adopted in this chapter is linear and time varying. It was mentioned already in
Chapter 2 that the satellite is not controllable when considered at fixed time. Availability
of design methods for time varying systems is very limited. Nevertheless, a solution of
the Riccati equation gives an excellent frame for further investigations.

An observation that the geomagnetic field changes approximately periodically when a
satellite is on a near polar LEO is used throughout this chapter. Confined computer ca-
pacity and a limit on electrical power supply are factors which constrains possible so-
lutions. Computational simplicity and power optimality are therefore required from the
attitude control system. The design of optimal controllers for a real-time implementation
is the subject of this chapter. Three types of attitude controllers are proposed: a) an in-
finite horizon, a finite horizon, and a constant gain controller. Time varying controllers,
i.e. the infinite horizon controller, and the finite horizon controller are developed in Sec-
tions 4.2 and 4.3. The constant gain controller is designed in Section 4.4. Performance
of the attitude controllers is validated via simulation. Simulation tests are performed for
the Ørsted satellite on its elliptic orbit. The satellite motion is influenced by a moderate
aerodynamic drag torque corresponding to normal solar activity.

The contents of this chapter is based on Wisniewski (1994a) and Wisniewski (1995b).
The theoretical background for the design and analysis was elaborated in Chapter 3.

45
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4.1 Satellite as Linear Periodic System

It has been mentioned several times that the control torque of the magnetic actuated satel-
lite always lies perpendicular to the geomagnetic field vector, and a magnetic moment
generated in the direction parallel to the local geomagnetic field has no influence on the
satellite motion. This can be explained by the following equality

cNctrl(t) = (cmq(t) +
cm?(t))�

cB = cm?(t)�
cB; (4.1)

wherecmq is the component ofcm parallel tocB, whereascm? is perpendicular to the
local geomagnetic field.

Concluding, the necessary condition for power optimality of a control law is that the mag-
netic moment lies on a 2-dimensional manifold perpendicular to the geomagnetic field
vector.

Consider the following mapping

c ~m 7! cm : cm =
c ~m� cB

k cB k
; (4.2)

wherec ~m represents a new control signal for the satellite. Now, the magnetic moment,
cm, is perpendicular to the local geomagnetic field vector and control theory for a system
with unconstrained inputc ~m can be applied. The direction of the signal vectorc ~m (con-
trary tocm) can be chosen arbitrary by the controller. From practical point of view, the
mapping (4.2) selects the component ofc ~mwhich is perpendicular to the local geomag-
netic field vector. The efficiency of the control is improved by this re-formulation. The
reason is that currents sent into the magnetorquercoils will always give rise to a magnetic
control moment which is exactly perpendicular tocB.

Linearization of the satellite motion in terms of the first three components of the attitude
quaternion was elaborated in Section 2.6. The only difference between the linear satellite
model in Section 2.6 and the linear system with the new control signalc ~m is that the cross
product operationcm� cB is substituted by the double cross product(c ~m� cB)� cB.

The linearized equation of motion from Eqs. (2.38) and (4.2) is

d

dt

�
�


�q

�
= A

�
�


�q

�
+B(t)c ~m; (4.3)

where

A =

2
6666664

0 0 0 �2k�x 0 0
0 0 !o�y 0 2k�y 0
0 !o�z 0 0 0 0
1
2

0 0 0 0 0
0 1

2
0 0 0 !o

0 0 1
2

0 �!o 0

3
7777775
;
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�x =
Iy � Iz

Ix
; �y =

Iz � Ix

Iy
; �z =

Ix � Iy

Iz
;

B(t) =

2
6666664
I�1

2
4�oB2

y(t)�
oB2

z (t)
oBx(t)

oBy(t)
oBx(t)

oBz(t)
oBx(t)

oBy(t) �oB2
x(t)�

oB2
z (t)

oBy(t)
oBz(t)
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oBz(t)

oBy(t)
oBz(t) �oB2

x(t)�
oB2

y(t)

3
5

2
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0 0 0
0 0 0

3
5

3
7777775

Our attention is on the matrixB(t) consisting of a time varying and a constant part. The
time varying part represents the double cross product operation�oB(t)�(oB(t)�). The
matrixB(t) is approximated by a periodic matrix̂B(t) in the next subsections.

4.2 Infinite Horizon Periodic Controller

The geomagnetic field is essentially that of a magnetic dipole with the largest anoma-
lies over Brazil and Siberia. The geomagnetic field in the Orbit CS, has large y and z
components, while the x component is comparatively small. The rotation of the Earth
is visible via fluctuations of the geomagnetic field vector’s x component with frequency
1=24 1=hours, see Fig. 2.4 in Subsection 2.7.2. The following observation is used for
the design of an attitude controller.The geomagnetic field on a near polar orbit is approx-
imately periodic with a periodT = 2�=!0.

Due to periodic nature of the geomagnetic field, seen from the Orbit CS, the linearized
model of the satellite can be considered as periodic. It is though necessary to find an ide-
ally periodic counterpart of the real magnetic field of the Earth. This is done by averaging
the geomagnetic field overN = 15 number of orbits covering24 hours. Furthermore,
the geomagnetic field is parameterized by the mean anomalyM , since the geomagnetic
field and the mean anomaly have the common periodT

oBave(M) =
1

N

NX
i=1

oB(M): (4.4)

An averaged B-field vectorBave(M(t)) is depicted in Fig. 4.1. The resultant linear pe-
riodic system is

d

dt

�
�


�q

�
= A

�
�


�q

�
+ B̂(M)c ~m; (4.5)

whereB̂(M) is given in Eq. (4.5) after substituting the symbolB(t) for B̂(M), and the
components of the vectoroB(t) for the components ofoBave(M).
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Figure 4.1: An averaged B-field vector in the Orbit CS. Compare with the realistic mag-
netic field of the Earth in Fig. 2.4 .

The difference between the time varying matrixB(t) and the ideal periodic counterpart
B̂(M(t)) used for the controller design is considered an additional external disturbance
torque acting on the satellite.

The controller gain is calculated from the steady state solution of the Riccati equation,
which is periodic. The solution to the Riccati equation is calculated off-line and stored
in the computer memory.

The results from Section 3.3 are applied for the design of a periodic attitude controller.
According to Theorem 3.3.2, if the pair(A; B̂(M)) is stabilizable then there exists a
stabilizing symmetric periodic solutionP+(t) of the Riccati equation

� _P+(t) = P+(t)A+ATP+(t)�P+(t)B̂(M)B̂T (M)P+(t) +Q:
(4.6)

The periodic solution of the Riccati equation,P+(t) is found from the periodic extension
of the steady state solutionP1(t).

P̂(t) =

�
P1(t) if 0 � t < T

0 otherwise
(4.7)
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Figure 4.2: The time history of the (1,1) component ofP+. Notice thatP+ has a period
equivalent to the orbit period.

P+(t) =

1X
k=0

P̂(t� kT ) (4.8)

The solutionP1(t) is calculated using backward integration of the Riccati equation for
an arbitrary final condition. This solution converges to the periodic solution. The matrix
functionP1(t) corresponding to one orbital passage is stored in the computer memory,
and then used for the subsequent orbits.

An example of the periodic matrix functionP+(t) is illustrated in Fig. 4.2.P+(t0)
at fixed timet0 is a 6 x 6 positive definite matrix. The figure depicts the time history
of P+(1; 1), which is typical for the diagonal components. Off-diagonal components
change their amplitudes between positive and negative values.

Again, the mean anomalyM can be used for parameterization ofP+(M), since both
P+(t) andM(t) are T-periodic. Furthermore, the controller gain matrix is also T-
periodic and parameterized with respect to M

K+(M) = �B(M)P+(M): (4.9)
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4.2.1 Implementation

The mean anomaly dependent control gain matrixK+(M) is computed off-line and
stored in the computer memory. The control signalc ~m(t) is then calculated according
to

c ~m(t) = K+(M)

�
c
co(t)
q(t)

�
; (4.10)

and finally, the magnetic moment,cm(t) is obtained by

cm(t) =
c ~m(t)� cB(t)

k cB(t) k
: (4.11)

Another option is to representK+(M) in terms of the Fourier coefficients, benefiting
in a reduction of the data stored. A satisfactory approximation of the gain matrixK+

has been obtained with 16th order Fourier series, see Fig. 4.3. The required capacity of
computer memory given in floating point numbers is

Memory =
Period � No: of elemnts inK+ � Order of Fourier series

Sampling time
:

For example with a sampling time of 10 sec and the orbital period 6000 sec , then 172800
floating point memory is required.

Simulation results of the infinite horizon attitude control are presented in Figs. 4.4, 4.5
and 4.6. Fig. 4.4 illustrates performance of the attitude controller for the linear model of
the satellite motion with an ideally periodic geomagnetic field simulator. Fig. 4.5 depicts
performance of the infinite horizon attitude controller for the Ørsted satellite in a circular
orbit. In Fig. 4.6, the Ørsted satellite is simulated in its elliptic orbit. The satellite motion
is affected by the aerodynamic drag for normal solar activity. Additionally, the realistic
geomagnetic field is applied in both Figs. 4.5 and 4.6.

Disturbances due to eccentricity of the orbit and the aerodynamic drag torque act in the
pitch direction. Therefore, both the first component of the quaternion and the first com-
ponent of the angular velocity, which for small angles correspond to the pitch and pitch
rate, are punished slightly more than the remaining components of the state. A diagonal
weight matrixQwith the diagonal[10 6 6 10 6 6]T has been implemented for both linear
and nonlinear models of the satellite. Initial values of the attitude are the same in both
examples corresponding to40 deg pitch,�40 deg roll, and80 deg yaw.

The simulations show that the controller is stable for a wide range of operating points,
also very much outside the reference. However, the performance of the infinite horizon
controller is relatively poor outside vicinity of the reference, due to influence of the non-
linearities. This can be observed as large variations of the third and fourth component of
the attitude quaternion,q3 andq4 in Figs. 4.5 and 4.6. The result of the disturbance torque
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Figure 4.3: An approximation of the (1,1) component of the gain matrixK+ by 16th
order Fourier series. The discrepancy betweenK+ and its Fourier approximationreaches
1.5 per cents at most.

due to a difference between the geomagnetic field and its periodic counterpart imple-
mented in the attitude controller is the steady state attitude error in Fig. 4.5. Performance
of the infinite horizon attitude controller for the Ørsted satellite affected by the aerody-
namic torque is illustrated in Fig. 4.6. The satellite motion is influenced by a moderate
aerodynamic drag torque corresponding to normal solar activity. The aerodynamic drag
is equal0:9 10�5 Nm at perigee. The attitude error is3 deg of pitch and roll, whereas
yaw angle varies within6 deg.

A computational expense for the infinite horizon controller lies in the off-line numeric
solution to the Riccati equation, but relatively large computer memory is required for
keeping the gain data for one orbit. The controller gives a nonzero steady state error also
for simulations without external disturbance torques. It is concluded that the infinite hori-
zon magnetic controller is applicable for missions with low pointing requirements. The
steady state performance could be improved by the finite horizon controller, which in-
corporates a realistic model of the geomagnetic field.
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Figure 4.4: Performance of the infinite horizon controller for a satellite modeled as a
linear object. The simulation is carried out for “ideally periodic” geomagnetic field. The
initial attitude is40 deg pitch,�40 deg roll and80 deg yaw.

4.3 Finite Horizon Periodic Controller

The linearized model of the satellite motion is only approximately periodic. There is a
certain difference between the ideal periodic model of the geomagnetic field developed
in Section 4.2, and the real magnetic field of the Earth. The controller performance could
be improved by incorporating the time history of the real geomagnetic field into the con-
troller structure.

A new attitude controller based on a transient solution of the Riccati equation is there-
fore investigated. Theoretical basis for the quasi periodic receding horizon controller was
given in Section 3.4. The control algorithm is summarized as:

Procedure 4.1
1. Calculate the time varying solution of the Riccati differential equation in the time

interval t 2 (� � T; � ]

� _P(t) = ATP(t) +P(t)A �P(t)B(t)BT (t)P(t) +Q(t)
(4.12)

with the final condition

P(�) = Pf : (4.13)
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Figure 4.5: Performance of the infinite horizon controller for the Ørsted satellite on a
circular orbit. The initial attitude is the same as in Fig. 4.4. The steady state attitude
error is below1 deg.

2. Implement controller

~m(t) = �BT (t)P(t)

�
c
co

q

�
(4.14)

for t 2 (� � T; � ]:

3. Calculate magnetic moment from the equation

cm(t) =
c ~m(t)� cB(t)

k cB(t) k
:

4. � becomes� + T .

5. go to 1.

It was stated in Section 3.4 that if the differenceF = Pf�P(��kT ) is positive semidef-
inite for k � 0 then the procedure given above provides a stable control law (Theo-
rem 3.4.1). The final condition,Pf is chosen sufficiently large such thatF is positive
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Figure 4.6: Performance of the infinite horizon controller for the Ørsted satellite on its
elliptic orbit. The initial attitude is the same as in Fig. 4.4. The satellite is influenced by
the aerodynamic drag for normal solar activity. The attitude error is below3 deg of pitch
and roll. Yaw varies within6 deg.

semidefinite independently on the deviation of the geomagnetic field from its periodic
model. It should be noted that the largerPf , the larger is the control torque. The con-
troller shall comply with the power constraints imposed on the attitude control system,
therefore the maximum value of the final condition shall be confined. A heuristic algo-
rithm searching for an acceptablePf was given in Subsection 3.4.1. The final condition
is considered as a design parameter, that can be iterated by means of computer simula-
tion.

The attitude control system based on the final horizon control is illustrated in Fig. 4.7.
The orbit model provides position of the satellite in orbit in terms of longitude, latitude
and altitude. This information is used by the on board geomagnetic field model (here
10th order spherical harmonic model). The Riccati equation is computed for the subse-
quent orbit. The controller gain is computed and parameterized by the mean anomaly.
The controller gain is stored in a buffer. This procedure is activated once per orbit. The
control gain matrix is taken from the buffer on the basis of the mean anomaly associated
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Figure 4.7: Attitude control system based on finite horizon control.

with position of the satellite in orbit. The controller gain is updated every sampling cycle,
and is implemented in the control loop.

4.3.1 Implementation

The quasi periodic receding horizon controller has been validated through computer sim-
ulation. The results are depicted in Figs. 4.8 and 4.9. Control parameters have been
found empirically. Weight matrixQ has been set to10E, and the final conditionPf has
been calculated from the steady state solution:Pf = P(�) = 2P1(�). Initial values of
the attitude have again been assigned to40 deg pitch,�40 deg roll and80 deg yaw.

Fig. 4.8 depicts the Ørsted satellite motion on a circular orbit, i.e. there are no exter-
nal disturbances. The satellite attitude is seen to converge asymptotically to the refer-
ence. The performance of the quasi periodic receding horizon controller for the satellite
disturbed by the aerodynamic torque is comparable with the performance of the infinite
horizon controller, see Figs. 4.9 and 4.6. This is due to the impact of the aerodynamic
torque is seen to be much larger than the influence of the torque due to the discrepancy
between the geomagnetic field and its periodic counterpart.

The steady state performance of the infinite horizon controller on a circular orbit is much
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Figure 4.8: Performance of the quasi periodic receding horizon controller for the Ørsted
satellite on circular orbit. The attitude converges asymptotically to the reference, i.e.
c
oq! [0 0 0 1]T .

better than infinite horizon, however they are seen to have the same performance for a
satellite in an elliptic orbit effected by the aerodynamic drag. The computational burden
for the finite horizon controller is heavy due to the Riccati equation shall be solved on
board (alternatively uploaded to the on board computer during every ground station pas-
sage). Therefore, the infinite horizon controller is preferable for the missions like Ørsted
with low pointing accuracy. The necessary computer power could be additionally lim-
ited if the constant controller was implemented, and had the same performance as the
time varying controllers.

4.4 Constant Gain Control

Computation of the infinite and finite horizon attitude controllers are tedious and difficult
to implement on a real-time platform. A simple constant gain attitude controller could
be an alternative which is investigated in this section.
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Figure 4.9: Performance of the quasi periodic receding horizon controller for the Ørsted
satellite on the elliptic orbit. The satellite is influenced by the aerodynamic torque. Per-
formance of the receding horizon is comparable with efficiency of the infinite horizon
attitude controller in Fig. 4.6.

The design algorithm consists of replacing the time varying parameters of the satellite
by its averaged values evaluated over a period of one orbit. The theoretical basis of the
method was given in Section 3.5, and the design procedure was outlined in Subsection
3.5.3.

The time invariant counterpart of the time varying linearized satellite motion was

d

dt

�
�


�q

�
= A

�
�


�q

�
+Bc ~m; (4.15)

where

B =
1

T

Z T

o

B̂(M(t))dt; (4.16)

andT is the orbit period, and̂B(M) is the control matrix in Eq. (4.5).
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A linear quadratic regulator (LQR) is used for the constant gain controller design. The
system is linear, time invariant and controllable thus a control law can be based on the
solution of the steady state Riccati equation, see Kwakernaak and Sivan (1972). The op-
timal control is given by

c ~m = �BTP

�
�


�q

�
; (4.17)

whereP satisfies the Riccati algebraic equation

PA+ATP�PBBTP+Q = 0: (4.18)

Once the control vectorc ~m in Eq. (4.17) is calculated, the magnetic moment,cm is com-
puted according to Eq. (4.2).

Stability of the control law in Eqs. (4.17) and (4.2) for the time varying linear model
of the satellite in Eq. (2.38) is determined using Floquet theory. This check is neces-
sary, since stability of the time varying system and its time invariant counterpart are not
equivalent. The time invariant system is only the first order approximation of the satel-
lite. Furthermore, the sensitivities of those systems are not equivalent neither, e.g. the
disturbance torque acting on the satellite in the direction of yaw in a zone near the North
nor South poles remains unaffected by the attitude controller (due to lack of controlla-
bility), whereas it can be arbitrarily damped by an LQ controller for the time invariant
counterpart.

The following closed-loop system is considered for the Floquet analysis

d

dt

�
�


�q

�
= (A� B̂T (M(t))P)

�
�


�q

�
: (4.19)

As seen from Eqs. (4.18) and (4.19) stability of the closed-loop system is dependent on
the weight matrixQ. Fig. 4.10 depicts locus of the characteristic multipliers forQ(�) �
�E6�6 , where� changes from1 to 80 1. The satellite becomes unstable for� = 52. For
� = 18, the largest characteristic multiplier is closest to the origin.

Notice that the averaged geomagnetic field is implemented for the Floquet analysis.
Therefore, an ultimate test is the Monte Carlo simulation for the nonlinear model of the
satellite with realistic disturbances.

4.4.1 Simulation

The constant gain control demonstrated stability for the entire envelope of the expected
satellite initial attitudes and angular velocities in the science observation mission phase.

1The weight matrixQ(�) acts on the state space[�
 �q]T . �
 is provided inrad=s and�q is given
without units.
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Figure 4.10: Locus of the characteristic multipliers�(�) for � changing from1 to 80 is
evaluated for the closed loop system in Eq. (4.19).The satellite becomes unstable for
� = 52, for � = 18 the largest characteristic multiplier is closest to the origin.

The control parameter: the weight matrix,Q has been found empirically. Its value has
been set to18 �E6�6. The simulation results for the Ørsted satellite on the circular orbit
in Fig. 4.11 show large amplitude of yaw oscillations. A new diagonal weigh matrix
with diagonal[18 18 90 18 18 90]T is proposed. The amplitude of the yaw fluctuations
is reduced, see Fig. 4.12. The last Fig. 4.13 illustrates the satellite motion on impact
of the aerodynamic drag and the torque due to the eccentricity of the Ørsted orbit. The
performanceof the constant gain controller is very much the same as the infinite and finite
horizon attitude controllers in Figs. 4.6 and 4.9. The attitude error is within8 deg, which
complies with required bond of�10 deg of pitch and roll,20 deg of yaw.

4.5 Discussion of Results

Three attitude controllers were designed and evaluated in this chapter: the finite horizon,
the infinite horizon, and the constant gain controllers. Their performances were compa-
rable for a satellite in an elliptic orbit effected by the aerodynamic drag. The computer
expense was however smallest for the constant gain controller, which is chosen for on
board implementation. This controller is seen to be stable for a wide envelope of initial
values of the attitude. This satisfactory performance achieved for the nonlinear model
of the satellite inspired an investigation of attitude controllers with PD type structure in
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Figure 4.11: Performance of the constant gain controller for the Ørsted satellite on cir-
cular orbit, i.e. without external disturbances. The weigh matrix,Q has value18 �E6�6.
Large amplitude of the yaw oscillations is encountered. The initial attitude is40 deg
pitch,�40 deg roll and80 deg yaw.
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Figure 4.12: Performance of the constant gain controller for Ørsted satellite on circular
orbit. The initial conditions are the same as in Fig. 4.11. The diagonal weight matrixQ

with diagonal[18 18 90 18 18 90]T is implemented. The amplitude of the yaw oscillation
is reduced comparing with. Fig. 4.11.



4.5 Discussion of Results 61

q1

q2

q3

q4

6 7 8
−10

−5

0

5

10

Orbits

pitch [deg]

6 7 8
−1

−0.5

0

0.5

Orbits

roll [deg]

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1

Orbits

6 7 8
−2

0

2

4

6

Orbits

yaw [deg]

Figure 4.13: Performance of the constant gain controller for the Ørsted satellite on the el-
liptic orbit influenced by the aerodynamic drag. The initial conditions are as in Fig. 4.11.
The resultant attitude is within8 deg.

Chapter 7. The approach presented here was tested for a broad range of initial values such
that the instrument boom was upright. There are, however, certain transitions and contin-
gency phases that the satellite can not be considered as the rotation about the reference,
owing to the nonlinear terms in the equations of kinematics and dynamics become domi-
nant, e.g. a tumbling satellite or a satellite in a boom upside-down orientation. Nonlinear
methods for magnetic attitude control are investigated in the next part of this work.





Chapter 5

Periodic Nonlinear Systems

A considerable part of the thesis has been devoted to development of the linear methods
for the satellite attitude control. The nonlinear magnetic control techniques presented in
this and the next two chapters comprise the central part of the work however. The non-
linear theory provides not only methods for globally stable control law but fused with the
knowledge of the nature of the satellite motion it explains why simple linear controllers
developed in the previous chapter are stable for initial values of the attitude very much
outside the reference.

The satellite trajectory is expected to be in the vicinity of the reference for the most of
the operational time, but there are certain transitions and contingency phases, where the
satellite motion cannot be considered as rotation in the neighbourhoodof a reference, and
the nonlinear terms in Eqs. (2.12) to (2.20) become dominant. The problem is, thus, in-
herently nonlinear and nonlinear control methods are needed. The most important of the
transition phases is when the satellite is released from the launcher, and will experience
a random tumbling motion in space, with known bounds on the angular velocity.

A background of the nonlinear control theory is established in this chapter. However, it
is not intended, that the chapter comprises a thorough tutorial, but it consists of a number
of theorems, findings and conclusions, that are used in the subsequent part treating the
design issues of a nonlinear controller for a near polar LEO satellite. The reader is also
referred to the literature listed in the text.

Fundamental definitions of stability and asymptotic stability are first recalled in Section
5.1. Afterwards, Lyapunov’s direct method is presented in Section 5.2. This is a ba-
sic tool for satellite motion analysis used throughout the remainder of the thesis. This
method is extended to periodic nonlinear systems in Section 5.3. The reason for this ef-
fort is to utilize an observation that the satellite actuated by a set of electromagnetic coils
can be modeled as a system, with the period of the geomagnetic field.

63
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5.1 Concepts of Stability

The concept of stability of nonlinear systems differs remarkably from the definition of
stability used for the linear plants. Stability and asymptotic stability are introduced. Fur-
thermore, the variation of the system parameters in time demands an application of new
notions of the uniform stability and the uniform asymptotic stability.

A concept of local stability defines properties of the system near the equilibrium. Global
stability is an extension of the previous notion to the entire state space.

A general description of a nonlinear time varying (non autonomous) system is given in
a form

_x(t) = f(t;x(t)); (5.1)

wherex(t) 2 R
n . The functionf : R+ � R

n ! R
n is continuous and satisfies a

global Lipschitz condition, thus the solution to the differential equation (5.1) exists and
is unique.

Furthermore, the solution to Eq. (5.1) for the initial conditionx(t0) = x0 is denoted as
x(t; t0;x0). Recall that a vectorxe is an equilibrium if

8t � 0 f(t;xe) = 0; (5.2)

i.e. if the system starts in the equilibrium, then it stays there.

The fundamental definition of the stability is provided below.

Definition 5.1.1 (Definitions 9,10 in Vidyasagar (1993))The equilibrium,xe is stable
if, for each� > 0 and eachto 2 R+ , there exists a� = �(�; t0) such that

k x0 � xe k< �(�; t0)) 8t > 0 k x(t; t0;x0)� xe k< �: (5.3)

It is uniformly stable if, for each� > 0, there exists a� = �(�) such that

k x0 � xe k< �(�)) 8t > 0 k x(t; t0;x0)� xe k< �: (5.4)

The equilibrium is unstable if it is not stable.

Definition 5.1.1 states that if the solution trajectoryx(t; t0;x0) starts inside a ball of ra-
dius� and centrexe then it always stays inside a new ball of radius�, and the same centre,
xe, see Figure 5.1. Uniform stability is a special case of stability, for which the radius�

is only dependent on� (independent on the initial time).

For uniformly stable systems the following is true, an arbitrary small perturbations of
the initial state,x0 fromxe results in arbitrary small perturbations of the corresponding
solution trajectory,x(t; t0;x0).
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Figure 5.1: An illustration of stability and asymptotic stability

It is often interesting to investigate if the solution trajectory with the initial conditions
outside the equilibrium,xe, finally will converge toward the equilibrium. The system
having this property is recognized as asymptotically stable.

Definition 5.1.2 (Definition 31 in Vidyasagar (1993))The equilibriumxe is asymptot-
ically stable if it is stable and for eacht0 2 R+ there is an�(t0) > 0 such that

k x0 � xe k< �(t0)) x(t+ t0; t0;x0)! xe ast!1: (5.5)

The equilibriumxe is uniformly asymptotically stable if it is uniformly stable and there
is a number� > 0 such that

k x0 � xe k< � ) x(t+ t0; t0;x0)! xe ast!1 uniformly inx0; t0:
(5.6)

The nature of Definition 5.1.2 is local since only the behaviour of the solution trajectories
starting from initial states near the equilibrium is taken into account. The definition of a
globally uniformly asymptotically stable system is given below.

Definition 5.1.3 (Definitions 38 in Vidyasagar (1993))The equilibriumxe is globally
uniformly asymptotically stable if it is uniformly stable, for each arbitrarily largeM .
Furthermore, there exists a finiteT (M; �) for each arbitrarily small�, such that

k x0 � xe k< M; t0 ) 8t � T (M; �); k x(t; t0;x0) k< �: (5.7)

As mentioned in the introduction to this chapter the satellite, actuated by the set of elec-
tromagnetic coils with a certain state feedback, is periodic due to periodic nature of the
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geomagnetic field. Therefore, a vital part of this chapter will be devoted to investigation
of stability of a periodic system.

Formally, the satellite may be described by Eq. (5.1) with an additional property

8t � 0;x 2 Rn f(t+ T;x) = f(t;x); (5.8)

whereT is the period of the geomagnetic field.

Notice also that for periodic systems, the following is true

8t � t0 � 0;8x0 2 R
n x(t+ T; t0 + T;x0) = x(t; t0;x0): (5.9)

The solution to the system in Eq. (5.1) at timet for the initial conditions,x(t0) = x0,
is the same as the solution to the same system at timet + T for the initial conditions,
x(t0 + T ) = x0.

The concept of stability for periodic systems is in many details like that for time invariant
(autonomous) systems. It will be shown that the behaviour of a periodic system resem-
bles more an autonomous system than a non autonomous one. This statement is con-
firmed in the following theorem, which was first proposed by Hahn (1967).

Theorem 5.1.1Consider a periodic system fulfilling Eq. (5.8). Then an equilibrium is
uniformly asymptotically stable if and only if it is asymptotically stable.

Mostly the concept of asymptotically stable periodic systems will be investigated in the
sequel. Note that the autonomous systems can be considered as periodic with an arbitrary
period.

5.2 Lyapunov’s Direct Method

Lyapunov’s direct method is comparatively simple, but involves well understanding of
the system in hand. The idea is to define a continuously differentiable, positive definite
function reflecting energy in the system. This function is called a Lyapunov candidate
function in the following. If the initial energy is dissipated the system is considered as
stable.

Without loss of generality the equilibrium0 is considered instead of an arbitrary equilib-
rium xe. As a motivation, consider a substitution~x = x � xe. Recognize that ifx has
the equilibriumxe, then~x has0 as an equilibrium.

First, the celebrated theorem on stability of a general class of time-varying systems is
provided.

Theorem 5.2.1 (Theorem 38 in Vidyasagar (1993))The equilibrium0 of the system in
Eq. (5.1) is stable if there exists a functionv : R+ � R

n ! R, which is continuously
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differentiable and locally positive definite. Furthermore, there exists a constantr > 0
such that

8 k x k< r; _v(t;x) � 0:

The fundamental theorem on global asymptotic uniform stability of the equilibrium0 is
as follows.

Theorem 5.2.2 (Theorem 56 in Vidyasagar (1993))The equilibrium0 of the system in
Eq. (5.1) is globally uniformly asymptotically stable if there exists aC1 functionv: R+�
R
n ! R, that is positive definite, decrescent and radially unbounded, and_v is negative

definite.

Remark 5.2.1 Recognize that if the positive definiteness is substituted by local positive
definiteness, and the condition on radially unboundedness is released, Theorem 5.2.2
gives conditions for a local asymptotically stable equilibrium.

5.3 Periodic Extension of Lyapunov Stability

So far, the standard Lyapunov method was recaptulated. The technique is applicable to
the general class of nonlinear systems. Our attention in this section is, however, on peri-
odic systems. It will be demonstrated that more specific stability tools can be developed
for this class of systems, like in a theorem below stating that if the solution trajectory of
a periodic system belongs to anL2-space then the system is uniformly asymptotically
stable to0.

Theorem 5.3.1Consider a periodic system described by the non autonomous differen-
tial equation (5.1) with bounded r.h.s. Furthermore, letx(t; t0;x0) 2 L2[0;1) for all
t0 � 0 andk x0 k< �, then0 is a locally uniformly asymptotically stable equilibrium.

Barbalat’s lemma is used in the proof of Theorem 5.3.1.

Lemma 5.3.1 (Barbalat’s lemma in Popov (1973))If � is a real function of the real
variablet, defined and uniformly continuous fort > 0, and if the limit of the integralR t
0
�(�)d� ast tends to infinity exists and is a finite number, then

lim
t!1

�(t) = 0: (5.10)

Proof of Theorem 5.3.1 From the definition of theL2-space, the following inequality
involving the solution to the differential equation (5.1) is valid

8x0; t0; t � t0;

Z
1

t0

k x(t; t0;x0) k
2 dt <1: (5.11)
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The r.h.s of the differential equation (5.1) is limited, hence the solutionx(t; t0;x0) is
uniformly continuous. Then according to Barballat’s lemma

lim
t!1

k x(t; t0;x0) k
2= 0; (5.12)

thus

lim
t!1

x(t; t0;x0) = 0; (5.13)

The inequality (5.11) implies that

8x0; t0; t � t0 k x(t; t0;x0) k<1: (5.14)

Therefore, it is concluded that the system is asymptotically stable, but the differential
equation (5.1) was assumed to be periodic, hence according to Theorem 5.1.1 the system
is also uniformly asymptotically stable. �

Before introducing the next lemma dealing with stability of nonlinear periodic systems
a definition of an invariant set will be given. The invariant set is characterized as a set,
such that for every initial state in the set and some appropriate initial timet0, the entire
solution trajectory belongs to this set. A formal definition is given below.

Definition 5.3.1 [Definition 25 in Vidyasagar (1993)] A setW � R
n is called an in-

variant set of the differential equation (5.1) if for eachx0 2 W there exists at0 2 R+

such that
8t � t0; x(t; t0;x0) 2W:

Another vital notion is a concept of a level set, which is defined below.

Definition 5.3.2 A level setLv(c) is the connected subset of a set

Mv(c) = fx 2 Rn : 9t � 0 such thatv(t;x) � cg; (5.15)

that contains the equilibrium0.

An example of the level set,Lv(c) is depicted in Figure 5.2. The setMv(c) consists of
two subsets. The level set,Lv(c) is the subset ofMv(c), which contains the equilibrium.

The major findings of this section are stated in the lemma and the theorem below treating
stability analysis of a periodic nonlinear system. The foundations of this investigation are
given in Krasovskii (1963)
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Figure 5.2: An example of level setLv(c). The setMv(c) consists of two subsets,
whereas the level set,Lv(c) is the subset ofMv(c), which is containing the equilibrium.

Lemma 5.3.2 (Krasovskii-LaSalle)Consider the periodic system in Eq. (5.1) with the
property as in Eq. (5.8). Suppose there exists aC1 functionv : R+ �Rn ! R such that
v is periodic with the same period as the system,v is locally positive definite, moreover
there exists an open neighbourhoodN of 0 such that

8t � 0;8x 2 N; _v(t;x) � 0: (5.16)

Choose a constantc > 0 such that the level setLv(c) is bounded and contained inN .
Finally let

U = fx 2 Lv(c) : 9t � 0 such that_v(t;x) = 0g; (5.17)

and

Av(c) = fx 2 Lv(c) : 8t � 0 v(t;x) � cg; (5.18)

and letW denotes the largest invariant set of the system in hand contained inU . Then

x0 2 Av(c); t0 � 0) lim
t!1

d(x(t; t0;x0);W ) = 0; (5.19)

whered(y;W ) denotes the distance from the pointy to the setW .

It is beneficial to combine Lemma 5.3.2 with Theorem 5.2.1 to give a very useful result
of uniformly asymptotic stability of periodic nonlinear systems.

Theorem 5.3.2 (Krasovskii-LaSalle)Suppose the system (5.1) is periodic. Suppose
there exists aC1 locally positive definite functionv : R+ � R

n ! R having the same
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period as the system, and an open neighbourhoodN of 0 such that Eq. (5.16) holds.
Choose a constantc > 0 such that the level setLv(c) is bounded and contained inN ,
and defineU as in Eq. (5.17). Under these conditions, ifU contains no trajectories of
the system other than the trivial trajectory8t0 � 0 x(t) � 0, then the equilibrium0 is
uniformly asymptotically stable.

In other words Theorem 5.3.2 states that if the stable system converges to a certain set
U , instead of being convergent to the equilibrium0, then it is essential to check what the
largest invariant setW , a subset of the setU , is. If the setW has only one component
x � 0, then0 is a locally asymptotically stable equilibrium. This interpretation will be
used in the next sections treating the attitude controller design.

The theoretical findings from this section will be applied in the next two chapters dealing
with satellite magnetic attitude control using nonlinear methods.



Chapter 6

Three Axis Attitude Control:
Sliding Mode Control

The last but not least approach to the attitude control for a magnetic actuated satellite is
based on nonlinear methods. The control strategy presented in this chapter is based on
the sliding mode control. The controller is developed for a satellite without appendages,
since the concept was originally formulated for the Ørsted satellite during the boom pre-
release phase. A characteristic feature of this configuration is that the principal moments
of inertia are of the same order of magnitude.

After release from the launch vehicle the satellite is tumbling randomly with known
bounds on the initial angular velocity. The objectives of the attitude control are to first
damp the high angular velocity, then to stabilize the satellite in three axis with respect to
the Orbit CS. Linearized equations of motion cannot be applied, since a control strategy
satisfying global stability of the satellite motion is necessary.

The essence of the sliding controller design is outlined in Section 6.1. The design algo-
rithm is split into two steps: the sliding manifold design and the sliding condition design.
A three dimensional sliding manifold is proposed in Section 6.2. Furthermore, motion of
the satellite on the sliding manifold is shown to be asymptotically stable. An ideal case of
the sliding condition development is when the control torque is producible in x, y, and z
directions independently. A solution to this control problem is given in Section 6.3. Sec-
tions 6.4 and 6.5 consider a sliding condition for the magnetic generated control torque.
It is illustrated that a stable discontinuous sliding condition cannot be generated by the
magnetorquers, therefore a continuous sliding condition must be applied. Furthermore,
it is proved that a control design strategy, consisting of a sliding manifold design and
a continuous sliding condition development, provides an asymptotically stable attitude
controller. Finally, a control law for the magnetic actuated satellite is stated in Section

71
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6.5. The simulation study shows that the sliding control is stable for satellites, which the
principal moments of inertia are of the same order of magnitude. The contents of this
chapter is based on the findings from Wisniewski (1994b) and Wisniewski and Blanke
(1996a).

6.1 Sliding Mode Control

A sliding mode controller is implemented for the attitude corrections using magnetic
torquing. The objective of the attitude control is to turn the satellite such that the Control
CS coincides with the Orbit CS, i.e.
co converges to0, the vector part of the attitude
quaternion,q, converges to0, and the scalar part,q4, approaches1.

The design strategy of the sliding mode controller adopted in this thesis consists of two
steps, see Utkin (1992), Slotine and Li (1991):

1. Sliding manifold design.

2. Sliding condition design.

Consider a manifold, a 3 dimensional hyperplane, in the state space of a 6th order system
[c
co q]

T . The sliding manifold is designed in such a way that the satellite trajectory, if
on the hyperplane, converges to the reference. However, the satellite motion is not con-
fined to the 3 dimensional hyperplane in general. Therefore, a control law forcing the
satellite motion towards the manifold is necessary for achieving stable satellite motion.
The sliding condition keeps decreasing the distance from the state to the sliding mani-
fold, such that every solutionc
co, q originating outside the sliding manifold tends to
it. The manifold is an invariant set of the satellite motion and the trajectory of the system
converges to the reference.

The result of the sliding condition design is a desired control torque. When the desired
control torque is implemented the satellite trajectory converges to the sliding manifold.
Now, the trajectory converges to the reference, since the satellite motion is stable on the
sliding manifold.

The magnetic actuated satellite possesses one serious obstacle: the magnetic control
torque is confined to lie perpendicular to the geomagnetic field vector and may not com-
ply with the control torque which is desired to turn the satellite towards the sliding man-
ifold. This control problem is addressed in Section 6.5

6.2 Sliding Manifold Design

It will be shown that the satellite motion on a certain 3 dimensional hyperplane in the 6-
dimensional state space of the vector part of the attitude quaternion,q, and the satellite
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angular velocity,c
co, is stable.

First, let a sliding variable,cs, be defined as in Eq. (6.1)

cs � c
co +�qq; (6.1)

where�q is a positive definite matrix.

The sliding manifold is the subspace of the state space, where the sliding variable equals
0

S � fq; c
co :
cs = 0g: (6.2)

The definition of the sliding variable,cs, in Eq. (6.1) guarantees convergence ofq to
zero andq4 to 1 with an exponential rate. To show this, consider a Lyapunov candidate
function

vq = qTq+ (1� q4)
2; (6.3)

which is equivalent to

vq = 2(1� q4); (6.4)

sinceqTq+ q24 = 1.

The time derivative of the Lyapunov candidate function is calculated applying the kine-
matics in Eq. (2.18)

_vq = qT c
co; (6.5)

but c
co = ��qq thus

_vq = �qT�qq: (6.6)

The time derivative of the Lyapunov function is negative definite, since�q is the positive
definite matrix. According to Lyapunov’s direct method Theorem 5.2.2, the equilibrium
c
oq = [0 0 0 1]T ; c
co = 0 is asymptotically stable if the satellite is on the sliding
manifold,cs.

Remark 6.2.1 Recognize that only the vector part of the attitude quaternion is used in
the definition of the sliding variable. Therefore, it is sufficient to describe satellite motion
in the state space of[c
T

co q
T ]T , and the order of the differential equation describing

satellite motion is thus reduced from 7 to 6.

Remark 6.2.2 Notice that the equilibriumcoq = [0 0 0 � 1]T ; c
co = 0 is unstable
even thoughcoq = [0 0 0 �1]T andcoq = [0 0 0 1]T represent the same attitude (Control
CS coincides with Orbit CS). Furthermore, if the sliding variable is defined as

cs � 
co ��qq; (6.7)
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it is possible to show using the Lyapunov candidate function

vq = qTq+ (1 + q4)
2; (6.8)

that the equilibriumc
oq = [0 0 0 � 1]T ; c
co = 0 is asymptotically stable and the

equilibriumc
oq = [0 0 0 1]T ; c
co = 0 is unstable.

6.3 Sliding Condition Development

The objective of the analysis covered in this section is to derive the desired control torque
turning the satellite trajectory towards the sliding manifold. An ideal case is considered
first: It is assumed that the control torque is producible independently in the direction of
the x, y, and z axes. In the next sections the magnetic generated control torque will be
considered.

The satellite motion can be described in the space of the sliding variable,cs. A salient
feature of this approach is that a reduced 3rd order system is considered. The attitude
control problem is equivalent to that of making stable the equilibriumcs = 0. The rep-
resentation of the satellite motion in the space of the sliding variable is calculated by dif-
ferentiation of the sliding variable,cs(t) w.r.t. time, which describes projection of the
satellite motion on the space of the sliding variable (the s-space)

c _s = c _
cw � !o
c_io +�q _q: (6.9)

The derivatives of the satellite angular velocity and the attitude quaternion are calculated
according to the equations of kinematics and dynamics, Eqs. (2.18) and (2.12)

Ic _s = �c
cw � I
c
cw + 3!2o

cko � I
cko � !oI(

cio �
c
co)

+
1

2
I�q(

c
coq4 +
c
co � q) +

cNctrl: (6.10)

Assume that the satellite trajectory is on the sliding manifold. An equivalent torque is a
control torque necessary to keep the satellite on the sliding manifold. In other words, if
the control torque is equal to the equivalent torque then the time derivative of the sliding
variable equals zero. If the satellite is not on the sliding manifold, a desired control torque
equals the sum of the equivalent torque and a part making the sliding variable converge
to 0 in finite time

cNdes �
cNeq � �s sign

cs; (6.11)

where�s is a positive constant number, and the equivalent torque,cNeq is

cNeq = c
cw � I
c
cw � 3!2o(

cko � I
cko) + !oI(

cio �
c
co)

�
1

2
I�q(

c
coq4 +
c
co � q): (6.12)
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If the control torque was producible in the x, y, and z directions independently the desired
control torque,cNdes could be substituted in Eq. (6.10) for the control torque,cNctrl.
As the result, the time derivative of the sliding variable,cs would be

c _s = ��sI
�1 sign cs: (6.13)

The system described by the differential equation (6.13) is stable, hence the sliding con-
dition is fulfilled. According to Utkin (1992) a system is stable if the control torque com-
plies with the desired torque in Eq. (6.11). However, the magnetic generated torque is
perpendicular to the local geomagnetic field vector and can only partly conform with the
desired torque. A modified sliding condition for magnetic actuated satellite is provided
in Section 6.5.

Remark 6.3.1 Consider a design case such that the moments of inertia are known with
a known tolerance�I . Then�I will propagate in Eq. (6.12) resulting in an error�eq

of the equivalent torque. The design parameter�s can be chosen sufficiently large such
that

�s > ��(�eq); (6.14)

where�� is maximum singular value, and the resultant_s(t) is guaranteed to be negative
definite.

6.4 Continuous Sliding Condition Development

Before a sliding condition for a magnetic actuated satellite will be formulated it is illus-
trated that the electromagnetic torque cannot generate stable discontinuous sliding con-
dition. Instead a continuous sliding condition is proposed.

A compensation of the desired torque applying the magnetorquer coils is in the focus of
this section. The desired torque may be given by a discontinuous function like in Eq.
(6.11) or a continuous counterpart

cNdes �
cNeq � �s

cs:

It was concluded in Chapter 4 that a magnetic moment providing nonzero control torque
lies on a 2-dimensional manifold perpendicular to the local geomagnetic field.

The following control law fulfills this requirement

cm =
cNdes �

cB

k cB k2
: (6.15)

The magnetic moment,cm in Eq. (6.15) is0 if the desired torque is parallel to the local
geomagnetic field. In this case the the control torque cannot be generated in the direction
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of the desired torque due to lack of controllability in the direction ofcB. If cNdes and
cB are perpendicular the control torque complies with the desired torque.

Stability of the magnetic actuation according to Eq. (6.15) is investigated both for con-
tinuous and discontinuous formulation of the desired torque. It is assumed in this section
that the equivalent torque, i.e.cNeq = 0 can be disregarded. This baseline is imposed
only for the sake of simplicity and corresponds to a statement that the equivalent control
can always be compensated by the control torque (ideal case).

6.4.1 Discontinuous Sliding Condition

The desired control torque, the result of the discontinuous sliding condition design from
Eq. (6.11) is

cNdes = ��s sign
cs; (6.16)

sincecNeq was assumed to be0. The control torque which is to compensate the desired
control torque is generated according to

cNctrl =
cm� cB;

where the magnetic momentcm is given in Eq. (6.15). Then the projection of the satellite
motion on the s-space is

c _s =
1

k cB k2
I�1(cB� �s sign

cs)� cB: (6.17)

The following Lyapunov candidate function is suggested

vs =
1

2
csT Ics: (6.18)

The derivative ofvs w.r.t. time gives

_vs = �
�s

k cB k2
(cB� cs) � (cB� sign cs): (6.19)

It will be shown that there exist vectorscs andcB such that_vs > 0. Consider an angle�
between the vectorscs andsign cs. Recognize that� belongs to the interval(��

4
; �
4
). If

the angle betweencB andcs belongs to(0; �
4
) then it is possible to find a satellite attitude

(i.e. the Control CS) such that the angle betweencB andsign cs belongs to(��
4
; 0), Fig.

6.1. Therefore,(cB� cs) � (cB� sign cs) < 0, and _vs > 0.

In the next chapter a continuous sliding condition is proposed, and it is shown that it is
asymptotically stable.
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Figure 6.1: The angle betweencB andcs belongs to(0; �
4
). It is possible to find a Control

CS such that the angle betweencB andsign cs belongs to(��
4
; 0), and(cB � cs) �

(cB� sign cs) < 0:

6.4.2 Continuous Sliding Condition

The discontinuous sliding condition can be substituted by a continuous counterpart

cNdes �
cNeq � �s

cs; (6.20)

where�s is a positive scalar. However, it was assumed in the introduction to this chapter
thatcNeq = 0, hence

cNdes = ��s
cs: (6.21)

Let the magnetic moment be generated according to Eq. (6.15). Now, the projection of
the satellite motion on the s-plain is

c _s =
1

k cB k2
I�1(cB� �s

cs)� cB: (6.22)

Again, the stability properties are analyzed using the Lyapunov candidate function in Eq.
(6.18). The time derivative ofvs is

_vs = �
�s

k cB k2
(cB� cs) � (cB� cs): (6.23)
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The derivative of the Lyapunov function is negative semidefinite and time varying. It
is equal to zero if the vectorscB andcs are parallel. Note that, if these two vectors are
parallel then the magnetic moment, and hence the control torque is also equal to zero. The
equations of motion of the satellite actuated by a set of electromagnetic coils are periodic
because the geomagnetic field changes periodically in the Orbit CS, see Subsection 2.7.2,
and the Krasovskii-LaSalle Theorem 5.3.2 can be applied. The setU in Theorem 5.3.2
contains suchcs andcoq thatcB andcs are parallel

U = fcs; coq : 9t > 0 cB(t) parallel tocs(t)g: (6.24)

The geomagnetic field vector and the vectorcs can be resolved in the Orbit CS, therefore

cB parallel tocs, oB parallel toos: (6.25)

But the statement

9t0 8t > t0
oB parallel toos for cm = 0 (6.26)

is false, since the equation of the torque free motion of the satellite does not correspond to
the geomagnetic field variation, see Wertz (1990). The geomagnetic field in the Orbit CS
depends only on the satellite position (longitude, latitude, altitude), whereasos depends
on the satellite attitude and angular velocity. It is concluded that the largest invariant set
contained inU is cs � 0, and according to the Krasovskii-LaSalle theorem the satellite
motion projected in the s-space is globally uniformly asymptotically stable to0.

In plain words, the total energy of the satellite is dissipated ifcB andcs are not parallel.
The energy is maintained constant if the two vectors are parallel. However, this does not
hold permanently, since the local geomagnetic field changes its direction in time. There-
fore, the total energy of the satellite motion will decrease to zero.

6.4.3 Sliding Mode Control with Continuous Sliding Condition

In the previous subsections a stable sliding manifold was designed, and a continuous
sliding condition was formulated. The objective of this subsection is to demonstrate
that the design procedure: first design a sliding manifold and then design a continu-
ous sliding condition, provides an asymptotically stable controller with equilibrium in
[c
T

co q
T ]T = 0.

Consider the following Lyapunov candidate function

v = qTq+ (1� q4)
2: (6.27)

The time derivative ofv is
_v = qT c
co:
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The satellite trajectory converges asymptotically to the sliding manifold, and the sliding
variables converges to0

_v = qT (cs��qq); (6.28)

sincec
co =
cs��qq.

Note that ifcs = 0 then Eq. (6.28) is equivalent to Eq. (6.6).

The derivative_vq is bounded by

_vq �k q k k
cs k ��q k q k

2; (6.29)

where�q is the minimum singular value of the matrix�q .

Both sides of Eq. (6.29) are now integrated

vq(t)� vq(t0) � ��q

Z t

t0

k q k2 dt+

Z t

t0

k q k k cs k dt; (6.30)

thus

�q

Z t

t0

k q k2 dt�

Z t

t0

k q k k cs k dt� vq(t0) � 0; (6.31)

sincevq(t) is positive definite.

According to Hölder’s inequality, Rudin (1987), the following holds

Z t

t0

k q k k cs k dt �

sZ t

t0

k q k2 dt

sZ t

t0

k cs k2dt: (6.32)

The definition of the norm inL2-space is

k x k2�

sZ t

t0

k x k2 dt: (6.33)

Eq. (6.31) is rewritten using H¨older’s inequality

�q k q k
2
2 � k q k2 k

cs k2 �vq(t0) � 0: (6.34)

Finally,

k q k2�

p
k cs k22 +4�qvq(t0)

2�q
+
k cs k2

�q
; (6.35)

Recognize thatcs converges to0, since the sliding condition is satisfied, nowcs 2

L2[t0;1). From the inequality (6.35)q 2 L2[t0;1), as well. Furthermore,q is uni-
formly continuous, since r.h.s. of the kinematic equation (2.18) is bounded w.r.t. the
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time variable (due tocs; q 2 L2[t0;1)). Therefore, it is claimed that according to The-
orem 5.3.1, the reference[c
T

co
c
oq

T ]T = [0 0 0 0 0 0 1]T is globally uniformly asymptot-
ically stable. The design procedure consisting of the sliding manifold and the continuous
sliding condition design provides a stable attitude controller, indeed.

Remark 6.4.1 It is worthwhile mentioning that the design algorithm for the sliding mode
controller with continuous sliding condition resembles the feedback linearization tech-
niques in Isidori (1994).

6.4.4 Influence of Modeling Errors

A model of the satellite motion is provided with a certain parametric uncertainty, e.g. the
moments of inertia are determined with finite accuracy. This indicates that the equiva-
lent torque in Eq. (6.12) is not perfectly known. An influence of modeling errors on the
sliding mode controller design was already discussed in Remark 6.3.1. A discontinuous
sliding condition that rejects the influence of uncertainty in moments of inertia was pro-
posed. Influence of the modeling errors on a continuous sliding controller is addressed
in this subsection.

The sliding control introduced in the previous section provides the desired control torque
that equals the sum of the equivalent torque and the part making the sliding variable con-
vergent to zero. An effect of this uncertainty can be modeled by a certain limit value
on the sliding variable, such that the desired control torque makes the sliding variable
convergent to some nonzero constant vectors0. This implies that the satellite attitude
converges to the reference with a bias vectorq0.

Let the sliding variable,cs(t) converge to a vectors0, then the satellite trajectory is on a
manifold given by

c
co +�qq� s0 = 0: (6.36)

The objective of the following analysis is to provide approximate value of the bias vec-
torq0. The vectors0 is considered to be small, therefore it is appropriate to analyze the
satellite motion in the vicinity of the reference. The satellite angular velocity,c
co and
the first three components of the attitude quaternion,q are small, while the scalar com-
ponentq4 can be approximated by1. It was shown in Subsection 2.6.2 that the first order
approximation of the kinematics is given by

_q =
1

2
c
co: (6.37)

The linear approximation of the sliding manifold is then

2 _q+�qq� s0 = 0: (6.38)
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Finally, the satellite motion on the sliding manifold is given by

q = �
�1
q s0 + e�

1

2
�q(t�t0)q(t0); (6.39)

thus the biasq0 equals

q0 = ��1q s0: (6.40)

Recognize that the larger the components of the matrix�q are, the smaller is the bias,
q0.

6.5 Modified Sliding Condition

An ultimate sliding condition for a magnetic stabilized satellite is discussed in this sec-
tion. Preliminary results were already established in the last chapter, and superiority of
a continuous over discontinuous sliding condition was demonstrated.

The satellite appears uncontrollable if fixed at any instant of time due to the magnetic
torque vector is constrained to always lie perpendicular to the local geomagnetic field
vector. Therefore, it is necessary to select only those components of the desired con-
trol torque, which have an influence on the stability of the satellite motion. The desired
control torque is resolved into two components: perpendicular and parallel to the sliding
variable vector. Magnetic generated control torque is due to compensate only the com-
ponent parallel to the sliding variable vector.

The desired control torque is the result of the continuous sliding condition design. The
definition of the desired control torque adopted in this section is

cNdes �
cNeq � �s

cs; (6.41)

where�s is a positive scalar andcNeq is given in Eq. (6.12)

Consider orthogonal projection of the desired control torque,cNdes(t) onto the instant
sliding variable vector,cs(t), Fig. 6.2. The desired control torque,cNdes(t) has two
components: parallel:cNprl

des(t), and perpendicular:cNprp
des(t), to the vectorcs(t).

The control torque,cNctrl only needs to compensatecNprl
des, sincecNprp

des does not de-
crease the distance from the satellite trajectory to the sliding manifold. This control prin-
ciple has an intuitive interpretation. The componentcN

prl
des is responsible for diminish-

ing of the sphere radius in Fig. 6.2, whereascN
prp
des is responsible for movement on the

sphere surface (sphere radius remains unchanged). This claim is formalized in Theorem
6.5.1.

Theorem 6.5.1The control torque that compensatescN
prl
des makes the distance from the

state[c
co(t) q(t)]
T to the sliding manifold in Eqs. (6.2) and (6.1) converge to zero, and

the sliding condition is satisfied.
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Ndes

prl
Ndes

s(t)s(t)

ss33

ss22

Ndes

prp

Figure 6.2: The desired control torque is resolved in the s-space. The componentcN
prl
des

is responsible for diminishing of the sphere radius, whereascN
prp
des is responsible for

movement on the sphere surface.

Proof of Theorem 6.5.1 Construct a Lyapunov candidate function

vs =
1

2
csT Ics: (6.42)

The motion in the s-space is described by the equation

Ic _s = �cNeq +
cNctrl; (6.43)

but the control torque compensates onlycN
prl
des, thus

Ic _s = ��s
cs+ cNprp; (6.44)

wherecNprp is the sum of the components ofcNeq andcNctrl that are perpendicular to
the vectorcs(t).

Finally, the time derivative of the Lyapunov candidate function is given by

_vs =
csT (��s

cs+ cNprp) = �cs�s
cs: (6.45)
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cNctrl

cB

cNprl
des

Figure 6.3: LargecNctrl is necessary to compensate smallcN
prl
des, if cB andcs are near

to be parallel, and the magnitude of the control signal can be very large.

The time derivative of the Lyapunov candidate function is negative definite. The con-
ditions of Theorem 5.2.2 are hence fulfilled, and the equilibriums = 0 is globally uni-
formly asymptotically stable. �

The control law which has to compensatecN
prl
des with use of magnetic coils is only feasi-

ble if the geomagnetic field is never perfectly aligned with the sliding variable,cs. If cB
andcs are close to parallel the amplitude of the control signal can be very large, since the
large control torquecNctrl is desired to compensate even smallcN

prl
des

, Fig. 6.3. In prac-
tice, the magnetic moment is confined, and ideal compensation ofcN

prl
des is not possible.

Therefore, an approximate compensation is introduced

cm =
cN

prl
des �

cB

kcBk2
; (6.46)

where

cN
prl
des =

cNdes �
cs

kcsk2
cs: (6.47)

Notice that the control law in Eq. (6.46) compensatescN
prl

des
very well, if cB is perpen-

dicular or nearly perpendicular tocs, and produces small control torque whencB andcs
are near to be parallel.

The control law based on the approximate compensation of the desired control torque in
Eq. (6.46) has been observed to be locally asymptotically stable for small values of the
gain�q. Additionally, global stability was obtained when the principal moments of in-
ertia are of the same order of magnitude, i.e. the Ørsted satellite is in the boom stowed
configuration. In this case the magnetic moment generated according to Eq. (6.46) con-
sists of the cross product ofc
co with the local geomagnetic field vector,cB, plus a small
perturbation of the satellite attitude, since the equivalent control torque is small.

This phenomenon inspired further work on proportional-derivative feedback cross prod-
uct with the local geomagnetic field vector treated in the next chapter.
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Figure 6.4: Performance of the sliding mode attitude controller in Eq. (6.46) for a
satellite in a circular orbit. The plot shows the angular velocity,c
co and the attitude
quaternion,coq. The attitude quaternion converges to the reference[0 0 0 1]T .

Remark 6.5.1 It was mentioned that the large gain�q can provide unstable satellite
motion, but according to Section 6.4.4 large value of�q is necessary to maintain the re-
quired accuracy of convergence. This tradeoff can be solved by Monte Carlo simulation.

6.6 Validation of Sliding Mode Attitude Control

The sliding mode attitude controller in Eq. (6.46) was validated by the Monte Carlo sim-
ulation for the Ørsted satellite in boom stowed configuration. Various initial values of the
angular velocity and the attitude were tested. The controller was evaluated for the initial
values of the attitude, both in the neighbourhood of the reference and for the z principal
axis pointing up-side down w.r.t. the z axis of the Orbit CS.

The control parameters were found empirically:�q = 0:002 �E rad
sec

,�s = 0:003 N sec
rad

.
Fig. 6.4 shows simulation of the angular velocity and the attitude quaternion. The at-
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Figure 6.5: The simulation test corresponds to Fig. 6.4. The attitude is represented by
the Euler angles. Already after 2 orbits pitch, roll and yaw are within10 deg. Plot of
magnetic moment refers to power utilization of the sliding mode attitude controller.

titude is represented by pitch, roll, and yaw angles in Fig. 6.5. The initial value of
pitch is60 deg, roll is 100 deg, and yaw is�100 deg. Initial angular velocityc
co is
[�0:002 0:002 0:002]T rad

sec
. Already after 2 orbits pitch, roll and yaw are within10 deg.

The plot of the magnetic moment used for attitude correction depicted in Fig. 6.5 shows
that the sliding mode attitude controller is power efficient.

Simulation of the Ørsted satellite motion in its elliptic orbit with the aerodynamic drag
torque acting on the satellite structure is depicted in Fig. 6.6. The sliding mode attitude
controller keeps the steady state attitude error within�3 deg.

6.7 Discussion of Results

The sliding control law for three axis stabilization of a tumbling satellite was described
and analysed in this chapter. Both sliding manifold and continuous sliding condition
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Figure 6.6: Performance of the sliding mode attitude controller in Eq. (6.46) for the
Ørsted satellite on its elliptical orbit. Motion is influenced by the aerodynamic drag. The
initial values of the attitude and the angular velocity are the same as in Fig. 6.5. The
steady state attitude error is within�3 deg.

were designed. The properties of the moments of inertia of a satellite body, when a grav-
ity gradient boom is stowed, were used to provide the final control law. The controller
was evaluated by simulations for the Ørsted satellite in realistic space environment. The
controller shows to be applicable for satellites with pointing accuracy larger than3 deg.
The controller is seen in the Monte Carlo simulation to be globally stable, however only
approximate stability study was given.

There is still an unsolved issue, stabilization of the satellite after boom deployment for
initial values of the attitude such that the boom is pointing upside-down. The sliding
mode controller does not provide satisfactory results, since large influence of the gravity
gradient in the boom deployed configuration heavily perturbs the satellite motion from
the sliding manifold, and the magnetic control torque is not capable to compensate for
this disturbances. A globally stabilizing controller based on an energetic approach for
the satellite in this configuration is investigated in the next chapter.



Chapter 7

Three Axis Attitude Control:
Energy Approach

An attitude with the boom pointing upside-down in the science observation phase is
likely. This could be caused by a considerable impact of the aerodynamic torque on the
satellite body or an unexpected behaviourduring the boom deploymentphase. A globally
stable attitude controller is therefore necessary. The development of nonlinear strategies
for the satellite attitude control is addressed in this chapter.

Complete comprehension of the nature of the satellite control problem requires a new ap-
proach merging the control theory with physics of the rigid body motion and an extension
of the earlier results in these fields using findings from the theory of periodic systems.
The Lyapunov stability theory is employed, and a Lyapunov function based on the poten-
tial and kinetic energy of the satellite motion is formulated. Section 7.1 considers attitude
stabilization at large, introduces a velocity controller applying a vector product between
the angular velocity and the local geomagnetic field. The velocity controller contributes
to dissipation of both kinetic and potential energy. It provides four stable equilibria of the
system, one of which is the reference. It is shown how the equilibria depend on the ratio
of the satellite moments of inertia. The resultant controller is shown to be only locally
asymptotically stable. The reason not to achieve global three axis stabilization is found
to be the lack of attitude information in the control law. The extension with attitude in-
formation is made in Section 7.2. The energy necessary to change the satellite attitude
between the equilibria is calculated in Section 7.3. Section 7.4 provides the desired sta-
bility properties and presents a family of controllers which can achieve three axis attitude
stabilization using only magnetorquers. Simulations are shown to confirmed the perfor-
mance of the proposed controllers to be very satisfactory and applicable in two mission
phases: the velocity controller in a tumbling phase of the satellite, and three axis atti-
tude stabilization in the normal science observation phase. These results are presented

87
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in Section 7.7.

The energy based approach to magnetic attitude control covered in this section is based
on Wisniewski and Blanke (1996b) and Wisniewski and Blanke (1996c).

7.1 Attitude Stability at Large

A magnetic generated mechanical torque is always perpendicular to the geomagnetic
field vector as seen from Eq. (2.15). The consequence is that the satellite is only control-
lable in two directions at any single point in time. With the geomagnetic field varying
along an orbit this implies, e.g. that in the Earth’s polar regions the yaw angle is uncon-
trollable, whereas it can be controlled again when the satellite is in the equatorial regions.
Since the control torque is always perpendicular to the geomagnetic field vector, it is de-
sirable that the magnetic moment is also perpendicular to the geomagnetic field vector,
as only this component produces a non-zero control torque, Section 4.1.

It is concluded that magnetic control moment must include information about the angu-
lar velocity of the satellite, and also about time propagation of the geomagnetic field. A
candidate for generation of the magnetic moment is an angular velocity feedback

cm(t) = hc
co(t)�
cB(t); (7.1)

whereh is a positive constant.

There are two main reasons to suggest this feedback:

1. It contributes to dissipation of kinetic energy of the satellite.

2. It provides four stable equilibria depicted in Fig. 7.1. The equilibria are such that
the z axis of the Control CS (the axis of the minimal moment of inertia) points in
the direction of the z axis of the Orbit CS, and the unit vector of the x axis of the
Control CS (the axis of the largest moment of inertia) is parallel to the x axis of the
Orbit CS. One of these equilibria is the desired reference.

These claims will be proved below.

The magnetic torquing obviously introduces time dependency in the equations of the
satellite motion. This time variation has periodic nature, see Fig. 2.4. Therefore, the
theory of nonlinear periodic systems introduced in Section 5.3 can also be applied in this
chapter.

Global stability of the control law (7.1) can be expressed in the following theorem.

Theorem 7.1.1Consider the control law

cm(t) = hc
co(t)�
cB(t);



7.1 Attitude Stability at Large 89

c x

o x

c x

c
z

c
y

c x

cy

cz
c x

cy

cz

c
z

c
y

o
y

o
z

Figure 7.1: Four locally stable equilibria of the angular velocity feedback (7.1)

then the satellite, Eqs. (2.12) to (2.20) has 4 asymptotically stable local equilibria

f(c
co;
cko;

cio) : (0;�
oko;�

oio)g: (7.2)

Proof of Theorem 7.1.1 Consider a Lyapunov candidate function expressing the total
energy of the satellite. The total energy derived in Section 2.4 is the sum of kinetic en-
ergy of rotary motion, potential energy generated by the gravity gradient and the energy
originating from revolution of the satellite around the Earth

Etot = Ekin +Egg +Egyro:

This leads to

Etot =
1

2
c
T

coI
c
co +

3

2
!2o(

ckTo I
cko � Iz) +

1

2
!2o(Ix �

ciTo I
cio): (7.3)

Recall thatIx is the satellite maximal moment of inertia, andIz is the minimal one, thus
positive definiteness of the Lyapunov function is fulfilled.

The time derivative ofEtot will be shown to be negative semidefinite

_Etot =
c


T
coI

c _
co + 3!2o
ckTo I

c _ko + !2o
ciTo I

c_io: (7.4)
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Eqs. (2.12) to (2.20) are substituted into Eq. (7.4) yielding

_Etot = c

T
co(�

c
cw � I
c
cw + 3!2o

ckTo � I
cko +

cNctrl)�

!o
c
T

coI(
cio �

c
co) + 3!2o
ckTo I(

cko �
c
co)� (7.5)

!2o
ciTo I(

cio �
c
co):

Recognize that from Eq. (2.20) the following equality holds

c
T
co(

c
cw � I
c
cw) = !o

c
T
co(

cio � I
c
co) + !2o

c
T
co(

cio � I
cio); (7.6)

hence Eq. (7.5) is reduced to a simple expression

_Etot =
c
T

co
cNctrl: (7.7)

If the proposed control law (7.1) is applied then Eq. (7.7) becomes

_Etot = �h(cB� c
co)
T (cB� c
co); (7.8)

or

_Etot = �hc
T
co
~BT ~Bc
co: (7.9)

Here ~B is the skew symmetric matrix representing a cross product operator:cB�. The
matrix ~BT ~B is positive semidefinite andhwas a positive constant. The derivative of the
total energy is thus negative semidefinite.

The Krasovskii-LaSalle theorem is applicable in this proof since the control law (7.1) is
periodic. The setU in Theorem 5.3.2 contains such elementsc
co;

c
oq thatc
co andcB

are parallel (cB� c
co = 0)

U = fc
co;
c
oq : 9t > 0 cB parallel toc
cog: (7.10)

It will be proved by contradiction that the setU is not an invariant set.

Assume that the vectorcB(t) was parallel toc
co(t) for eacht > t0. This could be
described by

8t > t0 � 0; cB(t) = �c
co(t); � 6= 0: (7.11)

Expressing Eq. (7.11) in the Orbit CS gives

8t > t0 � 0; oB(t) = �AT (coq)
c
co(t): (7.12)

Recognize the magnetic moment and hence the control torque are equal zero since

cm = hc
co �
cB = h�c
co �

c
co = 0: (7.13)
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The angular velocity,c
co, is given by the dynamic equations (2.12), (2.15), and (2.20)
for cNctrl = 0. The geomagnetic field determines the vectoroB. Its time propaga-
tion in the Orbit CS is depicted in Fig. 2.4. The geomagnetic field is only dependent
on the satellite position in orbit, whereas the angular velocityc
co depends on the state
[c
T

co
c
oq

T ]T , and is completely independent on the orbital position. Hence,cB andc
co

cannot be parallel all the time, and Eq. (7.11) is not valid. This shows the contradiction.

Therefore, the largest invariant set contained inU is the trajectoryc
co � 0. The an-
gular velocity is zero for allt � 0 if the trajectory is in an equilibrium. Finally, it is
concluded that the equilibriaf(c
co;

cko;
ci0) : (0;�

oko;�
oio)g are locally uniformly

asymptotically stable. �

Remark 7.1.1 If h was changed in Eq. (7.1) from a positive scalar to a positive definite
matrixh, then the time derivative of the Lyapunov candidate function would be

_Etot = �c
T
coh

T ~BT ~Bc
co: (7.14)

Due to the operation: positive definite matrix times positive semidefinite matrix does not
necessary give a semipositive definite matrix, it follows that the velocity feedback can
only use scalar gain in order to prove asymptotic stability.

Remark 7.1.2 The control law (7.1) can be used for three axis magnetic stabilization of
the satellite in a neighbourhood of one of 4 equilibria stated in Theorem 7.1.1, thus also
in the neighbourhood of the reference, ifIx > Iy > Iz .

Remark 7.1.3 The differential equations describing the satellite motion actuated ac-
cording to Eq. (7.1) are uniformly continuous, therefore a small perturbation of the con-
trol law in a form of the attitude quaternion feedback provides a locally asymptotically
stable control action.

Remark 7.1.4 If the velocity controller (7.1) is applied for a limited time interval during
an orbit, then the solution trajectory of the satellite motion still converges to one of four
equilibria in Theorem 7.1.1, since the total energy from Eq. (7.7) is constant if the control
torque is zero, and is dissipated when the controller is active.

This control strategy is very useful if the attitude control can only take place via telecom-
mand from a ground station, and time of radio contact is limited. The controller is also
beneficial for a satellite with an attitude determination algorithm based on a sun sensor,
since the attitude information may not be available when the satellite is in the eclipse. In
both cases the controller (7.1) is activated when the feedback signals are available and
switched off otherwise. This control law is still stable.

It was proved that the satellite with the control law (7.1) is asymptotically stable around
four equilibria (7.2). The objective of the next sections is to design a controller that makes
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all equilibria but the reference unstable. The desired reference considered in the sequel
is

f(c
co;
cko;

cio) : (0;
oko;

oio)g: (7.15)

7.2 Local Attitude Stability

The operational mission phase of the Ørsted satellite is such that the boom is upright, i.e.
the boom tip is above the horizon. The attitude controller designed for this mission phase
shall be stable towards the reference (7.15) for all initial attitude such that the boom tip
is above the horizon. This is done by inserting perturbations of the attitude in the control
law (7.1). This is feasible since the maximum of the potential energyEgyro in Eq. (7.3)
is three times smaller than the maximum potential energy due to the gravity gradient.
Hence, a shift from the equilibriaf(c
co;

cko;
cio) : (0; �

o ko; �
o io)g to (0; �o

ko;
oio) requires less energy than a jump from(0; �o ko; �

o io) to (0; oko; �
o io).

A scrutiny of the necessary energy to be generated by a controller in order to change
between the equilibria, is provided in the next section.

The three axis attitude stabilization can be accomplished when some attitude information
is added into the velocity control law. A proposed control law is

cm(t) = hc
co(t)�
cB(t)� �q(t) � cB(t); (7.16)

whereh and� are positive constants. The properties of the control law (7.16) will be
analyzed using linear control theory.

In equation (7.16) a small perturbation of the vector part of the attitude quaternion is
added comparing with the control law (7.1). For small� the satellite is stable in the
neighbourhood of the referencef(c
co;

cko;
cio) : (0; oko;

oio)g, since the differ-
ential equations describing motion of the satellite are well posed. At this point of the
analysis the gainh has been fixed. The next step of the design is to compute the gain�

for a givenh such that the system is still locally stable and the domain of local stability
is extended.

The system is first linearized. The satellite motion is considered in a neighbourhood of
the following reference: the angular velocity of the satellite rotation w.r.t. the Orbit CS
is zero (c
co = 0), and the attitude is such that the Control CS coincides with the Orbit
CS (coq = [0 0 0 1]T ), Section 2.6.

The linearized equations of motion (2.12) to (2.20) using Eq. (7.16) as control law are

d

dt

�
�


�q

�
= A

�
�


�q

�
+B(t)(h�
+ ��q); (7.17)

where the system and control matrices,A andB(t), respectively, are given in Eq. (4.3).
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Since the geomagnetic field is periodic, see Fig. 2.4, local stability of the satellite is an-
alyzed with use of Floquet theory, Section 3.1.

Consider the following form of Eq. (7.17)

dx

dt
= Â(�; t)x; (7.18)

where

Â(�; t) = A+B(t)[hE3�3 �E3�3];

E3�3 is the3� 3 identity matrix,h is considered to be a constant value, whereas� is a
parameter. Furthermore,̂A(�; t) = Â(�; t+ T ), for T = 2�

!o
.

It was a result from the Floquet theory in Section 3.1 that the system (7.18) is asymptoti-
cally stable if all characteristic multipliers, i.e. the eigenvalues of the monodromy matrix
	
Â
(t0; �) for a certain value of�

det[I��	(t0; �)] = 0 (7.19)

satisfy the following inequality

j�i(�)j < 1; i = 1; :::; n: (7.20)

Now, all � are found for which the linearized satellite system (7.17), with a certain fixed
value of the positive scalarh, is stable by plotting a locus for the characteristic multipliers
as a function of�. An example is shown in Fig. 7.2. The value of the velocity gain,
h, was chosen equal1 � 108Ams

T
. Then the locus of the characteristic multiplier,� 2

[0; 7 � 105]Am
2

T
was plotted. The gain~� = 5 � 105Am

2

T
is the limit of stability. Hence, a

certain�̂ may be chosen for which the satellite motion is guaranteed to be asymptotically
stable about the reference. Notice that�̂ must satisfy the inequalitŷ� < ~�. For� = 0 the
controller (7.16) is equivalent to the velocity controller, which is also seen to be stable.

7.2.1 Simulation Results

A Monte Carlo simulation was made to investigate stability towards the reference (7.15).
The initial state is random with the nominal condition as mean. The envelope for
the Monte Carlo simulation includes all values of the attitude above the horizon, i.e.
ckoz > 0 and
co = 0. The attitude controller implemented has velocity gain,h =

1 � 108Ams
T

, and the quaternion gain,� = 3 � 105Am
2

T
.

One example is the simulation in Fig. 7.3 which is started at the equilibrium
f(c
co;

cko;
cio) : (0; oko; �

oio)g. Already after one orbit the trajectory is within
the margin of10 deg from the reference. This is far better than required. Additional at-
titude information in the controller made the equilibriumf(0; oko; �o io)g unstable,
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Figure 7.2: The locus for the characteristic multiplier�(�) for � 2 [0; 7 �105]Am
2

T
; h =

1 � 108Ams
T

using Eq. (7.16 ) as control law.

and thus extending the region of convergence to all initial values of the attitude such that
the boom is above the horizon and the initial satellite angular velocity in the Orbit CS is
zero.

7.3 Energy Dissipation Control

It was proved that the satellite with the control law (7.1) is asymptotically stable around
four equilibria (7.2). The objective of this section is to design a globally stable controller
that makes all other equilibria but the reference (7.15) unstable.

Two control principles are analysed in this section: an angular velocity feedback and a
rate/attitude control. The first one is similar to that of Eq. (7.1), the latter resembles the
feedback (7.16), except it is only activated in a defined area in state space around the
reference point.

Consider first the following preliminary control concept.

Procedure 7.1
1. Divide the state space intoCi; i = 1; 2; 3; 4 four regions of convergence to the

equilibria (7.2) of the control law (7.1),

2. Let the angular velocity controller (7.1) (or alternatively rate/attitude controller
(7.16)) be activated only in the regionC1, which is the subset of the state space
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Figure 7.3: The satellite trajectory converges from the equilibriumf(c
co;
cko;

cio) :
(0; oko; �

o io)g to the reference.

containing the reference (7.15).

If the trajectory is in the regionC1 the entire energy of the satellite is dissipated. Other-
wise it is maintained at the same level. Therefore, it is anticipated that if the trajectory is
once in the regionC1 the entire energy of the satellite angular motion will be decreased to
zero. It will be shown in this section that this control procedure is stable to the reference.

The region of convergence about the reference (7.15) is determined from potential en-
ergy, since it comprises a measure of the distance from the actual state to an equilibrium.

Potential energy according to Section 2.4 consists of energy due to gravity gradient and
energy originated from the revolution of the satellite about the Earth. In order to reach
overall comprehension of the system behaviour these two types of potential energy are
considered separately in Subsections 7.3.1 and 7.3.2. Total energy is investigated in Sub-
section 7.3.3. Last, but not least a control strategy for dissipation of the entire energy of
a LEO satellite will be investigated in Subsection 7.3.4.

7.3.1 Potential Energy due to Gravity Gradient

Consider the following geometrical interpretation. Potential energy due to the gravity
gradient,Egg , varies from0 to 3

2
!2o(Ix � Iz). It is minimum when the z axis of the

Control CS is parallel to the z axis of the Orbit CS. The maximum value is reached when
the z axis of the Control CS is in the horizontal plane (perpendicular to the z axis of the
Orbit CS). The baseline of this analysis is thatEgg is the only component of potential
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tively. The unit vectorcko evolves on the intersection of the sphere (7.23) and the ellip-
soid (7.22). At the energy level~E � 3

2
!2o(Iy � Iz) the intersection ellipse is of the type

illustrated in the l.h.s. drawing. The r.h.s. drawing illustrates the intersection ellipse at
energy level~E � 3

2
!2o(Iy � Iz).

energy, which is relaxed in Subsection 7.3.3.

Consider a certain constant value of potential energy,~E. From the expression for poten-
tial energy of the gravity gradient

~E =
3

2
!2o(

ckTo I
cko � Iz); (7.21)

the unit vectorcko will satisfy two equations: an equation of an ellipsoid

ckoI
cko =

2 ~E

3!2o
+ Iz ; (7.22)

and an equation of a sphere

kc ko k= 1: (7.23)

The unit vectorcko evolves on the intersection of the sphere with the ellipsoid in Fig. 7.4.
The Orbit CS’s z axis in the Control CS may initially evolve on the intersection ellipse of
the type depicted on the l.h.s. of Fig. 7.4. If the total energy of the satellite is dissipated
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then the potential energy due to the gravity gradient is decreased. At the energy level
~E � 3

2
!2o (Iy � Iz) the intersection ellipse is of the type illustrated on the r.h.s. of

Fig. 7.4. Notice that, if additionally kinetic and potential energy due to revolution of the
satellite about the Earth are taken into account i.e.

~E = Ekin +Egg +Egyro <
3

2
!2o(Iy � Iz);

then the z axis of the Orbit CS evolves always above the intersection ellipse on the r.h.s.
of Fig. 7.4.

The projection of the unit vectorcko on the z axis of the Orbit CS,ckoz provides the
information whether the z axis of Control CS (the boom axis) is upright or upside-down.
A proposed control law is to activate the controller (7.1) wheneverckoz � 0, then the
satellite trajectory tends to one of two equilibria

f(c
co;
cko;

cio) : (0;
oko; �

cio)g; (7.24)

both defining the attitude of the satellite with the boom axis upright.

This can be explained as follows. If the z axis of the Control CS is in the horizontal plane,
perpendicular toko, potential energy changes fromEy

gg = 3
2
!2o(Iy � Iz), when the z

axis of the Control CS coincides with the y axis of the Orbit CS, toEx
gg =

3
2
!2o(Ix�Iz),

when the z axis of the Control CS is parallel to the x axis of the Orbit CS. If the total
energy (in this subsection a sum ofEkin andEgg) is aboveEx

gg kinetic energy has a bias,
due to which the satellite will tumble from the boom axis upside-down to upright. If the
total energy is belowEy

gg , and the initial attitude is such that the z axis of the Control CS
is upright, the solution trajectory will never cross the horizon, i.e. it will stay with the
Control CS’s z axis upright for ever.

There is still an unsolved issue for the energy level betweenEy
gg andEx

gg . The boom axis
can stay upright or upside-down or even change between the attitude above and below
the horizon. The difference�gg = Ex

gg � Ey
gg is approximately0 for Ix � Iy . Thus,

the controller (7.1) activated wheneverckoz � 0 provides two locally stable equilibria
(7.24) for the satellite withIx > Iy >> Iz.

7.3.2 Energy due to Revolution of Satellite about Earth

Analogously, consider potential energy due to revolution of the satellite about the Earth.
A constant value of this energy,̂E in the interval from0 to the maximum valueEz

gyro =
1
2
!2o(Ix� Iz), is investigated. The unit vectorcio evolves in Fig. 7.5 on the intersection

of the sphere

kc io k= 1 (7.25)
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with the ellipsoid

cioI
cio = Ix �

2Ê

!2o
: (7.26)

If potential energy is less thanEy
gyro =

1
2
!2o(Ix�Iy), the x axis of the Orbit CS observed

in the Control CS (or the unit vectorcio) evolves on an ellipse illustrated on the l.h.s of
Fig. 7.5. Otherwise, the motion of the unit vectorio in the Control CS is on the ellipse on
the r.h.s. of Fig. 7.5. If additionally kinetic and potential energy of the gravity gradient
are taken into account i.e.

~E = Ekin +Egg +Egyro < Ey
gyro

then the x axis of the Orbit CS evolves always above the intersection ellipse on the l.h.s.
of Fig. 7.5.
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7.3.3 Total Energy

If the total energy,Etot, the sum ofEgg , Egyro andEkin is above the energy level
Ex
gg + Ez

gyro (the maximum potential energy required for the boom axis to cross the
horizontal plane), then the kinetic energy has a nonzero bias, and the satellite will tum-
ble, i.e. the boom axis will evolve between upright and upside-down attitude. Whereas,
if the total energy is belowEy

gg (the minimum potential energy necessary to cross the
horizontal plane), and the initial attitude is such that the boom axis is above the horizon,
then it moves above the horizon for ever. The time propagation of the solution trajectory
for the energy level betweenEx

gg + Ez
gyro andEy

gg , where the energy gap�tot is

�tot = Ex
gg + Ez

gyro �Ey
gg = 2!2o(Ix � Iz)�

3

2
!2o(Iy � Iz);

(7.27)

remains undetermined. The control algorithm proposed in the next subsection takes this
gap into account.

7.3.4 Energy Dissipation Controller

The objective of this section is to formulate a control law making the reference asymptot-
ically stable for initial kinetic energy above levelEx

gg +Ez
gyro. This control law can be

used for a tumbling satellite and constitutes an intermediate solution towards a globally
stable controller investigated in the next section.

The angular velocity feedback (7.1) activated forckoz > 0 provides two locally stable
equilibria (7.24). The reason for this is a lack of the attitude information in the control
law. A recipe is to add a small perturbation of the attitude to the velocity control. This
technique was already discussed in Section 7.2, and it was concluded that the attitude
controller in Eq. (7.16) is asymptotically stable for all initial values of the attitude such
that the boom axis is upright. Based on these results, a proposed control algorithm for
dissipation of the entire energy, i.e.Ekin +Egg +Egyro, is

Procedure 7.2
� Activate the rate/attitude controller in Eq. (7.16) when the satellite attitude is in
C, where

C = f
co;
c
oq : ckoz > 0g:

(7.28)

� Otherwise send zero magnetic moment (cm = 0).

The essence of Procedure 7.2 is to make the satellite convergent towards the reference if
the boom is above the horizon, and keep the total energy constant if the boom is below
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it. Monte Carlo simulation tests show that the reference is asymptotically stable for the
initial kinetic energy aboveEx

gg + Ez
gyro, indeed. This control principle has performed

very satisfactory in the simulation study, though there still exists an uncertainty. The so-
lution trajectory of the satellite at the energy level betweenEy

gg andEx
gg+Ez

gyro has not
been found. A modified control law taking this uncertainty into account is

Procedure 7.3
� If Etot > Ex

gg +Ez
gyro activate the angular velocity controller (7.1).

� Else wait untilckoz changes the sign from negative to positive, then activate the
rate/attitude control (7.16) forckoz > 0.

The first stage of Procedure 7.3 is to diminish the total energy using the angular velocity
feedback (7.1) to the levelEx

gg+E
z
gyro, then wait with the attitude controller disactivated

until the boom axis crosses the horizon plane from upside-down to upright. At this mo-
ment the rate/attitude controller (7.16) takes over. The controller needs only to dissipate
a small amount of energy�tot in order to keep the boom axis above the horizon for ever.
Hence, the solution trajectory converges asymptotically to the reference.

The simulation study presented in the next subsection has shown that from a practical
point of view both Procedures 7.2 and 7.3 can be implemented for control of a tumbling
satellite to the desired referencef(c
co;

cko;
ci0) : (0;

o ko;
o io)g:

The last but not least control issue is to turn the boom axis from the upside-down to up-
right attitude, which is investigated in Section 7.4.

7.3.5 Simulation Results

The controllers for energy dissipation were validated in a detailed simulation study. An
example of a test is depicted in Figs. 7.6 to 7.9. The initial angular velocity in the exam-
ple isc
co = [0:005 0:003 �0:003]T rad

s
, pitch, yaw and roll are40 deg; �40 deg, and

80 deg, respectively. The velocity gain applied in the simulation study ish = 1�108 Ams
T

.
The velocity controller in Fig. 7.6 is active all the time, and the satellite trajectory con-
verges to the equilibriumf(c
co;

cko;
ci0) : (0;�oko;�

oio)g. The angular velocity
controller in Fig. 7.7 is only active until the total energy is belowEx

gg + Ez
gyro. The

satellite at this energy level is still tumbling. Performance of Procedures 7.2 and 7.3 is
depicted in Figs. 7.8 and 7.9. The rate/attitude controller implemented in these proce-
dures has velocity gain,h = 1 � 108Ams

T
, and the quaternion gain,� = 3 � 105Am

2

T
.

These gains are equivalent to a proportional band in the angular velocity of4:4 �10�3 rad
s

and1:48 in the attitude quaternion with a maximum control value of20Am2 and an av-
erage amplitude of the geomagnetic field vector of4:5 � 10�5 T . The rate/attitude con-
troller in Fig. 7.8 is disactivated wheneverckoz < 0. In Fig. 7.9, the rate controller
is applied first, then the the rate/attitude controller takes over. The satellite trajectory in
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Figure 7.6: Simulation using the angular velocity controller. The controller is active all
the time. ckoz characterizes convergence ofcko towardsoko, whereasciox character-
izes convergence ofcio to cio. The satellite trajectory converges towards the equilibrium
f(c
co;

cko;
ci0) : (0;�

oko;�
oio)g, sinceckoz andciox converge to�1.

both examples converges to the referenceckoz = 1 andciox = 1, which corresponds to
f(c
co;

cko;
ci0) : (0;

o ko;
o io)g.

7.4 Globally Stabilizing Controller

The control law in Procedure 7.3 was shown to be locally stable in the sense that if the
boom axis is upside-down and the total energy is belowEx

gg + Ez
gyro (more precisely

belowEy
gg) there are no means to turn the boom axis upright. A globally stable controller,

turning the boom axis from the upside-down to upright attitude, is the ultimate goal. The
main obstacle is again the cross product with the geomagnetic field vector.



102 Three Axis Attitude Control: Energy Approach

0 1 2 3 4 5 6
−1

0

1
Projection of ko on z axis of Control CS

0 1 2 3 4 5 6
−1

0

1
Projection of io on x axis of Control CS

0 1 2 3 4 5 6
0

10

20

Orbits

Euclidean norm of magnetic moment [Am^2]

Figure 7.7: The velocity controller is active untilEtot < Ex
gg + Ez

gyro . The satellite at
this energy level is still tumbling.

7.4.1 Idealized Quaternion Feedback

If it was possible to produce a control torque proportional to the quaternion error, a glob-
ally stable controller would result. This is shown in the following theorem.

Theorem 7.4.1The control law

cNctrl(t) = (hc
co(t)�
cB(t))� cB(t)� �coq(t); (7.29)

whereh and� are positive scalars, makes the system globally asymptotically stable at
the referencef(c
co;

cko;
cio) : (0;

oko;
oio)g.

Note that the control law (7.29) is given in the form of the desired control torque, which
is not producible by the magnetorquers, since the term�coq(t) does not have to be perpen-
dicular to the local geomagnetic field. The idea does give some useful hints, however.

Proof of Theorem 7.4.1 The Lyapunov candidate function resembles the total energy in
Eq. (7.3) (Proof of Theorem 7.1.1), however an extra attitude quaternion term has been
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Figure 7.8: Performance of the attitude controller in Procedure 7.2. The rate/attitude con-
troller is activated only in the regionckoz > 0. The satellite trajectory converges to the
referenceckoz = 1 andciox = 1.

added

Etot =
1
2
c


T
coI

c
co +
3
2
!2o(

ckTo I
cko � Iz)

+ 1
2
!2o(Ix �

ciTo I
cio) + �(q21 + q22 + q23 + (1� q4)

2): (7.30)

The attitude quaternion satisfies the constraint equationq21 + � � �+ q24 = 1, thus

Etot =
1

2
c
T

coI
c
co +

3

2
!2o(

ckTo I
cko � Iz) +

1

2
!2o(Ix �

ciTo I
cio) + 2�(1� q4):

(7.31)

The time derivative of Eq. (7.31) gives

_Etot =
c


T
co
cNctrl + �c
T

co
c
oq: (7.32)

Applying the control law defined in Eq. (7.29),_Etot is

_Etot = �hc
T
co
~BT ~Bc
co: (7.33)
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Figure 7.9: Performance of the attitude controller in Procedure 7.3. First, the rate con-
troller is activated, then the the rate/attitude controller takes over. The satellite trajectory
converges to the referenceckoz = 1 andciox = 1.

This complies with Eq. (7.9). Thus the satellite with control law (7.29) would be glob-
ally asymptotically stable at the referencef(c
co;

cko;
cio) : (0;

oko;
oio)g or in the

quaternion notationf(c
co;
c
oq) : (0; [0 0 0 1]

T )g if the desired control torque could be
produced. �

Achievable control with magnetorquers involves the cross product with the geomagnetic
field, and it would be a very significant step forward if one could derive a global stabi-
lizing control algorithm under this limitation. This is considered in the next section.

7.4.2 Quaternion Feedback with Magnetic Torquing

The attitude of the Ørsted satellite such that the boom is pointing towards the centre of
the Earth may likely occur due to considerable influence of the aerodynamic torque. This
undesired attitude is to be corrected by the attitude control system. It was illustrated in
Section 7.2 that the linear attitude controller performs satisfactory for all initial value
of attitudeckoz > 0 (boom is upright). If the satellite is tumbling the nonlinear con-
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troller (7.1) can be implemented, and the resultant attitude is either of the four equilib-
ria f(c
co;

cko;
cio) : (0; �o ko; �o io)g: The last but not least attitude control

problem is to turn the satellite from the upside-down attitude i.e. from the equilibria
f(c
co;

cko;
cio) : (0; �

o ko; �
o io)g to the upright attitude,ckoz > 0.

First, the following control law is considered

cm(t) = hc
co(t)�
cB(t) + �(t)coq(t)�

cB(t); (7.34)

whereh is a positive constant and�(t) is a piecewise continuous positive scalar function
satisfying

�(t) = const > 0; t 2 (kTs; (k + 1)Ts); k = 1; 2; :::

�(kTs) > �((k + 1)Ts) > 0; (7.35)

whereTs is a positive constant. Recognize that the control law (7.34) has the time varying
attitude gain�(t) comparing with the control law (7.16).

Before the features of the control law (7.34) are given, the following theorem is pre-
sented.

Theorem 7.4.2Consider the control law (7.34) then the satellite, given by Eqs. (2.12)
to (2.20), has 4 asymptotically stable local equilibria

f(c
co;
cko;

cio) : (0; �
o ko; �

o io)g:

Proof of Theorem 7.4.2 For simplicity of notation the equations of satellite Eqs. (2.12)
to (2.20) with controller (7.1) are represented by

_x(t) = f(x(t); t); (7.36)

and the equations of satellite motion with controller (7.34), for constant�(t) = �(kT ),
are denoted as

_x(t) = fk(x(t); t): (7.37)

Furthermore, the differential equation (7.36) for the initial conditionx(t0) = x0 has the
solutionx(t; t0;x0), and the differential equation (7.37) for the initial conditionx(t0) =
x0 has the solutionxk(t; t0;x0).

The kinematic and dynamic differential equations are Lipschitz, and the following is true

if limk!1fk(x(t); t) = f(x(t); t) then

limk!1xk(t; t0;x0) = x(t; t0;x0);
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thus
if limt!1x(t; t0;x0) = yf then

limt!1xk(t; t0;x0) = yf :

This means, iflimt!1�(t) = 0, each trajectory of the satellite actuated by the control
law (7.34) converges to one of the equilibria:f(c
co;

cko;
cio) : (0; �

o ko; �
o io)g:

�

The stability analysis demonstrated that the equilibrium(0; oko;
oio) is locally stable if

�(t) = �̂ < ~�, where~� is the limit of stability for the control law (7.16). On the other
hand if�(t) = �� is large enough so that the quaternion feedback is the most significant
component on the r.h.s. of Eq. (2.12)

Ic _
co � ��(q� cB)� cB (7.38)

then the vectorsIc
co and(q� cB)� cB become parallel, and

Ic

T
co((q(t) �

cB)� cB) > 0: (7.39)

It was assumed in Eq. (7.39) that the vectorscB andq are not parallel. This conjecture
is viable, since the controller can be activated when the most favourable conditions in
orbital motion for boom upside-down algorithm occur, see Fig. 7.10. It follows from
Eq. (7.39) that

c
T
co((q �

cB)� cB) > 0; (7.40)

sinceI is positive definite.

If Eq. (7.39) is always satisfied, then the satellite is asymptotically stable about the ref-
erencef(c
co;

cko;
cio) : (0;

oko;
oio)g. The proof of this statement is similar to the

proof of asymptotic stability of the control law (7.29). The Lyapunov candidate function
is

Etot =
1

2
c


T
coI

c
co +
3

2
!2o(

ckTo I
cko � Iz) +

1

2
!2o(Ix �

ciTo I
cio)

+ �(q21 + q22 + q23 + (1� q4)
2): (7.41)

The time derivative of the Lyapunov candidate function is

_Etot =
c
T

co
cNctrl + �c
T

co
c
oq: (7.42)

Finally, _Etot is

_Etot = �hc
T
co
~BT ~Bc
co � ��c
T

co
~BT ~Bcq+ �c
T

co
c
oq; (7.43)

which is negative definite for sufficiently small value of� (or sufficiently large��). No-
tice that Eq. (7.39) is satisfied only until the angular velocity term in Eq. (2.12) becomes
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Figure 7.10: Boom upside-downalgorithm is recommended to be activated in the regions
of North or South Poles.

dominant. The objective of this investigation, however, is not to derive a complete glob-
ally stabilizing controller in one step, but rather to get a control law providing necessary
acceleration to turn the satellite from the upside down to upright attitude.

It was assumed that the vectorscB andq are not parallel. This implies that the boom
upside-down algorithm must be triggered in the zones near the North or South Poles. As
mentioned in Section 2.2 the vector part of the attitude quaternion,q, determines the axis
of rotation from the Orbit CS to the Control CS. If the boom is upside-down, thenq is
perpendicular to the z-axis of the Orbit CS (the zenith). The zenith though is parallel to
the geomagnetic field vector over the poles, see Fig. 7.10.

From the analysis carried out so far it follows that for�(t) = �� large enough the satellite
trajectory is turned from the boom upside-down towards the boom upright attitude. For
practical implementation�� shall be chosen larger than

max(k Ngg k)

min(k oB k2)
� 9 � 105

Nm

T

such that the control torque is larger than the gravity gradient.

Concluding, if�(t) = �̂ the system is asymptotically stable for all values of attitude
such that the boom tip is above the horizon. If�(t) = �� the satellite boom axis is
turned from upside-down to upright. Furthermore, if�(t) satisfies Eq. (7.35) then the
satellite is locally asymptotically stable towards four equilibriaf(c
co;

cko;
cio) :
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(0; �o ko; �
o io)g. The following algorithm is now straightforward. If the boom tip

is below the horizon,ckoz � 0, implement control law (7.34) with�(t) = ��. The satellite
reaches a boom upright attitude,ckoz > 0, and�(t) shall gradually decrease from�� to
�̂. Nevertheless, due to the possibility of a large angular velocity the satellite may again
end up to be upside-down. Now, ifckoz � 0 the magnetic moment,cm, is set to0 until
the boom is upright once again. Similarities between this approach and the Procedure
7.2 are striking.

Note that that this strategy rejects the equilibriaf(c
co;
cko;

cio) : (0;�
oko; �

o io)g,
since no control torque is generated when the boom tip is below the horizon. Further-
more, the equilibrium(0; oko; �

o io) is also unstable since�(t) converges to a constant
nonzero valuê�. Finally, only one equilibrium(0; oko;

oio) remains asymptotically sta-
ble, thus it is globally asymptotically stable.

7.4.3 Simulation Results

A simulation study has confirmed our hypothesis that the boom upside-down con-
trol algorithm provides globally asymptotically stable satellite motion. Simulation re-
sults are shown in Figs. 7.11 to 7.13. The initial conditions are such that the satel-
lite has the upside-down attitude corresponding to the equilibriumf(c
co;

cko;
cio) :

(0; �o ko;
oio)g. The velocity gain ish = 1 � 108Ams

T
, and the quaternion gain is cho-

sen�̂ = 15 � 105Am
2

T
. The controller is quite convincing. It takes less than half an or-

bit to turn the satellite up, and it is stabilized to the operational region within 6 orbits.
This is rather satisfactory considering that the available mechanical torque is less than
1:2 � 10�3 Nm, which is only three times more than the magnitude of the maximum
gravity gradient torque for this satellite. A simulation for the same initial conditions as
before but with a new attitude gain̂� = 27 � 105Am

2

T
is depicted in Fig. 7.14. The accel-

eration imposed by the attitude controller is high enough to turn the boom upright, but
the controller is not able to decelerate the motion whenckoz > 0, and the satellite turns
upside-down again. The attitude controller is now be activated, only ifckoz > 0. This
control action is globally asymptotically stable.

The controller for acquisition of the satellite attitude from the boom upside-down was
developed in this section. It is, however, an advantage to design a boom upside-down
controller applying the existing energy of the satellite motion, and in this way decreas-
ing electrical energy utilized by the control system. This issue is addressed in the next
section.
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The attitude controller is activated whenckoz > 0 (if ckoz � 0 thencm = 0).
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7.5 Alternative Boom Upside-Down Control

An alternative boom upside-down algorithm is investigated in this section. A control
concept is to apply a destabilizing controller when the gravity gradient boom is upside-
down and a stabilizing when it is above the horizon.

The idea of an algorithm is to generate a mechanical torque in the direction of the mini-
mum potential energy until the boom axis appears above the horizon, then to apply Pro-
cedures 7.2 or 7.3.

A proposed control algorithm is

Procedure 7.4
� If the boom axis is upside-down (below the horizon) generate the magnetic moment

according to Eq. (7.44) untilckoz > 0

cm = g cio �
cB; (7.44)

whereg is a positive or negative constant, a design parameter,
then

� Use Procedure 7.2 or 7.3.

There are two reasons to propose this algorithm as it will be explained below.

� A minimum effort controller is a controller which generates a control torque per-
pendicular to the local geomagnetic field. The unit vectorcio(t) is approximately
perpendicular tocB(t) for all t, since it is perpendicular to the orbit plane. The
resultant control torque generated according to Eqs. (7.44) and (2.15) is parallel
to cio(t) and therefore perpendicular to the local geomagnetic field.

� The minimum potential energy necessary to turn the boom axis upright is the ro-
tation about the pitch axis, which is at most

Ep = Ey
gg +Ey

gyro =
2

3
!2o(Iy � Iz) +

1

2
!2o(Ix � Iy): (7.45)

The potential energy necessary to turn the satellite about the roll axis is at most

Er = Ex
gg +Ez

gyro = 2!2o(Ix � Iz): (7.46)

The meaning of the constantsEx
gg ,Ey

gg , andEz
gyro were explained in Section 7.3,

whereas

Ey
gyro =

1

2
!2o(Ix � Iy):

Procedure 7.4 can be improved by utilization of the angular momentum due to the satel-
lite revolution about the Earth,ho. The design parameterg is strictly positive, thus the
angular momentumho acts in the same direction as the control torque, and the necessary
effort to turn the satellite upright is decreased.
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Figure 7.15: Performance of the attitude controller in Procedure 7.4. First, the destabi-
lizing controller in Eq. (7.44) is activated, then after1

3
orbit the rate/attitude controller

takes over. The satellite trajectory converges to the referenceckoz = 1 andciox = 1.

7.5.1 Simulation Results

An example of the simulation test carried out for Procedure 7.4 is depicted in Fig. 7.15.
The gaing = 5:2 105 Nm

T 2 of the destabilizing controller is chosen empirically. The re-
maining control parameters coincide with those implemented in the test study described
in Subsection 7.3.5. The initial attitude is again such that the boom axis is upside-down
f(c
co;

cko;
cio) : (0; �

o ko;
oio)g: First, the destabilizing controller in Eq. (7.44)

is activated, then after1
3

orbit the boom is above the horizon, and the rate/attitude con-
troller takes over. The satellite trajectory converges to the referenceckoz = 1, ciox = 1,
i.e. f(c
co;

cko;
cio) : (0;

oko;
oio)g.

The performance of this controller and the controller (7.34 ) is similar. Both algorithms
are simple for on board implementation, therefore both are equally well suitable for a
magnetic actuated satellite.
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Controller type Features
cm(t) = hc
co(t)�

cB(t) Locally stable about 4 equilibria
f(c
co;

cko;
cio) : (0; �

o ko; �
o io)g

cm(t) = hc
co(t)�
cB(t) Locally stable about reference for all

+�coq(t) �
cB(t) attitude such thatckoz > 0 and smallc
co

cm(t) = hc
co(t)�
cB(t) Globally stable about reference;�(t) decays

+�(t)coq(t)�
cB(t) from �� to �̂

cm = gcio �
cB Destabilizing controller used for turning

boom axis upright

Table 7.1: A summary of the properties of the magnetic attitude control.

7.6 Summary of Magnetic Attitude Control

This chapter contributes to the development of proportional-derivative feedback control
based only on magnetic torquing for low Earth orbit satellites. Both locally and globally
stabilizing controllers were proposed, and a rigorous stability analysis was carried out.
The velocity controller cross product with the local geomagnetic field provided four sta-
ble equilibria, one of which was the reference. A number of methods for perturbing the
satellite motion from three undesired equilibria, such that the satellite is globally asymp-
totically stable to the reference, were presented. Simulation results showed the profi-
ciency of the proposed controllers, even in the upside-down configuration, which is the
worst case situation for a satellite.

A summary of the properties of the attitude control laws derived in this chapter is given
in Table 7.1.

7.7 Mission Scenarios

This section provides attitude control algorithms for a number of the Ørsted mission sce-
narios. The features of the magnetic attitude control listed in the previous sections are
combined giving globally stable control action. The similarities between the locally and
globally stable controllers are striking. The only difference is the gain factor�(t). This
makes implementation exceptionally simple.

7.7.1 Nominal Operation

The boom tip is detected to be above the horizon, i.e.ckoz > 0. The control law (7.34)
with constant value of�(t) = �̂; �̂ � ~� is implemented.
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7.7.1.1 Tumbling Satellite

The satellite is detected to tumble, i.e. it rotates with the angular velocity above an op-
erational limit, the following algorithm may be implemented:

� Activate the angular velocity controller (7.1).

� If the total energy is below2!2o(Ix � Iz) and the boom axis is detected above the
horizon activate the rate/attitude controller (7.16).

7.7.2 Boom is Upside-Down

A large disturbance torque impacts on the satellite body or temporary malfunction occurs
on board. As the consequence the boom tip remains below the horizon.

� Activate the boom upside-down algorithm, Eq. (7.34), where�(t) = ��. Start the
algorithm when the boom is over South or North Poles.

� If ckoz > 0 apply Eq. (7.34), where

�k+1 = L�k; 0 < L < 1; �0 = ��:

The gain� is updated every sampling time ifckoz > 0, and it is kept constant
otherwise.

� If ckoz � 0 applycm = 0:

Alternatively

� If the boom axis is upside-down (below the horizon) then generate the magnetic
moment according to Eq. (7.44).

� If Etot > 2!2o(Ix � Iz) activate the rate controller (7.1).

� Else wait untilckoz changes the sign from negative to positive and activate the
rate/attitude control (7.16) forckoz > 0.



Chapter 8

Ørsted Attitude Control

The objective of this chapter is to summarize and evaluate performance of the control
algorithms chosen for implementation in the Ørsted attitude control system. The baseline
for the design in the previous chapters was that the satellite was in a circular orbit and
an influence of the aerodynamic drag was rejectable. In this chapter performance of the
attitude control system is a subject of simulation test in the realistic environment.

Complete disturbance rejection is not feasible due to lack of controllability in the direc-
tion of the local geomagnetic field. As an example consider a disturbance torque acting in
the direction of nadir during the satellite passage in the polar regions. The geomagnetic
field is parallel to the disturbance torque resulting in large amplitude of yaw oscillations.
The design criterion is to adjust the control parameters such that deviations of pitch, roll,
yaw from the reference are within specified values (pitch�10 deg, roll �10 deg, yaw
�20 deg).

Two independent approaches: linear and nonlinear to the magnetic attitude control were
presented in this thesis. The linear methods focused on periodic character of the sys-
tem’s parameters. The result was the family of energy optimal periodic controllers. The
proposed control algorithm were, however, relatively complex, since it was necessary to
solve the Riccati differential equation. The nonlinear part of the work gave a deep insight
into physics of the rigid body motion. The finding of the nonlinear analysis was a number
of globally and locally stable controllers. All of them had similar structure of PD regu-
lator vector product with the local geomagnetic field vectors. These attitude controllers
were chosen for further implementation in the Ørsted attitude control system, due to their
simplicity, efficiency, and independence on exact knowledge of the system parameters as
moments of inertia.

Dependent on the mission phase three separate attitude controllers are implemented:

� Rate Detumbling Controller

115
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Attitude Determination Attitude Control

Figure 8.1: Architecture of the attitude control system consisting of the rate detumbling
controller, the science observation controller and the continence operation controller for
the inverted boom.

The rate detumbling controller is used just after release from the launch vehicle.
Kinetic energy is dumped and the satellite is stabilized relative to the local geo-
magnetic field. The feedback signal is the rate of the local geomagnetic field.

� Controller for Science Observation Phase
After boom deployment the satellite is three axis stabilized. Attitude is measured
from the star imager or alternatively from the magnetometer and the sun sensor,
see Bak (1994) and Bak (1996).

� Contingency Operation for Inverted Boom
The objective of the controller is to acquire the satellite from the boom upside
down. Attitude is obtained from the magnetometer and the sun sensor.

The structure of the control system is illustrated in Fig. 8.1 The algorithms are summa-
rized and the performance is investigated in the next sections.

The baselines for the simulation study are given in Tables 8.1 and A.1. The aerodynamic
drag torque implemented in the simulator, see Appendix A, corresponds to atmospheric
density in April 1997.
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Item Description
Body size H 680 x W 450 x D 340mm

Boom 8m Deployable
Mass 61:8 kg
Moments of inertia about principal axes:
� boom deployed X 181:78, Y 181:25, Z 1:28 kgm2

� boom stowed X 3:428, Y 2:904, Z 1:275 kgm2

Maximum amplitude of magnetic moment20 Am2

Apogee 850 km
Perigee 450 km
Eccentricity 0.028599
Argument of Perigee 0
Inclination 96:1 deg
RAAN 105:2 deg
Nodal drift 0:77 deg=day
Epoch 3 April 1997 at 1200 UTC

8.1 Rate Detumbling Controller

8.1.1 Objectives

The objective of the rate detumbling controller is to generate a magnetic moment, such
that the kinetic energy of the satellite is dissipated and it is turned in the negative direction
of the local geomagnetic field vector. Hence, radio contact with the ground stations in
Copenhagen and Aalborg is viable.

8.1.2 Control Law

The following control law is implemented

cm = �kc _B�mconst; (8.1)

wheremconst = [0 0mconst]
T .

The first summand contributes to kinetic energy dissipation, whereas the second is a bias
term. The satellite acts like a compass needle which tends to align with the local geo-
magnetic field, while adequate angular velocity damping is retained. More details about
the rate detumbling control can be found in Appendix B.
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Figure 8.2: Rate detumbling simulation. The controller decreases initially high angular
velocity1:6 � 10�1 rad

s
to absolute value below5 � 10�3 rad

s
:

8.1.3 Control Coefficients

The control coefficients, that is the gain,k and the bias magnetic moment,mconst were
found empirically. The best performance was obtained fork = 5 � 106 Am2s

T
and

mconst = 3 Am2.

8.1.4 Simulation Evaluation

The algorithm for the rate detumbling controller has been verified by a simulation study
in realistic environment of the gravity gradient and the aerodynamic drag torques acting
on the satellite body. Figures 8.2 to 8.4 show simulation results for the initial value of
the satellite angular velocity
cw(t0) = [0:10 0:10 0:09]T rad=s, which is above the
upper limit of2 rpm for the tumbling satellite after release from the launcher. The an-
gular velocity w.r.t. the World CS depicted in Fig. 8.2 is decreased to absolute value
below5 � 10�3 rad

s
. The second figure shows the time history of satellite attitude. The

satellite tracks the inverse direction of the geomagnetic field. The inclination angle be-
tween the z principal axis and the local geomagnetic field is influenced by the increase of
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the geomagnetic field rate over equator. This phenomena is depicted by periodic peaks
of the inclination angle, here at approximately1, 1:5, 2, and2:5 orbits. The last figure
8.4 shows the deviation of the boom axis from the zenith for one orbit. The deviation
is below20 deg at56 deg North, which is the latitude of Denmark. Thus, the boom de-
ployment for the satellite stabilized with use of the biased rate detumbling controller is
feasible.

8.1.5 Pros and Cons

Advantages of the rate detumbling controller are:

� simple implementation,

� no three axis attitude information is necessary,

� deployment of the boom over Denmark is feasible,

� very rough knowledge of moments of inertia is required.

The main disadvantage is that the rate detumbling is not three axis stabilizing controller
thereby alignment of the z axis of the Control CS with the z axis of the Orbit CS, the ideal
situation for the boom deployment, is reached only within�20 deg over Denmark. The
three axis attitude control is possible using the sliding mode control approach described
in Chapter 6, however the necessary attitude information is not available in this mission
phase.

8.2 Science Observation Controller

8.2.1 Objectives

The aim of the science observation control is to provide three axis stabilization of the
satellite after boom deployment. The controller corrects all initial values of the attitude
with the boom upright to the reference. The reference is such that the boom axis is aligned
with the zenith, and x axes of the Control and the Orbit CSs coincide. Furthermore, an
optional yaw reference for the attitude controller is added.

8.2.2 Control Law

The general structure of the attitude controller for the science observation is as follows

cm(t) = (Hc
cr(t)) �
cB(t)� (�~q(t)) � cB(t); (8.2)
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wherec
cr is the angular velocity of the Control CS w.r.t. a Reference Coordinate Sys-
tem. The Reference CS is defined relatively to the Orbit CS by rotation about the z axis
of an angle�. ~q is the vector part ofcrq, i.e. a quaternion, representing the transformation
from the Reference CS to the Control CS.H and� are matrices of control coefficients.

The quaternioncrq, see Appendix C, is given by

c
rq = Q(coq)

o
rq; (8.3)

whereQ(�) was defined in Section 2.2 and

o
rq =

�
0 0 � 1

2
sin � 1

2
cos �

�T
; (8.4)

finally, � is the desired yaw reference.

The angular velocityc
cr is calculated according to

c
cr =
c
cw +A(crq)

r
rw; (8.5)

wherer
rw = !o
�
cos � �sin � 0

�T
.

Note that the yaw reference0 and180 deg comply with the stable equilibria discussed in
Chapter 7.

8.2.3 Control Coefficients

A proper choice of control parameters is a crucial issue. The moments of inertia for the
Ørsted satellite are approximately the same about the x and y principal axes, therefore
zero yaw is no longer a stable equilibrium. Even small perturbations about the boom axis
heavily disturbs yaw from the reference, since the moment of inertia about the z principal
axis is nearly 200 times smaller than ones about other axes. Hence, the influence of the
same torque acting in the direction of the boom axis is 200 times more severe than e.g.
in the direction of the x principal axis.

The control parametersH and� are computed using LQR/Floquet technique as described
in Section 4.4, however the system and the control matrices are slightly modified in or-
der to incorporate a new yaw reference if necessary, see Appendix C. The weight ma-
trix Q = diag([18 900 18000 18 900 18000]T ) was applied for zero yaw reference.
The weight matrix has large values of the components corresponding to yaw and its rate,
Q(3; 3),Q(6; 6)1. This helps to avoid large fluctuations of the rotation about the boom
axis. Pitch and roll motion is marginally stable due to considerable influence of the grav-
ity gradient torque, but roll and yaw are coupled through dynamics. Therefore, some ad-
ditional punishment on roll and its rate (Q(2; 2),Q(5; 5)) is imposed. The weight ma-
trixQ provides the following control gain matrices for the nominal reference (complying

1Notice that for small angles pitch, roll, yaw complies withq1, q2, q3 components of the attitude quaternion.
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Figure 8.5: Simulation of the science observation controller. The plot shows time history
of pitch, roll, yaw for the Ørsted satellite influence by the aerodynamic drag torque. The
initial attitude is extreme, pitch80 deg, roll �50 deg, and yaw�10. The initial angular
velocity is
co(t0) = 0. The steady state deviation is below10 deg in all directions. The
lower plot depicts the Euclidean norm of the magnetic moment, which is much below the
limit of 20 Am2.

with the Orbit CS)

H =

2
4 0:3537 �0:0290 0:0014
�0:0392 1:4333 �0:0348
�0:0306 0:0508 0:8463

3
5 � 10�1 A m2 s

T rad
;

� =

2
4 0:0088 0:0459 0:0541
�0:0671 0:2000 0:0902
�0:1283 �0:1168 2:6837

3
5 � 10�3 A m2

T
:

Recognize also that pitch feedback has pure derivative character, since�(1; 1) � 0.

8.2.4 Simulation Evaluation

The controller was evaluated for a large envelope of initial conditions. An examples of
the extreme initial attitude when the boom is only slightly above the horizontal plane
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Figure 8.6: Plot of the aerodynamic drag torque against latitude corresponding to the
attitude as in Fig. 8.5. The amplitude of the aerodynamic torque is maximum at perigee
(latitude45 deg North).
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Figure 8.7: The figure shows time history of the Ørsted satellite attitude. The yaw refer-
ence is set to� = 45 deg. The initial attitude is pitch�80 deg, roll �50 deg, and yaw
�10 deg. The initial angular velocity is
co(t0) = 0.
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Figure 8.8: The figure shows time history of the Ørsted satellite attitude. The yaw ref-
erence is set to� = 90 deg. The initial attitude is pitch�80 deg, roll 50 deg, and yaw
�10 deg. The initial angular velocity
co(t0) = 0.

is given in Fig. 8.5. The motion is heavily influenced by the aerodynamic drag torque
plotted in Fig. 8.6. This causes in the steady state motion of pitch, roll, and yaw just
below10 deg. Performance of the science observation controller for45 deg and90 deg
yaw reference is depicted in Figs. 8.7 and 8.8.

Steady state behaviour of the controller is evaluated in Figs. 8.9 to 8.11. Fig. 8.9 shows
steady state motion of the satellite during8 orbits. Deviation of pitch, roll, and yaw from
the nominal reference are plotted as functions of latitude. Particularly good performance
is reached in equatorial regions (latitudes near0 deg). The largest deviation of the Eu-
ler angles is observed near the North Pole (latitude90 deg), due to prominent influence
of the aerodynamic drag torque encountered at latitude45 deg North and lack of yaw
controllability in the polar regions.

Much attention was devoted to empirical sensitivity analysis of the controller towards un-
certainties of the moments of inertia. Fig. 8.10 depicts steady state performance of the
science observation controller for the moment of inertia about the y principal axis being
10 percent smaller than anticipated for the controller design. The difference betweenIx
andIy is enlarged. Thus, the reference is now the stable equilibrium and much better
performance of yaw is attained. Fig. 8.11 presents steady state performance of the con-
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Figure 8.9: The figure shows steady state performance of the science observation con-
troller during8 orbits. Deviation of pitch, roll, and yaw are plotted as functions of lati-
tude. Well performance is reached in equatorial regions, latitudes near0 deg. The largest
deviation of the attitude angles is observed near the North Pole (latitude90 deg), due to
prominent influence of the aerodynamic drag torque at latitude45 deg North and lack of
yaw controllability in the polar regions.

troller when the moment of inertiaIy is 10 percent larger than assumed for the controller
design. The difference betweenIx andIy is negative, therefore the reference is not an
equilibrium and the amplitude of yaw fluctuation is increased.

8.2.5 Pros and Cons

Advantages of the science observation controller are:

� the controller is robust to uncertainties of the moments of inertia,

� it is stable for very wide envelope of initial attitudes,

� it is power efficient,

� it is easy to implement.
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Figure 8.10: The figure shows steady state performance of the science observation con-
troller for the moment of inertia about the y principal axis,Iy is 10% smaller than antic-
ipated for the controller design. The difference betweenIx andIy is enlarged. Now, the
reference is the stable equilibrium and much better performance of yaw is attained.

The drawback of the controller is that high pointing accuracy is not viable for a satellite
subject to large influence of the aerodynamic drag torque in elliptic orbit. This is due to
the magnetic torquing is lacking controllability in the direction of the local geomagnetic
field.

8.3 Contingency Operation for Inverted Boom

8.3.1 Objectives

The inverted boom controller is activated when the satellite boom is detected to be
upside-down. The objective of the controller is to turn the boom upright, and then
coarsely stabilize the satellite in three axes. Afterwards, the science observation con-
troller takes over.
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Figure 8.11: The figure shows steady state performance of the science observation con-
troller when moment of inertiaIy is10% larger than anticipated for the controller design.
The difference betweenIx andIy is negative, therefore the reference is not an equilib-
rium and the performance of yaw is deteriorated.

8.3.2 Control Law

The following control law is implemented

cm(t) =

(
Hc
co(t)�

cB(t) + �(t)coq(t) �
cB(t) if ckoz > 0;

0 otherwise.
(8.6)

whereH is a matrix of control parameters, whereas� is a piecewise continuous matrix
function

� = �k + �c; (8.7)

where�k is updated in every sampling cycle according to

�k =

(
L�k�1 if ckoz > 0;

�k�1 otherwise,

�c is another matrix of control parameters, and0 < L < 1.
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Figure 8.12: Simulation of the inverted boom controller. The first plot shows time his-
tory of the inclination angle between the z axis of Control CS and the z axis of Orbit
CS. The second plot depicts the inclination between the x axes of the Control and Or-
bit CSs. Finally, the third one illustrates the magnetic moment used for attitude control.
Initial attitude is pitch180 deg, roll and yaw are zeros. The initial angular velocity is

co(t0) = 0. It takes quarter of an orbit to turn the satellite boom from upside-down to
upright.

8.3.3 Control Coefficients

The velocity gain was chosen empiricallyH = 1 � 10 E3�3
Ams
T

. Initial value of the
quaternion gain�k(to)must be large enough to turn the satellite boom from upside-down
to upright attitude,�k = 9�105E3�3

Am2

T
. Furthermore, the forgetting factorL = 0:995,

and�c = 3 � 105 E3�3
Am2

T
.

8.3.4 Simulation Evaluation

The inverted boom controller was evaluated for a large number of initial conditions, both
for the satellite boom pointing ideally toward the Earth centre and just below the hori-
zontal plane. The result of simulation study is summarized in Figs. 8.12 to 8.15. The
simulation for the initial conditions of pitch180 deg, roll 0, yaw0, and the angular ve-
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Figure 8.13: Simulation of the inverted boom controller with the initial conditions cor-
responding to ones in Fig. 8.12. The moment of inertia about the y principal axis is in-
creased by 10 percent. The time necessary to turn the boom upright is approximately
the same as in Fig. 8.12, however, the steady state performance of the inverted boom
controller is now degraded.

locity 
co(t0) = 0 is depicted in Fig. 8.12. The first plot shows time history of the
inclination angle between the z axis of Control CS and the z axis of Orbit CS. The sec-
ond plot depicts the inclination between the x axes of the Control and Orbit CSs. Finally,
the third one illustrates the magnetic moment used for attitude control. It takes quarter
of an orbit to turn the satellite boom from upside-down to upright.

Uncertainty of moments of inertia has very little influence on the controller performance.
The moment of inertia about the y principal axis is increased by 10 percent in Fig. 8.13.
The time necessary to turn the boom upright is roughly the same as in Fig. 8.12, however,
the steady state performance of the inverted boom controller is now degraded.

The energy necessary to turn the satellite from upside-down to upright is minimal when
rotation takes place about the x principal axis. This case is depicted in Fig. 8.14. Initial
attitude is roll180 deg, pitch and yaw are zeros, the initial angular velocity is
co(t0) =
0. The controller makes the satellite to rotate about the x principal axis, hence the energy
necessary to turn the satellite boom from upside-down to upright is minimal. The control
system generates too much kinetic energy, and the boom rotates upright, then upside-
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Figure 8.14: Inverted boom controller simulation. Initial attitude is roll180 deg, pitch
and yaw are zeros. The initial angular velocity is
co(t0) = 0. The controller makes the
satellite to rotate about the x principal axis, hence energy necessary to turn the satellite
boom from upside-down to upright is minimal. The controller generates to much energy,
such that the boom rotates upright and then upside-down once again. The controller is
disactivated whenckoz � 0 and waits until the boom is above the horizon. As soon as
ckoz > 0, it is switched on and the remaining portion of energy is dissipated.

down once again. The controller is disactivated whenckoz � 0 and waits until the boom
is above the horizon. As soon asckoz > 0, it is switched on and the remaining portion
of energy is dissipated.

Simulation for the initial attitude such that the boom is just below the horizon plane
is shown in Fig. 8.15 (the initial values of the attitude and the angular velocity: pitch
100 deg, roll 30 deg, yaw40 deg andc
co(t0) = 0). Acceleration imposed by the at-
titude controller is large. The satellite starts to tumble slightly, however, after one orbit
the attitude is acquired and the solution trajectory converges to the reference.

8.3.5 Pros and Cons

The boom inverted controller is easy to implement, its structure is essentially the same
as one for the science observation controller, except that a varying attitude gain matrix



8.3 Contingency Operation for Inverted Boom 131

Inclination between ko and kc

Inclination between io and ic

Euclidean norm of magnetic moment 

0 1 2 3 4 5 6 7 8
0

10

20

30

Orbits

[A
m

^2
]

0 1 2 3 4 5 6 7 8
0

100

200

Orbits

[d
eg

]

0 1 2 3 4 5 6 7 8
0

100

200

Orbits

[d
eg

]

Figure 8.15: The inverted boom controller is activated for the following initial values of
the attitude and angular velocity: pitch100 deg, roll 30 deg, yaw40 deg andc
co(t0) =
0 (the boom is just below the horizon). The acceleration imposed by the attitude con-
troller causes the satellite to tumble immediately, and after one orbit the attitude is ac-
quired and the solution trajectory converges to the reference.

is applied. The controller performance is independent on exact knowledge of moments
of inertia.





Chapter 9

Conclusions and
Recommendations

9.1 Conclusions

The main results of the work are summarized in this chapter. The primary purpose of the
research was to develop control laws for three axis stabilization of a magnetic actuated
satellite. Chapters 2 to 8 discussed the following

� Model of a low Earth orbit satellite was presented in terms of the quaternion at-
titude parameterization. Potential and kinetic energy was established. Model of
motion was linearized using multiplicative nature of quaternion calculus.

� Introduction to periodic linear system was provided, where central part was de-
voted to the periodic differential Riccati equation. A number of control algorithms
were elaborated including the infinite horizon, finite horizon and constant gain op-
timal controllers.

� Introduction to stability theory of nonlinear periodic systems was given.

� Sliding mode controller for a satellite actuated by a set of magnetic coils was es-
tablished. A sliding manifold was designed, and a coninuous sliding condition was
developed. The controller was tested in simulation test study.

� Both locally and globally stabilizing controllers based on energy dissipation tech-
niques were proposed, and a rigorous stability analysis was carried out. Simulation
results showed the proficiency of the new controller in the upside-down configu-
ration, the worst case situation for the satellite.

133



134 Conclusions and Recommendations

� The attitude controllers implemented for the Ørsted satellite were tested in the
realistic space environment simulator. Simulation was based on high fidelity mod-
els of the satellite dynamics and environmental disturbances.

The overall performance of the attitude controllers given in this thesis indicated applica-
bility of the magnetic actuation on low Earth near polar orbit satellites, which pointing
requirements are not very high. The magnetorquing was found especially useful on cir-
cular orbit for which influence of the aerodynamic drag is marginal.

9.2 Recommendations

The following topics are not covered in this work but it is believed that future investiga-
tion could be beneficial.

� Design of the magnetic attitude control based on robust techniques needs to be in-
vestigated. This issue is not trivial, due to the system is time varying and lacking
controllability in the direction of the local geomagnetic field vector. Some theoret-
ical work based on the frequency shaping method has already been initiated, e.g.
Zhanget al. (1996).

� It seems promising to design an attitude controller based on fuzzy logic and the
energetic approach covered in Chapter 7. An anticipated control structure is pro-
portional derivative vector product with the local geomagnetic field vector. The
control parameters are dependent on the attitude, and are determined by a fuzzy
logic technique.

� Performance of the attitude control system can be increased by adding a reaction
wheel in the direction of the x principal axis. Now, rejection of external distur-
bances is viable since the aerodynamic drag and the torque due to ellipticity of an
orbit act predominantly on pitch. It is expected that the methods described in this
thesis are still applicable with some necessary modifications.



Bibliography

Anderson, B.D.O. and J.B. Moore (1989).Optimal Control. Linear Quadratic Methods.
Prentice-Hall.

Bak, T. (1994). Attitude Determination Methods. Technical report. Ørsted/TN-151.
Bak, T. (1996). Onboard Attitude Determination for a Small Satellite. In proc.:3rd ESA

International Conference on Spacecraft Guidance, Navigation and Control Systems,
ESTEC, Noordwijk, The Netherlands.

Bak, T., R. Wisniewski and M. Blanke (1996). Autonomous Attitude Determination and
Control System for the Ørsted satellite. In proc.:IEEE Aerospace Applications Con-
ference.

Bittanti, S., (Ed.) (1991).The Riccati Equation. Springer Verlag.
Byrnes, Ch. I. and A. Isidori (1991). On the Attitude Stabilization of Rigid Spacecraft.

Automatica27(1), 87–95.
Cappellari, J.O. (1976).Mathematical Theory of the Goddard Trajectory Determination

System. GSFC NASA , Greenbelt, Maryland.
Cavallo, A., G. De Maria, F. Ferrara and P. Nistri (1993). A Sliding Manifold Approach

to Satellite Attitude Control. In proc.:12th World Congress IFAC, Sidney.
DeNicolao, G. (1994). Cyclomonotonicity, Riccati Equations and Periodic Receding

Horizon Control.Automatica30(9), 1375–1388.
Hahn, W. (1967).Stability of motion. Springer-Verlag.
Hoots, F. R. and R.L. Roehrich (1980). Models for Propagation of NORAD Elements

Sets.Spacetrack Report.
Isidori, A. (1994).Nonlinear Control Systems. Springer.
Krasovskii, N.N (1963).Problems of the Theory of Stability of Motion (Russian). English

translation, Stanford Univ. Press.
Kwakernaak, H. and R. Sivan (1972).Linear Optimal Control Systems. Wiley.
Kwon, W.H. and A.E. Pearson (1977).A Modified Quadratic Cost Problem and Feedback

Stabilization of Linear Systems.IEEE Transactions on Automatic Control22(5), 838–
846.

135



136 BIBLIOGRAPHY

Martel, F., K.P. Parimal and M. Psiaki (1988). Active Magnetic Control System for Grav-
ity Gradient Stabilized Spacecraft. In proc.:Annual AIAA/Utah State University Con-
ference on Small Satellites.

Matwiejew, N.M. (1982).Metody calkowania rownan rozniczkowych zwyczajnych.
Panstwowe wydawnictwo naukowe.

Mohler, R.R. (1991).Nonlinear Systems. Vol. Dynamics and Control. Prentice Hall.
Morton, H.S. (1993). Hamiltonian and Lagrangian Formulations of Rigid-Body Rota-

tional Dynamics Based on the Euler Parameters.The Journal of the Astronautical Sci-
emces41(4), 569–591.

Musser, K.L. and L.E. Ward (1989). Autonomous Spacecraft Attitude Control Using
Magnetic Torquing Only. In proc.:Flight Mechanics Estimation Theory Symposium,
NASA.

Popov, V. M. (1973).Hyperstability of Control Systems. Springer-Verlag, New York.
Psiaki, M.L., F. Martel and P.K. Pal (1990). Three-axis Attitude Determination via

Kalman Filtering of Magnetometer Data.Journal of Guidance, Control and Dynam-
ics.

Rudin, W. (1987).Real and Complex Analysis. McGraw-Hill.
Slotine, J. E. and W. Li (1991).Applied Nonlinear Control. Prentice-Hall.
Utkin, V.I. (1992).Sliding Modes in Control Optimization. Springer-Verlag.
Vidyasagar, M. (1993).Nonlinear Systems Analysis. Prentice Hall.
Wen, J. Ting-Yung and K. Kreutz-Delgado (1991). The Attitude Control Problem.IEEE

Transactions on Automatic Control.
Wertz, J.R. (1990).Spacecraft Attitude Determination and Control. Kluwer Academic

Publishers.
Wisniewski, R. (1994a). Attitude Control Methods. Technical Report Ørsted Project TN-

232. Aalborg University.
Wisniewski, R. (1994b). Nonlinear Control for Satellite Detumbling Based on Magnetic

Torquing. In proc.:Joint Services Data Exchange for Guidance, Navigation, and Con-
trol, Arizona.

Wisniewski, R. (1995a). Influence of Aerodynamic Torque on Ørsted Satellite Motion.
Technical Report TN-251. Aalborg University.

Wisniewski, R. (1995b). Three-axis Attitude Control - Linear Time-Varying Approach.
In proc.:10th IFAC Workshop on Control Applications of Optimization, Haifa, Israel.

Wisniewski, R. (1997). Optimal Three-Axis Satellite Attitude Control with Use of Mag-
netic Torquing. Submitted to:AIAA Guidance, Navigation, and Control Conference,
New Orleans.

Wisniewski, R. and M. Blanke (1996a).Attitude Control for Magnetic Actuated Satellite.
In proc.:Control of Nonlinear Systems Theory and Applications. EURACO Workshop.
Algarve. Portugal.

Wisniewski, R. and M. Blanke (1996b). Three-axis Satellite Atitude Control Based on
Magnetic Torquing. Submitted to:Automatica.



BIBLIOGRAPHY 137

Wisniewski, R. and M. Blanke (1996c). Three-axis Satellite Attitude Control Based on
Magnetic Torquing. In proc.:13th IFAC World Congress, San Francisco, California.

Yon-Pin, Ch. and L. Shih-Che (1993). Sliding Mode Controller Design for Spacecraft At-
titude Tracking Maneuvers.IEEE Transactions on Aerospace and Electronic Systems
29(4), 1328–1332.

Zhang, C., J. Zhang and K. Futura (1996). Performance Analysis of Periodically Time
Varying Controllers. In proc.:13th IFAC World Congress, San Francisco, California.





Appendix A

Orbit and Atmospheric Density
Models

Simulation is based on high fidelity models of satellite dynamics and environmental dis-
turbances. The focus in this appendix is on the models of the aerodynamic drag torque,
orbit propagation, and geomagnetic field model.

A.1 Modeling of Satellite Geometry

An approximation of the satellite structure by a collection of simple geometrical figures
has been assumed. The aerodynamic force on each element according to Wertz (1990)
is determined by integrating the following equation

dfaero = �
1

2
CD�v

2(n̂ � v̂)dA; (A.1)

wheredA is the surface element,n is an outward normal to the surface,v̂ is the unit
vector in the direction of translational velocityv, CD is the drag coefficient, and� is the
atmospheric density.

The total aerodynamic torque in Wisniewski (1995a) is the vector sum of the torques
acting on individual parts of the satellite

Naero =

kX
i=1

ri �Fi; (A.2)

whereri is the vector from the spacecraft centre of mass to the centre of pressure of the
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Figure A.1: Satellite structure decomposed into simple geometrical figures

ith element as in Figure A.1. The individual parts of the Ørsted satellite assembly are
given in Table A.1.

A.2 Atmospheric Density Model

The NASA/GSFC Jacchia-Roberts Cappellari (1976) thermospheric density model is an
empirical model of the neutral thermosphere and lower exosphere (86 to 2000 km). The
atmospheric density modelled by Jacchia-Roberts is dependent on:

� solar activity,

� geodetic latitude,

� longitude,

� universal time,

� magnetic activity,

� semiannual, semidiurnal, terdiurnal, and diurnal variations.
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Table A.1: Model of Ørsted satellite geometry

Part Shape Dimension [m] CoP [m]
Main body cuboid height: 0.182 0.35

length: 0.125
width: 0.34

Lower boom segment cylinder diam.: 0.024 3.40
length: 5.385

Lower platform cylinder diam.: 0.195 6.25
length: 0.34

Upper boom segment cylinder diam.: 0.018 7.37
length: 1.884

Upper platform cylinder diam.: 0.182 8.37
length: 0.125

A.3 Orbit Propagation Model

The Norad SGP-4 orbital model Hoots and Roehrich (1980) is assumed. SGP-4 is an
analytical model for prediction of satellite position and velocity for LEO satellites. The
model incorporates perturbations due to:

� Atmospheric drag (based on a static, non rotating, spherically symmetric atmo-
sphere described by a power density function),

� Fourth-order zonal geopotential harmonics (J2, J3, and J4),

� Spin-orbit resonance effects for synchronous and semi-synchronous orbits,

� Solar and lunar gravitational effects to first order.

A.4 Geomagnetic Field Model

The 10th order IGRF (International Geomagnetic Reference Field) spherical harmonic
model is implemented Wertz (1990). The Earth’s magnetic field is represented as the gra-
dient of a scalar potential function given by a series of a spherical harmonics multiplied
by empirically determined Gaussian coefficients.



Appendix B

Rate Detumbling Controller

The objectives of the rate detumbling control is to decrease kinetic energy and to turn
the satellite in the direction of the local geomagnetic field. The controller utilizes only
measurements of the geomagnetic field vector. The baseline for the design is that the
influence of the gravity gradient and aerodynamic drag torque are negligible. The gravity
gradient torque is small since the principal moments of inertia are of the same order of
magnitude, furthermore the active area of the satellite in the boom stowed configuration is
small, thus the influence of the aerodynamic torque is insignificant. The work presented
in this appendix is based on Wisniewski (1994a).

A proposed control law is
cm = �kc _B�mconst; (B.1)

wheremconst = [0 0mconst]
T , then the control torque is given by

cNctrl = (�kc _B�mconst)�
cB: (B.2)

Information about the satellite rotation in an inertial coordinate system can be extracted
from the rate of the local geomagnetic field

c _B = cB� c
cw + c
wA

w _B � cB� c
cw: (B.3)

This assumption is valid for the rate of the geomagnetic field in the regions near the North
and the South Poles, sincew _B is smallest, however near the Equator the rate of geomag-
netic field reaches its maximum value

jjw _Bjj � 3:8jjwBjj!o (B.4)

Recall that the boom deployment is to be executed from the Danish ground stations, and
therefore the objective is to derive control law which is as accurate as possible near the
North Pole or more precisely over Denmark.
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The Lyapunov direct method covered in Chapter 5 is used in this analysis to design con-
trol law for despinning the satellite from an arbitrary initial tumbling. It is proved that
kinetic energy of the satellite rotation is dissipated.

The Lyapunov function represents energy in a physical system, here the sum of kinetic
energy and potential energy. The kinetic energy is1

2
c


T
cwI

c
cw, whereas the potential
energycan be represented asjmconstjj

cBj+mT
const

cB, which is proportional to the incli-
nation angle between the z axis of the Control CS and the local geomagnetic field vector.
Finally, the entire energy of the satellite motion and a Lyapunov candidate function is

E =
1

2
c
T

cwI
c
cw + jmconstjj

cBj+mT
const

cB: (B.5)

Applying the dynamics in Eq. (2.12) and neglectingNgg the derivative of the Lyapunov
function is

_Ek �
c


T
cw

cNctrl +m
T
const

c _B; (B.6)

since the magnitude of the geomagnetic field vector in the polar regions is approximately
constant.

Using Eq. (B.3) the time derivative of the satellite energy is

_Ek = �kc _BT c _B�mT
const

c _B+mT
const

c _B = �kc _BT c _B; (B.7)

which is negative semidefinite. This corresponds to Eq. (7.9) in Section 7.1, hence it is
concluded that the energy (B.5) is dissipated, indeed.

The approximate analysis of the rate detumbling control law was provided. The antic-
ipated results are such that kinetic energy is dissipated and the satellite well tracks the
geomagnetic field in the polar regions. Some deviations from the desired performance
are expected over the equator, compare this with simulation results given in Section 8.1.



Appendix C

Yaw Reference

The moments of inertia about the x and y principal axes are approximately equal, there-
fore an arbitrary yaw reference in the Ørsted attitude control system could be imple-
mented. Now, the objective of the controller is to turn the satellite such that the Control
CS coincides with a Reference Coordinate System. The Reference CS is defined rela-
tively to the Orbit CS as rotation about the z axis of the desired yaw reference�.

C.1 Reference Coordinate System and Its Rate

The orientation of the Reference CS w.r.t. the Orbit CS is given by a quaternionr
oq. A

unit quaternion according to Section 2.2 is given by the axis of rotation with the unit
vectore and the angle of rotation�. For rotation about the z principal axis,e has only the
third component different from zero, furthermore the angle� corresponds to the desired
yaw reference�

r
oq =

�
0 0 sin

�

2
cos

�

2

�T
: (C.1)

Now, the rotation of the Control CS in the Reference CS is

c
rq = Q(coq)

o
rq; (C.2)

whereQ(�) was defined in Section 2.2, andorq = [0 0 � sin �
2
cos �

2
]T is the inverse of

r
oq.

The reference for the angular velocity isc
cr = 0. Having the satellite angular velocity
w.r.t. the World CS,c
cr is calculated

c
cr =
c
cw +A(crq)

r
rw; (C.3)
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wherer
rw is the angular velocity of the Reference CS w.r.t. the World CS, which is

r
rw = A(roq)
o
rw = A(roq)

o
ow = !o
�
cos � �sin � 0

�T
:

(C.4)

The findings of the linear attitude control methods developed in Chapters 3 and 4 are
directly applicable, however, a new linearization about the reference quaterniono

rq and
angular velocityr
rw is needed.

The linearization method is the same as in Section 2.6. The linearization of the angular
velocity is based on the first order extension of the Taylor series, whereas the multiplica-
tive linearization of the attitude quaternioncrq is applied, and a small perturbation of the
attitude quaternion is

c
rq �

�
�q

1

�
: (C.5)

C.2 Linearized Dynamics

The equation of dynamics is divided into the cross coupling, the contribution of the grav-
ity gradient torque and the part due to control torque

d

dt
�
 = �(Cross Coupling) + I�1�(Gravity Gradient Torque) + I�1�(Control Torque):

(C.6)

C.2.1 Linearization of Cross Coupling

Cross Coupling=

2
4 �x

c!cwy
c!cwz

�y
c!cwz

c!cwx
�z

c!cwx
c!cwy

3
5 �

2
4 ��x!o�!zsin �

�y!o�!zcos �

�z!o(�!ycos � � �!xsin �)

3
5 ;

(C.7)

where

�x =
Iy � Iz

Ix
; �y =

Iz � Ix

Iy
; �z =

Ix � Iy

Iz
: (C.8)

C.2.2 Linearization of Gravity Gradient Torque

Gravity Gradient Torque� 3!2o

2
4 �2�q2

2�q1
1

3
5�

2
4 �2Ix�q2

2Iy�q1
Iz

3
5 � 6!2o

2
4 (Iz � Iy)�q1

(Iz � Ix)�q2
0:

3
5

(C.9)
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C.2.3 Linearization of Control Torque

Control Torque= cm�A(crq)
rB � cm� rB� 2cm� (�q � rB) � cm� rB;

(C.10)

whererB = A(roq)
oB is the local geomagnetic field vector resolved in the Reference

CS.

C.3 Linearized Kinematics

C.3.1 Linearized Kinematic Equation

d

dt
q =

1

2
c
crq4 �

1

2
c
cr � q �

1

2
c
cr: (C.11)

Now, according to Eq. C.4 the linearized kinematics is

d

dt
�q =

1

2
�
�

1

2

�
!ocos � �!osin � 0

�T
� �q�

�
!ocos � !osin � 0

�T
=

1

2

2
4 �!x � !ocos � + 2!o�q3sin �

�!y + !osin � + 2!o�q3cos �
�!z � 2!o�q2cos� � 2!oq1sin �

3
5 : (C.12)

C.4 Linearized Equation of Satellite Motion

The matrix form of the linearized satellite motion is

d

dt

�
�


�q

�
= A

�
�


�q

�
+B(t)c ~m; (C.13)

where

A =

2
6666664

0 0 �!o�xsin � �2k�x 0 0
0 0 !o�ycos � 0 2k�y 0

�!o�zsin � !o�zcos � 0 0 0 0
1
2

0 0 0 0 !osin �

0 1
2

0 0 0 !ocos �

0 0 1
2

�!osin � �!ocos � 0

3
7777775
;
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B(t) =

2
6666664
I�1

2
4 0 �rBz(t)

rBy(t)
rBz(t) 0 �rBx(t)
�rBy(t)

rBx(t) 0

3
5

2
40 0 0
0 0 0
0 0 0

3
5

3
7777775
:


