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Abstract— The improved-search-and-initialization space-
alternating generalized expectation-maximization (ISI-SAGE)
algorithm is proposed in [1] and [2] for joint estimation of the
relative delay, the direction (i.e. azimuth and co-elevation) of
departure, the direction of arrival, the Doppler frequency (DF)
as well as the complex weight of the propagation paths from
the transmitter (Tx) site to the receiver (Rx) site in mobile
radio environments. A recent study [3] shows that the ISI-SAGE
algorithm combined with a switched multiple-element Tx and
Rx antenna sounding technique makes it possible to estimate
the DF with an absolute value up to half the rate with which
the pairs of Tx and Rx elements are switched (switching rate),
rather than half the rate with which any fixed pair is switched
(cycle rate) as commonly believed. This paper shows that
so-called modulo-type switching modes (SMs) used with uniform
linear and planar arrays lead to an ambiguity in the estimation
of the DF and the directions, when the DF estimation range is
extended from minus to plus half the switching rate. The SM of
a switched array is the order with which the array elements are
switched. Moreover, theoretical and experimental investigations
show that the ambiguity problem can be avoided by using some
specific SMs.

I. I NTRODUCTION

Deploying multiple-element antennas at the transmitter (Tx)
and the receiver (Rx) combined with space-time coding can
substantially increase the capacity of mobile radio communi-
cation systems [4], [5] and [6]. A system or technique using
multiple-element Tx and Rx antennas is called a multiple-input
multiple-output (MIMO) system or technique. The design
and optimization of MIMO communication systems require
realistic models of the propagation channel, that incorporate
dispersion in direction or equivalently space selectivityjointly
at both Tx and Rx sites. High-resolution channel estimation
has become an essential tool to extract the critical model
parameters from measurement data. The improved-search-
and-initialization space-alternating generalized expectation-
maximization (ISI-SAGE) algorithm has recently been pro-
posed for joint estimation of the complex weight, relative
delay, Doppler frequency (DF), direction, i.e. azimuth andco-
elevation angles, of departure (DoD), and direction of arrival
(DoA) of propagation paths between the Tx site and the Rx site
[2], [7]. Experimental investigations [1] demonstrate thehigh
potential of the algorithm for detailed propagation studies.

MIMO channel sounders commonly operate in a time-
division multiplex (TDM) mode in order to save hardware
equipment. The sounding signal is fed successively at the
inputs of the array elements at the Tx, and while each of these
elements transmits, the outputs of the antenna elements at the
Rx are sensed successively. A measurement cycle interval is
the period separating two consecutive intervals during which
a fixed pair of elements at the Tx and Rx is switched. The
interval between two consecutive sensing periods is calledthe
switching interval. Notice that the ratio of the cycle interval
by the switching interval is at least equal to the product of the
numbers of array elements at the Tx and Rx. The cycle rate and
the switching rate are the inverses of the cycle interval andthe
switching interval respectively. It was traditionally believed,
that the maximum absolute DF that can be estimated using
the TDM-MIMO sounding technique equals half the cycle
rate rather than the switching rate. Therefore, by keeping the
switching rate unchanged, large numbers of elements in the
arrays result in low cycle rates and consequently lead to small
DF estimation ranges. However, recent study [3] has shown
that the maximum absolute DF that can be estimated using
the TDM-MIMO sounding technique actually equals half the
switching rate. This implies, that (1) the maximal absolute
DF that can be estimated with the TDM-MIMO sounding
techniques is larger, actually similar to that achievable with
a parallel MIMO sounding technique, and (2) the maximal
absolute DF does not depend on the number of elements in
the MIMO system. In [3], the above conclusion was drawn
based on the assumption that all the wave parameters but the
DF and complex amplitude are known. We will show that the
above extension of the DF estimation range can result in an
ambiguity problem when the directions (DoD and DoA) of
the waves are estimated as well if the switching modes (SMs)
of the arrays belong to a so-called “modulo-type” class in the
case that uniform linear or planar arrays are used. The SM
of an array describes the order in which the elements of this
array are switched. It turns out that the conventionally used
sequential SM in MIMO channel sounder employing uniform
linear or planar arrays belongs to this class.

In the ISI-SAGE algorithm, the parameters of each wave are
estimated based on a parametric model describing the phase
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Fig. 1. Signal model for the TDM-MIMO sounding technique.

changes of the signals contributed by the wave among the
antenna elements due to its DF, DoA and DoD. The parameter
estimates form the solution that maximizes a given objective
function. The objective function always exhibits a unique
maximum when the DF is confined in the range from minus to
plus half the cycle rate. It may exhibit multiple maxima when
the DF range is enlarged from minus to plus half the switching
rate depending on the selected SMs. The latter effect leads to
an ambiguity in the joint estimation of the DoD, DoA, and
DF. This paper describes the ambiguity problem, investigates
it analytically in a case study (TDM Single-Input Multiple-
Output (SIMO)), and shows how the ambiguity can be avoided
by appropriately selecting the SMs.

The paper is organized as follows. The MIMO radio channel
model is introduced in Section II. Section III presents the
model for TDM-MIMO channel sounding. In Section IV
the objective function used in the maximization-step of the
ISI-SAGE algorithm is derived analytically for the TDM
MIMO channel sounding to illustrate and get insight into the
ambiguity problem. A case study considering a TDM-SIMO
system is also analyzed to demonstrate the ambiguity problem,
and a solution to avoid the problem is proposed. In Section V
experimental investigations compare the performance of the
DF and direction estimators when applying conventional i.e.
sequential SMs and optimized SMs to uniform planar array.
Finally, concluding remarks are addressed in Section VI.

II. SIGNAL MODEL FORMIMO SYSTEMS

Let us consider the propagation environment depicted in
Fig. 1. A certain number,L, of waves propagate along
different paths for theM1 Tx antennas forming Array 1 to
theM2 Rx antennas forming Array 2. Along its path a wave
interacts with a certain number of scatterers. Following [8],
we assume that the far-field condition holds, and that the
elements of the Tx and Rx arrays are confined in regionsR1

andR2 respectively, in which the plane wave approximation
is accurate. A coordinate system is specified at an arbitrary
origin Ok in Rk (k = 1, 2). The individual locations of
the elements of Arrayk are then determined by the vectors
rk,m ∈ R3,m = 1, . . . ,Mk. Here,R denotes the real line.

Let u(t)
.
= [u1(t), . . . , uM1

(t)]
T denote the (complex

baseband representation of the) signal vector at the input of
Array 1. Here,[·]T is the transpose operator. The contribution
of the `th wave to the outputs of Array 2 can be written in

vector notation as

s(t;θ`) = α` exp{j2πν`t}c2(Ω2,`)c1(Ω1,`)
Tu(t− τ`). (1)

In this expression,θ`
.
= [Ω1,`,Ω2,`, τ`, ν`, α`] is a vector

of which the entries are the parameters characterizing the
`th path: Ω1,`,Ω2,`, τ`, ν`, and α` denote, respectively its
DoD, DoA, propagation delay, DF, and complex weight (or
attenuation). We describe a direction as a unit vectorΩ with
initial point anchored at the reference location, or equivalently
as the terminal point of this vector, i.e. a point located on aunit
sphere centered at the reference point. Then,Ω is uniquely de-
termined by its spherical coordinates(φ, θ) ∈ [−π, π)× [0, π]
according toΩ = [cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)]T. The
anglesφ andθ are referred to as, respectively, the azimuth and
the co-elevation ofΩ. The Mk-dimensional complex vector
ck(Ω) represents the response of Arrayk (k = 1, 2) to a wave
impinging from directionΩ with respect to the referenceOk.
Provided coupling effects between the array elements are neg-
ligible, ck(Ω) takes the formck(Ω)

.
= [fk,m(Ω) exp{j 2π

λ0

(Ω ·

rk,m)};m = 1, . . . ,Mk]T. The function fk,m(Ω) is the
complex electric field patterns of themth element in Array
k, λ0 denotes the carrier wavelength and(·) stands for the
scalar product.

The signal vectorY (t)
.
= [Y1(t), . . . , YM2

(t)]
T representing

the outputs of Array 2 is given by

Y (t) =
L

∑

`=1

s(t;θ`) +
√

N0

2 W (t), (2)

where W (t)
.
= [W1(t), . . . ,WM2

(t)]
T is standardM2-

dimensional complex temporally and spatially white Gaussian
noise, andN0 is a positive constant.

III. TDM C HANNEL SOUNDING TECHNIQUE

Sounding of the propagation channel is performed in a TDM
mode according to the time structure depicted in Fig. 2. The
sounding signal is fed via Switch 1 (Sw1 in Fig. 1) to each
element of Array 1 during a sounding periodTt. The outputs
of the elements of Array 2 are switched successively by Switch
2 (Sw2) with a (switching) intervalTr. Each element is sensed
during Ts, whereTr ≥ Ts. From the figure it is obvious that
the relation betweenTt andTr is Tt = M2Tr. A measurement
cycle during which each pair of Tx elements and Rx elements
are switched once lastsM1Tt seconds. The duration between
two consecutive measurement cycles is called the measure-
ment cycle interval and is denoted byTcy. The cycle repetition
rate is the ratioR

.
=

Tcy

M1Tt
≥ 1. Notice that the switching rate

T−1
r is related to the measurement cycle rateT−1

cy according
to T−1

r = M1M2RT
−1
cy . The guard intervalTg in Fig. 2 is

irrelevant in the subsequent investigations. The motivation for
introducing it is presented in [7].

To characterize a SM, we need first to define a (spatial)
indexing of the array which is then kept fixed. The natural
indexing of the elements of a uniform linear array is according
to their ordering along the array axis, starting at one end.
Similarly the natural indexing of a uniform planar array is
according to first the order in the row and second the order
inside the row of the array. The SM of Arrayk can be
described for each cycle by a permutation ofMk elements
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Fig. 2. The considered TDM measurement mode with cycle-dependent space-time mapping scheme.

denoted byηk(i,m) with m = 1, . . . ,Mk being the array
element index. Clearly,ηk(i,m) is the time index of the
interval during which themth element of Arrayk is switched
during theith cycle. With the above definition, the beginning
of the sensing interval for them2th element at the Rx while
the m1th element at the Tx is transmitting during theith
cycle isti,m1,m2

.
=

(

i− I+1
2

)

Tcy +
(

η1(i,m1) −
M1+1

2

)

Tt +
(

η2(i,m2) −
M2+1

2

)

Tr. Notice that the permutationηk(i,m)
maps the antenna (spatial) index onto a time index. The time-
space mapping functions for Arrayk during the ith cycle
is then the inverseη−1

k (i,m) of ηk(i,m), (k = 1, 2, i =
1, . . . , I). In the sequel we shall represent the SM of Arrayk
by theMk × I-dimensional matrixηk = [ηk(1), . . . ,ηk(I)].

Employing the TDM mode in Fig. 2 and following the same
notation as in [7], the scalar signal at the output of Sw2 reads

Y (t) =
L

∑

`=1

s(t;θ`) +
√

N0

2 q2(t)W (t), (3)

whereW (t) denotes standard complex white Gaussian noise
andq2(t) is an indicator function, i.e. with range{0,1}, which
takes value one if, and only if, some element of the Rx array
is connected to the output of Sw2. Moreover,

s(t;θ`) = α` exp{j2πν`t}c2(Ω2,`)
TU(t; τ`)c1(Ω1,`).

The definition of theM2 ×M1 sounding matrix isU(t; τ`)
.
=

q2(t)q1(t)
Tu(t − τ`), whereu(t) is the signal at the input

of Sw1. The vector-valued functionsqk(t) characterizes the
timing of Swk (k = 1, 2). More specifically, themkth entry
of qk(t) is an indicator function which takes value one, if and
only if, Swk switches themkth element of Arrayk [7].

IV. OBJECTIVE FUNCTION USED IN THEESTIMATION OF

THE DF AND THE DIRECTIONS.

A. TDM MIMO Channel Sounding.

According to [1] and [2] at each iteration of the ISI-SAGE
algorithm, the parameter estimates of the`th path are updated
sequentially in the maximization (M-) step of the algorithmin
an optimization procedure using an objective function equal
to the absolute value of

z(θ̄`; x̂`)
.
= c̃2(Ω2,`)

HX`(τ`, ν`; x̂`)c̃1(Ω1,`)
∗, (4)

whereθ̄`
.
= [Ω1,`,Ω2,`, τ`, ν`], [·]H denotes the Hermitian op-

erator,[·]∗ represents the complex conjugate, andc̃k(Ωk,`)
.
=

|ck(Ωk,`)|
−1ck(Ωk,`) is the normalized response of Arrayk

(k = 1, 2). Here,| · | is the Euclidean norm. The entries of the
M2 ×M1 dimensional matrixX`(τ`, ν`; x̂`) read

X`,m2,m1
(τ`, ν`; x̂`) =

I
∑

i=1

[

exp {−j2πν`ti,m1,m2
}

·
∫ Ts

0
u∗(t− τ`) exp{−j2πν`t}x̂`(t+ ti,m1,m2

) dt
]

, (5)

mk = 1, . . . ,Mk, k = 1, 2. In (5) x̂`(t) is an estimate of the

hidden dataX`(t) = s(t;θ`) +
√

N0

2 q2(t)W`(t) [8], which
is calculated in the expectation (E-) step of the ISI-SAGE
algorithm to bex̂`(t) = y(t) −

∑L
`′=1,`′ 6=` s(t; θ̂

′

`′), with θ̂
′

`′

denoting the current estimate ofθ`′ .
In the subsequent analysis of the behavior of the objective

function versus the DF, the DoD and DoA we make the
following four simplifying assumptions. Firstly, the phase
change due to the DF withinTs is neglected, i.e. the term
exp{−j2πν`t} in (5) is set equal to 1. As shown in [3] this
effect can be easily included into the model and its impact on
the performance of the DF estimator proves to be negligible.
Secondly, the propagation delay is known. Based on this
assumption,z(θ̄`, x̂`) reduces to a function ofΩ1,`, Ω2,`, and
ν` as

z(ν`,Ω1,`,Ω2,`; x̂`) =
I

Σ
i=1

M2

Σ
m2=1

M1

Σ
m1=1

c̃1,m1
(Ω1,`)

∗c̃2,m2
(Ω2,`)

∗

· exp{−j2πν`ti,m1,m2
}
∫ Ts

0
u(t−τ ′`)

∗x̂`(t+ti,m1,m2
) dt, (6)

where τ ′` is the true delay value. Thirdly, in updating the
parameter estimates of the`th wave, the ISI-SAGE algorithm
has perfectly estimated the parameters of the other waves.
Thus, the E-step returns the estimatex̂`(t) = s(t;θ`) +
√

N0

2 q2(t)W`(t). With this assumption, in the M-step the
estimation of thè th propagation path is based on a signal
perfectly cleaned from the combination of the other waves
(one-wave scenario). Finally, we assume that all antenna
elements are isotropic.

Under these assumptions, by dropping constants, (6) can be
cast as

z(ν`,Ω1,`,Ω2,`; x̂`) =
I

Σ
i=1

Ri(ν̌`)Si(Ω̌1,`, ν̌`)Ti(Ω̌2,`, ν̌`)

+V (ν`,Ω1,`,Ω2,`), (7)
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where

Ri(ν̌`) = exp{j2πν̌`

(

i− I+1
2

)

Tcy},

Si(Ω̌1,`, ν̌`) =
M1

Σ
m1=1

exp{j2πλ−1
0 [Ω̌1,` · r1,m1

]

+j2πν̌`

(

η1(i,m1) −
M1+1

2

)

Tt},

Ti(Ω̌2,`, ν̌`) =
M2

Σ
m2=1

exp{j2πλ−1
0 [Ω̌2,` · r2,m2

]

+j2πν̌`

(

η2(i,m2) −
M2+1

2

)

Tr},

and, ν̌` = ν′` − ν`, Ω̌1,` = Ω
′
1,` − Ω1,`, and Ω̌2,` = Ω

′
2,` −

Ω2,` with ν′`, Ω
′
1,` and Ω

′
2,` denoting the true parameters.

The noise termV (ν`,Ω1,`,Ω2,`) can be derived analogously
to V (ν`) in [3]. Notice that the expressions given as arguments
of the exponential terms in the summands ofSi(Ω̌1,`, ν̌`) and
Ti(Ω̌2,`, ν̌`) reflect a coupling between the DoD and the DF
and between the DoA and the DF respectively.

B. Case Study: TDM Single-Input Multiple-Output (SIMO)
Channel Sounding with Uniform Linear Array.

In this case the DoDs cannot be estimated and (7) reduces
to

z(ν`,Ω2,`; x̂`)=
I

Σ
i=1

Ri(ν̌`)Ti(Ω̌2,`, ν̌`) + V (ν`,Ω2,`). (8)

The absolute value of the right-hand expression in (8) is
the objective function for the calculation of the estimates
ν̂` and Ω̂2,`. As a special case, we investigate the behavior
of (8) in the noiseless case (V (ν`,Ω2,`) = 0) when the
uniform linear Rx array consists ofM2 isotropic antennas
with locations r2,m2

= [m2λ0

2 , 0, 0]T, m2 = 1, . . . ,M2.
The inner products arising in the response of this array are
calculated to beΩ2,`·r2,m2

= cos(ψ`)
m2λ0

2 ,m2 = 1, . . . ,M2,
whereψ` designates the angle between the impinging direction
of the `th wave and the array axis. It is a well-known
fact that ψ` is the only characteristic ofΩ2,` that can be
estimated unambiguously with these types of arrays. Notice
thatcos(ψ`)

.
= cos(φ2,`) sin(θ2,`). For simplicity, we consider

a cycle-independent SMη2(i) = η2, i = 1, . . . , I. In this case,
the absolute value of (8) reads

|z(ν`,Ω2,`; x̂`)| = |z(ν̌`, ψ̌`; x̂`)|

=
∣

∣T (ψ̌`, ν̌`)
∣

∣ · |G(ν̌`)| , (9)

whereψ̌`=cos(ψ′
`)−cos(ψ`) with ψ′

` denoting the true value
and

T (ψ̌`, ν̌`)
.
=

1

M2

M2

Σ
m2=1

exp{jm2πψ̌`

+j2πν̌`[η2(m2) −
M2+1

2 ]Tr},

G(ν̌`)
.
=

sin(πν̌`ITcy)
I sin(πν̌`Tcy) .

Notice that the cycle-independent SMs affect only the term
T (ψ̌`, ν̌`) in the objective function.

As an illustration, Fig. 3 depicts the graphs of|G(ν̌`)|
(top), |T (ψ̌`, ν̌`)| (middle), and |z(ν̌`, ψ̌`; x̂`)| (bottom) in
(9) for the parameter setting specified in Table I when a
(cycle-independent) sequential SM,η2(i) = [1, 2, . . . , 8]T, i =
1, . . . , I is applied. The range of̌ν` is ± 1

2Tr
= ±200 Hz.

Clearly, the function|G(ν̌`)| is periodic with period 1
Tcy

. The

|G
(ν̌
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Fig. 3. The graphs of|G(ν̌`)| (top), |T (ψ̌`, ν̌`)| (middle) and|z(ν̌`, ψ̌`; x̂`)|
(bottom) for the parameter setting reported in Table I when thesequential
SM η

2
(i) = [1, 2, . . . , 8]T, i = 1, . . . , I is applied. Notice that the range of

(ψ′ − ψ) is
[

−π
2
, π

2

]

.

locus of the pairs(ν̌`, ψ̌`) whereT (ψ̌`, ν̌`) reaches its maxi-
mum value(= 1) is the curveψ′

` −ψ` = π
2 −Arc cos(2ν̌`Tr).

As apparent in the bottom plot, the product of the above
two functions, i.e.|z(ν̌`, ψ̌`; x̂`)|, exhibits multiple maxima
separated by 1

Tcy
= 50 Hz in ν̌ along the above curve. Notice

that |z(ν̌`, ψ̌`; x̂`)| exhibits one unique maximum if̌ν` is
restricted to the range± 1

2Tcy
. In this case there is no ambiguity

in the estimation of the DF and the DoA. If the DF estimation
range is extended to± 1

2Tr
and the switch of the sounding

system uses the sequential SM, an ambiguity in the estimation
of the parameters occurs due to the multiple maxima of the
objective function.

C. Method to Avoid the Ambiguity Problem

In this subsection we show that the ambiguity problem
of the case study can be avoided by suitably selecting the
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Fig. 4. Contour plot of normalized objective functions, for the parameter
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tively to the modulo-type SMη

2
(i) = [1, 3, 5, 7, 2, 4, 6, 8]T, i = 1, . . . , I,

the non-modulo-type SMη
2
(i) = [4, 2, 1, 8, 5, 7, 3, 6]T, i = 1, . . . , I, both

repeated over the 8 cycles, and 8 different non-modulo-type SMs selected
randomly among all permutations.
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I M1 M2 Tcy [s] ν′[Hz] ψ′[rad]

8 1 8 0.02 0 π
2

TABLE I

SIMULATION SETTING FOR SIMO SYSTEMS

SMs. The considered situation is specified in Table I. The
index ` is omitted from here on. We define a modulo-type
SM to be an SM that its entriesη2(m2) fulfill the identities
(η2(m2) − 1) = Jm2 +K (mod M2), m2 = 1, . . . ,M2 and
K = 0, 1, . . . ,M2−1 for some integerJ such thatJ andM2

are mutually non-divisible, i.e.J - M2∧M2 - J , where- means
“is not a divisor of”. Notice that the sequential SMη2(i) =
[1, 2, . . . , 8]T, i = 1, . . . , I is a modulo-type SM withJ = 1
andK = 0. It can be shown that all modulo-type SMs lead
to an objective function exhibiting multiple maxima. Fig. 4
depicts the objective function|z(ν̌, ψ̌; x̂)| in (9) normalized by
IM2, using the cycle-independent modulo-type SMη2(i) =
[1, 3, 5, 7, 2, 4, 6, 8]T, i = 1, . . . , I (top), the cycle-independent
SM η2(i) = [4, 2, 1, 8, 5, 7, 3, 6]T, i = 1, . . . , I (middle), and
a cycle-dependent SM with different randomly selected non-
modulo-type SMs for each cycle (bottom). For the modulo-
type SM, the objective function exhibits multiple maxima,
while it exhibits a single maximum located at(ν̌, ψ̌) = (0, 0)
in the two other cases. Furthermore, the bottom plot shows
that the amplitudes of the side-lobes of|z(ν̌, ψ̌; x̂)| can be
further reduced by using cycle-dependent SMs.

V. EXPERIMENTAL INVESTIGATIONS

In this section, we present experimental investigations that
illustrate the effect of the switching mode on the objective
function used in the ISI-SAGE algorithm to estimate the DF.
The measurements have been performed with the TDM-MIMO
channel sounder PROPSound [9]. The Tx array consists of 3
conformal sub-arrays of 8 dual-polarized patches uniformly
spaced on a cylinder together with a uniform rectangular2×2
sub-array of 4 similar dual-polarized patches placed on topof
the cylinder (M1 = 54). At the Rx a4 × 4 planar array with
16 dual-polarized patches is used (M2 = 32). The spacing
between the Rx array elements and the elements of the four Tx
sub-arrays is half a wavelength. The selected carrier frequency
is 2.45 GHz. The sounding signal of power 100 mW is a
pseudo-noise (PN) sequence of lengthK = 255 chips with
chip durationTc = 10 ns. The sensing interval coincides with
one period of the PN-sequence, i.e.Ts = KTc = 2.55 µs.

The Rx array was mounted outside a window on the 3rd
floor of the Elektrobit AG building in Bubikon, Switzerland.
The Tx array was mounted on the roof of a van moving
with approximately 8 m/s away from the building. The
measurements were performed twice along the same route
with different measurement settings. The van was driving at
approximately the same velocity in both cases to ensure almost
identical DFs in the two measurement scenarios. The DF of the
LOS path can be calculated from the geometrical configuration
and the van velocity to be approximately−59 Hz. The selected
parameter settings specific to the two measurements are re-
ported in Table. II. They have been selected in such a way
that the DF of the LOS path is in the range of[− 1

2Tcy
, 1

2Tcy
]

in Case I but not in Case II. However in the latter case, the DF
lies in the range[− 1

2Tr
, 1

2Tr
]. As we will see in the sequel, the

SM at the Tx is irrelevant in the situation. At the Rx, we apply
a patch-wise sequential SM in Case I and a patch-wise non-
modulo-type SM in Case II. The term “patch-wise” indicates
that due to some technical constraints, the two elements of
each patch are always switched consecutively.

The ISI-SAGE algorithm was applied to estimate the indi-
vidual parameter vectors ofL = 4 propagation paths using
I = 4 measurement cycles. The parameter estimates of the
four paths are initialized successively with an Non-Coherent
Maximum Likelihood (NC-ML) [10] technique. It can be
shown that the objective function used for the joint initial-
ization of ν` andΩ2,` after the delay initializationτ` = τ̂`(0)
has been computed is similar to the squared absolute value of
(8) with τ` = τ̂`(0) and x̂`(t) = y(t) −

∑`−1
`′=1 s(t; θ̂

′

`′(0)).
Notice that since at that stage, the DoD of the`th path has
not been estimated, the SM at the Tx is irrelevant in the NC-
ML technique used to initializêν` and Ω̂`. Hence, we can
use the initialization procedure of the ISI-SAGE algorithmto
investigate experimentally a scenario similar to the case study
described in subsection IV-B. The differences between the case
study and the experimental investigation are as follows: (1) the
SIMO scheme adopted in the case study is replaced by the
MIMO scheme in the experimental investigation; (2) a planar
array with dual-polarized elements is used instead of a linear
uniform array and (3), the array elements are not isotropic.
The response of the arrays, which have been assessed experi-
mentally by means of calibration measurements, embody the
directivity of the elements as well as the coupling between
them. Notice that in the normal iterations, the E- and M-steps
are performed as described in [1] and [2].

In the sequel we restrict the attention to the LOS path,
which is ranked Number 1. To visualize the behavior of
the objective function versusν1, we computeF (ν1)

.
=

max
Ω2,1

|z(ν1,Ω2,1; x̂1 = y)|2 where thez function has a similar

expression as (8) withTi(Ω̌2,1, ν̌1) depending on the response
of the array at the Rx. Notice that we assume a one-wave
scenario since in this particular experiment, the wave following
the LOS path is the dominant part of the received signal. To
understand the behavior ofF (ν1) theoretically, we insert (8)
with the noise term omitted in the definition of this function
and obtain in this way:

F (ν1) = max
Ω̌2,1

|
I

Σ
i=1

Ri(ν̌1)Ti(Ω̌2,1, ν̌1)|
2

Case I Case II

Tr[µs] 3.05 5.10

[− 1

2Tr
, 1

2Tr
] [kHz] [−163.934, 163.934] [−98.039, 98.039]

Tcy [ms] 6.2 47.2

[− 1

2Tcy
, 1

2Tcy
] [Hz] [−81.3, 81.3] [−10.6, 10.6]

SM at the Rx Patch-wise Patch-wise

Sequential SM Non-modulo-type SM

TABLE II

MEASUREMENT SETTINGS FORCASE I AND CASE II
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= max
Ω̌2,1

|G(ν̌1)T (Ω̌2,1, ν̌1)|
2

= max
Ω̌2,1

|T (Ω̌2,1, ν̌1)|
2 · |G(ν̌1)|

2

= |T ′(ν̌1)|
2 · |G(ν̌1)|

2. (10)

The second line is similar to (9) since the SM is cycle-
independent. FurthermoreT ′(ν̌1)

.
= max

Ω̌2,1

T (Ω̌1, ν̌1). Notice

that a cycle-independent SM affectsF (ν1) via |T ′(ν̌1)|
2.

The functionF (ν1) is depicted in Fig. 5 (top) forν1 ranging
in [−81.3Hz, 81.3Hz] for Case I and Case II. The pulse-train-
like behavior observed in the two curves is due to the effect of
|G(ν̌1)|

2, which is periodic with period1/Tcy. The maximum
of F (ν1) in Case I with the DF estimation range equal to
[− 1

2Tcy
, 1

2Tcy
], is located at−52 Hz. In Case II, with the DF

estimation range extended to[− 1
2Tr

, 1
2Tr

], the maximum of
F (ν1) is located at−81 Hz. Notice that these values are the
initial estimates of the DF of the LOS path returned by the
ISI-SAGE algorithm. After four iterations of the ISI-SAGE
algorithm, the estimatêν1 of the DF of the LOS path has
converged to−52.5 Hz in Case I when the DF estimation
range is confined to[− 1

2Tcy
, 1

2Tcy
], and to−60 Hz in Case

II where the DF estimation range equals[− 1
2Tr

, 1
2Tr

]. Both
values are in accordance with the theoretically calculatedvalue
of −59 Hz. The difference of the two estimates is due to the
difference in velocities with which the van was driving. In
case the range of DF estimation is extended to[− 1

2Tr
, 1

2Tr
] in

Case I, the maximum ofF (ν1) is located at−97.604 kHz in
the initialization step (as shown in Fig. 5 (bottom)), and stays
at this value after 4 iterations. This estimate is obviouslyan
artifact that results from the ambiguity effect due to the patch-
wise sequential switching of the Rx array.

The pulse-train-like behavior of the functionF (ν1) due to
|G(ν1)|

2 results in Tcy

Tr
peaks in the range[− 1

2Tr
, 1

2Tr
] (i.e.

approximately 2 000 and 10 000 peaks for Case I and Case
II respectively). This feature makes it difficult to distinguish
details ofF (ν1) when plotted in the above range. Therefore,
for simplicity we calculateEnv(F (ν1)), as an approximation
of |T ′(ν̌1)|

2. Here Env(·) refers to a pseudo-envelope (PE)
curve which is obtained by dividing the range ofν1 into
multiple bins with an equal width of 1

Tcy
and connecting

the maxima ofF (ν1) from each bin by linear interpolation.
SinceTi(Ω̌2,1, ν̌1) is the only term in the objective function
that is affected byη2 when using cycle-independent SMs, the
reported PE curve illustrates the effect of the different SMs on
the objective function. Fig. 5 (bottom) reports the PE curves
for Case I and Case II respectively. Notice that the DF axis has
been normalized with respect toTr for the two different cases.
It can be observed that the curve obtained for Case I remains
close to one over the DF range

[

− 1
2Tr

, 1
2Tr

]

. This behavior is
due to the ambiguity problem stemming from the sequential
SM used for the4 × 4 planar array. For Case II, the curve
exhibits a dominant lobe with maximum height and multiple
side-lobe with much lower amplitude. Thus, the ambiguity
is effectively avoided. Furthermore, the distance of the zero
points of the main lobes can be calculated theoretically to be
2

M2

= 0.066 with respect to the normalized DF(ν1 · Tr),
in accordance with the observation shown in the plot. Notice
that the high side-lobes at the boundary of the DF estimation

−81 Hz

−81 Hz

−52 Hz

−97.604 kHz

ν1 · Tr

E
n
v
(F

(ν
1
))

ν1 [Hz]

F
(ν

1
)/

m
ax ν
1

F
(ν

1
)

[

− 1
2Tcy

, 1
2Tcy

]

(Case I) [

− 1
2Tcy

, 1
2Tcy

]

(Case II)
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Fig. 5. Graph of the normalizedF (ν1) (top) and its pseudo-envelope
Env(F (ν1)) (bottom) obtained with the measured data in Case I (dashed
lines) and Case II (solid lines). The mark◦ denotes the maximum ofF (ν1)
for Case II. The marks� and� denote the maxima ofF (ν1) when the DF

estimation range is respectively
[

− 1

2Tcy
, 1

2Tcy

]

and
[

− 1

2Tr
, 1

2Tr

]

for Case
I.

range are due to the patch-wise switching of the arrays. In
the case the DF is very low compared to the switching rate,
the resulting phase-shift due to the DF between consecutive
sensing intervals of the elements of a patch is almost zero,
which leads to an effective doubling ofTr. Since the DF is
much smaller than 1

2Tr
in the investigated case, the graph of

Env(F (ν1)) exhibits two segments that have a similar shape
as shown in Fig. 5 (bottom).

The above investigation shows experimentally the ambiguity
effect that occurs when the DF estimation range is extended
to [− 1

2Tr
, 1

2Tr
] and the sequential SM is used. It also demon-

strates that this problem is avoided when a specific (non-
modulo-type) patch-wise SM is used.

VI. CONCLUSION

In this contribution, the behavior of the DF and direction
estimates obtained with the ISI-SAGE algorithm described in
[1] and [2] is investigated when the TDM scheme is applied in
combination with channel sounding using switched multiple
Tx and Rx antennas. A theoretical analysis combined with
simulations show that when the DF estimation range is se-
lected larger than half the measurement cycle rate as proposed
in [3], so-called modulo-type switching modes (SMs) used
with uniform linear and planar arrays lead to an ambiguity
in the estimation of the DF and the directions DoA and
DoD. Theoretical and experimental investigations show that
the ambiguity problem can be avoided by applying specific
SMs.
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