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ABSTRACT

In this paper the possibility of using a Multilayer Perceptron (MLP) network trained
with the Backpropagation Algorithm as a non-destructive damage assessment technique
to locate and quantify a damage in Civil Engineering structures is investigated. Since
artificial neural networks are proving to be an effective tool for pattern recognition,
the basic idea is to train a neural network with simulated values of modal parameters
in order to recognize the behaviour of the damaged as well as the undamaged struc-
ture. Subjecting this trained neural network to measured modal parameters should
imply information about damage states and locations. The inputs to the network are
estimates of the relative changes of the bending natural frequencies due to damage.
During the training phase these estimates are obtained by an FEM of the structure. By
investigating a cracked hollow section straight steel cantilever beam and a steel mast
the capability of the neural network approach is demonstrated. The results show that a
neural network trained with simulated data and subjected to experimental data is avail-
able for detecting location and size of a damage in the cantilevered beam and location
of damages in a steel mast.

NOMENCLATURE

z1;: Output of the jth node in the /th layer
6;;: a threshold of the jth neuron in the lth layer
Ng: Number of network input

Npi: Number of network output
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f(+): Activation function
E: Error function
y;: Desired output
7;: Actual output
wyj,i: Connection weight from node ¢ and node j
n: Learning rate

a: Momentum term

1. INTRODUCTION

A sudden failure in a structure can be very costly and may be catastrophic in terms
of human life and property damage. Many techniques of non-destructive evaluation
are currently available to detect a damage in structures. Such techniques include e.g.
visual inspections, ultrasonic testing, acoustic emission, etc. However, most of these
techniques are inconvenient in many situations due to the need for the investigator
to have assess to the structure. This inconvenience can be avoided through the use
of vibration-monitoring techniques. During the last years major research efforts have
been directed towards developing techniques for damage assessment based on changes
in vibration characteristics. One of the consequences of the development of a crack is
a decrease in local stiffness which in turn results in a decrease in some of the natural
frequencies. The most commonly applied vibration based inspection damage assessment
technique is based on changes of natural frequencies only. This is attractive since natural
frequencies can be obtained from measurements at a single point on the structure. If
measurements at several points are carried out the mode shapes in discrete points of the
structure corresponding to the different natural frequencies may be established. Then,
mode shape information can also be used for damage assessment. However, in order to
be able to evaluate the deterioration state of a structure by vibration based inspection
it is also necessary to estimate size and location of the damage, damage assessment. A
review of vibration based damage assessment techniques can be found in Rytter [1].

The problem of damage assessment on the basis of measured data is essentially one of
the pattern recognition. Measured data from an undamaged structure must be distin-
guishable from measured data from a damaged structure. Different pattern recognition
approaches have been proposed in the literature, see e.g. Yin et al. [2], Samman et al.
[3]. In these papers pattern recognition techniques are presented to estimate the damage
presence and location but not the magnitude of the damage. However, recently, artificial
neural networks are proving to be an effective tool for pattern recognition in a variety
of applications, see e.g Hertz et al. [4] and among these also for damage assessment.
The basic idea is to train a neural network in order to recognize the behaviour of the
damaged as well as the undamaged structure. Subjecting this trained neural network
to information from vibration tests should imply information about damage state and
location. During the last years this neural network based damage assessment approach
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has been proposed in different papers. In Thomsen et al. [5] a neural network was
implemented and trained to classify measured ultrasonic power spectra of composite
laminates, according to fabrication quality. Kudva et al. [6] used a neural network to
determine location and size of a damage in a structure from measured strain values at
discrete locations. The neural network is trained by finite-element data. Strain patterns
are used as inputs and the damage location and size as outputs to train the neural net-
work to a desired level of accuracy. The trained network can then be used to determine
the location, size and effect of any unknown damage using measured strain values ( at
the same locations as before) as inputs to the neural network. The damage assessment
approach proposed in Kudva et al. [6] has also been used in Worden et al. [7]. In a
simulation study, Wu et al. [8] demonstrate a damage detecting network trained on
measured frequency response functions from the system. Elkordy et al. [9] trained a
neural network with simulated mode shape ratios in order to diagnose damages states
obtained experimentally from series of shaking table tests of a five-storey steel frame.
In Kirkegaard et al. [10] a neural network is trained with the relative changes in natural
frequencies obtained by an FEM. The network is then used to estimate location and
size of a damage in a beam from measured natural frequencies. In all the papers, men-
tioned above, a basic Multi-Layer Perceptron network trained with the backpropagation
algorithm was used.

In this paper the aim is to investigate the use of artificial neural networks for damage
assessment of civil engineering structures. Training of the network is performed with
patterns of the relative changes of the natural frequencies that occur due to a dam-
age. This implies that each pattern represents the computed changes of the natural
frequencies due to a crack of a particular size at a particular location. The changes are
estimated by using an FEM.

In section 2 a short description of artificial neural networks is given and a neural network
based damage assessment approach is proposed. In section 3 and 4 the proposed damage
assessment approach is used in examples with a straight hollow section steel beam and
a 20 m high steel lattice mast, respectively. At last in section 5 conclusions are given.

2. NEURAL NETWORKS

The past decade has seen an explosive growth in the studies of artificial neural net-
works. In part this was the result of technological advances in personal and main-frame
computing, enabling neural network investigators to simulate and test ideas in ways not
readily available before 1980.

Artificial neural networks are computational models inspired by the neuron architecture
and operation of the human brain. The pioneering work in this field is usually attributed
to McCulloch and Pitts in 1943. They developed a simplified model of a neuron. The
brain is composed of neurons of many different types, see McCulloch et al. [11].

An artificial neural network is an assembly (network) of a large number of highly con-
nected processing units, the so-called nodes or neurons. The neurons are connected by
unidirectional communication channels (”connections”). The strength of the connec-
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tions between the nodes is represented by numerical values which normally are called
weights. Knowledge is stored in the form of a collection of weights. Each node has
an activation value that is a function of the sum of inputs received from other nodes
through the weighted connections. The neural networks are capable of self-organization
and knowledge acquisition, i.e learning. One of the characteristics of neural networks
is the capability of producing correct, or nearly correct, outputs when presented with
partially incorrect or incomplete inputs. Further, neural networks are capable of per-
forming an amount of generalization from the patterns on which they are trained. Most
neural networks have some sort of ”training” rule whereby the weight of connections are
adjusted on the basis of presented patterns. In other words neural networks ”learns”
from examples, just like children learn to recognize dogs from examples of dogs, and
exhibit some structural capability for generalization. Training consists of providing a
set of known input-output pairs, patterns, to the network. The network iteratively ad-
justs the weights of each of the nodes so as to obtain the desired outputs (for each input
set) within a requested level of accuracy. Error is defined as a measure of the difference
between the computed pattern and the expected output pattern. For a more detailed
description of neural networks, see e.g. Hertz et al. [4] and Hush et al.' [12].

2.1 Multilayer Perceptron

Since McCulloch-Pitts in 1943 there have been many studies of mathematical models
of neural networks. Many different types of neural networks have been proposed by
changing the network topology, node characteristics and learning procedures. Exam-
ples of those are e.g. the Hopfield network, see Hopfield [13], the Kohonen network,
see Kohonen [14] and the so-called multilayered perceptron (MLP) network trained by
means of the back-propagation algorithm. The MLP trained by the back-propagation
algorithm is currently given the greatest attention by application developers, see e.g.
Rumelhart et al. [15]. The multilayered perceptron network belongs to the class of
layered feed-forward nets with supervised learning. A multilayered neural network is
made up of one or more hidden layers placed between the input and output layers,
see fig. 1. Each layer consists of a number of nodes connected in the structure of a
layered network. The typical architecture is fully interconnected, i.e. each node in a
lower level is connected to every node in the higher level. Output units cannot receive
signals directly from the input layer. During the training phase activation flows are
only allowed in one direction, a feed-forward process, from the input layer to the output
layer through the hidden layers. The input vector feeds each of the first layer nodes,
the outputs of this layer feed into each of the second layer nodes and so on.
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. . first second
inputs hidden layer hidden layer output layer

Fig. 1: Principle of a multilayer perceptron neural network.

Associated with each connection between node z and node j in the preceding layer [ — 1
and following layer [ is a numerical value wy;; which is the strength or the weight of the
connection. At the start of the training process these weights are initialized by random
values. Signal pass through the network and the jth node in layer [ computes its output
according to '

Ni_1
zi; = f( Z wi;,iT1-1,i + 015) (1)
i=1

for y =1,..,N; and | =1, .., k, where z;; is the output of the jth node in the /th layer.
61; is a bias term or a threshold of the jth neuron in the /th layer. The kth layer is the
output layer and the input layer must be labelled as layer zero. Thus Ny and Ny refer
to the numbers of network inputs and outputs, respectively. The function f(:) is called
the node activation function and is assumed to be differentiable and to have a strictly
positive first derivative. For the nodes in the hidden layers, the activation function is
often chosen to be a so-called sigmoidal function

1

fB)=1r0=5

B>0 (2)
The activation function for the nodes in the input and output layers are often chosen
as linear.

During the training phase, representative examples of input-output patterns are pre-
sented to the network. Each presentation is followed by small adjustments of weights
and thresholds if the computed output is not correct. If there is any systematical rela-
tionship between input and output and the training examples are representative of this,
and if the network topology is properly chosen, then the trained network will often be
able to generalize beyond learned examples. Generalization is a measure of how well
the network performs on the actual problem once training is complete. It is usually
tested by evaluating the performance of the network on new data outside the train-
ing set. Generalization is most heavily influenced by three parameters: the number of
data samples, the complexity of the underlying problem and the network architecture.
Currently, there are no reliable rules for determining the capacity of a feed-forward mul-
tilayer neural network. Generally, the capacity of a neural network is a function of the
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number of hidden layers, the number of processing units in each layer, and the pattern
of connectivity between layers. However, it is shown in Cybenko [16] and Funahashi
[17] that one hidden layer is sufficient to approximate all continuous functions.

2.2 Back-Propagation

The first stage of creating an artificial neural network to model an input-output system
is to establish the appropriate values of the connection weights w;;; and thresholds
01;by using a learning algorithm. A learning algorithm is a systematic procedure for
adjusting the weights in the network to achieve a desired input/output relationship,
i.e. supervised learning. The most popular and successful learning algorithm used
to train multilayer neural networks is currently the Back-propagation routine, see e.g.
Rumelhart [15]. The so-called Back-propagation algorithm employs a gradient descent
search technique for minimizing an error normally defined as the mean square difference
between desired y; and actual outputs §J;. Le. the error E is given as

Ny,
B=05Y (4~ )’ 3)

If the error is considered small enough, the weights and thresholds are not adjusted. If
however, a significant error is obtained the weights and thresholds are adjusted in the
negative gradient direction, so that the error criterion E is reduced. A typical weight
wyj,i, which could belong to any layer, is adjusted from its old value w;’jlff to its new
value wi%}” according to

’w?jfz?u = wlojg’% + Awlj,,- (4)

where Awy;,; is given by, see e.g. Billings [18]

Awiji = néiiti-1,i (5)

b1; is the error in the output of the ith node in layer [ and 7 is termed a "learning rate”.
The error §;; is not known a priori but must be constructed from the known errors
Or; at the output layer. The errors are passed backwards through the net and a train-
ing algorithm uses the error to adjust the connection weights moving backwards from
the output layer, layer by layer, hence the name ”Back-propagation”. In practice the
"learning rate” 7 is chosen as large as possible (0.01-0.9) without leading to intolerable
oscillations. To overcome this problem, a momentum term « is usually introduced into
the update rule implying
new __ , old . . old

iy = wi; G+ néuti—1,; + aAwp;; (6)
The thresholds are adjusted in the same way as the weights. The process of computing
the gradient and adjusting the weights and thresholds is repeated until a minimum of the




Vibration Based Damage Assessment of Civil Engineering Structures Using Neural Networks 7

error E (or a point sufficiently close to the minimum) is found. However it is generally
true that the convergence of the Back-propagation algorithm is fairly slow. Attempts to
speed learning include variations on simple gradient search, line search techniques and
second order techniques, see e.g. Hertz et al.[4], Billings et al. [18] and Enevoldsen [19].

2.3 Use of Neural Networks for Damage Assessment

The problem of damage assessment on the basis of measured dynamic data is essentially
a pattern recognition problem. Since artificial neural networks are proving to be an ef-
fective tool for pattern recognition the basic idea in a neural based damage assessment
approach is to train a network with patterns of the changes in quantities describing the
dynamic behaviour that occur due to a damage. This implies that each pattern repre-
sents the computed changes of e.g. the response spectrum, natural frequencies, mode
shapes etc. due to a damage of a particular size at a particular location. The patterns
of the quantities describing the dynamic behaviour are used as inputs and the damage
location and size as outputs to train the neural network. Then the trained network
subjected to measured patterns of the quantities describing the dynamic behaviour can
be used to determine the location, size and of a damage. A hierarchical, two step ap-
proach can also be used. This implies that the patterns of the quantities describing the
dynamic behaviour are used as inputs and the location of the crack is used as output
in one network and size of the crack as output in an other network, see Kirkegaard et
al. [10].

The training of a neural network with appropriate data containing the information
about the cause and effect is a key requirement of a neural based damage assessment
technique. This means that the first step is to establish the training sets which can
be used to train a network in a way that the network can recognize the behaviour of
the damaged as well as the undamaged structure from measured quantities. Therefore,
ideally, the training sets should contain data of the undamaged as well as the damaged
structure in various damage states. These data can be obtained by measurements, model
tests or through numerical simulation, or through a combination of all three types of
data. This possibility of using all obtained information, or only a part, in a neural
network based damage assessment technique is a capability which is not available in
traditional damage assessment techniques.

In order to verify how well a trained network has learned the training cases the trained
network is tested by subjecting it to the training sets. The important generalization
capability of a neural network damage assessment technique is tested by subjecting the
trained network to data not included into the training sets. How well a trained network
is to generalize depends on the adequacy of the selected network architecture and the
information about the damage as well as undamaged structure included in the training
sets.
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3. EXAMPLE 1: Damage Assessment of A Steel Beam

In this example the proposed neural network approach for damage assessment is applied
to a hollow section steel cantilever, see fig 2.

Ar —L;
g | | A
o -
§ ¢+ @
.80
2
T3 .
A—A -
Measurements in mm . n
- E
L X[ =

Fig. 2: Test structure.

The neural based damage assessment technique is investigated by training a neural
network with the relative change of the bending natural frequencies of the 3 lowest
modes.

3.1 Simulated and Experimental Results

The experimental data are estimates of the lowest three bending natural frequencies.
Real line cracks were obtained in the test beams by attaching a sinus-varying load to
the beams by means of a shaker. The frequency of the sinus was either the actual first
or second bending natural frequency. The cracks lengths were measured by means of a
microscope mounted on an electrical measurement rail. Two different crack locations
were considered. In one beam a crack was initiated at z=1.0 m and in an other beam at
z=0.1 m. The cracks were initiated as small narrow laser cuts (width ~ 0.15 mm). The
experimental determination of the bending natural frequencies was obtained from free
decays. The free decays were introduced by removing a well-defined static load from
the beam momentary. The accelerations were measured at z=0.5 m, z = 1.4 and z=2.0
m. A more throughout description of the experimental procedure and the experimental
results can be found in Rytter et al. [1].

The neural network is trained by the relative change of the bending natural frequencies

due to a damage. These changes are estimated by an FEM of the beam. A damage in
the beam is modelled by a fracture mechanical model. The development of a crack at
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a certain location of a beam corresponds to a sudden reduction of its bending stiffness
at the same location. The crack divides the original non-cracked beam into two shorter
beams, connected, at the crack location, by a very infinitesimal portion of beam with
different characteristics. The characteristics in bending modes can be modelled by a
torsion spring. Estimation of the spring stiffness by fracture mechanics has been used
by several authors, see e.g. Okamura[20], Ju et al. [21] and Gomes et al. [22]. The FEM
was calibrated by using experimental data from the non-cracked beam. This calibration
was performed to secure that the FEM describes the beam in the best possible way.
The quality of the predictions from any technique of damage assessment is critically
dependent on the accuracy of the damage model, see e.g. Rytter [1].

3.2 Training and Testing of Neural Network

The following results were obtained using a hierarchical, two step approach. This implies
that the patterns of the quantities describing the dynamic behaviour and the location
of the crack are used as input and output, respectively, in one network. In an other
network the crack location and the quantities describing the dynamic behaviour are
used as inputs and the size of the crack as output. A hierarchical approach was used
since it was found in Kirkegaard et al. [10] that better results could be obtained instead
of using only one big network. The training sets consisted of the relative change of the
bending natural frequencies of the 3 lowest modes. The training sets were generated for
cracks located in intervals of 0.04 m between z = 0 m and z = 1.2 m, respectively. The
cracks depths, see figure 2, were in intervals of 0.004 m between 0.02 m and 0.120 m. By
a trial-and-error approach it was found for the first net that a 4 layers neural network
with 3 input nodes, 8 nodes in each of the two hidden layers and 1 output nodes gave
the network with the smallest output error. For the second network it was found that
a 4 layers neural network with 4 input nodes, 8 nodes in each of the two hidden layers
and 1 output nodes gave the smallest output error. The input and output nodes were
chosen as linear while the nodes used in the hidden layers were of the sigmoidal type.

Figures 3 and 4 show results from the networks trained with analytical data and sub-
jected to experimental data obtained from two beams. One beam with a crack located
at z = 0.1 m and an other beam with a crack located at z = 1.0 m. Figure 3 shows the
estimated locations while figure 4 shows the estimated crack sizes. The figures show
that it is possible to get reasonable estimates of location and size of a crack in a hollow
section beam by subjecting experimental data to a network trained with simulated data.
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Fig. 3: Estimated crack locations.
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Fig. 4: Estimated crack size.
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4. EXAMPLE 2: Damage Assessment of A Steel Mast

In this example the proposed neural network approach for damage assessment is applied
to a 20 high steel lattice structure, see fig. 5. The four chords K-frame test mast with a
0.9x0.9 m cross section was bolted with twelve bolts, three for each chord, to a concrete
foundation block founded on chalk and covered by sand. The mast was constructed with
welded connections. The eight lower diagonals were cut and provided with a bolted joint.
Each bolted joint consists of 4 slice plates giving the possibility of simulating a 25, 50,
75 and 100 per cent reduction of the area of a diagonal.
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Fig. 5: Elevation of mast and diagonals of the lower two sections of the mast.

4.1 Simulated and Experimental Results

The experimental data were the natural frequencies of the 5 lowest modes. The natural
bending frequencies no. 1 and no. 4, the natural bending frequencies no. 2 and no. 5
and the rotational natural frequency no. 3 corresponding to deflection parallel to the z-
axis, deflection parallel to the y-axis and rotation, respectively. The natural frequencies
of the damaged mast were obtained by removing one or more splice plates in the bolted
joints. Six different damage states (1,2,5,6,9,10) were considered. The damage state
1,2,5 and 6 correspond to a 100 per cent reduction of the sectional area of diagonal
AB101, BC101, AB102 and BC102, respectively, see fig. 5. Damage states 9 and 10
correspond to a fifty per cent reduction of the sectional area of diagonal AB101 and
AB102, respectively. The data acquisition and the analysis of the sampled data were
performed with the MATLAB, see PC-MATLAB [23], based on program to Structural
Time Domain Identification, STDI, see Kirkegaard et al. [24]. A throughout description
of the test arrangement can be found in Kirkegaard et al. [25].

The input data to the neural network were the relative change of the natural frequencies.
A relative change in a natural frequency is defined as the change in a natural frequency
divided by the same natural frequency of the undamaged mast. The relative change of
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the natural frequencies due to a damage was estimated by an FEM of the mast. Each
diagonal was modelled by three elements where the element in the middle was used to
simulate a damage. After the FEM was calibrated by using experimental data a damage
was simulated by a reduction of the sectional area. This calibration was performed to
secure that the FEM described the mast in the best possible way.

4.2 Training and Testing of Neural Network

First a neural network was trained with simulated estimates of the relative changes of
the lowest five natural frequencies. These changes were estimated for a 20, 40, 60, 80
and 100 per cent reduction of the sectional area of diagonal AB101, BC101, AB102
and BC102, respectively. Further, the relative changes of the frequencies also were
estimated for the undamaged mast. This means that the input to the network was 21
training sets. By a trial-and-error approach it is found that a 4 layers neural network
with 5 input nodes, 5 nodes in each of the two hidden layers and 4 output nodes gave
the network with smallest output error. Each output node corresponds to a damage in
one of the diagonals AB101, BC101, AB102 and BC102, respectively. The value for a
single diagonal adopts the value 1 when not damaged, the value 0 when totally damaged
and 0.2 corresponds to a 80 per cent reduction of a sectional area etc. The input and
output nodes were chosen as linear while the nodes used in the hidden layers were of
the sigmoidal type.

The network was tested by subjecting the simulated input data corresponding to a 100
per cent reduction of the sectional area of the four diagonals AB101, BC101, AB102
and BC102, respectively, to the network. Next, the network was subjected to input
data corresponding to 50 per cent reduction of the sectional areas of the two diagonals
AB102 and BC102, respectively. Le. data not included in the training sets. The results
are given in table 1. It is seen that the neural network is capable of reproducing the
location and size of a damage used in training (Damage state 1,2,5,6). Further, the
table shows that the neural network is capable of making a generalization based on the
training sets (Damage state 9,10).

Output
Node Damage State
No.

1 2 5 6 9 10
1(AB101) | 00 | 1.0 | 1.0 | 1.0 | 04 [ 09
2(BC101) | 1.0 | 00 | 1.0 | 1.0 | 1.1 | 11
3(AB102) | 1.0 | 1.0 | 00 | 1.0 | 1.0 | 05
4BC102) | 1.0 | 1.0 | 1.0 | 00 | 09 | 1.0

Table 1: Results from network subjected to traning data and data not included in the
trainig data.
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Table 2 shows the outputs from the network subjected to experimental data.

Output
Node Damage State
No.

1 2 5 6 9 10
1(AB101) | 01 | 08 | 09 | 09 | 05 | 08
2(BC101) | 0.8 | 0.1 | 08 | 1.0 | 0.7 | 04
3(AB102) | 0.6 | 1.0 | 01 | L1 | 02 | 02
4BC102) | 09 | 09 | 09 | 0.0 | 09 | 11

Table 2: Results from network subjected to experimental data.

The results in table 2 show that it is possible to detect a damage corresponding to a
removal of a diagonal (Damage state 1,2,5,6) by the neural network approach. It is also
seen that a damage corresponding to 50 per cent reduction of the sectional area of a
diagonal AB102 can be detected, but not quantified.

5. CONCLUSIONS

Results from examples with a hollow section steel cantilever and a steel mast, respec-
tively, demonstrate a diagnostic technique based on neural networks for detecting, locat-
ing and quantifying damages. The damage assessment technique relies on the measure-
ments of small changes in natural frequencies and upon adequate theoretical prediction
of these frequency changes. The results show that a neural network trained with simu-
lated data is capable for detecting location of a damage when the network is subjected
to experimental data. By using the neural network based damage assessment approach
an on-line technique is established.
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