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THE USE OF NEURAL NETWORKS
FOR DAMAGE DETECTION AND
LOCATION IN A STEEL MEMBER

P.H. Kirkegaard and A. Rytter
Department of Building Technology and Structural Engineering
Aalborg University
Aalborg
Denmark

This paper explores the potential of using a Multilayer Perceptron (MLP) network trained with the Back-
propagation algorithm for damage assessment of a free-free cracked straight steel beam based on vibration
measurements. The problem of damage assessment, i.e. detecting, locating and quantifying a damage, is
essentially a pattern recognition problem. Since artificial neural networks are proving to be an effective tool
for pattern recognition the basic idea is to train a neural network in order to recognize the behaviour of
the damaged as well as the undamaged structure. Subjecting this trained neural network to information
from vibration tests should imply information about damages states, locations and sizes. The inputs to the
network are estimates of the relative changes of the lowest five bending natural frequencies due to damage.
During the training these estimates are obtained by an FEM of the beam. A damage in the beam is modelled
by a fracture mechanical model. The basic idea of this model is to model the crack zone of a beam by means
of a local flexibility matrix found from fracture mechanics. The utility of the neural network approach is
demonstrated by a simulation study as well as laboratory tests. The results show that a neural network
trained with simulated data is capable for detecting location and size of a damage in a free-free beam when

the network is subjected to experimental data.

INTRODUCTION

Structural diagnosis (health monitoring) by measuring and
analysing vibrational signals of civil engineering structures
is a subject of research investigated with increasing inter-
est during the last decades. The main impetus for doing
vibration based inspection is caused of a wish to establish
an alternative damage assessment method to the more tra-
ditionally methods. The most common of the traditionally
methods is visual inspection. However, damage assessment
by visual inspection can be costly, risky and difficult when
civil engineering structures are considered. Besides a re-
duction of inspection cost capable vibration based inspec-
tion techniques can lead to a cheaper, less risky and a quick
means of assessing structural damage. Further, by using vi-
brational inspection it is not necessary for the investigator
to have access to the structure, and the damage assessment
is not restricted to a local area.

The basic approach for damage assessment of structures is
to detect changes in the dynamic behaviour of the structure
that may be characterized by e.g. the natural frequencies
and corresponding mode shapes. One of the consequences
of the development of a damage is a decrease in local stiff-
ness which in turn results in a change in some of the nat-
ural frequencies. The most commonly applied vibration
based inspection damage assessment technique is based on
changes of natural frequencies only. This is attractive since
natural frequencies can be obtained from measurements at
a single point on the structure. Recently, computed changes
of e.g. the response spectrum, mode shapes etc. have also
been used for damage assessment. A throughout review
of vibration based damage assessment techniques can be

found in Ref. 1.

Most of the methods proposed for damage assessment are
based on a mathematical model of the structure, estab-
lished to give information about the correlation between
damage and change in dynamic behaviour. Therefore, the
damage assessment results are depending on how well the
mathematical model describes the dynamic behaviour of
the damaged as well as the undamaged structure. Many
papers have considered the problem of establishing such
models, see e.g. Refs. 2, 3. However, damage assessment
from measured changes in dynamic behaviour is the inverse
problem. This means that the damage assessment problem
can be solved by a model updating procedure. A very used
approach is to estimate the elements in the stiffness ma-
trix for all the potential damage locations, see e.g. Refs.
4, 5. The largest reduction in stiffness, compared with the
stiffness of the undamaged structure, is giving the most
likely damage location. If the stiffness matrix is given as
a function of damage size and location it is also possible
to estimate the magnitude of the damage, see e.g. Refs.
6, 1. However, such a procedure based on minimization
of a measure of the difference between measured data and
the corresponding predictions obtained from a mathemat-
ical model implies a comprehensive search which is com-
putationally expensive and nearly impossible for complex
structures. Therefore, in any realistic health monitoring
situation, a pattern recognition scheme could be needed to
decipher the complex pattern of dynamic behaviour changes
that occurs due to a damage. Different pattern recognition
approaches have been proposed in the literature, see e.g.
Refs 7, 8. In these papers pattern recognition methods are
presented to estimate the damage presence and location but
not magnitude of the damage.




In this paper the aim is to investigate use of artificial neural
networks for damage assessment of civil engineering struc-
tures. Recently, artificial neural networks are proving to be
an effective tool for pattern recognition in a variety of ap-
plications, see e.g. Ref. 9. A key requirement of the use of
a neural network is that it should be "trained” beforehand.
Here, the basic idea is to train a neural network in order to
recognize the behaviour of the damaged as well as the un-
damaged structure. Subjecting this trained neural network
to information from vibration tests should imply informa-
tion about damage state and location. In this application,
training of the network is performed with patterns of the
relative changes of the natural frequencies that occur due
to a damage. This implies that each pattern represents the
computed changes of the natural frequencies due to a crack
of a particular size at a particular location. The changes
are estimated by using a finite-element model. A damage is
modelled by a fracture mechanical model. The basic idea of
this fracture mechanical model is to model the crack zone
by means of a local flexibility matrix found from fracture
mechanics.

In the following a short description of artificial neural net-
works is given and a neural network based damage assess-
ment approach is proposed. Next, the proposed damage
assessment approach is used in an example with a free-free
straight steel beam. The approach is investigated with nu-
merical as well as experimental data. At last, conclusions
are given.

NEURAL NETWORKS

The past decade has seen an explosive growth in the stud-
ies of artificial neural networks. In part this was the result
of technological advances in personal and main-frame com-
puting, enabling neural network investigators to simulate
and test ideas in ways not readily available before 1980.

Artificial neural networks are computational models loosely
inspired by the neuron architecture and operation of the
human brain. The pioneering work in this field is usually
attributed to McCulloch and Pitts in 1943. They developed
a simplified model of a neuron. The brain is composed of
neurons of many different types, see Ref. 10.

An artificial neural network is an assembly (network) of
a large number of highly connected processing units, the
so-called nodes or neurons. The neurons are connected
by unidirectional communication channels (” connections”).
The strength of the connections between the nodes is repre-

sented by numerical values which normally are called weights.

Knowledge is stored in the form of a collection of weights.
Each node has an activation value that is a function of
the sum of inputs received from other nodes through the
weighted connections. The neural networks are capable
of self-organization and knowledge acquisition, i.e learn-
ing. One of the characteristics of neural networks is the
capability of producing correct, or nearly correct, outputs
when presented with partially incorrect or incomplete in-
puts. Further, neural networks are capable of performing
an amount of generalization from the patterns on which
they are trained. Most neural networks have some sort of
"training” rule whereby the weight of connections are ad-
justed on

the basis of presented patterns. In other words neural net-
works ”learns” from examples, just like children learn to
recognize dogs from examples of dogs, and exhibit some
structural capability for generalization. Training consists
of providing a set of known input-output pairs, patterns, to
the network. The network iteratively adjusts the weights
of each of the nodes so as to obtain the desired outputs
(for each input set) within a requested level of accuracy.
Error is defined as a measure of the difference between the
computed pattern and the expected output pattern.

For a more detailed description of neural networks, see e.g.
Refs. 9, 11.

Multilayer Perceptron

Since McCulloch-Pitts in 1943 there have been many stud-
ies of mathematical models of neural networks. Many differ-
ent types of neural networks have been proposed by chang-
ing the network topology, node characteristics and learning
procedures. Examples of those are e.g. the Hopfield net-
work , Ref. 12, the Kohonen network, Ref. 13 and the
so-called multilayered perceptron (MLP) network trained
by means of the back-propagation algorithm. The MLP
trained by the back-propagation algorithm is currently given
the greatest attention by application developers, see e.g.
Ref 14.

The multilayered perceptron network belongs to the class
of layered feed-forward nets with supervised learning. A
multilayered neural network is made up of one or more hid-
den layers placed between the input and output layers, see
fig. 1. Each layer consists of a number of nodes connected
in the structure of a layered network. The typical architec-
ture is fully interconnected, i.e. each node in a lower level is
connected to every node in the higher level. Output units
cannot receive signals directly from the input layer. Dur-
ing the training phase activation flows are only allowed in
one direction, a feed-forward process, from the input layer
to the output layer through the hidden layers. The input
vector feeds each of the first layer nodes, the outputs of this
layer feed into each of the second layer nodes and so on.

first second
hidden layer

inputs hidden layer output layer

Fig. 1: Principle of a multilayer perceptron neural network.




Associated with each connection between node : and node
in the preceding layer [—1 and following layer [ is a numeri-
cal value wy; ; which is the strength or the weight of the con-
nection. At the start of the training process these weights
are initialized by random values. Signal pass through the
network and the jth node in layer | computes its output
according to

Ni_1

x5 = f( Z wyj,iTi-1,i + 015) (1)
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forj =1,..,Njand ! =1, .., k, where z;; is the output of the
jth node in the lth layer. 6,; is a bias term or a threshold of
the jth neuron in the I/th layer. The kth layer is the output
layer and the input layer must be labelled as layer zero.
Thus Ny and N refer to the numbers of network inputs
and outputs, respectively. The function f(-) is called the
node activation function and is assumed to be differentiable
and to have a strictly positive first derivative. For the nodes
in the hidden layers, the activation function is often chosen
to be a so-called sigmoidal function

1
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f(B) =
The activation function for the nodes in the input and out-
put layers are often chosen as linear.

During the training phase, representative examples of input-
output patterns are presented to the network. Each pre-
sentation is followed by small adjustments of weights and
thresholds if the computed output is not correct. If there
is any systematical relationship between input and output
and the training examples are representative of this, and if
the network topology is properly chosen, then the trained
network will often be able to generalize beyond learned ex-
amples. Generalization is a measure of how well the net-
work performs on the actual problem once training is com-
plete. It is usually tested by evaluating the performance
of the network on new data outside the training set. Gen-
eralization is most heavily influenced by three parameters:
the number of data samples, the complexity of the underly-
ing problem and the network architecture. Currently, there
are no reliable rules for determining the capacity of a feed-
forward multilayer neural network. Generally, the capacity
of a neural network is a function of the number of hidden
layers, the number of processing units in each layer, and
the pattern of connectivity between layers. However, it is
shown in Refs. 15, 16 that one hidden layer is sufficient to
approximate all continuous functions.

Back-Propagation

The first stage of creating an artificial neural network to
model an input-output system is to establish the appropri-
ate values of the connection weights wy;; and thresholds
0;;by using a learning algorithm. A learning algorithm is a
systematic procedure for adjusting the weights in the net-
work to achieve a desired input/output relationship, i.e. su-
pervised learning. The most popular and successful learn-
ing algorithm used to train multilayer neural networks is
currently the Back-propagation routine, see Ref. 14.

The so-called Back-propagation algorithm employs a gra-
dient descent search technique for minimizing an error nor-
mally defined as the mean square difference between desired
y; and actual outputs §;. Le. the error E is given as

Ni
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If the error is considered small enough, the weights and
thresholds are not adjusted. If however, a significant error
is obtained the weights and thresholds are adjusted in the
negative gradient direction, so that the error criterion E is
reduced. A typical weight w;;;, which could belong to any
layer, is adjusted from its old value wf’J"f to its new value

new 3
wyi” according to

wii = wiji + Awyj; (4)
where Awy;j; is given by, see e.g. Ref. 17
Awyji = nbrzi—y; (5)

61; is the error in the output of the ith node in layer [ and
n is termed a "learning rate”. The error é;; is not known
a priori but must be constructed from the known errors
Oxi at the output layer. The errors are passed backwards
through the net and a training algorithm uses the error
to adjust the connection weights moving backwards from
the output layer, layer by layer, hence the name "Back-
propagation”. In practice the "learning rate” 5 is chosen
as large as possible (0.01-0.9) without leading to intolerable
oscillations. To overcome this problem, a momentum term
a is usually introduced into the update rule implying

wit = wiit + néuzii + abwffd (6)
The thresholds are adjusted in the same way as the weights.
The process of computing the gradient and adjusting the
weights and thresholds is repeated until a minimum of the
error E (or a point sufficiently close to the minimum) is
found. However it is generally true that the convergence of
the Back-propagation algorithm is fairly slow. Attempts to
speed learning include variations on simple gradient search,
line search methods and second order methods, see e.g.

Refs. 9, 17, 18.

Use of Neural Networks for Damage Assessment

The problem of damage assessment on the basis of mea-
sured dynamic data is essentially a pattern recognition prob-
lem. Since artificial neural networks are proving to be an
effective tool for pattern recognition the basic idea in a
neural based damage assessment approach is to train a net-
work with patterns of the changes in quantities describing
the dynamic behaviour that occur due to a damage. This
implies that each pattern represents the computed changes
of e.g. the response spectrum, natural frequencies, mode
shapes etc. due to a damage of a particular size at a par-
ticular location. The patterns of the quantities describing
the dynamic behaviour are used as inputs and ¢he damage
location and size as outputs to train the neural network.




Then the trained network subjected to measured patterns
of the quantities describing the dynamic behaviour can be
used to determine the location, size and of a damage. A hi-
erarchical, two step approach can also be used. This implies
that the patterns of the quantities describing the dynamic
behaviour are used as inputs and the location of the crack
is used as output in one network and size of the crack as
output in an other network.

The training of a neural network with appropriate data con-
taining the information about the cause and effect is a key
requirement of a neural based damage assessment method.
This means that the first step is to establish the training
sets which can be used to train a network in a way that
the network can recognize the behaviour of the damaged
as well as the undamaged structure from measured quan-
tities. Therefore, ideally, the training sets should contain
data of the undamaged as well as the damaged structure
in various damage states. These data can be obtained by
measurements, model tests or through numerical simula-
tion, or through a combination of all three types of data.
This possibility of using all obtained information, or only a
part, in a neural network based damage assessment method
is a capability which is not available in traditional damage
assessment methods.

In order to verify how well a trained network has learned
the training cases the trained network is tested by subject-
ing it to the training sets. The important generalization
capability of a neural network damage assessment method
is tested by subjecting the trained network to data not in-
cluded into the training sets. How well a trained network is
to generalize depends on the adequacy of the selected net-
work architecture and the information about the damage as
well as undamaged structure included in the training sets.

EXAMPLE

In this example the proposed neural network approach for
damage assessment is applied to two free-free straight steel
beams. The beams are 0.8 m long with a 0.02x0.02 m and
0.025%0.025 m square cross section, respectively. An MLP
network trained by the Back-propagation algorithm is used.

Analytical and Experimental Results

The applicability of the neural based damage assessment
method is investigated by training a neural network with
the relative changes of the bending natural frequencies of
the 5 lowest modes. A relative change is defined as the
change in a natural bending frequency divided by the same
natural bending frequency of the undamaged beam. The
relative changes of the bending natural frequencies due to a
damage were estimated by an FEM of the beam. A damage
in the beam is modelled by a fracture mechanical model.
The development of a crack at a certain location of a beam
corresponds to a sudden reduction of its bending stiffness
at the same location. The crack divides the original non-
cracked beam into two shorter beams, connected,

at the crack location, by a very infinitesimal portion of
beam with different characteristics. The characteristics in
bending modes can be modelled by a torsion spring. Es-
timation of the spring stiffness by fracture mechanics has
been used by several authors, see e.g. Refs. 19, 20, 21. The
fracture mechanical model used in this paper is reliable for
a maximal crack depth at 60 % of the beam height. The
FEM was calibrated by using experimental data from the
non-cracked beam. This calibration was performed to se-
cure that the FEM describes the beam in the best possible
way. The quality of the predictions from any method of
damage assessment is critically dependent on the accuracy
of the damage model, see e.g. Ref.1.

The experimental data are estimates of the lowest five bend-
ing natural frequencies given in Ref. 19. Real line cracks
were obtained in the test beams by using a servo-hydraulic
testing machine. The locations of the crack were located in
intervals of 0.08 m between 0.08 m and 0.4 m, i.e. half of
the beam length. The crack depths were 1/6, 1/3, 1/2 and
2/3 of the beam height. The experimental determination
of the bending natural frequencies was performed using a
mobility measuring setup based on a stepped-sine steady-
state technique where both a sinusoidally varying exciting
force imposed to the beam and the similarly sinusoidal ac-
celeration response were measured. A more throughout de-
scription of the experimental procedure is found in Ref. 19.
In fig. 2 and 3 the experimental results are shown together
with finite-element results for the beam with a 0.02x0.02 m
cross section and 0.025x0.025 m cross section, respectively.

In general, fig. 2 and 3 show that there is a good agreement
between theoretical predictions and experimental results.
However, most of the discrepancies, such as the ones more
easily visible in the graph for the first and second natural
frequencies, are mainly due to irregularities of the propaga-
tion of the real line cracks, see Ref. 19. Further, it may be
noticed that the fracture mechanical model is reliable for a
maximal crack depth at 60 % of the beam height.

Training and Testing of Neural Network

First a neural network was trained with simulated estimates
of the relative changes of the lowest five natural bending fre-
quencies assuming that the crack can be located in inter-
vals of 0.04 m between 0.04 m and 0.4 m. The crack depths
were in intervals of 5 % of of the beam height between 5
% and 60 %. Further, the frequencies also were estimated
for the undamaged beam. This means that the input to
the network was 121 training sets. By a trial-and-error ap-
proach it is found that a 4 layers neural network with 5
input nodes, 7 nodes in each of the two hidden layers and 2
output nodes were giving the network with smallest output
error. The two output nodes give the crack location and
size, respectively. The input and output nodes were chosen
as linear while the nodes used in the hidden layers were of
the sigmoidal type.
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Fig. 3: Experimental versus finite-element results, beam
Fig. 2: Experimental versus finite-element results, beam with 0.025 % 0.025 m cross section.

with 0.02 x 0.02 m cross section.
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The network was tested by subjecting the training sets to
the network. The outputs from the network trained with
data for the beam with a 0.02x0.02 m and 0.025x0.025 m
cross-section are shown in fig. 4 and 5, respectively. Fig. 4
and fig. 5 show that the neural network is capable of repro-
ducing the location and size of the cracks used in training.
However, the network also has to be able to give reasonable
outputs for input data not included in the training sets.

In fig. 6 and fig. 7 the outputs from the network subjected
to input data not included in the training sets are shown.
The data are estimated by assuming that the crack can be
located in intervals of 0.04 m between 0.06 m and 0.38 m
of the beam length, respectively. The crack depths are in
intervals of 5 % of the beam height between 7.5 % and 57.5
%. Fig. 6 and fig. 7 show that the network is capable of
making a generalization based on the training sets.

Next, the trained networks are subjected to experimental
data. In fig. 8 and fig. 9 outputs are shown from the
networks subjected to experimental data. Fig. 8 and 9 show
that it is possible to estimate location and size of a damage
by subjecting experimental data to a neural network trained
with simulated data.

In the following the possibility of using a hierarchical, two
step neural network training approach is investigated. A
neural network with 5 linear input nodes, two hidden lay-
ers with 12 sigmoidal nodes and an output layer with one
linear node has been trained with the same data as the
neural network considered above. The output node gives
the location of the damage. An other neural network with
6 linear input nodes, two hidden layers with 8 sigmoidal
nodes and an output layer with one linear node has also
been trained with the same data. The output node gives
the size of the damage. Further, the input to five of the
input nodes is the relative change of the five lowest natural
bending frequencies. The last input node is the location of
the damage. In fig. 10 and fig. 11 outputs are shown from
the networks subjected to experimental data. Fig. 10 and
11 show that the hierarchical approach seems to give better
estimates of location and size of the crack.

CONCLUSIONS

Results from an example with a free-free straight steel beam
demonstrate that a diagnostic technique based on neural
networks for detecting, locating and quantifying damages
based on vibration measurements works. The damage as-
sessment technique relies on the measurements of small rel-
ative changes in natural bending frequencies and upon ad-
equate theoretical prediction of these frequency changes. It
is also found that it seems to be more efficient to use a
hierarchy of neural networks rather than one big network.
By using the neural network based damage assessment ap-
proach an on-line techniques is established.
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