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UNCERTAIN BUCKLING LOAD AND RELIABILITY OF 
COLUMNS WITH UNCERTAIN PROPERTIES 

ABSTRACT 

H. Ugur Koyliioglu 
College of Art_s and Sc_iences 

Kor; University, 80860 Istinye, Istanbul, Turkey 

S0ren R. K. Nielsen 
Dept. of Structural Engineering and Building Technology 

University of Aalborg, DK-9000 Aalborg, Denmark 

Ahmet ~· Qakmak 
Dept. of Civil Engineering and Operations Research 

Princeton University, Princeton, NJ 08544, USA 

Continuous and finite element methods are utilized to determine the buckling load of 
columns with material and geometrical uncertainties considering deterministic, stochas
tic and i~terval models for the bending rigidity of columns. When the bending rigidity 
field is assumed to be deterministic, the ordinary finite element method slightly ove
restimates the buckling load, and with a very few number of elements high rate of 
convergence to the exact results is observed. If the bending rigidity field is modelled 
using random fields, stochastic finite element method is utilized. The discretization is 
performed using weighted integrals. Then, the buckling load becomes a random vari
able. The sensitivity of the lower order moments of the buckling load with respect to 
the mesh size, the correlation length and coefficient of variation of the random field are 
examined. The reliability of columns designed considering safety factors are estimated 
by means of extensive Monte Carlo simulations. For the case, when the bending rigidity 
field is taken to be bounded from above and below, an integral equation formulation 
and optimization methods are used to determine conservative bounds for the buckling 
load. For structural design, the lower bound is of crucial interest. The buckling load of 
fixed-free, simply-supported, pinned-fixed, fixed-fixed columns and a sample frame are 
calculated. 

1. INTRODUCTION 

The paper considers the uncertainties in physical and geometrical quantities appearing 
in the model equations of column buckling boundary value problem. The uncertainties 
are due to physical imperfections, model inaccuracies and system complexities. Deter
ministic methods of analysis neglects these uncertainties. Modelling uncertainties as 
random variables or random processes suggests the use of stochastic methods; as set
theoretic variables bounded from above and below within envelope bounds requires the 
use of interval algebra and optimization techniques. 
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In this study, the problem of determining the linear buckling load of columns and frame 
structures with material and geometrical uncertainties under only axial static loads is 
considered and three different approaches, namely deterministic , stochastic and interval, 
are presented, deterministic one being a reference to evaluate the other two. 

A. Deterministic approach: 
Bernoulli-Euler beam-column equation is used to determine the deterministic buckling 
load. which is computed both analytically and using finite element methodology. The 
sensitivity of the numerical results to the mesh size of the discretization is investigated. 

B. Stochastic approach: 
The bending rigidity field can be modelled using random fields. Then, the buckling load 
becomes a random variable . To the best knowledge of the authors, there is no exact 
closed-form solution available for the random buckling load even for the simplest sy
stem. A finite element discretization leads to a stiffness matrix with random elements. 
The stochastic differential equation is discretized using the weighted integral idea of 
Deodatis (1990) and Takada (1990) such that the random bending rigidity field is rep
resented by 3 random variables multiplied by deterministic shape functions. The lower 
order statistics of the random buckling load can be determined analytically for problems 
with small dimension, via simulation or perturbation techniques for problems with lar
ger 1dimension. The sensitivity of the numerical results to the mesh size, correlation 
length and coefficient of variation of the random fields are investigated. The stability 
of columns and frames with random initial geometrical imperfections were studied by 
Boyce (1961), Elishakoff (1979), Lin and Kam (1992), Palassopoulos (1993), however 
uncertain material properties are considered in a few studies, Jeong (1992), Zhang and 
Ellingwood (1995). Zhang and Ellingwood (1995) considered a stochastic finite element 
formulation where random bending rigidity field is discretized using random nodal dis
placements and Legendre polynomials, and random eigenvalue problem is solved using 
a perturbation method to calculate the mean and coefficient of variation of the buckling 
load. 

C. Interval approach: 
The models of uncertainty used in the interval approach are set-theoretic. All structural 
uncertainties are assumed to be bounded from above and below. Analytically closed 
form results are given for the lower bound of the buckling load of columns. This deriva
tion is based on integral equations and optimization techniques. Interval finite elements 
proposed in Koyliioglu, <;akmak and Nielsen (1994) is also applied to the same problem, 
but as this formulation yields too conservative bounds, the results based on the interval 
finite element method are not presented in this paper. Interval algebra is thoroughly 
discussed in a number of books, (e.g. Alefeld and Herzberger 1983, Neumaier 1990). 
However, not many applications to mechanics have been reported. Introducing interval 
analysis for problems with uncertainty in mechanics is mentioned by Elishakoff (1991) 
and a book on nonprobabilistic convex modelling of uncertainty for continuous systems 
appeared, recently (Ben-Haim and Elishakoff 1990). A complete literature survey for 
continuous systems and several illustrations for the applications in mechanics are given 
in this book. Applications of interval algebra in connection with finite element method 
is given in Koyliioglu et al. (1994), Elishakoff et al. (1995) and Qui et al. (1995). 
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2. DETERMINISTIC FINITE ELEMENTS 

L 

Figure 1) Bernoulli-Euler beam-column element with 4 degrees of freedom . 

According to the Bernoulli-Euler beam theory, the deflection field v( x) and the buckling 
load Per of a column of length L are related as follows : 

X E [O,L] (1) 

where ( ei )( x) is the deterministic bending rigidity field. Exact solutions for Per can be 
calculated for simple systems such as single columns, approximate solutions are needed 
for complicated frame problems. In what follows, finite element approach is outlined 
and compared to available exact solutions for fixed-free, pin-pin, pin-fixed, fixed-fixed 
columns and a sample frame. 

The displacement field of an element v( x) is approximated as a linear combination of 
the nodal deformations v with signs indicated in Figure 1, multiplied by deterministic 
cubic interpolation functions n( x) which can be compactly written as 

(2) 

where 

(3) 

as shown in Figure 1, and , 

1 0 3 2 --v £3 

0 1 2 1 

n(x) = 
-y; L2 

0 0 3 2 
£2 -£3 

(4) 

0 0 1 1 -y; £2 

Following finite element methodology, e.g. Yang (1986), one can end up with the geo
metrical stiffness matrix k~ and the stiffness matrix ke of the eth beam element as 

L 

kG . = J dni(x) dnj(x) d 
e,•J dx dx X 

(5) 
0 
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(6) 

Integration in (5) can be evaluted using the listed shape functions n(x). 

36 3 36 3 T -y 

kG=___!___ 
3 4L -3 -L 

(7) 
e 30 36 -3 36 -3 -y T 

3 -L -3 4L 

For the case when the bending rigidity is constant, i.e. (ei)(x) = ei, the element stiffness 
matrix becomes 

r 

12 

k = ~ 6L 
e £3 -12 

I 6L 

-12 
-6L 

12 
-6L 

(8) 

Next, the global matrices can be obtained from the finite element assembling and the 
buckling load is calculated from 

(9) 

where k is the n x n positive-definite global stiffness matrix and kG is the global geo
metrical stiffness matrix of elements in compression. Det I · I indicates the determinant 
of the matrix considered. The buckling load Per is the lowest eigenvalue of (9). 

The buckling load Per can be calculated exactly for simple columns and for the frame 
shown in Figure 2.b using the differential equation (1), e.g. Simitses (1976). 

r 

L L 

777. r 77. 

Pix ed -free Pin-pin Pin - fixed Pixed - fixed 
L/ 2 

Figure 2.a) Columns. Figure 2.b) Elastic frame considered. 
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Table 1 is given to compare deterministic finite element results using one, two and three' 
elements for a column with the avaliable exact results. As seen from Table 1, finite 
element approach overestimates the buckling load, yet gives highly accurate results 
using only a few elements. 

Table 1. Error analysis of non-dimensional quantity ¥. * Two or * 
1r et 

three elements for the column element under compression. 

Finite Element Method 
Structure Exact 

1 element 2 elements 3 elements 

Fixed-free column 0.2500 0.25188058 0.25012755 0.2500248 
Pin-pin column 1.0000 1.21585420 1.00752233 1.001580 
Pin-fixea column 2.0500 3.03963551 2.09824013 2.058307 
Fixed-fixed column 4.0000 - 4.05284735 4.087614 
Frame of Figure 2.b 0.7441 0.75433621 0.74996420* 0 .7444616* 

3. STOCHASTIC FINITE ELEMENTS 

In what follows, the random (stochastic) quantities are denoted by capital letters. From 
the Bernoulli-Euler beam theory, the random deflection field V(x) and the random 
buckling load Per of a column of length L are related as follows : 

X E [O,L] (10) 

In equation (10), the bending rigidity field (EI)(x) is assumed to be a sum separable 
random field. 

(EI)(x) = EI(1 + r(x)) X E [O,L] (11) 

where El is the mean and r( x) is the zero-mean non-dimensional stationary random 
field with the following mean and autocovariance functions. 

E[r(x)] = 0 (12) 

2 -a 2e E[r(x)r(x + OJ = Arr(x, X+ 0 = Arr(O =a e (13) 

a 2 is the variance of r ( x) and a is the correlation function such that a -+ 0 indicates 
that the field is fully correlated and a -+ oo denotes that the field is uncorrelated. 
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There is no exact closed-form solution for the random buckling load. In what follows, 
stochastic finite element formulation is utilized to determine the lower order statistics 
and the probability density function of Per approximately. The random displacement 
field of an element V ( x) is approximated as a linear combination of the random nodal 
deformations V multiplied by deterministic cubic interpolation functions n( x ). 

(14) 

where 

(15) 

and n(x) is as given in equation (4) . Following finite element methodology, one will end 
up with the same geometrical stiffness matrix k~ given as in equations (5) and (7). The 
stochastic stiffness matrix Ke of the beam element becomes 

(16) 

Since (EI)(x) is a random field, Ke,ij is a random variable which can be written as a 
sum of 3 random variables 

}·' (Xe) y(O) xe " 1.(o) xe " 1.(1) xe~:::.y(2) 
\e,ij = \e,ij + OD \..e ,ij + ]D \c,ij + 2 1 e,ij 

or in matrix form 

where xr, i = 0, 1, 2 are mean-zero random variables defined as 

i = 0, 1, 2 

(17) 

(18) 

(19) 

The expansion in (17)-(18) is termed the weighted integral method and has been propo
sed by Deodatis (1990) and Takada (1990) for the static analysis of beams with random 

bending rigidity. K~o) is the deterministic part or the expected value which is equal to ke 
given in equation (6) and (8) (change ei to El), and X 0 AKi0

) +X~ A.Ki1
) +X~ AK~2 ) 

is the stochastic part of the element stiffness matrix Ke. The integrals xr defined by 
( 19) are called weighted integrals. Given the probabilistic character of r( x ), joint stati
stical moments of arbitrary order of these random variables can be obtained from (19), 
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e.g. if the autocovariance function Arr ( x1, x2) of the random field r( x) are known, the 
covariances E[Xf X 1e] = K,x~ x~ can be obtained from (19) as 

' J 

L L 

E[XieXJl = K,XiXj = j J x~x~Arr(x1,x2)dx1dx2 
0 0 

i,j = 0,1,2 (20) 

As seen i"n (20), the weighted integral method considers the correlation structure of the 

random field discretized. For completeness, the matrices ~K~o), ~KP) and ~K~2 ) of 
equation (18) are listed below. 

l 
36 24L -36 12£] 

~K(o) = EI 24L 16L2 -24L 8L2 
(21) 

e L4 -36 -24L 36 -12L 
12L 8L2 -12L 4L2 

r-1« -84L 144 
-60L j 

~K(l) = EI -84L -48L2 84L -36L2 

(22) e L5 144 84L -144 60L 
I -60L -36L2 60L -24L2 

[144 72L -144 72£ j 
~K(2 ) = EI 72L 36L2 -72L 36L2 

(23) e L6 -144 -72L 144 -72L 
72L 36L2 -72L 36L2 

The stochastic global stiffness matrix can be obtained after the usual assembling ope
ration of the finite element method. Assembling procedure consists of deterministic 
coordinate transformations and additions. 

Then, the buckling load which is a random variable is calculated from 

(24) 

where K is the n x n stochastic global stiffness matrix. 

The lower order statistical moments of the random buckling load can be determined from 
(24) using several methods, i.e. analytically, Monte Carlo simulations, perturbations, 
etc. 

Analytical results for the statistical moments of order m of the random buckling load 
can be obtained applying the total probability theorem to the conditional buckling load 
Pcr(X = x) as 

E[Pc~l = j P;:.(X = x)fx(x)dx n = 1,2, ... (25) 
X 
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This requires the conditional buckling load to be expressed as an explicit function of 
weighted integrals and probability density function of the weighted integrals. Such an 
approach can only be applied to problems where the dimension of the global stiffness 
matrix is low, less than 5. For an axially loaded cantilever column (fixed-free), using 
one finite element to represent the column, Per is related to the weighted integrals as 
follows : 

. 4EI (13£3 + 18£2 Xo- 90LX1 + 120X2) 
Pcr(X = x) = 

3
L 5 

-4EI (13L 3 + 18£2 Xo- 90LXI + 120X2)2 - 45£2 ( L 4 + 4L 3 X a- 12£2 X1 - 12X1 2 + 12LX2 + 12XoX2) 

3£5 

(26) 

Other approaches consider Monte Carlo simulations where several realizations of the 
random variables are generated and a sample set of Per is evaluated from the solution 
of (24) or directly using equations similar to (26). This sample set is further used for the 
estimation of lower order statistics of Per and reliability of the columns. The simulation 
approach needs the joint probability density function (pdf) of the random variables 
involved to be known and one can compute the pdf of the random buckling load from 
the sample set available. 

If only the lower order moments of the random variables are known, an approximate 
solution can be obtained using perturbations. The perturbation solution of the random 
eigenvalue problem has been given by Boyce (1968) and Scheidt and Purkert (1983), 
and applications to structural engineering problems are studied by Grigoriu (1991) and 
Pedersen (1993) . Another approximate solution of the random eigenvalue problem based 
on crossings theory has been proposed by Grigoriu (1992) . 

In this paper, the bending rigidity field is assumed to be Gaussian, thus, the joint 
probability density function of the weighted integrals are Gaussian. In Figures 3 to 6, 
the mean value E[Per] and the coefficient of variation C.V. [Per] of fixed-free, pin-pin 
columns and the frame of Figure 2.b are plotted as a function of the correlation length 
a and the standard deviation CJ of the random fields when three elements are used 
for modelling of the columns. These results are computed using 10000 independent 
Monte Carlo realizations of the weighted integrals that is the random stiffness matrix. 
In the generation of correlated random variables, an eigenvalue decomposition of the 
covariance matrix of the random variables is used. This is preferred to the Cholesky 
decomposition as numerical difficulties are experienced in the Cholesky decomposition 
when the dimension of the covariance matrix is increased. As seen from Figure 3 and 
5 compared to the result listed in Table 1, E[Per] is smaller than the buckling load of 
the deterministic column in all cases. The C.V. [Per] is very sensitive to the correlation 
parameter a and the standard deviation of the random field CJ. C. V. [Per] grows pro
portional to CJ and decrease with an increase in a except for the frame example. Zhang 
and Ellingwood (1995) considered the simply supported column and observed similar 
trends of behaviour in the mean and coefficient of variation of Per · It should be noted 
that when a -r 0, the random field becomes fully correlated and can be interpreted as 
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a random variable in the limit. For this case, since the buckling problem can be solved 
in closed form for any realization of the bending rigidity which is a random variable, 
the C. V. of [Per] becomes equal to a . This actually sets an upper bound for the C. V. of 
[Per] for simple columns. This upper bound can be observed in Figures 4 and 6. 

N 

H 

~ 

rl -r----------------------------------------------------------------. 

CO 
·-

HO 
u 

······-····· -- ········· ·········· ··········-····-··· ··························--·-························· ····-······························ 

fixed-free+0.6 
...................... pin-pin 

frame 

~ 

r:q 
----------------------------------r-

0 ~--------------~-------------~-------------~-----------.-1----------~ 
0 1 2 3 4 5 

a 

Figure 3 . E[~cr)L
2 

versus the correlation parameter a of the random field. (T = 0.2. Three elements 
rr El 

are used to model the column, and 0.6 is added to the results for the fixed-free column for presenting 
the results in one graph. 
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Figure 4. Coefficient of variation of Per versus a. (T = 0.2 . 
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versus the standard deviation a of the random field . a = 1. Three elements are 
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used td model the column, and 0 .6 is added to the results for the fixed-free column for presenting the 
results in one graph . 
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Tables 2 and 3 are to list the sensitivity of the mean and variance of the random 
buckling load Per to the mesh size for simple columns and the frame. Correlation 
between elements of the mesh is included in the analysis. Fast convergence is observed 
for the mean of Per and C. V. of [Per] using a few elements. Pdf of Per can be estimated 
using the sample set. Pdf estimations presented are evaluated using the despl and gcdf 
subroutines of the IMSL library. The estimated pdf of Per for the fixed-free column 
and the frame of Figure 2.b are given in Figures 7 and 8. It is observed that the pdf of 
Per resembles, but not equal to, a truncated bell (Gaussian) curve as the mesh is fined. 
Convergence in terms of pdf can be observed in these figures. 

Table 2. Sensitivity analysis of non-dimensional quantity E[Pcr]L 2 

?r2EJ 

a = 5 and 0' = 0.2. 

Finite Element Method 
Structure 

1 element 2 elements 3 elements 

Fixed-free column 0.247269 0.247603 0.246568 
Pin-pin column 1.186187 1.001235 0 .987276 
Pin-fixed column 3.015973 2.077180 2.028492 
Fixed-fixed column - 4.022562 3 .991981 
Frame of Figure 2.b 0.748123 0.735781 0.740821 

Table 3. Sensitivity analysis of non-dimensional quantity C.V.[Pcr]· 
a = 5 and 0' = 0.2. 

Finite Element Method 
Structure 

1 element 2 elements 3 elements 

Fixed-free column 0.149308 0.113837 0 .111815 
Pin-pin column 0.119842 0.124792 0.112697 
Pin-fixed column 0.171362 0.101680 0.112587 
Fixed-fixed column - 0.115012 0 .124623 
Frame of Figure 2.b 0.147260 0.086665 0 .086108 
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Figure 7. Pdf and probability distribution functions of Per for the fixed-free column, rr = 0.2, a= 1. 
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Reliability of the columns subject to random or determinitic loads can also be calculatea. 
Consider buckling to be the failure event. Let the load P be a random variable, then 
the reliability of the column becomes Prob(P::; Per)= Prob(O::; Per- P). 

An interesting question arises about the reliability of the already designed columns 
using the deterministic theory with and without the safety factors. The reliability of 
simple columns are estimated using 10000 simulations by simple sampling for different 
values Qf coefficient of variation of the random field CJ and the correlation parameter 
a. The results are tabulated in Tables 4 and 5 where 3 elements are used to model 
the columns. Table 4 considers the columns which are deterministically designed, e.g. 

reliability of the fixed-free column is Prob( 0 ·
25

{ 2

2
E7 ::; Per). A safety factor of 1.2 is 

introduced for the results presented in Table 5, e.g . reliability of the fixed-free column 
2-

is Prob( 0·f_;1!' Lfi ::; Per). From the Tables , it is seen that these columns are not very 
safe for the assumed uncertainties . Without the factor of safety, the reliability level is 
about 50 percent in the cases considered, and even a factor of safety of 1.2 is not enough 
to have 90 percent reliable columns when CJ = 0.2 and a = 0.05. On the other hand, 
it is seen that the safety factor of 1.2 increases the reliability level about 30 percent or 
more in many of the cases. 

Table 4. Estimations for the reliability of the structures which are designed deterministically. 
Note that reliability of a column with er = 0 is 1. 

Structure a = 5, er = 0.05 a = 5, er = 0.2 a= 5,cr = 0 .3 a= 2, er= 0.2 a = 0.05, er = 0.2 

Fixed-free column 0.41 0.41 0.41 0.41 0.50 
Pin-pin column 0.50 0.41 0.41 0.41 0.50 
Pin-fixed column 0.50 0.59 0.56 0 .56 0.50 
Fixed-fixed column 0.69 0.53 0.47 0.50 0.53 
Frame of Figure 2.b 0.75 0.50 0.50 0.50 0.50 

Table 5. Estimations for the reliability of the structures which are designed with 
a safety factor of 1.2. 

Structure a= 5,cr = 0.05 a = 5, er = 0.2 a= 5, er= 0.3 a= 2, er= 0.2 a = 0.05, er = 0.2 

Fixed-free column 1.00 0.94 0.81 0.84 0.75 
Pin-pin column 1.00 0.94 0.75 0.81 0.75 
Pin-fixed column 1.00 0.94 0.90 0.87 0 .84 
Fixed-fixed column 1.00 0.94 0.84 0.81 0.78 
Frame of Figure 2.b 1.00 1.00 0.88 0.94 0.94 
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4. INTERVAL A P PROACH 

The uncertain quantities which are bounded are denoted using the caligraphic alphabet. 
From the Bernoulli-Euler beam theory, the deflection field V( x) and the buckling load 
Per of a column of length L are related as follows : 

X E [O,L] (27) 

In equation (27), the bending rigidity field (£I)(x) IS assumed to be uncertain , yet 
bounded within constant envelope bounds as 

(ei) 1 s; (£I)(x) s; (ei)u X E [O,L] (28) 

where ( ei) 1 = inf (£!)( x) and ( ei)u = sup(£!)( x ). The median bending rigidity becomes 
-( ·) (ei)

1
+(eW ez = 2_ . 

Using such an interval model, a lower bound for the buckling load can be obtained by 
replacing ( ei) of the exact solution available for deterministic model by the lower bound 
( ei) 1 for simple columns. For large frames, optimization methods similar to the one 
given below are needed. An analytically closed form method to show the given trivial 
result and calculate conservative estimates of the lower bound of the buckling load is 
derived below using integral equations where the trace of the kernel method is employed. 

Consider the case where the both ends are pinned. Equation (27) becomes 

X E [O,L] (29) 

The differential equation of (29) can be written as an integral equation for a realization 
(ei)(x) of (EI)(x) as 

L 

v(x)- Per j G(x , Ov(Od~ = 0 X E [O,L] (30) 

0 

where the kernel G(x, 0 is the Green's function of the linear differential operator£= 

dd:2 with boundary conditions v(O) = v(L) = 0 multiplied by ei((). 

{ 

_l_:£(.5. -1) 
G(x, 0 = (ei~W ~ ~ 

(ei)(€) L ( L - 1 ) 

(31) 

Then, a lower bound for the lowest eigenvalue of the differential equation can be calcu
lated using the trace of the kernel, Mikhlin (1957). This yields 

1 
Per> 2 m ~ 

V.t:1.2m 
m= 1, 2, ... (32) 
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where 

L L 

A2m = f A~ 2 m = j j K?n(x, Odxd~ 
n=l 0 0 

m= 1, 2, ... (33) 

An den~tes the nth eigenvalue and .X 1 IS Per· A2 m denotes the 2mth trace of the kernel 
G(x,o. 

L 

Km(x, 0 = j K1(x, t)Km-1 (t, Odt m= 2, 3,.. (34) 

0 

For m = 1, a lower bound for any realization of ( E I)( x) becomes 

(35) 

I 

with the constraint in (28) . Application to the column with pinned ends yields 

L ~ L _l. 

I . {!(! 1 X 2 ~ 2 J } ~ 2 
X 2 ) } 

2 ~(ei) 1 
-mm - -- 1 dx - -- 1 dx d -v90--Pcr - (ei)(02 L ( L ) + (ei)(02 L ( L ) ~ - £2 (36) 

0 0 ~ 

U . 1 '11 · h b d I h 1' · I 2 (ei)' smg m > Wl giVe s arper oun s. n t e 1m1t m -+ oo, Per = 7r ""£2. 

For the fixed-free case, the lower bound is calculated similarly using the corresponding 
G(x, 0 and found to be 

(37) 

- . . . I - 11'2 ~ for m - 1 and m the hm1t m -+ oo, Per - 4 £2 · 

5. CONCLUSIONS 

Buckling load of columns with material and geometrical uncertainties are determined 
considering deterministic, stochastic and interval models for the bending rigidity of 
columns. Stochastic finite element method based on weighted integrals is utilized when 
random models are assigned to represent the uncertainty. The mean of the buckling 
load is found to be slightly less than the buckling load of the deterministic column. 
Coefficient of variation of the buckling load is proportional to coefficient of variation 
of the random field, decreases as there is less correlation in the random field and is 
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bounded by the coefficient of variation of the random field . In the cases considered, it' is 
observed that the columns designed without safety factors are about 50 percent. reliable 
and the ones designed considering a safety factor of 1.2 are 30 percent or more reliable 
than the ones without any safety factor. For the case, when the bending rigidity field is 
taken to be bounded from above and below, conservative bounds for the buckling load 
are determined. For structural design, the lower bound is of crucial interest. 
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