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Preface

The present thesis consists of selected parts of the work performed by the author on
stochastic dynamics and reliability theory of dynamically excited structures primarily
during the period 1986-1996. Since this work in parts has been done in cooperation
with colleagues at the Aalborg University and abroad it is mandatory for me to use
this opportunity to render my thanks to all of them for their kind encouragements,
inspiration and hospitality during visits. Especially, I want to express my gratitude to
Professor, Dr.-ing. habil. Radostaw Iwankiewicz, Technical University of Wroctaw, with
whom I have been working with the development of the theory of dynamics of structures
exposed to random pulses since 1988. The cooperation has been a great fun from the first
day and has influenced the work significantly. Of equally great importance was a visit
I paid to Professor Ahmet §. Cakmak, Princeton University in the autumn semester of
1990, which initiated a cooperation on stochastic dynamics, earthquake engineering and
damage assessment, including mutual visits by Ph.D. students from Aalborg University
and Princeton University. One of these students was H.U. Koyliioglu, who was visiting
me for one year in 1992-93. Since his graduation I have continued to work together with
Ugur, on various subjects within stochastic dynamics with emphasis on response and
reliability of uncertain structures. At Aalborg University I want to thank my colleagues
Professor Palle Thoft-Christensen and Associate Professor John Dalsgard Sgrensen, who
together with myself form the research group on stochastic mechanics and reliability at
Aalborg University. Palle employed me in my present position in 1986, and introduced
me to several of my international contacts including Professor Iwankiewicz and Professor

Cakmak.

The thesis has been written as a coherent text, based on a number of papers. This has
necessitated rewriting of larger parts of the underlaying papers. The layout and editing
of my messy notes and enclosures was managed with masterful skill of secretary Solveig
Hesselvang. The modest English was corrected and improved by senior secretary Kirsten
Aakjeer and the drawings were prepared by technician Norma Hornung. My gratitude
is rendered to all of them.

Aalborg, September 20, 1997

Segren R.K. Nielsen
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1. INTRODUCTION

Let {X(t), t € [to, oo[}, X(t) : 2 = R™ be an m-dimensional stochastic vector process
made up by some response quantities of a structural system subjected to external (i.e.
non-parametric) dynamic loads applied during the interval [tg, co[. Typically, {X(t), t €
[t,00[} is made up by a combination of stresses and displacement components at a
number m of critical material points throughout the structure, in which the structural

reliability is controlled.

In principle all material points in a continuous medium must be checked. Hence, the
dimension m of the response process {X(t), t € [to,o0[} is infinite for any continuous
medium. However, at any numerical application a discretization to a finite number
n of degrees-of-freedom becomes mandatory. All m response quantities controlling the
reliability can then be expressed as the n selected degrees-of-freedom, and the reliability
problem can be mapped into the n-dimensional sample space of the system degrees-of-
freedom. Hence, the reliability problem can always be formulated so that m is equal
to n. However, if from an engineering judgement it can be decided that the structural
reliability can be checked with sufficient accuracy in a few hot-spots m, where m < n,
it can be advantageous to formulate the reliability problem directly in the sample space
of these responses. Both formulations will be applied in the thesis.

The dynamic loads, initial values as well as the mathematical models applied for deriving
the responses are generally assumed to be uncertain and will be modelled stochastically.
However, modelling uncertainty will only be attributed to imperfect knowledge of the
structural parameters such as mass, damping and stiffness parameters. Hence, it is
assumed that if these parameters are property calibrated, the selected mathematical
dynamic model provides a perfect causal relationship between the loads and the response
of the structure to these loads. The uncertainty due to imperfectly known distributed
or discrete system parameters is modelled by means of random fields and stochastic

variables.

The thesis deals partly with the stochastic response problem, i.e. the determination
of the stochastic properties of the process {X(t), t € [ty,00[} measuring the response
of the structure, and partly with the solution of the related reliability problem, i.e.
the determination of the probability that the structure is able to sustain the dynamic
loads in a prescribed time interval [tg,t], with due consideration to possible uncertain
structural parameters and initial values. The contents are primarily a compilation of
some 39 papers specified in the list of references on response and reliability analysis of
dynamically excited systems, which have been published by the author alone or together
with my good friends during the years 1980-82 and 1986-1994. As is the case with a
deterministic vibration analysis, any stochastic vibration analysis has no engineering
interest in itself. In any case, the result of the stochastic analysis must be incorporated
in a reliability measure from which decisions can be made on the acceptance or decline
of a certain structural draft proposal or of a partly damaged existing building, which
has been exposed to excessive dynamic loads.

Generally, throughout the outline, calligraphic letters signify sets in a sigma-algebra
generated on the space ). The range of these sets in the sample space of X(t), deter-
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" mined by the mapping X(t) : @ — R™, are designated by capital letters. It is then
assumed that the sample space of X(¢) at any time ¢ can be separated in two disjoint
sets, specifying safe and failure conditions of the structure at the time t. The surface
0S; of the safe set S; is considered to be a part of the failure set, S¢. The event of safe
operation at the time ¢ is given by S; = {w € Q | X(t,w) € S;}.




2. INTEGRAL EQUATION METHODS

2.1 Introduction to integral equation methods

C]t,t+At} signifies the events of one in- or out-crossing from the safe domain in the
interval ]t,t + At]. Correspondingly, C]tt +aq and Cj 4 ay signify the event of one
out-crossing from the safe domain and one in-crossing into t]he safe domain during the
interval ]¢,t + At]. The event of measure 0 that a crossing takes place at the time t, is
designated C;. Correspondingly, the events of an out-crossing from the safe domain or
an in-crossing into the safe domain at the time t are designated C; or C;, respectively.
It is assumed that the process and the failure surface are sufficiently regular so that the
following relation holds for the probability of Cj; ¢ty aq

P(Creraqg) = f(t)At + O(At?) 2-1)

The applied order notation means that O(g(t)) < A4 | g(¢) |, A being a positive constant.
The density function f; : [tg,00[— Ry is termed the first order crossing rate. Due to
the regularity properties of the process and the failure surface, f,(t) may alternatively
be interpreted as the expected number of out-crossings per unit of time. Next, consider
the non-overlap intervals Jt1,%; + Aty],... ,]tn, tn + At,). It is then assumed that the
probability of the event Cjy, 1,440, N """ NCy, 1, +41,) €20 be written

P(C]thtl'f'ﬂtl] n e m c]tn:tn“'Atn]) =

Faltiy.o s ta)Aty - Aty + O((Atmax)™ ) o)
where Atpax = max(Aty,... ,Atp). fa(t1,...,tn) is termed the nth order Crossing
rate. From (2-2) it follows that fn(t1,...,tn) fulfils the symmetry property

fn(tla--v,tn):fn(tau---1tau) (2—-3)
where ay,... ,a, is an arbitrary permutation of 1,... ,n. If the crossing events
Gy tv+au]se -+ 50ty ta+at,) are mutually independent, it then follows from (2-1) and
(2-2) that

fn(tla--wtn):]__[ fi(t;) (2-4)

j=1

Occasionally, crossings of sample curves on condition of some event £ will be considered.
As an example one may have £ = Sy, corresponding to the event of being in the safe
domain at the time to. The probability of the event (j;, dedy] <40 C]tn.tn+mn] on
condition of £ can then be written

P(Cuyty+at) N NG tutan) | €) =




fﬂ(tlt conatn | g)Atl o At:’t i O((Atm.a.x)n-l-l) (2 = 5)

fa(t1,... ,ta | £) is termed the nth order crossing rate on condition of £. Next, se-
quences of out- and in-crossings will be considered. Depending on the sequence of
crossings, the corresponding nth order crossing rates are defined as follows

P(c].tl,ta+-Ah] n Cﬁzﬂz‘*'ﬁh}l -0 C]T"':"_*'At"] I g) -
FEH b ta, ot | E)At - Aty + O((Atmax)™ ) (2-6)

F=t(ty,t,... ,tn | £) is the nth order crossing rate with an out-crossing at the
time 1;, an in-crossing at the time t,,..., and an out-crossing at the time t,. In the
applied notation, the sequence of out- and in-crossings is indicated by superscripts ” +”
and 7 — 7, taking place at the corresponding sequential instants of times, as specified
explicitly in the argument list. Because of (2-3) it will be assumed in the following that
ty <ty <--- < t,. Especially, crossings on condition of C;” and C;” will be considered.
The conditioning on these events is everywhere interpreted in the horizontal window
sense of Kac and Slepian (1959). As an example one has the relations

S e it s s bt
fiT TRty ot | CF) = BEL f'1+(:) 2-7)

Tt T {lste; voe ili, 1] &)
fH(t1€)

FEF s o e [E TG ) o= (2 - 8)

Correspondingly, the probability of the joint event C;t},tl +ag) N C];z,tz+at2] £ sse
C]ti.tn+mn} N £ defines an nth order crossing rate denoted f;,"""+(t;,t2,. .« ol 5 8,
where

f:—“"*_(tl,tg’... ,tﬂ : g) . f:—'--+(t1’t2’.', ,tn | S)P(g) (2 —g)

Let &, C S;, be the event that a subset of initial values X () of the process belongs to
the safe domain Sy,. Further, let &, 4 = ﬂ,e]to’t] Sr. We are interested in the prob-
ability rate of the first-passage out-crossings of samples originating in &;,. Two kinds
of first-passage problems will be addressed. In the so-called stochastic start problem
initial values beyond S;, may exist. In this case we define £ = S,,. The other case
considered is the so-called deterministic start problem, where almost all sample curves
of the process are assumed to initiate from a single point in the safe domain at the time
to, i.e. P(€,) = 1. The event that a first-passage out-crossing from the safe domain

takes place in the time interval ]¢, ¢+ At] is designated f-}(sl,z +aq The event of measure 0
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that a first-passage out-crossing takes place- at the time ¢ is correspondingly designated
}'t(l). The following relation is assumed to hold for the probability of fj(zlz +a1]

P(FN,ag) = Fri(t]| £5)At +0(A82) (2 - 10)

fr,(t | &, ) indicates the probability density function of the elapsed random first-passage
time interval T3, until a first out-crossing takes place at the time ¢y + 7. This quantity,
which is designated the first-passage time probability density function, can then be
defined by the following conditional out-crossing rate at the time ¢

frit | €)= ftt; Euoy | Eb) (2-11)

The first-passage time probability distribution function is defined from
t
Frt1 €)= [ fr(r|€q)dr (2-12)
tp

Fr,(t | &,) signifies the probability of failure (at least one out-crossing) in the interval
Jto,t] on condition of the event of being in the safe domain at the time ¢y,&;,. The
unconditional probability of failure in the interval [tg,%] can then be written

Pf([toat})=1_P(gto)+P(€to)FT1(tlgto) : (2*13)

In the stochastic start problem 1 — P(&,,) represents the probability of instantaneous
failure at the time ¢y, i.e. the probability that the system initiates from the unsafe
domain. The event that one out-crossing from the safe domain takes place in the time

interval |t,t + At] on condition of the event £, 4 = ﬂre[tg,t] 8-, corresponding to
survival of the system up to and including the time ¢, i1s designated 'H](tl )t +ag The

following relation is assumed to hold for the probability of 'H](tl)t A

P(Hy), ag) = by (t| o)At +0O(AS) (2 - 14)

hr(t | £,) is termed the hazard rate for the first out-crossing. This is related to the
first-passage probability density function as follows

[ ol &)  fr(t] &)

hr(t | €)= fit (8| Ep.) = = 2—-1
T( | t) fl( l . lt]) P(g]to,t]lgto) 1_FT1(t|£to) ( 5)
Then,
t
Fr(t|&,)=1—exp —/th(T | £, ) dr (2 —16)
to
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Hence, (2-13) can be written

t

Py([to,t]) =1 — P(&,) exp —-/hTI(T | &,) dr (2-17)

to

L7 signifies the interval length spent in the safe domain after an in-crossing to the safe
domain at the time ¢. Correspondingly, L} signifies the interval length spent in the safe
domain before an out-crossing at the time t. The probability density functions of L}

and L} fulfil

At Geey)
fat =Lt ey)
ij‘(I) - fl-}-(t) (2 - 19)

Hence, we have the relation

41
fr- () =Frg, (D) % (2 —20)

U; signifies the elapsed time interval until the next out-crossing after an out-crossing
from the safe domain at the time t. Correspondingly, U;" signifies the time interval
between an out-crossing at the time ¢ and the previous out-crossing. The probability
density functions of U;” and U;" on condition of &, fulfil

f3(t,t +1; {exactly one in-crossing in ]t,t + [} | &,)

(1| &)= -
Ft(t —1,t; {exactly one in-crossing in ]}t — [, t[} | &,)
1] &,) =22 e : o -
fur(l| &) T (2 -22)
leading to the relation
_ A+ &)
fum (1] &) = fuz, (1] &) D (2 — 23)

Among the first-passage out-crossings in the interval |¢,t + At[, we shall next draw
attention to the subset of sample curves, which have additional out-crossings at the
instants of times t; < --- < t, later than the time ¢. The corresponding first-passage
probability density function at the time t on condition of later joint out-crossings at the
times t; < -+ < t, is designated fr, (¢ | &, ﬂC;*l"ﬂ ---ﬂC{t), to €€t € o & g
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Similarly, we introduce the probability density function of L} on condition of prior joint
in-crossings to the safe domain at the times t; < t < -+ < t,, before the last in-crossing
at the time t—I, which is designated fr 4 (! | C;/N---NC; ), to <ty < -+ <tp, <t—l<t,
and the probability density function of U;f on condition of &, and on condition of prior
out-crossings from the safe domain at the times ¢; < #2 < -+ < t, before the last
out-crossing at the time ¢ — I, which is designated fU,+U | &, NCEN-- N Ch)tg <
t < e <tp<t—=1< 1.

The event that the process makes its nth out-crossing in the time interval ]t ¢ + At]
on condition of &, is designated fi(t"tL IN'E The following relation is assumed for the

probability of fi(tr,:)-{-/_‘.t]

P(f](:ilm]) = fr.(t | &, )At + O(At?) (2 — 24)
fr,(t | &, ) indicates the probability density function of the elapsed random nth-passage
time interval T),.

Let E}SZLJ signify the event that at least n out-crossings from the safe domain take place

during the interval ]to, t] on condition of sample curves originating from S;,. Obviously,

P(g](t:?t]) = P(T, >t) =1~ Fpr (t | &,). The event that one out-crossing from the

safe domain takes place in the interval ¢, t + At] on condition of S](t:?t] 1s designated

H™ , for which the following probability is assumed
1t,t+41]
P(H),aq) = b (8] £,) At +O(A8) (2 - 25)

hr, (t | &, ) signifies the hazard rate for the nth out-crossing event. Obviously,
P( (:r;?t-i-.&t]) = (1 - P(H](:3+At]))P(S](t:?t]) 25 P(H](:;it])‘o(g](tz,_t]l)) =
1-Fr,(t+At| &) = (1 — b, (t] &G)At) (1 =B (8] Sto))+

hr,_.(t] £a)At(1- Fr,, (] €)) =

d
EEFT" (t] E) = fr (t] &) =

b, (| €0) (1=Fr (8| £0) ) =y (¢ ] E2,) (1=Fr,_.(t1 €)) , n=2,3,...(2-26)

where Fr, (t | &0) indicates the nth-passage time distribution function. The solution
of (2-26) can be written recursively as follows

t

Fr,(t|&,) =1—exp -—/th (7| &) dr

to



t r

1+/exp (/ hr, (ulé}o)du)hyn_l (r1€0) (1 - FTn_l(TIStD))dr n=23,...(2=27)

o to

(2-27) reduces to (2-16) for n = 1, defining Fr,(t | &,) = 1.

Let {N(t),t €]to, oo}, {N*(t),t €]to, oo[} and {N~(t), t E}to, o[} be regular counting processes, where
N(t), N*(t) and N~(t) indicate, respectively, the random number of crossings, out-crossings and in-
crossingsin the interval ]tg, t] on condition of some event £. These counting processes then have the con-
ditional product densities fn(t1,t2,... ,tn | &), fTT Tty t2,... ,tn | E) and f7 ="~ (t1,t2,... ,ta |
£). From the regularity assumptions it follows that

E[ANT(t1) AN~ (t2) - AN*(t,) | €] =
[t ta | E)AL - Aty + O((Atmax)™ ") (2 - 28)

where AN(t) = N(t + At) — N(¢) signifies the increment of the counting process during the interval
]t,t+ At]. At the indicated formulas for the first- and nth passage probabilities then follows the theory
of point processes, Srinivasan (1974), Nielsen and Iwankiewicz (1996).

z(t)
345,

Sty

to t

Fig. 2-1: First-passage at the time ¢ and sample curves with last in-crossing to the safe
domain at the time ¢; and out-crossing at the time t.

The following identity can be stated, see fig. 2-1.

fr(t | €0)P(E) = £ (2) - f frz (E=t)ff (t1)dhy (2 —29)

The last term on the right-hand side of (2-29) withdraws from f;f(¢) the out-crossing
rate of sample curves with their last in-crossing to the safe domain at the time t; €]t, t],
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Jeaving the out-crossing rate fif (¢ ; &, ¢), which is equal to the left-hand side of (2-29).
This kind of reasoning will be widely used in the following. From (2-20) it then follows

that

% t
le(tlgto)=;—l(g£)‘ (1-/fL?(t"f1)df1) (2 — 30)

Assume that {X(2), t € [to,00)} is a stationary vector process, and that the safe domain
is time-invariant. Further, consider the stochastic start problem, i.e. & = S Ly
and L} are then independent of ¢, and will be identically distributed as the random
variable L with the probability distribution function Fi(l). Further, fiF(¢) = f;it and
P(S:) become time-constant. (2-30) then reduces to

fr(t | €)= P(f; (1= Fut—t0) = ﬁ(l _ it —to)) (2-31)
where
E[L] = Ploe) (2 - 32)

fit

(2-32) follows from an integration of (2-31) over the interval |t, 0o, and using
limz_..oo FT1 (t ] Stn) = 1.

z(t)

|
I
|
!
i
I
|
|
I
[
|
t

tp 131

Fig. 2-2: First-passage at the time ¢ and sample curve with last out-crossing from the
safe domain at the times ¢; and ¢ on condition of &, .

Next, the following identity can be stated, see fig. 2-2.

le(t ] gto) =f1+(t | Eio) == / fUt‘l(t -t |£¢o)f1+(t1 ‘gio)dtl (2 —33)

B i e e S T]
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The last term on the right-hand side of (2-33) withdraws from f{f(¢ | £,) all previous
out-crossings conditioned on &, in the interval J¢,t[. Using (2-23) the following relation
can then be derived, similar to (2-30), Nielsen and Sgrensen (1988)

frlt1€) =11 €) (1= [ fuptt -t 1€ dt (2 - 34)
to

(2-30) and (2-34) expresses fr,(t | £,) in terms of the probability density functions of
L} and U, As will be shown in succeeding sections 2.3 and 2.4, (2-29) and (2-33) turn
out to be connected with inclusion-exclusion expansions of fr, (¢ | &:,) in unconditioned
and conditioned crossing rates, respectively.

A relation similar to (2-31) was first derived by Slepian (1962), considering the probability that a zero
mean stationary process remains non-negative in a certain interval. With applications to mechanical
reliability problems, (2-31) was rediscovered independently by Cook (1964) and Rice (1964 ,1966). Con-
cerning Cook’s work, see also Crandall et al. (1966). The non-stationary equivalent (2-30) was originally
derived by Nielsen and S¢grensen (1988) for stochastic start problems of non-stationary processes or time-
varying safe domains, based on a proof different from the one applied here. The present formulation
provides a further generalization to non-stochastic start problems. (2-31) may be used for estimation
of fr,(t | St,) by simulation. Assuming sufficient ergodicity, Fz(I) is estimated from a single sample.
Robust estimates of fr, (¢ | Siy) can then be determined, when fr, (0| Sy,) = 1/E[L) = ik JP(Sy;) is
either estimated from the simulated sample of interval lengths, Cook (1964), Crandall et al. (1966), or
is calculated analytically, Thoft-Christensen and Nielsen (1982), Nielsen and Sgrensen (1988), Nielsen
(1990a). The latter approach provides exact values of fr, (t | Si,) at initial first-passage times at the
expense that the area below the estimated probability density curve may differ from 1.
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2.2 Integral equations for the first-passage time probability density function

z(t)

»S‘

&

[
|
|
I
I
|
|
|
|
|
:
t

to 1 t!

Fig. 2-3: Out-crossing of sample curves at the times #;, ¢, and t on condition of &,,.

The following Volterra integral equation may be formulated for the first-passage time
probability density function, Nielsen (1980)

I 1€a) = St 1€ = [ £t €00 FO) (o1 ] € dt (2 - 35)

f1+ (t | &, N ft(ll)) indicates the out-crossing rate at the time ¢ on condition of &ty
and on condition of a prior first-passage at the time ¢; €]to,t[, see fig. 2-3. f; (t |

E, N F t(!l)) fr.(t1 | &,) represents the joint probability density of a first-passage at the
time ¢, and an out-crossing from S; on condition of &, where t; < t; < t. For this
quantity the following identity holds

fit (] E NFOV fr(ts | E0) = fr (1 | € NCF) £ (2] ) (2 - 36)

From (2-35) and (2-36) the following relation is then obtained
t
frit| &) =f(t] &) |1~ /le (ts | £, NC) dty (B~ 3
to

Upon comparison of (2-34) and (2-37) it should be noticed that fU?L(t-tI | &, ) ##

fri(t1 | E,NCF). Only the integral of these quantities is equal. fif (¢ | &, nfg(l]))f'n (t |
&, ) fulfils the integral equation

1 ENF) frlty | &) =
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f2++(t1?t | gio) - /f2;+-+(t1!t | Eiu nft(zl))le(tQ l Sio) dt? 3 tO < tl <t (2 = 38)

(.t | B 1 ff:))f']“l (ta | &) signifies the joint probability density of a first-
passage at the time {3 and out-crossings from S;, and S; on condition of &, where
to < tz <ty <t. For this quantity the following identity holds

FH(t,t | € NFD) frults | E60) = fr (2 | E NCENCH) £+ (21, | €4) (2 — 39)
From (2-35), (2-38) and (2-39) it then follows that

frit | €)= fif(t]| &) —

t t
/fj“f(tl,t | €,) (1 = /le (tz | &, NEE NES) dfg) dt, (2 — 40)
To to

th(t I gfo) = fl-*-(t | gfo)_

/f—f*(tl,t | £,)dt; + f/fj*(tl,t | 0 N FO) fr(ta | ) dtadty (2 —41)

to to

Next, an integral equation 31m11ar to (2-38) and a relation similar to (2-36) can be

formulated for f3+(¢1,t | &, N ) fr,(t2 | &), which is substituted into the right-
hand sides of (2-38) and (2-41). Contmuatlon of this process until the nth term leads

to the following results

le(t lgtn) :fl-l_(t I gfo) = /f2++(t17t l ‘gto)dtl 4 -4

t 1

o [ oo [ i1z

tn_1
(1—/le(tnIStonC;t_lﬂ---ﬂCj;ﬂC,fﬂC;")dtn) dtn_y - -dtadt; (2 —42)

to

t
€)= £ 1 €)= [ (0t ) dbu oot
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t i tn_2
(_1)n—1//... / fHt T (tay o oy ta,t | £ ) dbney - dbadty +
to to to t
t 1 tn_1 |
1" // / FE (o, et Eg N ED ) fr (b | E4p) dtn - diadty (2 - 43) .
tg to to

and

t
fiH(tl & ﬂft(,l))f’n(tl | ) = ff T(t,t | &) - ffg"++(t2,t1,t | ) dts + -+
to

ty th—2
(—1)n] / frj‘.-+++(tn—ls"' >t21t11t|gtn)'
to to
tn_1
(1— /le(tn|5tDﬂC¢_lﬂ--~ﬂC;';ﬂCf)dtn) dtn—1 -+ dty (2 — 44)
to

The following quantity is introduced
Fliltn,....t1| &)=
Ft by st | E) =0

tn Engj—1 -
1o fto L f;1+-+_;++ +(tﬂ+]J 3tﬂ+]1tn7"‘ :t] |gtg)dtn+j"'dtn+1 s 7 2 1
(2 — 45)

From (2-42) and (2-44) the following formal expansion for the kernel fi*(t | &, N -7'—1(11))
of the integral equation (2-35) is obtained as n — oo

ty
f2++(t1;t l gto)— ff3+++(t2;t1:t J gto)dtZ + -

to

| EgnFD) = - = |
Tt | &) — [ it (ta, b0 [ E)dta + -+
to

o0

E(—l)j Fiti(ty,t | &,)

oo

(=1) Fit(ty | &)

(2 — 46)

J=0
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For the kernel in the integral equation (2-43) the formal expansion becomes

f:.‘.++(tﬂ—11"' y 1,1 I gto mft(:)) =

S R —— :

tn
f:r{'-++(tn,tn—])- = ,t],t ] Eiu) - ff,-r:2+”.++(tn+1,tn,tn—],--. ,f],t I gto)dtn-{-] + .-

to

tn
FiH(tn | E0) = [ £ (tagr tn | E¢o)dtngr + -

to

: ;}(_1)1F;+1,,-(tn,tn_1,.-- it &)
= (2 —47)

_E(}(—l)ijj(tn | €t,)
J:

The conditioned first-passage time probability density function frp, (tl | &, N (,’;fh)1 by <
t; <t on the right-hand side of (2-37) fulfils the integral equation, Nielsen (1990a)

ty
fr, (11 | 810 NCF) = S (1 |£tancj’)—/f1+(z] | €10 NF) NCH) 1y (b | £ NCH) dta(2 - 48)

tg

where

f2++(tl$t l gtg)

ft | &, nCH) = 1) (2 — 49)

£t | & NFL D)=

fiH(taty | £, 0CH) -:f’f;r++(t3,t2,t, | £ N1 CH)dty + -

: =
0 | NG ~ [ H s, | B NGt 4

| ftH(ts, st | &) —Ef;***(tg,tg,tl,t (.85 i g s
I fit(ta,t| fto)—:fzfé“’(ts,tz,tIfto)dt3+--- B
1 4
| S (—1 R (ta, 1.t )
| : (2 - 50)

S (—1)I B3 (tat | E)

J:
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(2-50) is derived by a procedure identical to the one leading to (2-46). Further, (2-8)
has been applied in (2-49) and (2-50).

Similarly, fr, (tn | € NCE_ N NCENCH), to <tn <taog <+ < t) < tin (2-42)
fulfils the integral equation

fr(te | EoNCE_ N NCENCT) = f(ta | E,NCL_ N NCLNCT) -

tn

/ l+(t'"- | 5’00'7:!(,1,11 mcit—x e -ﬁC;‘; ﬁc;}‘)le(tﬂ-l-l | €10 ﬁCE';_I P -ﬂCi ﬁC;")dtn+1(2—51}

tp

where

= f;h:}-lm-*"'-(tnatn—l: oty I Sio)

f1+(tn|5¢nﬂC{t_lﬂ“'ﬂCj;ﬂCf)— FEo g s abint | &) (2-52)

The following formal expansions are obtained for the conditioned first-passage time
probability density function and the kernel of the integral equation (2-51)

_Zv_t:l(_l)jFr;:-l,j(tﬂ-i—latn—l: e wm o B 0 8
+ Aetaet) - 1= ~
le (tn | gtDnCtn_lm' . ﬂcn mCt ) B f;:-'“++(tn—17 B § 7t1)t | Sto) (2 53)

fHte | BN FY net_ n-nctnet) =

tnt1

‘n+1

f;li-_'-_!-2+---++(tn+1,t,,,tn_l,... it Eg) = f f;¢3++---++(t,,+2,tn+1,an,tn_],_,, b | Eg)dly + -

Lo
!n+]
ffffl"'++(t“+l’t“”1"" At &) - f fi$2+--.++(tn+z,tn+1,tﬂ_l,... bt | Erg)dtngn + -

o

- |

Y 1P s (faqasBustnen o ssat | Eig)

o

- (2 — 54)

oo .
_EO(_]')JF:‘f‘ld(t"'{'l’tn_l" Gy 3t1:t | gto)
J:

If an approximate solution can be obtained for (2-51), the remainder of the series ex-
pansion (2-42) of the first-passage time probability density function can be evaluated

approximately.

Next, the following identity can be stated for the nth-passage time probability density
function, n > 2, Nielsen (1980) '

i=1

n—1 ;
Fra(tl€) =fi (t1€0) = fr,(t]€0)— / £ (] £ NV FS) (1€, dtr (2 — 55)
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The second term on the right-hand side of (2-55) withdraws from fit(¢ | &,) the rate
of out-crossings at the time ¢ of sample curves which are less than an nth-passage. The
last term withdraws the rate of out-crossings of sample curves which have had their

nth-passage prior to the time t.

By a sequential procedure for n = 2,3,... similar to the one applied to (2-35) the
following expansions can be derived for fr,(t | &), and for the inhomogenity and
kernel of the integral equation (2-55), Nielsen (1980)

o0

e = 3 o (7 )R € (2 - 56)

j=n-1

tlgtn Zfﬂ(tlgta)—ZfT(tlgto)“

f (—p (ijé) Fiti(t] &) (2 -57)

j=n-1

X (—1)-u (nj_ 1) Fifi(t1,t| &)
(n)) =n—1

fi (&N = _ ; (2 - 58)
5 (g ( i 1) Fi(t | &)
Consider a discrete index set T' = {71,... ,7m}, to < 71 < -+ < T, < t and let

Eri o tm = NperSr- fri(t | &,) then fulfils the integral equation, Thoft-Christensen
and Nielsen (1982)

fT1 (t | gto)zfl ( T1,....Tm |gtn ffl T1 W Tm 'Etonft(;l))fT1(tl lgtu)dt1(2—59)

tlme t of sample curves in the sa.fe set at the tlmes This « v 5 Tims respectlvely, on condition
of £, and on condition of a first-passage at the time ¢; €]to, ¢[.

(2-59) is quite similar to (2-35). All previous integral equations can in the same way
be formulated in out-crossing rates of sample curves which are in the safe set at times
T1,.-- ,Tm. In doing this all the indicated inclusion-exclusion series remain valid, if
the quantity Fit.(tn,... ,t1 | &,) in (2-42) is calculated based on the conditioned nth

order the out-crossing rate f,'l"ﬂ""" Flsisws o sibmaens b 25 561 § Er..tm | &) By a

suitable choice of the intermediate instants of time 7, ... , 7, this approach results in
more accurate approximate solutions to the various integral equations, and in a more
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rapid convergence of the various inclusion-exclusion series. Especially, the following
expansions are valid for the solution and for the kernel of the integral equation (2-59)

t

t 1y n—2
(—I)n_d/-/"' / f;:.m+++(tn-la--- at21t1)t;g'r1 ,,,,, Ton [gtg)'
to

to to

to

tn—l
(1 - / fr, (tn | &, NCE_ N---nCEnctn c;f) dtn) dtn_y---dtydt; (2 — 60)
f1+ (t;gfl,....rm I gfo nft(ll)) =

(2 - 61)

From (2-15) and (2-45) the following formal expansion is obtained for the failure rate

S (-1 EH(t | £4)
th (t | gia) = tjzz (2 = 62)
1- f Z(_l)jFl-t-j(tl | gtn)dtl

to j=0

Expanding the nominator in (2-15) and applying the symmetry condition (2-3), the
following formal series may be obtained, Stratonovich (1963)

th(i l g‘o) = le(t | gﬁu)'

t

(1+/fT1(tl | €, ) dty +]ffT1(t1 [ € ) fr (T2 Igto)dtldt2+___) _

i i
t

gi (t| gto)‘“/g;—-}_(tl,t | &, Yty & - ot

tg
t tl tn_z
(—l)n—l // 7 f g:--+++(tn_1’___ ,tg,tl,t | gto)dtn_l ...dtzdtl... (2 —63)
to

ty to




—

18

where

g1 (t| &) = fi (2] &) , )
g;-+(t],t | gfo) = f;+(t1)t I gta) . f1+(t1 | glo)fl-i-(t l Sto)

g3 T (ta, 1,1 | Ex,) = T (ta, 80,8 | €)= 3{ 5 H(ta 11 | E)fiH (| E€0)} ,+
2fit(t2 | Eu)fi (11 | Ex)FiF (2] )

gttt (ts, ta, b1, | &) = T (13, 80,10, | &) —

a{fF T (ta,ta, t | E0) i (t | E0)}, = 3{fF T (tasta | €0 ) FF T (11t | E10) )+
12{fH(ts,ta | E )i (b | Eo) (2] E0) ), —

611 (ta | Exo)fif (2 | Eeo)fT (81 | Eo)fiT (2| o)

The symbol {-}; denotes a symmetry operator producing the arithmetric mean of all
the terms similar to the one indicated, obtained by permuting all indicated instants of
time. As an example, the following expression in (2-64) is evaluated as follows

(Pt | E)HE 18}, = 5 (s | E)FF(E] €0)+
F (b2t | Ee )T (01 | o) + £ H (11,8 | E6) i (B2 | E1,)) (2 —65)

Finally, combining (2-15), (2-16) and (2-35) the following non-linear integral equation
is derived for the hazard rate

(| E
th(t|£¢0)z {1 ( I to)
exp(~ [ hry (7 | £,) dr)
to
p t
/f1+ (t] & NF) exp /th(T | £, )dr | hry(t1 | &) dt (2 — 66)
to &

Example 2-1: Approximate evaluations of inclusion-exclusion series

A basic problem of the expansion (2-63) is that the series is divergent at truncation of any order as the
length t—to of the excitation interval grows to infinity. Moreover, the functions gt -+ (tn_1,...,t | &)
can hardly be calculated for the order n > 2 even for Gaussian processes. For this reason several
approaches have been suggested to estimate the higher order functions in terms of g} (t | &,) and
93t (t1,12 | &), and further to evaluate the sum (2-63) based only on this information. In the so-
called method of non-approaching random points by Stratonovich (1963) (for a review of the method,
see also Lin (1969, 1970)), the following assumption is applied for the higher order out-crossing rates

\ (2—64)
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gr tH(tnor, ot ) = (n = 1) fH(tnoy | E00) - fiF (01 | Exp) ST (2] E4g)-
{R(th-1,t)...R(t1,t)}s , n=3,4,... (2 - 67)

where R(t;,t) is defined by the expression
[t te | £4) = fit (6 | Eo)fit (12 | €0)(1 = R(t1,12)) (2 —68)

Because fit(t | &) as well as f+(t1,t2 | £4,) are positive, R(t1,12) is bounded above by unity.
Moreover, as | t2 — ) |[— oo the crossing at the times ¢; and t3 becomes independent, so R(t,, t2) — 0
according to (2-4). Stratonovich designated R(t;,t;) as the correlation coefficient of the point process
made up by the crossing events. The symmetry operator in (2-66) contains n addends and has a quite
similar interpretation to the one in (2-65). As an example the interpretation for n = 4 reads

{R(ts,)R(ts, ) R(t1, 1)}s = 4l(R(t;,,t)fz(z,,z)ﬁz(t, )

R(ts,t1)R(t2,t1)R(t,t1) + R(ta, t2)R(t1,t2) R(t, t2) + R(t2,t3)R(t1,t3)R(t, t3 )) (2 - 69)

Based on the assumption (2-67) the series (2-63) can then be approximately evaluated as follows

th(tlglo)zw.ﬁ*(tlao) (2 —-70)
where
t
S(t) = f R(r, O (7 | £,) dr (2 —71)
to

In case of independent out-crossings, R(r,t) = 0 = S(t) = 0. In this case (2-70) reduces to the
well-known Poisson solution

hry(t| Ep) = fiH(E ]| &) (2 -72)

Unfortunately, it is difficult to relate any physical interpretation to the assumptions inherent in (2-67),
which seems to have been selected primarily in order to be able to evaluate the infinite series (2-63)
on closed form. As an example, (2-67) for n = 3 implies the following rather strange result for the 3rd
order out-crossing rate as follows from (2-64) and (2-68)

S (ta,t | £)fF (01,8 Eg)
+44 Ep) =24 = aE 5
fHrt(te, 11, t | Eq) 2{ S| E) s

{fFT(te, 11 | £0)FT (2| E10)}, (2 - 73)

where the symmetry operators are interpreted as indicated by (2-69).

A somewhat similar approach was suggested by Roberts (1968) and Kimura et al. (1987) for evaluating
the infinite sum in (2-43). Their assumption can be stated as follows
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t ity
ff;""(h,tlfgo)dtl fff;’*"*(tg,tl,tI&D)dtzdh
t tot
M) = = 0::1 o
[ £t | €,) dty [ [ (2,1 | &) dtadty
to tg tg

ti tn-2
[ [ | fgrttt(tna,.. te,t,t | Eg)day .. dtadty
tg tp to

oty

ff f f+ Tt (ta-1, .. ta, 1 | Ep) dtnor .. .di2 dty

tp to

i

(2 - 74)

As seen from (2-4), (2-74) is fulfilled in case of independent crossings from the safe domain, where
A1(t) = fiH(t | £,). Inserting (2-74) into (2-43) provides

fry (2] €)= fiF (2 lfzu)—)\l(t)(/f{"(h | £t} dts “//f++(tz,t1 | £, dtadty + ) -
to

t6 1o
f1+(t ! Eio) = ‘\l(t)FT!(t | 830) =

t

Fr (t]|&,) = /exp (— /AI{T)d'r) fit(t | Ep) dty (2 -175)

to 11

where A;(t) is evaluated from fit(t | €,) and f}+(t1,ts | &) as follows from the first statement of
(2-74). The method of Roberts and Kimura et al. can be generalized if out-crossing frequencies up to
and including the order (ng +1) is available. Then, the following quantity approximation is considered

t thg—-1
J [ Bt ot b] B )dta, - dty
to
Ano(t) = 222 ~
ng—1
[ [ fytltng, .ty | Ep)dtng - dty
to to
tno I‘nu
f f f f;).}’utz ++(tno+1:tno:---st1»t‘Slu)dtﬂo'!‘ldtﬂo"'dtl
t tno—ltng = -,ﬂu=2,3,...(2—76)
[ [ f A (g t1tngy oot | E1p) dinggrdtng -+ dty
ip tp
(2-43) can then be approximated as follows
ng—1 ¢
fr, (1) mo)_Z( 1y tlao)uno()Z(-l)’fF;:,-m | &) dts
j=0

to

“Ano(O) P (t | E5) , no=2,3,... =
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t t
F’I‘1(tIgln)=/exl)(‘“/'\nu(u)du)'
to t
ng ng~—1 r
S 1R (r ] £0) = Mno(r) Y (-1 /F;f,-(u) | £)du | dr 2-177)
Jj=0 j=0 to

The generalization of (2-77) was neither considered by Roberts nor Kimura et al.

Closure methods of the inclusion-exclusion series (2-63) for the hazard function and (2-42), (2-43)
for the first-passage time probability density function becomes necessary because of the divergent
terms at large excitation time intervals, and because only a rather limited number of terms can be
evaluated. However, both of the indicated closure methods are based on weak assumptions and seem
to be motivated primarily in order to be able to evaluate the series on closed form. Integral equation
methods, based on a truncation of the infinite series of the numerator and denominator of the formal
representation of the kernel function offer a more accurate and better motivated alternative.

Next, it is assumed that {X(t), t € [to, o[} and its time derivative {X(t), t € [to, co[}
form a Markov vector process

o= 5] -

As an example a non-linear and non-hysteretic single-degree-of-freedom system under
external excitation is considered, determined by the stochastic differential equation

dZ(t) = c(Z(t)) dt + d(t)dW(t) + e(t)dV (t), t €]to, 00[ , Z(to) = Zo (2-19)

w0 0] a0~ ] 0= ] 0[] s

c(Z(t)) is the drift vector and d(Z(t)) and e(t) represent the diffusion vectors of
the system. The component u(X (t), X (t)) in the drift vector indicates the restor-
ing force per unit mass of the oscillator. The generating sources {W(t), t € [to, 00[}
and {V(t), t € [to,o0[} have independent increments, which are also independent of
their initial values W(to) and V(to). {W(t),t € [to,00[} is assumed to have sam-
ple curves, which are continuous with the probability 1. These restrictions confine
{W(t), t € [to,o0[} to be a Wienerprocess, Nielsen and Iwankiewicz (1996). Because of
the introduction of the diffusion function d(t) it can without restrictions be assumed that
{W(t), t € [to,o0[} is a unit intensity Wienerprocess. {V (%), t € [to,00[} have sample
curves which are not continuous with probability 1. This confines {V(t), t € [to, o0}
to the classes of compound Poisson processes or a stable Lévy motions, Nielsen and
Iwankiewicz (1996). c(t) and d(t) signify deterministic modulation function of the gen-
erating stationary source processes {W(t), t € [to,00[} and {V(¢),t € [to,00[}. A more
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general formulation allows the diffusion vectors d(¢) and e(t) to depend on the state
vector Z(t). Such problems appear in case of parametric excitation processes with in-
dependent increments. However, this is never the case for external excitations, which
are the only excitations to be considered in this thesis.

Further, if the initial conditions Zy are deterministic or stochastically independent of
{V(t),t € [to,o0[}, and {W(t),t € [to,o0[} the response process {Z(t),t € [to,00[}
then becomes a 2-dimensional Markov process. The joint transition probability density
function of the Markov state vector from the state z] = [zo,Z0] at the time ¢y to the
state 27 = [z, 2] at time t > 1y is denoted 9iz)(z, Z,t | Zo, Zo, o).

In relation to the indicated 2-dimensional response process, first-passsage time failure is
considered in relation to the safe domain S; = {(z,2) | a(t) < = < b(t) A —o0 < Z < o0}.
If both barriers are restrictive the first-passage problem is referred to as a double barrier
problem, whereas the case a(t) = —oo V b(t) = oo is denoted a single barrier problem.

Below, a single barrier problem with constant upper barrier b is first considered. In
this case fin (b,%,t | &,)dtds indicates the joint probability of the first-passages in
the time interval |¢,t + dt] at the barrier b with out-crossing velocities in the interval
|z, 2+dz] on condition of &,. Using the Markov property the following integral equation
can then be formulated for fr. x(b,,t | &,) with an argumentation identical to the one

leading to (2-35), Nielsen (1990b)

t oo
fir (b2t | &) = 2 quzy(b, 3,1 | E) — /_/‘i’q{Z}(be,t | b, &1,81) -
tg 0
fXT, (b,j?htl } Eto)dildtl . (2 - 81)

where
sf q(zy (b, 2, t | 20, %o, t0)f( x}(x}(T0, To, to) dzadi
) (bt | £) =

. - 2—82
f f{x}{)‘(}(EO,Ioato)dmoxo ( )
Siq

f (X} X}(:c, i, t) signifies the joint first order probability density function of the processes
{X(t)}, {X(1)} at the time ¢, i.e. the joint probability density function of the stochastic
variables X(t) and X(t).

In case of non-Markov processes the _relevant kernel in (2-81) is given by
$Q{Z] (b: J}1t | gfo ng]to,h[ O{X(tl) =bA X(tl) = ‘:i:] })’ where 8]33131[ = m-re]tg,h[ ST’
indicating the rate of out-crossings at the time ¢ on condition of a first-passage at the
time t; with the out-crossing velocity ;. Due to the Markov property of the state
vector process {Z(t),t € [to,00[} the kernel reduces to the transition probability density
function as shown in (2-81). The inner integral in (2-81) provides transition from all
possible out-crossing velocities at the time ¢, to out-crossings with velocity z at the

time t.
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From the solution to (2-81) the first-passage time probability density function is given
by

Fri(t | E) = / Fm (b, | ) di (2 - 83)
0

Inserting the right-hand side of (2-81) into the right-hand side of (2-83) and application
of Rice’s formula provide

i

le(t Igfo) = 1+(t l Sto) — //fl-"(f l bsi'ltl)f)'(Tl(b_,-'b:'ltl | gto)dildtl (2 — 84)
0

to

fit@] ba1,t1) = _fom 2qqz)(b,z,t | b, 21,%;)dz is the first order out-crossing rate at the
time ¢ on condition of deterministic start in [X(t;), Xt )] = [b,¢1], t1 < t. The formu-
lation (2-84) should be preferred compared to (2-83) because the boundary condition
fr,(to | &) = fi(to | &) is exactly fulfilled.

Using the Markov property the solution to (2-81) can be expressed in a Neumann-series
of iterated kernels

fXT,(bii!t I g‘n) = :CQ'{z}(b,:é,t l gto)_

t oo
//iq{z}(b’j’tIb’:&l’tl)il‘?{Z}(b,ilvtl | &, ) dbyelly 450 s =
to 0
3
:af{x}{J‘r}(b,aa,t|&o)—//:&:i:lf{x}{x,(b,:b,t;b,:él,tl | £,) dirdty +--- (2 — 85)
to 0

If (2-85) is inserted into (2-83) the formal inclusion-exclusion series (2-43) is obtained,
using the generalization of the Rice formulas for joint conditioned crossing rates, Rice
(1944).

The main difference between the integral equations (2-35) and (2-81) is that the former
applies also to non-Markov processes. However, in (2-35) the kernel is introduced as a

new unknown function, which must be approximated in applications. This is not the
case in the formulation (2-81), which provides an exact calculation procedure for the

first-passage time probability density function for Markov vector processes.

For the double barrier problem with time-varying lower and upper barriers a(t) and
b(t), (2-81) is replaced with the coupled integral equations

fXT1 (b(t),x',t I Stn) = ("B - 6(t))Q{z} (b(t)vi'vt | &0) i
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/ j (‘T - b(t))Q{Z} (b(t)ai‘,t , b(tl)a j"latl)f)'(Tl (b(tl)vi'latl | Etg) dildt]"'
to b(ty)

t a(ty)
/ (& — b(t)) qqzy (b(2), %, t | a(t1), 21,t1) Fxp, (altr), &1, t1 | E,) dE1dty (2 — 86)

tg —oo

fXTl (a(t)’x"t l S‘O) s (é‘(t) a i‘)q.{z} (a(t)’i:at I gl‘o) -

t a(ty)
/ (d(t) - -’i)(I{z} (a(t)v"’;vt I a(tl):il’tl)f)i’ﬂ (a(tl), T1,t | Eto) dzydt;—

to —oo

/ / (d(t) - i‘)q{Z}(a(t)?x.at | b(tl): il,tl)fle(b(tl),i'l,h | gto) dz,dty (2 — 87)

to b(ty)

From the solution of (2-86) and (2-87) fr,(t | &,) is then obtained from

a(t)

fri(t| &) = /fm(b(t)ai,tlgta)dﬂ" ffm(a(t)aiaflfta)di (2 -88)
b(1) =08
1 St x(t)-b(t)

i Xpdt fi

x(0) /

()
Lo, da, \n(b(t))
“b(t)
X

Fig. 2-4: Out-crossings in the interval ]¢,¢ + dt] through an area element da, of the
failure surface Js;.




25

Next, consider a non-linear and a non-hysteretic-dynamic system of n degrees-of-freedom.
The state vector ZT(t) = [X(t), X(t)] made up by the displacement and velocity re-
sponse is assumed to be a 2n-dimensional Markov vector with the transition probability

density function gz)(x,X,t | Xo, X0, o).

The safe domain at the time ¢ is given by Sy = {(x,%) | x € s Ax € R"}. The surface of
the set s; is denoted Os,. 85, then becomes a cylinder in R?" with s, as the perimeter
set.

Consider an area element da; of ds, specified by the position vector b(t), and moving
at the velocity b(t) relative to a fixed frame of reference. The velocity of a sample curve
relative to the surface in direction of the outward directed unit normal vector n(b(t))

is given by

X.(b(t)) = n"(b(t)) (X(t) — b(t)) (2 - 89)

fxr, (b(t), %, | £, ) da;: dxdt indicates the joint probability of first-passages in the time
interval J¢,t + dt] at the surface area element da; at position b(t) with the out-crossing
velocity vector in the volume dx centred at x on condition of &;,. Out-crossings in the
time interval ]t,t + dt] take place if X(t) is placed in the volume element da, X, dt, see
fig. 2-4. fxp (b(t),%,t | &) then fulfils the following integral equation

fir, (b(8),%,t | £,) = nT(b(t)) (x — b(t))g(zy (b(), %, t | E4,) —

/HT(b(t)) (x— b(t)) / /Q{z} (b(t),f(,t | b(tl),il,tl) .

o 95, Aty
fir, (b(t1), %1, 11 | &) dX1day, dty (2 — 90)
where
A, = {x € R" | nT(b(t)) (x — b(t)) > 0} (2 -91)

(2-90) generalizes (2-81) in the same way as the Belyaev formula for the out-crossing
rate of a vector stochastic process, Belyaev (1968), generalizes the Rice formula for
the out-crossing rate of a scalar process. (2-90) defines the integral equations for all
points b(t) of the surface ds;. In case of numerical solutions the failure surface 0s,
has to be divided into finite subdomains within each of which fy . (b(t),%,t | &,) is
considered constant as a function of b(t). A closed system of integral equations for
these quantities may then be obtained from (2-90). Hence, in contrast to (2-81) and
(2-86), (2-87) no exact formulation of the problem is obtained in this case. The level
of approximation depends on the roughness of the discretization of the failure surface.
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Obviously, a finer discretization should be applied where out-crossings are likely to
occur. The first-passage time probability density function is next obtained from

frt160)= [ [ Fin (o0t €) dxde (2-92)

63; Ap

Finally, 1t is assumed that the restoring force of the oscillator (2-79) is related with
hysteresis. The equations of motion can then be written

dZ(t) = c(Z(t))dt + d(t)dW (t) +e(t)dV(t) , t € [to,00[, Z(to) =Zo  (2—93)

X(2) X(@®)
Z(it)= | X(@) |, c(Z(t) = —au(X(t)',X(t)) — (1 - a)Q(?) (2 — 94a)
| Q(1) £(X(1), Q1)) X (1)
[0 0
d(t) = d(t)] , e(t) = {e(t)} (2 — 94b)
. 0 0

Q(t) is the hysteretic component of the restoring force, which is confined to the interval
[—gy, gy] With probability 1, and « is the non-hysteretic fraction of the total restoring
force. The 3rd equation in (2-93) represents the constitutive equation of this component.

x(X(t),Q(t)) can be interpreted as a state dependent spring stiffness of the restoring
force. This is a non-linear and a non-analytical function of the state variables. Ex-

pressions for this quantity have been given for various simple models of hysteresis such
as the bilinear oscillator, Kaul and Penzien (1974), and the Bouc-Wen hysteresis, Wen

(1976), see (3-49), (3-50), (3-51).
(2-81), (2-82) and (2-83) are then replaced with

t oo q
fXQTl(baiaQ:tlgto):I.Q{Z](bii'7q:t|gto)_"///iQ{Z}(b:i:%t'b:ila‘hatl)'

to 0 —gqy

f)'(QTl(bai'l,QI;tl | £1,) di1dgy dt; (2 - 95)

[ agz3(b. 2,9, | 20,20, 90,%0)f(z} (0, %0, q0, to) dzodiodgo

. Sto
bz,q,t| &) = 2 — 96
s [ fizy(z0,20,90,t0) dzozodge ( )
Stq
oo g
le(t l gto) =/ / fXQTl(b!ia%t | gto)di:dq (2—97)

0 —qy
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gy 1s the yield value of the hysteretic restoring force component. In case of a bilinear
oscillator this value is attained with finite probability. Consequently, the transition
probability density will have delta-spikes at Q(t) = —q, and Q(t) = g¢,. As seen
(2-95) is a special case of (2-90), where 0s; = b X [—gy,qy]. The integral equations for
more involved hysteretic systems are equally given by (2-90), when 3s; indicates the set
product of the safe domain of X(t) and the sample space of all hysteretic components.

The integral equation (2-35) was first obtained by Bernard and Shipley (1972) and Shipley and Bernard
(1972) dealing with single-degree-of-freedom systems under white noise excitation. The applied deriva-
tion relied on the Markov property of the state vector of this system. In the present notation they
obtained the following expression for the kernel in the single barrier problem as follows from (2-84) and

comparison with (2-35)

i B Gt 1)
+ (1)y _ + . XT ] i
fir(t] &g N Fy )_/fl (t]6,21,0) Frils 160 dz; (2 - 98)
0

It should be noted that Bernard and Shipley did not obtain any of the integral equations (2-81), (2-86),
(2-87), (2-90), (2-95) or similar equations valid for Markov systems, but concentrated on specifying

various approximations to ff (¢ | &, N _'F'(:))_

Bernard and Shipley (1972) claimed that the separation of the integrand in (2-35) into a kernel function
and a first-passage probability density function is unique for Markov systems. Nielsen (1980) demon-
strated the nature of (2-35) as a fundamental identity, not restricted to Markov processes, and derived
from the integral equation the formal inclusion-exclusion series (2-43) and (2-46) for the first-passage
probability density function and for the kernel in terms of joint conditioned out-crossing rates. In the
same paper the integral equation (2-55) for the nth-passage probability density function was specified,
along with the formal expansions (2-56) and (2-58) for this quantity and the associated kernel. The
integral equations (2-48), (2-51) for the conditioned first-passage probability density function and the
expansions for the associated kernels (2-50), (2-54) were derived by Nielsen (1990a).

The formulation (2-59) and the associated formal expansions (2-60), (2-61) in conditioned crossing
rates of samples in the safe domain at specified instants of time, f,ﬂ'""*(tm o 815 € T | Efo), were
suggested by Thoft-Christensen and Nielsen (1982).

For a one-dimensional Markov process { Z(t),1 € [tg, o0} in combination with a single barrier problem
with time varying upper barrier b(t), the first-passage time probability density function fulfils the
integral equation

t

fry (| &) = cz) (b(2), t | &) - /C{Z}(b(i),t [ 6(t1), t1) fry (11 | £¢p) dta (2 — 99)
tf
[ ez (b(t),t | z0,%0) fx} (20, t0)dzo
8
b(t),t]| &) = -,
St [ Fixy(z0,t0)dzo (2 = 100)
Stg

c(zy(b(#),1 | z0,t0) is the probability current through the boundary b(t) at the time ¢ on condition of
a deterministic start at zg at the time tg. Let Dy(z,t) be the derivative moment of Nth order of the

process. Then, see e.g. Stratonovich (1963)
o (_I)N—l 6N-1

crzy(b(t),t] z0,t0) = N1 5, NI (Dn(b(t), )z (5(2), t | 20,t0)) (2 -101)
N=1
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q¢z}(2,t | 20, t0) signifies the transition probability density function of the Markov process. For diffu-
sion processes the derivative moments above the second order vanish. This is not the case if the input
noise to the system is a compound Poisson process.

(2-99) has here been stated using the same argumentation as in (2-35). Alternatively, (2-99) was
formally derived by Ricciardi et al. (1984) for the case of deterministic start based on an identity
by Siegert (1951, eq. (2.12)). In their final result a factor 2 appears in front of both terms on the
right-hand side of (2-99), originating from an interpretation of the integration limits different from the
one indicated above. The system of integral equations (2-81), (2-86), (2-87), (2-90), (2-95) for Markov
systems was derived by Nielsen (1990b).

Example 2-2: Approximations for the kernel and the inhomogeneity of inte-
gral equations (2-35) and (2-41) and related bounding technique

Consider a linear single-degree-of-freedom oscillator subjected a Gaussian white noise {W(t), t €]0, co[}

m(X + 2w X +w2X)=W() , t>0

X(0)=Xo , X(0)=Xo

(2 - 102)

The time will be normalized with respect to the eigenperiod Ty = 3}—%. The boundary conditions will
be normalized with respect to the stationary variance of the oscillator given by, e.g. Nielsen (1993)

w8
= — 2—-103
UX.D zcwgmz ( )

where Sy is the auto-spectral density function of the Gaussian white noise.

The following 4 first-passage time problems will be analysed

1. Symmetric double barrier deterministic start problem.
Xo=Xo=0, (=008, b(t) = —a(t) =2.50x

2. Single barrier stochastic start problem.
¢ =0.01, b(t) =200x,

3. Single barrier deterministic start problem.
XG :X[] = ) 1 C = 0.08 y b(f.) :2_5gx,0 (]_ = % TLU)

4.  Symmetric double barrier deterministic start problem.
Xo=Xo=0,¢=008, b(t) = —a(t) = 2.50x,0 (1- L £) , t€[0,7Tp].

The safe domains in the last 2 problems are shown in fig. 2-5.
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2.501_9 Ny

Fig. 2-5: Time varying safe domains.

The following approximation is used for the kernel of the integral equation (2-35), obtained by trun-
cating the numerator and denominator series of (2-46) to the first term

+ M) o ft . t] &)
f; (tlé‘oﬂ}"‘l )._—f#(h = (2 - 104)

The approximation for the first-passage time probability density function obtained by numerical inte-
gration of (2-35) with the kernel (2-104) is designated f,gf:)(t | £0) in the following.

For the deterministic start problems the approximation (2-104) is always applied based on conditioned
crossing rates evaluated from the joint pdf of [X(t), X (¢)] conditioned on [X(0), X(O)] = [0,0]. For the
stochastic start problem the following approximations for the kernel and the inhomogeneity will also
be considered

FHt(t,t)
fit (t | & N ffj;)(;;)» —2f1+(t11) (2 - 105)
i) &)= ——— ] (2 - 106)
"x,o)

The approximation (2-104) is reasonable because both the numerator and the denominator are upper
bounds as shown below, and thus counterbalance each other to some extent. At high barrier levels with

independent crossing rates fl‘f‘(t | €14 ﬁ}'f:)) ~ fl'"(t) As follows from (2-4) this limit is also attained

asymptotically by the right-hand sides of (2-104) and (2-105). Hence, both of those approximations

are asymptotically correct at high barrier levels.

(2-105) was first suggested by Bernard and Shipley (1972) and Shipley and Bernard (1972). The

denominator in (2-106) was a modification due to Nielsen (1980) to insure the fulfilment of the boundary
+

condition fp, (0 | &) = % as seen from (2-30). In comparison Bernard and Shipley applied the

approximation fiF(t | &) ~ f1+ (t). The approximation for the first-passage probability density function

obtained by numerical solution of (2-35) with (2-105), (2-106) is designated fgi)(t | £).

The next approximation to the kernel is obtained by truncating the numerator and denominator series

after 2 terms. Replacing conditional out-crossing rates by corresponding unconditional out-crossing as

in (2-105) the following kernel approximation is obtained, Nielsen (1980)

1
fHH(t,t) - ff:f'++(t2,f1)dt2
0

I (t |&onF)) =~ (2 - 107)

ty
fit ) = [ £ (ta,tr)dt .
0

|
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The approximation for the first-passage time probaBility density function obtained by numerical solution
of (2-35) with (2-106), (2-107) is designated f1:(t | £).

Finally, the integral equation (2-41) is considered. For the inhomogeneity and for the kernel the
following approximations are applied, Nielsen (1980)

t 1
) &) - / f (bt | £0)dt :ﬁ(m:)— / f#(n,z)dtl) (2 - 108)
0 0 0

ox

T (ta, 11, 1)

7 () (=109

2++(t1,f[50 ﬂ}.‘(:)) ~

The approximation obtained by numerical solution of (2-41) with (2-108), (2-109) is designated f,S,.d)(t |
&p). '

Since the integral on the right-hand side of (2-35) is non-negative, one has the following bounding for
the first-passage time probability density function

fro (] &) <S80 = fiH(t | &) (2 - 110)

1

The right-hand side of (2-110) will be referred to as the 1st upper bound.

The general technique for construction bounds follows from (2-42). Ignoring the non-negative integral
within the brackets on the right-hand side succeeding upper and lower bounds are constructed depending
on the sign of (=1)®~1, The 1st lower bound and the 2nd upper bound become

fry(t £0) > RE) () = fit(t ] &) - /fi**(tl,t | £0)dty (2 - 111)
0

i t )
fr,(t] &) < SP(t) = ;‘(:160)—ff2++(t1,t|su)dt1+//f;r++(t2,t1,t|go)dtzdtl(z_m)
0 0 0

Ignoring the non-negative integral within the brackets on the right-hand side of (2-30) the following
upper bound is obtained

+
fri(t]| &) < f}(—g (2 -113)

(2-113) is an alternative to (2-110) but is expressed in the unconditioned out-crossing rate.

The various approximate results for the first-passage time probability density function along with the
indicated bounds have been shown in fig. 2-6 for problem 1 defined above. The results have been

compared to the simulation results of Crandall et al. (1966). Obviously, f,g,f:)(t | £o) is doing better in

this case than the more involved approximations féfl)(t | £o) and f,g..r:)(t | £&o). Hence, the conclusion is

that these approximations should be abandoned. The approximations _f,gfi)(t | £) and fg(ﬁb)(t | €o) will
both be further investigated in the following examples. !
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fr(t | &)To
A

Sri.}l)(t)To (1st upper bound)

0.08 / I |
/‘ S%)(t)To (2nd upper bound)

0.07 “
| |
£t | €)To
0.06 F

0.05

fi((‘f)(tlgﬂ)Tﬂ f(“)(tfé‘ T
e S G R AT

/
AN S e
f/ \

0.02 Y
0.01 F \
J \R%)(t)Tu (1st lower bound)

0 1 2 3 4 5 6 7 8

Fig. 2-6: First-passage time probability density function. Deterministic start problem with symmetric
constant double barriers. { = 0.08 , b(t) = —a(t) = 2.50x,0. Nielsen (1980).

fr(t| &0)To

)

0.07 [ 1
/S.gnlz)(t)To (1st upper bound)

/

0.06 /
0.05
0.04 //
D.03
/ F(¢ | &)T,
0.02 /
0.01 é/\\

R ()T, (1st lower bound)
| | t/T
1 2 3 4 5

0.00
0

Fig. 2-7: 2nd-passage time probability density function. Deterministic start problem with symmetric
constant double barriers. { = 0.08 , b(t) = —a(t) = 2.50x . Nielsen (1980).
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Upon inserting any approximation to fr, (t | £&) into the right-hand side of (2-55) the 2nd-passage
time probability density function can next be evaluated numerically. The kernel given by (2-58) is
approximated as follows

t t

[ttt )dt [ fHHH (6,1, t)dty
f;‘(t|£¢,mr§f))z"t ~ (2 - 114)
[ fHt(ta,ta | &0)dty J £ (t2, t1)dt,
0 0

The approximation to the 2nd-passage time probability density function obtained by numerical solution

of (2-55) with the inhomogeneity fit (t | &) — f,f,::)(t | £0) and with the kernel approximation (2-114) is
: (a)

designated fr, " (1 | £a).

From (2-55), (2-56) the following bounds can similarly be derived for the 2nd-passage time probability

density function, Nielsen (1980)

t
fr,(t] &) < 5%)@) = ‘/‘f:;."-'-(tl vt Eo)dty (2 - 115)
0
, t t
fr,(t| &) 2 R&«‘z’(t) =/f§*+(t1,t|£o)dt1 —2//f3"'++(tz.t1,t|80)dtgdt1 (2 — 116)
0 0 0

The obtained result along with the indicated bounds has been shown in fig. 2-7. f,g;)(t | o) will
maybe start decreasing at later times than shown in the figure.

Fig. 2-8 shows the results for the approximation fg’)(t | &) for problem 2 along with associated
bounds. The simulation results are obtained from ergodic sampling based on the identity (2-31). Fig.

2-9 shows the first-passage time distribution function Fg)(t | &) obtained from the approximation

£(t ] &) of fig. 2-8.

le (t ! ED)TO

i

S I N N

fCrandall et al. (1966)

d |
e £HOT

320 1 375y (1st upper bound (2 — 113))
0.10
- (t | £0)To
o
Qo ° &
. \Rg[}l)(t)Tg (1st lower bound) - /T,
o 1 2 8 4 5 8 7 8 9

Fig. 2-8: First-passage time probability density function for a single barrier stochastic start problem.
¢ =10.01, b(t) =2.00x,0. Nielsen (1980)
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FP(| &)

i
0.4
0.3

.‘—-"'-—’“
/
//

0.2 //
0.1 /
0.0 = t/Ty

0 1 2 3 4 5 6 7 8 g 10

Fig. 2-9: First-passage time probability distribution function for a single barrier stochastic start
problem. { = 0.01, b(t) = 2.00x . Nielsen (1980).

fri(t]&)To

A

1.10

1.00

0.90 /
0.80 /
0.70

/S-%)(t)To (1st upper bound)
0.60 /
0.50 /

0.40
//\ #S-(I?l)(t)Tg (2nd upper bound)

o \\\/ /f%?’(t | €0)Ts
020 \A 12t | £)T
0.10 / \ \%’fg)ﬁ | €0)To
' )
\/\% Ry, (t)To (1st lower bound)
6 1 2 3 4 5

Fig. 2-10: First-passage time probability density function. Deterministic start problem with a single
time-varying barrier. { = 0.08, b(1) = 250x o (1 - %TLO) Nielsen (1980).
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fr,(t| &)T,
|

1.00

0.90 /

0.80
/S%)(t)To (1st upper bound)

0.70 /

0.60

/
/

A\

e A Ve
' \

0.30 / \
0.20 / \
0.10

/ \R%)(t)To (1st lower bound)

0.00 K | o t/To
5

0 1 2 3 4

Fig. 2-11: 2nd-passage time probability density function Deterministic start problem with a single
time-varying barrier. { = 0.08, b(t) = 2.50x g (1 - —) Nielsen (1980).

In fig. 2-10 the various approximations for the first-passage time probability densnty function are
shown for problem 3 along with various bounds. It is noted that fT )(t | £&) and fT )(t | £&) are almost
identical as long as the first lower bound remains positive.

Fig. 2-11 indicates the approximation fTa (t | £&0) to the 2nd-passage time probability density function.
The probability of at least 2 failures in the interval [0,5T,] can be calculated as F (STg | &) =
ST 59t | €0)dt = 0.8788.

In fig. 2-12 the approximation f‘l" )(t | £0) is shown for problem 4 along with the 1st upper and the
1st lower bounds. Theoretically, the probability of failure in the interval [0,77T5] is 1 in this case.

The considered approximation provides F(a)('TTo | £0) = 1.0015. This accuracy can generally not be
expected in case of longer excitation 1nt.ervals under stationary conditions (stationary excitation with

constant barrier).
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fr(t] &)

!

1.30

1.20

1.10 /
1.00
/.S',ErllJ (t)To (1st upper bound)

0.90 /

0.80

0.70 /
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WY
i

0.40

0.30 /
0.20 /. \\
K AV )T,

0.10 /] / \

0.00
0

e t/Tp

1 2 / 3 4 5 6 7
R%«ll )(t)T{) (1st lower bound)

Fig. 2-12: First-passage time probability density function. Deterministic start problem with symmetric
time varying double barriers. ¢ = 0.08,b(t) = —a(t) = 2.50x,0 (1 - % TLD) , t € [0,7Tp]. Nielsen
(1980).

For an oscillatory system with time-invariant safe domain subjected to stationary white noise excitation,
the first passage time probability density function for both deterministic and stochastic start problems

can be written as follows, Mark (1966)

o0

fr, (1 |£t0)=ZCﬂe_)\n(t-iU) (2-117)

n=1

An signifies the nth eigenvalue of the Kolmogorov forward and backward operators with absorption
on the entrance and the exit part of the failure surface 85 in the phase space, respectively. (2-117) is
proved in section 3.2.2, cf. (3-146), to be generally valid for all Markov systems described by (2-80}, if
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80), if only the structural system and the safe domain are time-invariant, and the increments of the
generating sources dW(¢) and dV/(t) are stationary. The structural system is time invariant if the
drift vector and the diffusion vectors are not explicitly dependent on time, i.e. c(z(t),t) = c(z(t)) and
d(Z(t),t) = d(Z(t)). The smallest eigenvalue, A1, is known as the limiting decay rate, corresponding to
the asymptotic behaviour as follows from (2-117), fp, (¢ | &) x cre~21(t=%0) _In case of independent
out-crossings, A; = f1+ , cf. (2-72). As seen from fig. 2-6 and fig. 2-8 the simulation results are
asymptotically parallel as ¢ — {; — oo to the approximations f,gf:)(t | €&0) and f;.? (t | £0). This means
that the limiting decay rate can be calculated relatively accurately from this approximation. This
property has been observed in other applications to the integral equation method, where similar kernel
approximations are applied as seen in the succeeding numerical example 2-4.

fr (t| &)To

T T T T T = I T T
a) 0_141 ........... T B e e e i SRR PR R :

0. 12K s ............ .............. AT b g U A e T .....

0. 1k i, S — T W WO e R IR [, s % e

i ; ! - : ; . t/To

“t/Ty

Fig. 2-13: a) First-passage time probability density function. b) Decay rate coefficients. Simulation
results based on 100000 out-crossings. Linear SDOF oscillator. Single barrier stochastic start problem.

¢ =001, b=2.00x,.

The existence of a limiting decay rate has been demonstrated in fig. 2-13, where the first-passage time
probability density function has been estimated from Monte-Carlo simulation based on (2-31) for a
single barrier stochastic start problem with ¢ = 0.01 og b = 2.00x 9. The length of the applied time
series has been adjusted so totally 100000 intervals spent in the safe domain is used in the estimation
of Fr(r). Define the so-called decay rate coefficient & = A1/f}. A running estimate, a(t), is next
defined from the estimated values of fr, (¢ | &) and the value 1 period ahead, fr,(t + To | &)
assuming fr, (t | £0) = cie~*1!. As seen from fig. 2-13b a stationary estimate o ~ 0.2 is obtained for
t > 10Tp. At the estimation of fr, (¢ | £) no attempts were done to adjust the simulation results to
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+
the boundary value fr, (0 | &) = E‘JIT] = ﬁ!{g?j = 0.13849. The corresponding simulated values are
Jr,(0 | &) = 0.13966.

Example 2-3: Bounding techniques related to the integral equation (2-59)

Bounds similar to (2-110), (2-111) and (2-112) can with an identical argumentation be derived from
(2-59) and (2-60). The 1st upper bound and the 1st lower bound to the first-passage probability density
function based on these results become

(] Eg) S SCE Ery o irm ) = FH (8 Ery e 7 | Eno) (2 - 118)

t
AT RIS SNy £ 17 N— €:o)~ffz++(t1 o8 Ery e 7 | Etg) dt1 (2 — 119)

to

(2-118) was originally stated by Shinozuka and Yang (1969). Assuming the considered response pro-
cesses to be sufficiently smooth the right-hand side of (2-118) forms a non-increasing sequence, and the
right-hand side of (2-119) forms a non-decreasing sequence as the number m of the control points is
increased. Hence, these sequences converge to specific limits as m — oco. Let é;m = max(riy1 — 7).
If 6m — 0 as m — oo, it can further be shown that the sequences converge monotonously to the
first-passage time probability density function, Thoft-Christensen and Nielsen (1982)

S%)(t; Erpyrytm) L 1y (8] E2p) as bm — 0 (2 - 120)
RE)(t; Erypoern) 1 f1y (] E1) 35 6m — 0 (2 - 121)
For a fixed m the optimal upper and lower bounds can be found by the instants of time 7,--- ,

which minimize the upper bound and maximize the lower bound. These improved bounds become,
Thoft-Christensen and Nielsen (1982)

(1)= = : (1) (4.
Sy (t,m) = b g.!.l.'}(,-m«STl (t; Eryyove 7)) (2 -122)

(1) = (1) ;.
Ry (tm)= _ max = Rp(tEnpirm) (2 - 123)

If the first-passage time probability density function is a non-increasing function with time as is the case
for the stochastic start problem with stationary response processes and a time-invariant safe domain,
these bounds may be sharpened in the following way, Thoft-Christensen and Nielsen (1982)

fry(t] &) < S%)"(ﬁ, m) = !l?[?,xoo[sgl).(tl ,m) (2 — 124)
fry(t] &) 2 R%)"(t. m) = ‘lg}iglt]R%)'(tl ,m) (2 - 125)
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v [ g,?*(t, 0)To = f7 (t | £0)To (upper bound (2 — 110))
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V

I 1(0.92478,0.045050) /S5 (6:0)To (upper bound (2 - 124))

0.04 . ’
— T ————] Approximation (2-126)
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Fig. 2-14: Upper bounds to the first-passage time probability density function. Single barrier stochastic
start problem. m =0, (=001, b=2.00%,. Thoft-Christensen and Nielsen (1982).

The linear single-degree-of-freedom system oscillator (2-102) is considered again. A single barrier first-
passage problem with stochastic start is considered. The damping ratio'is ( = 0.01 and the barrier
level is b = 2.0 x .

Fig. 2-14 shows the variation with the time of the first upper bounds S,(I.ll)'(t, 0) and S.(;l)“(t, 0) as given
by (2-122) and (2-124) for the case of no internal control points, i.e. m = 0. The first local minimum
fiH(t1 | €0)To = 0.045050 at the time t = ¢; = 0.92478 Ty is also the global minimum, so sg:g"(t, 0)
follows fit(t | £0) up to t = t; and is given by S.g_,}l)"(t,l)) = fH(t1 | &) for t > t;. The indicated
simulation result was obtained from ergodic sampling based on (2-31) with analytical calculation of

f+

1 ;
B = P_(]S‘o_) to insure the correct boundary value of fr, (0 | Sp).

fr.(t| &)To
0.16

O TG, 16T, & = 0061

i I
( £ (6 €n 1 £)T0, 7 =1.019

0.08

i fiF (4 &, | &)To, % = 2.016

4 S%)*(t, 1)Tp (upper bound (2 — 122))
0.041 e
e 5;1 "(¢,1)Ty (upper bound (2 — 124))
| Simulation
N ! * + . + t/To

0.000 5 + : ' ok

Fig. 2-15: Upper bounds to the first-passage time probability density function. Single barrier stochastic
start problem. m =1, (=0.01, b=200xg. Thoft-Christensen and Nielsen (1982).
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7 7 F(t1,E0, | £0)To
0.061 0.961 0.04050
1.019 1.941 0.03723
2.016 2.939 0.03712

Table 2-1: Local minima of the 1st upper bound, m = 1.

In fig. 2-15 the time-variation of the corresponding upper bounds S'g,,ll)‘(t, 1) and S,E,})‘*(t, 1) with 1
control point is shown. Generally, the optimal position of this control time, 7, is placed 0.907 —0.927p
prior to the variable time ¢. This is approximately the time needed to perform an eigenvibration in the
safe domain from [z, z] = [b, 0] until some position on the exit boundary [b, 2], 2 > 0 is reached. For a
corresponding symmetric double boundary problem 71 will be approximately 0.407p — 0.42Ty. In any
case the search for an optimal position of 71 can be restricted to a very narrow interval, and it can be
performed correspondingly fast. The local minima of _1"]"'(t;£-r1 | £), attained at the instants of time
t = t;, and the corresponding optimal positions of the control time 71 are shown in table 2-1. The
local minima of S.g.}l)‘(t, 1) are decreasing up to and including the 3rd local minimum, so S;}l)" (t,1) is
passing through these minima, and is constant to the right of the 3rd local minimum.

([ &)T
0.16

+

-

0.12

',f+(t;£:1,,, | €&)To, (7, 7) = (0.046,0.091)
0.08 Kfl (t; Eryyrs | €0)T0s (75, 72) = (0.975,1.039)
rf;f(t;an,,, | &)To, (7, 7) = (1.019,2.028)
st | €0)To, (F,7) = (2.002,3.021)

—

0.04
e
\ % s,ﬁ,,ll).-(t,2)To (upper bound (2 — 124))
i (3 Simulation
0.00 + 4 : : | t/Ty
0 " 4 6 8 10

Fig. 2-16: Upper bounds to the first-passage time probability density function. Single barrier stochastic
start problem. m =2, (=0.01, b=200x . Thoft-Christensen and Nielsen (1982).

= 7 %’; FH(t1iEri e | €0)T0
0.046 0.091 0.978 0.03943
0.975 1.039 1.937 0.03415
1.019 2.028 2.950 0.03375
2.002 3.021 3.942 0.03320

Table 2-2: Local 2-2: Local minima of the first upper bound, m = 2.
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80), if only the structural system and the safe domain are time-invariant, and the increments of the
generating sources dW (t) and dV(t) are stationary. The structural system is time invariant if the
drift vector and the diffusion vectors are not explicitly dependent on time, i.e. c(z(t),t) = c(z(t)) and
d(Z(t),t) = d(Z(t)). The smallest eigenvalue, Ay, is known as the limiting decay rate, corresponding to
the asymptotic behaviour as follows from (2-117), fry (] &) ox cre=21(t=10)  In case of independent
out-crossings, Ay = fi}, cf. (2-72). As seen from fig. 2-6 and fig. 2-8 the simulation results are
asymptotically parallel as t — ¢ — oo to the approximations f;‘:)(t | &) and f,g:) (t | £0). This means
that the limiting decay rate can be calculated relatively accurately from this approximation. This
property has been observed in other applications to the integral equation method, where similar kernel
approximations are applied as seen in the succeeding numerical example 2-4.

fr (] &)T,

T T T T T T T T
a') O 1 fsimenasig B R R b — Do anecaa e R P RRRPRRY. R Do FRTRR.

0. 12 ... ............ .......... e ........... ..........

. t/To

(23
bj- = =
1.5_ .....................................................................................................
I_ ...............................................................................................
il U VRN, S— . T
; 3 1 1 _L | :
% 5 10 15 20 25 30 35 40 t/Ty

Fig. 2-13: a) First-passage time probability density function. b) Decay rate coefficients. Simulation
results based on 100000 out-crossings. Linear SDOF oscillator. Single barrier stochastic start problem.

C = 001, b= 2.00’_}('0.

The existence of a limiting decay rate has been demonstrated in fig. 2-13, where the first-passage time
probability density function has been estimated from Monte-Carlo simulation based on (2-31) for a
single barrier stochastic start problem with ¢ = 0.01 og b= 2.00x,. The length of the applied time
series has been adjusted so totally 100000 intervals spent in the safe domain is used in the estimation
of F(r). Define the so-called decay rate coefficient o — A1/fF. A running estimate, a(?), is next
defined from the estimated values of fr,(t | &) and the value 1 period ahead, fri(t+ Ty | &)
assuming fr, (t | &) = c;e~*1'. As seen from fig. 2-13b a stationary estimate a ~ 0.2 is obtained for
t > 10Tp. At the estimation of fr, (¢ | &) no attempts were done to adjust the simulation results to
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+ .
the boundary value fr, (0 | &) = _‘jEEL = Pfs: S = 0.13849. The corresponding simulated values are
fr, (0| &) = 0.13966.

Example 2-3: Bounding techniques related to the integral equation (2-59)

Bounds similar to (2-110), (2-111) and (2-112) can with an identical argumentation be derived from
(2-59) and (2-60). The 1st upper bound and the 1st lower bound to the first-passage probability density

function based on these results become

Fry(t] E) € ST (8 Ery o rn) = ST (6 Ery o rm | Et0) (2 - 118)

t
le (t l 6‘0) ZR(TEI)(t; Eris'" irm) = of{'-(t; ETI 9 Tm I Etﬂ)_]f;-+(tl Ft; ETl."' 1T IE‘Q) dtl(z . 119)

to

(2-118) was originally stated by Shinozuka and Yang (1969). Assuming the considered response pro-
cesses to be sufficiently smooth the right-hand side of (2-118) forms a non-increasing sequence, and the
right-hand side of (2-119) forms a non-decreasing sequence as the number m of the control points is
increased. Hence, these sequences converge to specific limits as m — oco. Let 6 = max(ri41 — 7).
If 6m — 0 as m — oo, it can further be shown that the sequences converge monotonously to the
first-passage time probability density function, Thoft-Christensen and Nielsen (1982)

S,(I.ll)(t; Erpvovrm) L fr (E| €2y) a8 6m — 0 (2 - 120)
R Eryyoirn) 1 F1y (8] E1g) 25 6m — 0 (2-121)
For a fixed m the optimal upper and lower bounds can be found by the instants of time 7y, -+ , 7,

which minimize the upper bound and maximize the lower bound. These improved bounds become,
Thoft-Christensen and Nielsen (1982)

(1)= — : (1) 4.

Sr, (t,m) = sy ::mrl:r <tST‘ (& Eryyoeviron) (2 -122)
()% (4 = ROt &,y =

RT’- ( ,m) tp<my EE)ETM(t Iy ( E M) (2 123)

If the first-passage time probability density function is a non-increasing function with time as is the case
for the stochastic start problem with stationary response processes and a time-invariant safe domain,
these bounds may be sharpened in the following way, Thoft-Christensen and Nielsen (1982)

(1)+» _ (1)»

fry(t] &) < Sp " (t,m) = :fe"['é‘,"m[STi (t1,m) (2 - 124)
(1)e= _ . (1)=

fry(t| &) 2 Ryp""(t,m) = tlreri::ﬂRTl (t1,m) (2 —125)
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fri(t] &)
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Fig. 2-14: Upper bounds to the first-passage time probability density function. Single barrier stochastic
start problem. m =0, (=0.01, b=20 ox,0. Thoft-Christensen and Nielsen (1982).

The linear single-degree-of-freedom system oscillator (2-102) is considered again. A single barrier first-
passage problem with stochastic start is considered. The damping ratio'is ¢ = 0.01 and the barrier
level is b = 2.00x,0.

Fig. 2-14 shows the variation with the time of the first upper bounds S(l)'(t 0) and S(I)"(t 0) as given
by (2-122) and (2-124) for the case of no internal control points, i.e. m = 0. The first local minimum
fif(t1 | £0)To = 0.045050 at the time ¢ = ¢; = 0.92478 T} is also the global minimum, so S(l)"(t 0)

follows fit(t | &) up to t = t; and is given by S(l)"(t 0) = f*(t1 | &) for t > t;. The indicated
simulation result was obtained from ergodic samplmg based on (2-31) with analytical calculation of

1 _f,"'

BlL] = Pisgy t© insure the correct boundary value of fr, (0 | So).

le(t I £G)T0
0.16
)
0.12
Z & [&)To, 74 = 0.061

VA En | &)Ts, = 1.019

0.08
L fl+(t; gﬂ | ED TU1 % = 2.016 i
ook | ! A5z, (£, 1)To (upper bound (2 — 122))
) R (1)“(t 1)Ty (upper bound (2 — 124))
i Simulation
+ + + -+ . - t/TU
L 2 4 8 8 10

Fig. 2-15: Upper bounds to the first-passage time probability density function. Single barrier stochastic
start problem. m=1, (=001, =20 ox,0. Thoft-Christensen and Nielsen (1982).
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% 'Ii"t ?(tl 1 87'1 i Eu )Tg
0.061 0.961 0.04050
1.019 1.941 0.03723
2.016 2.939 0.03712

Table 2-1: Local minima of the 1st upper bound, m = 1.

In fig. 2-15 the time-variation of the corresponding upper bounds S,(I}I)’(t, 1) and S,(I.ll)“(t, 1) with 1
control point is shown. Generally, the optimal position of this control time, 7, is placed 0.907; - 0.927}
prior to the variable time ¢. This is approximately the time needed to perform an eigenvibration in the
safe domain from [z,z] = [b, 0] until some position on the exit boundary [b, z], > 0 is reached. For a
corresponding symmetric double boundary problem 7; will be approximately 0.407p — 0.42T,. In any
case the search for an optimal position of 71 can be restricted to a very narrow interval, and it can be
performed correspondingly fast. The local minima of fiF(t; &, | €0), attained at the instants of time
{ = #1, and the corresponding optimal positions of the control time 7, are shown in table 2-1. The
local minima of Sg}l)'(t, 1) are decreasing up to and including the 3rd local minimum, so S,(T]])“(t, 1) is
passing through these minima, and is constant to the right of the 3rd Jocal minimum.

fr(t] &)To

0.16
0.12 T
(| 8T, (£, 7#) = (0.046,0.091)
0.08 i (4, | &0)To, (3, %) = (0.975,1.039)
i f (& m | €0)To, (3, 7) = (1.019,2.028)
\]/ lff;‘(t;fﬁ,,, | €&0)To, (7, 7%) = (2.002,3.021)
0.04 I — (1)e»
T M 87.°*(¢,2)To (upper bound (2 — 124))
] \-Simulation )
0.00 +—— " — ] t/Th
0 2 4 6 8 10

Fig. 2-16: Upper bounds to the first-passage time probability density function. Single barrier stochastic

start problem. m = 2,

¢ =0.01, b=200x,. Thoft-Christensen and Nielsen (1982).

T 7 = fH (i Enyry | E0)To
0.046 0.091 0.978 0.03943
0.975 1.039 1.937 0.03415
1.019 2.028 2.950 0.03375
2.002 3.021 3.942 0.03320

Table 2-2: Local 2-2: Local minima of the first upper bound, m = 2.
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Fig. 2-16 shows the corresponding results with 2 control times 7y and 7. Again the optimal position
of the control times 71 and 77 is placed at relatively narrow intervals explained by the dynamics of
the oscillator, making the minimization of f*(¢;&r, -, | £0) relatively simple. The local minima of

S,g..l))'(t,2), attained at the instants of time ¢ = 3, and the corresponding optimal positions of the
control times 71 and 72 are shown in table 2-2. The local minima of S.(rll}‘(t, 2) are decreasing up to

and including the 4th local minimum, so Sfrll)"(t, 2) is passing through these minima, and is constant
to the right of the 4th local minimum.

fT: (t ’ EU)TU
0.16:

=

0.04 " .
\l Simulation

%

R*™(¢,0)Ty (lower bound (2 — 125))

0.000 + R ! & t 8 /T,
- R$)*(2,0)Ty (lower bound (2 — 123))
-0.04
—-0.08
-0.12 —
f -0.16

Fig. 2-17: Lower bounds to the first-passage time probability density function. Single barrier stochastic
start problem, m =0, (=0.01, b=200x,. Thoft-Christensen and Nielsen (1982).

']'i"lo- R'(I}l)‘ (tl ) O)TG
1.500 0.03872
2.888 0.00374
3.892 -0.03132
4.893 -0.07014
5.893 -0.1110

Table 2-3: Local maxima of the 1st lower bound, m = 0.
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In fig. 2-17 the variation with the time of the first lower bounds Rg}l)'(i, 0) and R%)“ (¢,0) as given by
(2-123) and (2-125) for the case of no internal control points is shown. The local maxima of Rgrll)' (t,0),
attained at the instants of time t = {; are shown in table 2-3. Rg,li)"(t, 0) is passing through these
maxima, and is constant to the left until its intersection with R.g}l)‘(t,l}), after which Rf;l)"(t,o)
follows Rg:l)'(t,()) up to the previous local maximum. R,(rll)"(t,ﬂ) is only of interest as long as it
remains positive.

Fig. 2-18 shows the corresponding lower bounds R%}I)'(t, 1) and R%)"(t, 1) with 1 control point. The

local maxima of R%)‘(t, 1), attained at the instants of time { = ¢;, and corresponding optimal position
of the control time 7 are shown in table 2-4.

fri(t| &)Th
0.16

M

0.12

0.08

0.04
\ Simulation
ia = R%)”(t, 1)Ty (lower bound (2 — 125))

Y
.//
; Y
0.00 g4\ g ! /Ty
; T R$)*(t,1)Ty (lower bound (2 — 123))

-0.04-

Fig. 2-18: Lower bounds to the first-passage time probability density function. Single barrier stochastic
start problem. m =1, (=001, b=200cx4. Thoft-Christensen and Nielsen (1982).

2 | & [ Aren
1.50 1.50 0.0387
2.50 1.58 0.0278
3.89 2.95 0.0202
4.89 3.96 0.0132
5.89 4.95 0.00530

Table 2-4: Local maxima of the 1st lower bound, m = 1.

The conclusion to be drawn from the numerical example is that the bounds (2-122), (2-121) with opti-
mally selected control points are significantly sharper than the corresponding bounds without control
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points. Further, the optimal position of the control points is confined to relatively narrow intervals
determined by the dynamics of the system, and can hence be determined rather easily.

In stationary start problems with constant safe domain S,(r? (t,0) attains a global minimum at the first
local minimum, ¢;, as shown in fig. 2-13. This observation has motivated the following approximation
to the first-passage time probability density function, Thoft-Christensen and Nielsen (1982)

£ [ 8) = 0 &) el (2 — 126)
T 0.} = {F(tl 'Eo)e-af{‘-(ﬂiﬁo](t-ll) , tE]t],OO[
where
ty -1
- fii'(tl |£0) _ +
*= ¥ 0] &) 1 /f; (u | £o)du (2 - 127)
0

The decay rate coefficient « as given by (2-127) implies a normalization of (2-126) to unit probability
mass. Since fF(t | &) is an upper bound for t € [0,t,], (2-126) will effectively provide an upper
bound to the failure probability. of(0 | &) = a% indicates an approximation to the limiting
decay rate, A;. For narrow-banded response processes, @ < 1, unless the barrier level is extremely
low. 'In this case the out-crossing events occur in clumps. i is a measure of the average number of
out-crossings in a clump, which Lyon (1960, 1961) estimated as the ratio between the out-crossing rate

of a narrow-banded process and the out-crossing rate of its envelope.

In fig. 2-19 the variation of a with the barrier level b for four values of the damping ratio is shown.
From this figure it is seen that the approximation (2-126) is most favourable, when the damping is low
and the barrier level is moderate. For b = 2.00x o and { = 0.01 is found a ~ 0, 38, which is well above
the simulation result a ~ 0.2 indicated in fig. 2-136. This is another indication that (2-126) provides

upper bounds for the failure probability.
Consider a single barrier problem with the upper barrier b = z. The probability of failure in the interval
[0, t] is denoted Py ([0,t];z). From (2-13) it follows that

Ps([0,];2) = 1 — P(X(0) < z) + P(X(0) > z)Pr, (t;z | &) (2 — 128)

where Fr, (t;z | £) is the probability of failure with the upper barrier b = z conditioned upon the event

&o. The probability distribution function of the maximum value Xmax = max X(7) then becomes
T€[0,1]

FX o (2:[0,8]) = 1 = P£([0,1];2) (2 - 129)

Fr, (t;z | &) is calculated based on the approximation (2-126). The so-called peak factor, i.e. the
expected value of Xpyax in units of the stationary standard deviation, ox o, is shown in fig. 2-20 for
four values of the damping ratio as a function of the excitation time in units of the linear eigenperiod
Ty. As a standard of reference the following well-known approximation for the peak factor of Gaussian

response processes is also shown, Davenport (1964)

0.577216 t
E[Xmax] = y/2In(7) + —m , T= T (2 —130)

(2-130) provides an upper bound for the peak factor as seen from fig. 2-20.
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Fig. 2-19: Variation of the decay rate coefficient o as a function of the threshold level and the damping
ratio. Thoft-Christensen and Nielsen (1982).
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Fig. 2-20: Variation of the peak factor as a function of the excitation time and the damping ratio.
Thoft-Christensen and Nielsen (1982).

Example 2-4: Approximations for the kernel of the integral equations (2-48)
and (2-51)

If the conditioned first-passage time probability density function fr, (t1 | £, O Ct+) is determined as
solution to the integral equation (2-48), the unconditional first-passage time probability density function
next follows from (2-37). In the present example approximate solutions to the integral equation (2-48)
are obtained by truncating the series expansions of the numerator and the denominator of the kernel

(2-50) to the first term, Nielsen (1990a)

~ f;++(t2:t1)t i Etg)

+(t £ n}‘(l)nC‘+)_ 2131
(B l&nF, nG FH(tz,t | &) ( )

The integral equation is solved with the exact inhomogeneity (2-49). The resulting approximate first-
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passage time probability density function obtained from numerical solution of (2-48) and succeeding
insertion into (2-37) is designated fT)(t | €t,). As comparison the approximations féa}(t | &)

and f;)(t | £:,) will also be indicated, obtained from numerical solution of (2-35) with the kernel
approxxma.tlon (2-104), (2-105) and (2-106).

Generally, if the conditioned first-passage time probability density function fr(ta | &, N C,'t _,neeen
Ct'*l' NC;) is determined from (2-51), the first-passage time probability density can be determined from
(2-42). The following approximation can be used for the kernel of (2-51), cf. (2-54)

i 8 R S
f{"(tn|£tnﬂf§1)lﬂc+ n. nc+nc+) f"+i+...++( mtbin byt EG) gy
T fﬂ+1 (tﬂ+1)tﬂ-—-31"' ,tl,t | gto)
The inhomogeneity can be evaluated as follows
++'”++(t tn—1, - ,t1,t [ & )
Ftn |EoNCE_ n-nCENCH) ==L T L 2 —133
A (tn | £ NCE, | §Ned) fHott(tay, oty t | Ey) ( )

Similar to (2-105), (2-106) the following approximations in unconditioned out-crossing rates to the
inhomogeneity (2-49) and the kernel (2-50) are considered

E n(“l“ =t f2 (tllt)

f 131 t e , .

1 ( | 0 t )—" f1 (t) ( )
b+ (ty 4,1

1 (tllgfo' 7'":(:) C:+)~_3__M

¥ (0 (o= 138)

Consistently, the conditioned out-crossing rate fi'(t | &) entering the right-hand side of (2-37) is
approximated by (2-106). The approximation to the first-passage time probability density function

thus obtained is denoted f(f)(t [ £o).

fri(t | £)To

0.16 T T T T T
012 Simulation, f§v(t | &)To, f3(t | )T
// ) 0)40, 040
|~ B &,)Tg, 12| &)To
0.08 : .
L | |
I \\LCra.mér and Leadbetter (1967) _|

0.04] \(fl)\ ]
Lﬁ_\_l:u—ej DA G

L e S
I \[ ( )(t | 50)TD | 1 ]Si;nuia.tion 4T,

0.00 1
0 2 % 3 8 0"

Fig. 2-21: First-passage time probability density function for single barrier stochastic start problem of
an SDOF oscillator. ¢ = 0.01, b(t) = 200x,0. fur (t | £) : Bq. (2-104). (] &) : Egs. (2-105),
(2-106). f)(t| &) : Egs. (2-134), (2-135). f,}f)(t | &) : Eq. (2-197). Nielsen (1990a).
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Interval Simulation .;f:)(i | £0)To f.;:‘:.}(i | £0)To f.g:i)(t | £0)To

-TE—D (exact)

0-1 0.13849 0-13849 0-13849 0-13849
1-2 0.03821 0-03822 0-03821 0-03821
2-3 0.03041 0-02507 0-03040 0-03041
3-4 0.02678 0-02124 0-02715 0-02817
4-5 0.02453 0-01938 0.02527 0-02700

Table 2-5: Stair levels of approximations to the first-passage time probability density function of SDOF

oscillator.

The linear single degree-of-freedom oscillator (2-102) for a single barrier stochastic start problem is con-
sidered again. The stationary auto-correlation coefficient function of the displacement process becomes,

see e.g. Nielsen (1993)

pxx(r)= exp(—cwu | 7 |) COS(WO‘\/ 1= C?-r) + ﬁsin (wgﬂ | 7 |) (2 —136)

The damping ratio is { = 0.01 and the barrier level is b(t) = 2.00x o. f,s_,f:)(t | £0) as given by (2-104),
g:)(t | &) as given by (2-105), (2-106) and f,g::)(t | £&) have been shown in fig. 2-21 in comparison
to the simulation results obtained from ergodic sampling based on (2-31), and another approximation,
f,;;‘i)(t | &), related to the identity (2-30), which will be explained further in a succeeding example
2-6. Also shown in the figure 2.21 is the result obtained from an assumption of independent out-
crossing events of the Hilbert transform based envelope definition of Cramér and Leadbetter (1966).
As seen f,g,':}(t | £), based on conditioned out-crossing rates, follows closely the simulation results up
to the 2nd period, whereas the approximations f,g.’i)(t | £&0) and fg)(t | £0), based on unconditioned
out-crossing rates, deviate considerably from the simulation result at the first downfall of the first-
passage time curve. This is so, because the unconditioned out-crossing rates carry no memory of the
initial conditions. Compared to f;f’l)(t | &), based on 2nd order unconditioned out-crossing rates,

the approximation f.g!:)(t | £€0) based on 3rd order unconditioned out-crossing rates shows a rapid

convergence to the simulation results. From figure 2.21 it is concluded that f,l(n?(t | £0) is the best
of the approximations shown. The numerical values of the stair levels (the horizontal parts) of the
indicated first-passage time curves are shown in table 2-5. As proved in the succeeding example 2-5
the simulation results are exact to the indicated figures.
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Fig. 2-22: First-passage time probability density function for a single barrier stochastic start problem
of a 2 degree-of-freedom system. 03{ = ‘742\’2 =050 =¢ =001, w; =20, w; = 2.57, b(t) =
2.00x,0. (“’(t | &) : Bq. (2-104). f$(t | &) : Egs. (2-104), (2-105). f Dt | &) : Bgs. (2-134),
(2-135). f. T1 (t | €&) : Eq. (2-197). Nielsen (1990a).

Next, a slightly damped two-degree-of-freedom system subjected to stationary excitation of Gaussian
white noise is considered. The auto-correlation coefficient function p x x () of the displacement response

process is assumed to be given by

pxx(1) =0k px,%,(T) + 0%, 0x,%,(7) , 0%, +0%, =1 (2= 187)
pxl.x‘.(r)zexp(—(‘;w‘-lri) cos( iv1-¢2 ) \/_sm( iv/1-¢2 | 7| ) . E =12
(2 — 138)

The result (2-137) is achieved, if {X(f), t € R} is obtained from a modal analysis of a structure
subjected to broad-banded Gaussian excitation, and only 2 modal coordinates are retained in the
modal expansion. If the structure is slightly damped, so {; € 1, and the circular frequencies are well
separated, the modal processes {X;(t), t € R} , i =1,2 can be assumed to be mutually independent.
Moreover, the modal loading processes can be replaced by equivalent white noise processes with auto-
spectral densities equal to the auto-spectral density function of the modal loading processes evaluated
at the circular eigenfrequencies, resulting in the modal auto-correlation coefficient functions (2-138).
The circular eigenfrequencies can be considered well separated, if w;(1 + r{;) < wz(1 — r(z), where
r ~ 2 — 3. For a proof of these statements, see Nielsen (1993).

In the example, 03(1 = o"zxz =0.5, {1 = (2 = 0.01, wy =207, wy = 2.57. Both modes contribute with
equal shares to the displacement variance. The indicated damping ratios and circular eigenfrequencies,
represent a limit point for considering the modal processes to be stochastically independent according to
the indicated discussion. Again, a single barrier stochastic start first-passage time problem is considered

with the barrier level b(t) = 2.00x ¢.

In figure 2-22 the approximations f,g,a)(t | &), fg;)(t | &), f,&,.{)(t | £&a) and (g)(t | £&0) are shown in
comparison to the simulation results. f,g.. )(t | £&) and f(f)(t | £0) are almost identical during the first
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two periods of excitation. Being based on unconditioned out-crossing frequencies, these approximations
deviate considerably from the simulation results and from _f,gfz)(t | &) and f;}:)(t | &) at the first
downfall of the first-passage time curve as previously stated. The approximation f.g,? (t | &) fluctuates
somewhat about the simulation results, but reasonable results for the first-passage time probability

distribution function can be expected. f.gq{](t | £&0) and f.frg)(t | £0), based on 3rd order joint crossing
rates, give very good results compared with numerical simulation. Also shown in fig. 2-22 is an
approximate result of the Poisson type due to Toro and Cornell (1986), which has a Dirac delta spike
of the intensity ~ 0.34 at t = 0. The staircase character of the first-passage time probability density
function is a consequence of the correlated crossing events at moderate to low safety levels. The delta
spike is approximating the probability mass below the first few stair levels, and is hence a correction to
the Poissonian assumption of independent out-crossings. The approximation is doing well in this case
in predicting the limiting decay rate.

Example 2-5: Single barrier stationary start first-passage time problem for
single-degree-of-freedom oscillator subjected to Gaussian white noise or to

Poisson driven trains of impulses

A linear time-invariant SDOF system is considered subjected to stationary Gaussian white noise exci-
tation, or to a stationary compound Poisson process.

In this case the restoring force u(X(t),X(t)) and the diffusion function d(t) in (2-80) can be written,
of. (2-102)

u(X(t), X () = 2€wo X (t) + w2 X(1) (2 - 139)

d(t) = ;lr; (2 - 140)

The displacement and the velocity of the system on condition of the initial valuesz] = [X(t5), X (to )] =
[zo, £o] at the time ¢y can then be written

X(t)=c(tIzc,to)+/h(t*t1)dV(t1) (2_141)
g
X(t) = é(t | z.t0) + /iz(t —t1)dV(t) (2 - 142)
tf
et | 20,t0) = (h(t — to) + 2Cwoh(t — to))zo + h(t — to)2o (2 - 143)
é(t | 2zo,t0) = —wlh(t — to)zo + h(t — to) 2o (2 — 144)
0 , 1<0

(2 — 145)

h(t) = "
—Cwot g -2
mwu;71_=c28 sm(wu\/l Ct) , t>0

h(t) and h(t) signify the impulse response functions of the displacement and the velocity. The functions
c(t | zo,t0) and ¢(t | 2o,to) indicate the deterministic drift (the eigenvibrations) of the displacement
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and the velocity from the initial value zo at the time to. The stochastic integrals in (2-141) and (2-142)

signify the responses from the excitation process {V(7), 7 € [to, t[}.

The joint characteristic function of X (¢) and X (t) on condition of Z(tg) = 2, is denoted Mzy (61,02, |
. _ gmtn . oy o

z0,%0,t0). kmn[Z(2) | 20,t] = zr )i,y 10 Mz)(81,02,1 | zo,20,t0) |g,=0,=0 signifies the joint

cumulant of the order m + n of X(t) and X(t).

For the white noise case the increment of the excitation process is given by

dV (t) = v/278, dW (1) (2 — 146)

{W(t),t €]to, oo} is a unit intensity Wiener process, and Sp is the auto-spectral density function of the
Gaussian white noise. Since the Wiener process is Gaussian, the response processes also becomes Gaus-
sian. The joint transition probability density function of the Markov state vector can then immediately

be indicated as follows

v . _w2(€1,€2;p[Z(2) | 20, t0])
q(z} (2, ,t | zo, %0, t0) = X0 | 70, 0]o[X(2) | 20, %] (2 - 147)
_ @ —c(t]|zg,t) _ & — ¢t 20,10)
8= TR 120,t] T SR | 20, 0] e il
t
kmn(Z(t) | 20,t0) = /hm(t — At —1)2nSpdr , m4n=2 (2 —149)

to

In this case, c(t | zo,to) and é(f | Zo,fo) can be identified as the conditional mean value functions of
the displacement and the velocity processes. o[X (t) | zo,t0], o[X(t) | zo,t0] and p[Z(t) | 2o, to] signify
the conditioned standard deviations and conditioned correlation coefficient function of X(t) and X(t)
as calculated from (2-149). @2(€1,£2;p) is the joint probality density function of a bivariate normal
stochastic variable with zero mean values, unit standard deviations and the correlation coefficient p.
(2-147) was first obtained by Wang and Uhlenbeck (1945) based on direct integration of the associated

Fokker-Planck equation.

A stochastic start problem with a constant upper barrier b is considered. In this case the stationary
displacement X (0) and the stationary velocity X (0) are stochastically independent. The conditional

joint probality density function g(z}(b,#,t | £0) as given by (2-82) then becomes

b
; _ 1 . w2(€1,€25p) “"(a;,n)
R / X 120, 00(X(0) [20,0] ox0 = e

oX,0

- 00

where ox ¢ = limi—.co 0[X(t) | 20,0], and @(z) and ®(z) are the probability density function and
the distribution function of a standardized normal variable. The integral in (2-150) can be evaluated
analytically in terms of ¢(z) and &(z).

The integral equation (2-81) was solved numerically, using a trapezoidal scheme with the time step
length At; = 0.025T; and a Gaussian quadrature scheme with the velocity step length Az; = 0.150  ,

where o5 ; = lim¢— o0 cr[)i'(t) | 2g,0] is the stationary velocity standard deviation. The latter scheme
was also used for the quadrature in (2-84). The result has been shown as the full-line curve vTy = oo in
fig. 2-23. The horizontal stair levels of the first-passage time probability density function are indicated
in table 2-6. As seen from table 2-5 the indicated figures coincide with those obtained from ergodic

simulation based on (2-31).
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Fig. 2-23: First-passage time probability density functions for white noise and Poisson driven pulses of
an SDOF oscillator. Single barrier stochastic start problem ¢ = 0.01, 6= 2.0 ¢. Nielsen (1990b).

Interval Exact solution
T Jr, (t | £0)To
0-1 0.13849
1-2 0.03821
2-3 0.03041
3-4 0.02678
4-5 0.02453

Table 2-6: Stair levels of first-passage probability density function. SDOF oscillator exposed to Gaus-
sian white noise.

In case of compound Poisson excitation the increment of the excitation process in the interval ¢, + dt]

is given by
o0 N(t)
dv(t) = / pM(dt, t, dp, p) = dt Z Pib(t - t;) (2 - 151)
e ji=1

M(dt,t,dp, p) is a random measure specifying the number of impulses into the interval Ip, p + dp] during
the interval t,t 4 dt], see (3-14), (3-17). The Stieltje integration is performed over the sample space
of the pulse intensities P;. {N(t), t €]0,c0[} is a stationary Poisson counting process with the arrival
rate v. Assuming that the moments E[P™] of sufficiently high order n exist the conditioned mean
values and the joint conditioned cumulants of the response process become, Lin (1967), Nielsen and
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Iwankiewicz (1996)

t

u[X(t) | zo,to] = et | 2o,10) + / h(t — T)v(r)E[P]dr (2 - 152)
u[X(t) | 2o, to] = é(t | 20,t0) + /h(t = r)v(r)E[Pldr (2 — 153)
Kmn[Z(t) | 2o,10] = /hm(t — )Rt = T)u(r)E[PT™t")dr , m+n >2 (2 — 154)

The integrals in (2-152), (2-153), (2-154) can all be evaluated analytically in case of stationary impulse
rates v. From (2-152), (2-153), (2-154) it is seen that the log-characteristic function of the transition

probability density function is given by

In Mz} (61,62,t | 2o, 20,t0) = c(t | Zo,t0)ib1 + &(t | Zo,10)if2 + S(i61, i63) (2 — 155)
t

5(i6,,1i6;) = /V(r) (E[exp(Ph(t — 7)i; + Ph(t — 7)if,)] - 1) dr (2 - 156)
to

The joint transition probability density function can then be obtained by a double inverse Fourier
transformation

9zy(z,2,t | 20, 20,80) =

oo oo

(2”)2 / / M{z}(gl,gg,i Izg,zo,to)exp( zi6y — z165)d8,db, =
—00 —00
00 oo
1 " . G NG
(2_'"')2_ exp| S(if1,i02) — (z — c)ify — (& — c):ﬂg)deldeg (2 - 157)
—00 —00

(2-157) shows that the joint transition probability density depends on z, Z, zg, #g through the differences
z —c(t|zo,t) and & — &(t | zo,%0). Unfortunately, (2-157) cannot be solved in closed form for any
system of engineering interest. Alternatively, the solution may be represented by the following infinite
Gram-Charlier type A series on Edgeworth form, Longuet-Higgins (1964)

. ; _ __#2(&1,62;p(Z(t) | 20,t0])
Tpima [t = o[X(t) | 20, to] o[ X (2) | 20, to] ( 2;3 i 61, €2 [2(0) | 20, 1a]) +

kllmln!
k+l=3m4n=3

A J\mn
2 Z Z Zkimn, k+mr+n(€1,€2,P[Z(t)|zo,tu])+ ) (2 — 158)
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e Kmn [Z(t) | 2o, to]
s o[X(t) | 2o, to]™ o[X(2) | 20, t0]" (2 - 159)
Ly (cymn g |
Hmn(‘flsfhp) == (Pz(fz ,fZ,P) 35{"86’21 ‘P?(el |€2)P) (2 i 160)

Hmn(€1,€2; p) signifies the bivariate Hermite polynomial. Egs. (2-158), (2-159), (2-160) are also valid
for the general non-linear system (2-79) under Gaussian white noise or compound Poisson excitation,
provided the joint cumulants of sufficiently high order can be calculated. In case of Gaussian responses
one has Amn =0, m+n > 3, and (2-158) reduce to (2-147).

It can be shown that Amn — co,m+n > 2 as ¥(t —to) — 0, implying a prohibitively slow convergence
of the series expansion at the transition time intervals for which v(t—to) < 1. The indicated singularity
can be circumvented by applying the expansion (3-xx) to the first order for the transitional joint pdf
in combination with a Gram-Charlier series for the conditioned transitional joint pdf q(l) (z,z,t |
zo,%0,t0). Although this approach is numerically robust it has not been pursued in the followmg
numerical example, which is based on (2-158) with all series expansions truncated up to and including
the joint 6th order cumulants. It should be noted that truncation of the series expansion (2-158) at
any finite order, corresponding to a finite order polynomial expansion of the log-characteristic function,
cannot be mathematically justified. Actually, the theorem of Marcienkiewicz (1939) states that either
the log-characteristic function is a polynomial of the 2nd order corresponding to the Gaussian case,
or joint cumulants of inifinite order exist. Hence, the justification totally relies on the quality of the
obtained results. Similar obstacles arise in the application of cumulant neglect closure schemes in
moment methods of Markov systems, see (3-193).

In order to compare the results for the compound Poisson excitation to those of the Gaussian white
noise excitation the intensities of the impulses are assumed to be zero-mean normally distributed,
P ~ N(0, UP) with the variance a'P selected as follows

vod =278, (2 - 161)

The basis for this is the well-known convergence of the compound Poisson process to a Gaussian white
noise as v — oo under the restriction of (2-161).

The obtained numerical results have been shown as the dotted curves in fig. 2-23 for vT; = 0.01, 0.1,
1.0, 10.0. The convergence to Gaussian white noise may be considered to be attained for 1T, = 10.0,
so the noticed deviation from the full-line curve (¢Ty = co) can be attributed to the applied truncation

of the Gram-Charlier series expansion,
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Fig. 2-24: Realization of displacement process for an SDOF system subjected to compound Poisson
excitation with low mean arrival rate. { = 0.01, ¥Tp = 0.01, P ~ N(0, o'f,).

It is remarkable that the height of the first stair level is almost constant for vT;>0.1, whereas the

height is significantly smaller for ¥Ty; = 0.01. This suggests that the out-crossing events tend to
become increasingly uncorrelated as Ty — 0 under the restriction of (2-161). The explanation of this
effect can be given with reference to the realizations of the response process in case of excitations with
low mean arrival rate of impulses as shown in fig. 2-24. As seen the eigenvibrations have diminished
substantially at the arrival of the next impulse.

Due to the stochastic independence of the pulse intensities, the eigenvibrations from adjacent impulses
tend to become stochastically independent. Then, assume these eigenvibrations to be completely
independent. The eigenvibrations z(t) = h(t — t;)P, initiated by the last previous impulse P with
arrival time ¢, will then cross out from the safe domain, if Amax | P |> b. hmax is the maximum value
of the impulse response function in (2-145). This provides the following asymptotic solution for the
first-passage time probability density function

1
fr (t] &)=~ N exp(—A1t) (2 - 162)
b b
A1 = P(hmax | P[> b)v = 1+Fp(— )—Fp( ) v (2 - 163)
hmix hmax
hmax = tEnIlOat.gth(t) = h{tmax) (2 — 164)
V1-¢2
arctan | ——— (2 — 165)
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where Fp(p) signifies the probability distribution function of P. Since the system and the safe domain
are time-invariant, and the state vector Z(t) is a Markov vector, the first-passage probability density
function can be represented by the expansion (2-117). A; as given by (2-163) is an approximation
to the 1st eigenvalue of the forward and the backward Kolmogorov operators (the Kolmogorov-Feller
operators) of the first-passage time problem. The approximation (2-162) has been plotted in fig. 2-23
as the lowest full-line curve. Since the indicated first-passage time curves for ¥Ty = 0.01 are parallel
(2-163) turns out to be a good approximation to the limiting decay rate of the problem. In case of,'
higher damping the approximation will be even better, because a faster decay of eigenvibrations then
takes place, and the assumption of mutually stochastic independence of such eigenvibrations then is

better fulfilled.
In case the diffusion function d(t) in (2-80) is a constant the approximation (2-162) can be extended to

the general non-linear system (2-79) exposed to compound Poisson excitation. In this case the quantity
hmax, entering the expression (2-163) for the limiting decay rate, is alternatively defined by

hmax = ten[-:)a,l:o[C(t |0,1,0) (2 - 166)

where ¢(t | 0,1,0) is the displacement eigenvibration c(t | zo,Zo,%o) with the initial value L

[z0, Zo] = [0,1] at the time to = 0.

In conclusion it has been demonstrated in example 2-5 that the integral equation (2-81) in combination
with (2-84) may be used to obtain very accurate solutions for the first-passage time probability density
function for simple linear systems exposed to Gaussian white noise. Approximate solutions can be
obtained for similar non-linear systems exposed to white noise or to linear or non-linear systems exposed
to compound Poisson excitation.
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2.3 Integral equations for the probability density function of the time in-
terval spent in the safe domain

lx(t)
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Fig. 2-25: Sample curves with in-crossings to the safe domain at the times ¢; and ¢,
and out-crossings at the time ¢.

fL?L(t -t) = fT (tl; Et i | C;*) s Et, 4 = Nrgjty S~ 18 the rate of in-crossings to
the safe domain at the time ¢; of the sample curves which do not leave the safe domain
in the interval ]t;,t[ on condition of an out-crossing at the time t, cf. (2-19). This
characterizes fy+(t — t1) as a kind of first-passage time probability density function
backwards in time. The following integral equation may be formulated, Nielsen and
Sgrensen (1988)

i
fret—t1) = fi (L | C) -/ff(t1 |Cy Ny NCT) fra(t —ta)dty (2 167)
4

where

~+
f{(tIIC?)z-f%t:)’t) , to<t <t (2 - 168)

The last term on the right-hand side of (2-167) withdraws from f(¢; | C}t) the rate
of in-crossings at the time ¢; of the sample curves which have at least one further in-
crossing to the safe domain in the interval ]t;,t[ on condition of an out-crossing at the

time t.

Define Ly, ¢ = Cp, Nr &, 4qSr NCF. Ly, ¢ signifies the joint event of an in-crossing at
the time ¢, and an out-crossing at the time ¢ of the sample curves which are in the safe
domain in the interval Jta, ¢[. Further, fi (t1 | Le;,0)frs(t—t2) = f7 (81,825 ey 0 | CF)
represents the second order rate of the in-crossings at the times ¢; and ¢, of the sample
curves which do not leave the safe domain in the interval ]t;,#[ on condition of an
out-crossing at the time ¢. For this quantity the following identity holds
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(| Etz,t)fL;"(t —tz) = fry (t—ts | C:T)ff (t1]C) (2 —169)
From (2-167) and (2-169) the following relation is then obtained
¢
frypt=t1) = fi (t: | CF) (1 - /fw(t —t3 | C;;) dtz) (2 - 170)
ty

fi(t ] E:,,t)ff,:r(t — tp) fulfils the integral equation

fi (1 ]Etz,t)fbj'(t_tﬂ:fz“(tl,tz Icf)"/f{_(tl,tz lﬁtg,t)fL?(t—t;g)dt;;(z—171)
tz

fr (t,t2 ] Cfs.f)fL;" (t—t3) signifies the 3rd order rate of the in-crossings to Sy, , Sy,, Si,,
ty < t; < tz <tz <t of the sample curves which do not leave the safe domain in the in-
terval ]t3,t[ on condition of an out-crossing at the time ¢. For this quantity the following

identity holds

fr (bata | Log ) fra(t—ta) = fra (t—ta | C NCL) f7~ (t,t2 | CF)  (2-172)
From (2-167), (2-171) and (2-172) the following identities are obtained

frpt=t)=fr(t11CF) -

t t
/f{‘(tl,tz 1&f) (1 - /fLr(t—tg |Cy, nc,;)dts) dt, (2 -173)
1y ta

frpt—t)=fr(t|C) -

t i B
f fr~(t1,t2 | CF) dta + / f f5 7 (tirta | Lage) fra(t — ta) dtdty (2 — 174)
t

ty t2

Continuation of this process until the nth term leads to the result

frypt—t1) = fi (ta |Ct+)—/f{—(t1,tz |CH)dty +---+
i ’

iyt [ [ [ e 1)

1y t2 tho1

TS i e T N R Tt S R T TR ]
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' _
(uff,);(t—tnﬂ |anc;nc;n-.-nc;)dtn+1) dtn---dizdt; (2 — 175)
tn

and

(| Lo ) fra(t—t2) = f7 (bt | CFF) — ffs_"(fhtz,ts |CH)dts + -+ +

t t
(—l)ﬂ-—Z/"‘ / fr: ------ (tl:t27t3;“- yln ’Ct-‘-) !
iz th-1
1
1—/fL:,(t—tn_H | € mc;m---nC;)dth) dt, - dts (2 —176)
tn

From (2-7), (2-30) and (2-175), the following series is then obtained for the first-passage
time probability density function, Nielsen and Sgrensen (1988)

It 1€)P(E) = F70) — [ f* (0 de +-+

(—1)"jj--- j foer ™ s« s sbast)

tg 4

i
1—/fL:,(t—t,.+1 |CoNCy N NG ) dtagr | dtn - dtgdty (2 -177)
ty

(2-42) and (2-177) are two exact inclusion-exclusion representations of the first-passage
time probability density function. The main difference of these expansions is that
(2-42) is in terms of conditioned crossing rates, whereas (2-177) is in terms of simpler
unconditioned crossing rates.

The following quantity is introduced, cf. (2-45)

Bt o yiahps

fn_-}.-‘l._+(t1:“' 1tﬂ:t) ) j= 0

t t ke et - .
fin'”ftnd-j—l fn+j+1 +(t11--- ’tﬂatn-l—l"" 1tn+jat)dtn+j"'dtn+l s J=d
(2 - 178)
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From (2-175) and (2-176) the following formal expansion for the kernel St | L4,4) of
the integral equation (2-167) is obtained as n — oo, Nielsen and Sgrensen (1988)

t
fr (82 | CF) — [ f5 = (t1, 82,83 | CF) dits + - -
t2 _

f]-.-(tl |£t21t) — : =
T |CF) = [ f7(tasta | CH) dts +---
tz

1
it te,t) — [ fo (b, e, b5, t) dbg + -+
ta

t
frt(ta,t) = [ fi~t(ta,ts,t) dts + - -
ty

o0

Z(_l)jFZ_,j(tlatZ,t)
J=:° (2 - 179
5 (Wi ;

Upon truncating the series in the numerator and denominator of (2-179), approximate
solution for the integral equation (2-167) can be obtained numerically. From (2-30) an
approximate solution for the first-passage time probability density function is finally

obtained.
Analogous to (2-48) f+ (t —tp | C;) fulfils the integral equation, Nielsen (1990a)

t
fript=t | C) = fr (2 | € NCT) - /fl_(fz |Co N Lig,e)fr(t = ta | C7)) dts,
t2

to<ti <ty <t (2 — 180)
where
Tt (b, g,
frttl o ner) = I _Untnt) (2 - 181)

.f2-+(t11t)

t
fi=(tayts [CNCE) = [ f = (ta,ta,ta | C NCF ) it + -+
ts

fr (t2 |Ctjﬂ£ta,f) = 1 =
fr(tslConCt) = [ fy=(tata | €L NCH) dts + -
t3

i
fo (bt s, ) — [ fo 7 (b, ta, s, ta, ) dEs 4 - -
t3

t
f3__+(t17t3at) - ff4_-_+(t1,t3,t4’t) dt4 4+
i
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HO(_I)jF:i_’j(tl ) t2 ) t!h t)

2 (2 - 182)

};}(—1)jF2_,j(t1,t3,t)
J=

Similarly, f7+ (t—tapr [CoN---N Ce, ) in (2-175) fulfils the integral equation, Nielsen
(1990a)

Fup (E=tap | €5 0---NC7) = 7 (tara | € NN CE N CF)

t
/ Fi(tasr 1€ N NG N Ly ) frp (B —taya |C N - NCL ) dbpya,

tnia

t0<t1<"'<tn<tn+]<tn+2<t (2-"183)

where

fn—-f.'lé“_-i-(tl) i 5tn, tn-{-], t)
= 2 - 184
P ™ty - - o b5y ) ( 84)

fr(tas [C0--NC NCE) =

m 1
jX_:o("'l)JFn_+2,j(t1:--- sEny tnt1s tnga,t)
fl_(tn-}-l Icg_l n--- nC; ﬂ£¢n+2’¢) =

o0
%(—1)1F;+1,j(t1 gie TE g tns tﬂ+2a t)
J=

(2 — 185)

(2-183) is motivated in the same way as the integral equation (2-51). If an approximate
solution to (2-183) can be obtained, the remainder of the series (2-177) can be evaluated

approximately.
le_l (t —t1) = fi7(t; &,y | C;) is the rate of out-crossings from the safe domain at
the time ¢ of the sample curves which do not leave the safe domain in the interval

Jt1,¢[ on the condition of an in-crossing at the time ¢;, cf. (2-18). From (2-11) it
follows that f B (t—t1) and fr, (¢ | &, ) are identically defined, except from the different

conditionings. Analogous to (2-35), fy- (t — ¢1) then fulfils the integral equation

t

fi t-t) = fF(elcs) - fff' (t1C5 NFL) fuz (b —tr) dty (2 - 186)

t
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where

—
fﬁ(tlcﬂ):%,to<f1<f | (2 — 187)
1

The following expansions for f - (t — t;) and for the kernel fit(¢ | C':, nJF (1)) follow
immediately from (2-42), (2-43), (2 46)

fun (t—1) = FF(EICF) —ff**(tz,t!ca)dtz+---+

=13 1]/ /f+ b e sl B 6

t1 &1
( /fL tavr — 81 |CE N nCENCE nc;f)dtn+1) dt, - - - dtzdt,

t) <tpg1 <tp <tp—1 < - - <tz <ty <t (2_188)

i
ff,;l(t—tl)=f1+(tICa)-—/fﬁ(tz,t |Co)dt + -+
ty

( 1)" 1/] _/f+m+++(tna"' :t3)t2!tlct—1)dtn”.dt3dt2+

il 191

e l)n/f /f+ (1, ta,tz,ﬂczlﬂf;(l)H) (tn+1—t1)dtn+1‘--dtgdt2(2—189)

1 ty

S (1Y Ff(ta,t | CF)

freegnFd) = =2
S (-1)iFH(t, | C7)

J1=0

(2 — 190)

F,tj (tnt1,---,t2 | C;7) is given by (2-45) with &, replaced by C;.

From (2-3) follows that the integrand of the last term in (2-188) is symmetric in the
indices tn—1,... ,%3,t2. Applying (2-7) and a renaming of the integration parameters,

(2-188) can then be written

fLa(t#tl):ﬁ f2 tl: ff{i ++(tl1t27 )dt2+ ot
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( 1)n 1/ ] /fn+1 +++ tl}ti‘; tn—l-rtnat)'

tn-2tn-1
t2
(1—/fL;.1('r—t1 et n---nct ﬁC?’)d‘r) dindtn_1--dts |,
t)
<ty <tz < <t <t (2 -191)

From (2-30) and (2-191), the following series is then obtained for the first-passage time
probability density function

Fru(t | £) P(Ew) = FiF(2) - / fit (e ) dts +

. 1)n// / /fn+ B b b,

to 41 th_2tn-1
ta
(1 - /ch— (r—ti|CEn--nct net) df)dtndtn_l -+ dtadty (2-192)

As n — 00, (2-192) provides an inclusion-exclusion series for the first- pa.ssage time prob-
ability dens:ty function in unconditioned crossing rates of the type f ;"1 (2, ¢5,... ,t,,1),
alternatively to the previous expansion (2-177) in unconditioned crossing rates of the

type forn " (ti, 2,000yt 1)
Consider the Markov system (2-79) with a safe domain defined by a single constant
upper barrier b for the displacement response. Let fy Lr (b,2,t — t1)dtdz be the joint

proba.bﬂlty of out-crossings in the time interval ]t,¢ + dt] at the barrier b with out-

crossing velocities in the interval |z, z + dz] of the sample curves, which are not leaving

the safe domain in the interval ]t;,¢[, on condition of an in-crossing at the time t;.

Based on previously mentioned similarity between f; ! (£ —t)=FF(2; e | Cr ) and

fr,(t| &) = fi (t; it | &, ), and with an argumentation identical to the one leading

to (2-81), the following integral equation for fy, - (b, zy, t—tl) can then be formulated,
L

Fxi- (b z,t —t1) = 2qqz)(b,2,t | C;) — //xq{z}(b z,t|b,2q,t3)-

Fxp- (b, 32,12 — tr) dizdty (2 - 193)
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where
0
= [ 21 qzy(b, 2.t | by 21, 11) fixy ) (B 21, t0) dis
b 1 s 2 - 2194
Q{Z}( | t1) fl (tl) ( )
Using (2-20), fr+(t — t1) is then obtained from the solution of (2-193) as follows
L (¢t : .
fL?h(t —t) = f1+((tl)) /fXLfl (b,z,t —t;)dz (2 — 195)
1
0

In complete analogy with (2-86), (2-87), (2-90), (2-95) integral equations similar to
(2-193) can be formulated for more involved Markov systems.

Upon inserting (2-195) into (2-30) the following solution is finally obtained for the first-
passage time probability density function

le(t | gto)P(Efo) =f1+(t) - /fl-.(tl)\/f)([,t—1 (b,d:,t—fl)di‘dtl (2— 196)
to 0

The integral equation (2-167) and the associated expansion (2-177) and (2-179) for the solution and for
the kernel of the integral equation in unconditioned crossing rates of the type f;;l""‘k(tl vta, ... tn,t)
were derived by Nielsen and Sgrensen (1988). The solutions of the integral equation (2-180) and (2-183)
enter the remainder of the expansion (2-177). These integral equations and the expansions (2-182) and
(2-185) of the associated kernels were formulated by Nielsen (1990a). The results (2-186), (2-188),
(2-189) based on the resemblance between f/ (t—t) = fl‘"(t;:‘,']tht[ i C;) and fr, (t | &,) =
f1+(t§5]z1,t[ | &t,), as well as the resulting alternative expansion (2-192) in unconditioned crossing
rates of the type f,:fl'“'{""(tl ,ta,... ,1p,t) for the first-passage time probability density function have
not previously been published, neither have the results (2-193), (2-194), (2-195), (2-196) for an SDOF

Markov system.

Example 2-6: Approximations for the kernel of the integral equation (2-167)
and related bounding technique

At the application of the integral equation (2-167) the following approximation may be used for the
kernel, obtained by truncating the numerator and the denominator series of (2-179) to the first term

and use of (2-7)

fr- (e |CF) _ fy~H (. te,t)
f_t1|[:;‘;2 -t = sl 2 — 197
R R YT B W) (3= 10m)
Ignoring the conditioning on the C;' the following approximation is obtained
= ‘;»J-—(tl x>
(| Log) = ;s (2 — 198)

f1_ (t2)
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The approximations to the first-passage time probability density function obtained by the numerical
solution of (2-167) with the kernel approximations-(2-197) and (2-198) and succeeding insertion into

(2-30) are designated f. {g)(t | £&0) and f(h) (t | £0), respectively.

The approximation (2-197) is reasonable, because both numerator and denominator are upper bounds,
and thus they counterbalance each other to some extent. At high barrier levels with independent
crossing events f; (1 | £15,¢) = f{ (t1). As follows from (2-4) this limit is also attained asymptotically
by the right-hand sides of (2-197) and (2-198). Hence, both of these approximations are asymptotically
correct at high barrier levels.

Finally, it can be noted that (2-198) is related to (2-197) in the same way as (2-105) is related to
(2-104). In both cases the conditioning on the considered set of sample curves is ignored in the joint

crossing rates.

With the same argument as applied to (2-110), (2-111), the following bounds may be derived for
fr, + (t — t1) from the integral equation (2-167)

fr. +({t-t) < fi(ti|CF) (2 - 199)

fro+(t—t) 2> f (| CF) *]f{_(tl,tz | CiF )ata (2 - 200)

Upon inserting these bounds into the right-hand side of (2-30) and using (2-7) the following exact
bounds for the first-passage time probability density function are then obtained

fr,(t] £) > RS (1) = P—(lgu—) IO f ¥ (t, t)dts (2 - 201)
fry(t] &) < Sm(ﬂ = F(S_ MOE /fz t(t, t)dty +/]f§_+(‘2at1,t)dﬁ2di1 (2 - 202)

(2-201) and (2-202) indicate alternative results in unconditioned crossing rates to (2-111) and (2-112)
for the 1st lower bound and the 2nd upper bound. The 1st upper bound in this hierarchy of bounds is

given by (2-113).

Initially, the single degree-of-freedom oscillator (2-102) is considered with a single barrier stochastic

start first-passage time problem. The damping ratio is { = 0.01 and the barrier level is b(t) = 2.00x ¢.
“’)(t | £) as given by (2-197) and f(h)(t | £0) as given by (2-198) are shown in fig. 2-26 in comparison

w1th simulation results obtained by ergodxc sampling based on (2-31). Further, the results have been

compared to the approximation le) (t | £&0), obtained from numerical solution of the integral equation

(2-35) with the kernel approximation (2-105) and the approximative inhomogeneity (2-106). fé,h)(t | €0)

involves the unconditioned 2nd order in-coming rate f; ~(f1,t2), whereas fg’}(t | £) involves the
unconditioned 2nd order out-crossing rate f;f*(¢;,t). Since these approximations demand the same
computational effort they should especially be compared.

The results are shown in fig. 2-26. Both f.g?l)(t | &) and fg:)(t | &) follow closely the simulation

results up to the 2nd period, whereas the approximation fg;)(t | £0) deviates signiﬁca.ntly from the
simu]a.tmn result at the downfalls of the first-passage time curve. However, the ‘horizontal stair levels
(b) (t | £&0) and f(h)(t | £») are almost identical, as seen from the numeric values indicated in table

2-7. Bemg able to represent the correlation of the initial values better, it is concluded that f(h)(t | &)

is superior to f. ’1(3‘1}(t | £o0).
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_f,l(r,f)(t | £0), involving unconditioned 3rd order crossing rates f;” =%t (t1,12,1t), has previously in fig. 2-21

for the same problem been shown to do better than the approximation f,}':)(t | £0), obtained by solving
the integral equation (2-48) with the approximate inhomogeneity (2-134) and the kernel approximation
(2-135), and succeeding insertion into (2-37). This approximation involves the unconditioned 3rd order
out-crossing rate ff T+ (t3,t1,t). Hence, the computational effort is comparable to that of fé:g)(t | €a).

fri(t | &)Ty
0.200
0.150
Simulation, f},f)(t ISD )TO; fé—-:l)(t I gO)TO
0.100 = i JI
| £t | €0)T
/'Simula.tion, L (YR
0.050 _I
L Simulation
T % fn(“f)(t | Eu)To-\
fa(r'f)(t | £0)To O e =
0.000 t ! + il o) 0, fr, (t ] &)To /Ty
0 2 4 & t 5 i P

Fig. 2-26: First-passage time probability density function for a single barrier stochastic start problem
of an SDOF oscillator. ¢ =001, b(t) = 20x,0. fy) (¢ | &) : Eas. (2-105), (2-106). f$(t | &) : Eq.
(2-197). f5(t | &) : Eq. (2-198). Nielsen and Sgrensen (1988).

Interval Simulation f.g,f) (t | €)To fg:')(t | £0)To f,g,?(t | £0)To
"1""‘; {exact)
0-1 0.13849 0.13849 0.13849 0.13849
1-2 0.03821 0.03821 0.03822 0.03822
2-3 0.03041 0.03040 0.02507 0.02507
3-4 0.02678 0.02715 0.02124 0.02124
4-5 0.02453 0.02527 0.01938 0.01938

Table 2-7: Stair levels of approximations to the first-passage time probability density function of an
SDOF oscillator.

In fig. 2-27 the results for the single barrier stochastic start problem for the 2 degree-of-freedom
system defined in relation to fig. 2-22 are shown. Again, it is seen that ff(r.':‘)(t | &) is doing better
than f'J(f"?(t | £0) at the downfall of the first-passage time probability density curve, whereas these
approximations are comparable elsewhere. The approximate result of Toro and Cornell (1986) has
been indicated for comparison as in fig. 2-22.
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fn(t] &)T
A

0.200

Simulation, (¢ | &)To, fi(t | £)Tb

0.150 4
t | £)T: ! '
/le( | &) O/-Simulation, .f.f)(t]go)To

. (- f1 (¢ | €0)To
YR (] €T
0iz0D | — Toro and Cornell
/1 (1986, eq. (64))
~ 0.34
/ Si(rr)mlation
0.050 /£ fr(t| &)To n
® =
h
I (¢ | E0)Ts o
0.000 bt : ; ; , L
0 2 4 6 8 10

Fig. 2-27: First-passage time probability density function for a single barrier stochastic start problem
of a 2 degree-of-freedom system o? = 02 = 0.5, {1 = (2 = 0.01, wy = 2.0%, wy = 2.57, b(t) = 2.00&, &
fP(t | &) : Bgs. (2-105), (2-108). f£(t | &) : Bq. (2-197). F3(t | &) : Eq. (2-198). Nielsen and
Sgrensen (1988).

The general conclusion from this example is that approximations to the first-passage time probability
density function, obtained by numerical solution of the integral equation (2-167) with an approximate
kernel function and succeeding insertion into (2-30), are superior to approximations based on the
integral equations (2-35) and (2-48), involving crossing rates of the same order.

Example 2-7: Approximation for the kernel of the integral equations (2-180)
and (2-183)

At the application of the integral equation (2-180) the following approximation may be used for the
kernel, obtained by truncating the numerator and the denominator series of (2-182) to the first term,

Nielsen (1990a)

f4__*+(t11121t3:t)
f3__+(t1|t3l t) (2 - 203)

fi(t2 1€ NLegt) =

From the numerical solution of (2-180) for fL?.(t —tz | Cf]), using the inhomogeneity (2-181) and
the kernel (2-203), fL#.(t — t1) is next obtained from (2-170). Finally, fr, (t | £,) is obtained from
(2-30). Again, the approximation (2-203) is reasonable, because both counter and denominator are
upper bounds, and hence tend to counterbalance each other.

Similarly, on application of the integral equation (2-183) the following approximation may be used for
the kernel, obtained by truncating the numerator and the denominator series of (2-185) to the first

term, Nielsen (1990a)

f-_l:_.é__'_'(tl)---,tn;tn+1;tn+2,t)
fir(tngr [CL 0N G N Ly, e 2 — 204
1 (‘n l ty t +2.t) fn_ 2__+(i1,...,tn,in+2,i) ( )

Even though no numerical results are presented, the kernel approximations (2-203) and (2-204) can be
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expected to provide the best available approximations to the first-passage time function based on joint
unconditioned crossing rates of the order n + 3.

Example 2-8: Approximations for the kernel and the inhomogeneity of inte-
gral equation (2-186) and related bounding technique

At the application of the integral equation (2-186) the following approximation may be used for the
kernel as given by (2-190), obtained by truncating the numerator and the denominator series to the

first term

ECA GRS sl CROR)

+ - (1)
1 (tlctl nf-tz )'—- f;_(tglct_l) - f1—+(tl|t2) (2—205)

In the last statement of (2-205) use of (2-7) has been made. Again the approximation (2-205) is a good
one, because both counter and denominator are upper bounds. At high barrier levels with independent
crossing events fi (¢ | &7 OT!(;)) ~ f(t). This limit is also asymptotically attained by the right-hand
side of (2-205), which obviously will be asymptotically correct at high barrier levels. The results for

the first-passage time probability density function obtained from the kernel approximation (2-205) can

be expected to be of the same quality as f.;f:)(t | £0), based on the quite similar kernel approximation

(2-197). No numerical example is shown.

With the same argument as applied to (2-110) and (2-111), the following bounds may be derived for
f,- (t = t1) from the integral equation (2-186)
t

fup (t-t) < frelern) (2 — 206)

i, =) 2 £0105) = [ st 05 (2 - 207

From (2-20) and application of (2-7) the following bounds are then obtained for f; 4+ (t — t;)
t

frpt-t) < }17}(5 fit(t,t) (2 - 208)
]
frat—1) 2 —— | ftn,0- / it t, s (2 — 209)
¢ fit (@)
t1

Upon inserting these bounds into the right-hand side of (2-30) the following exact bounds for the
first-passage time probability density function are then obtained

i
fry(t] &) > RS (1) = ﬁ £ - / S+, (2 - 210)
0

t t t
le(tifo)SS%)(t):% f;‘(t)—/f;*(n.z)dt]+//f;++(t:,t2,z)d:2dt, (2-211)
0 0t

(2-210) is identical to (2-201). The difference between (2-202) and (2-211) is due to the different 3rd
order crossing rates.
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2.4 Integral equations for the probability density function of the time in-
terval between two succeeding out-crossings from the safe domain

fuz (t—t1 | &,) = fi'(t1; {exactly one in-crossing in Jt1,t[} | &, N C¢) is the rate
of out-crossings from the safe domain at the time ¢; of the sample curves which make
exactly one in-crossing to the safe domain in the interval |¢1,t[ on condition of &, and
on condition of an out-crossing at the time ¢, cf. (2-22). The following integral equation

may then be formulated

fopt—t] &) = fif (| &, NCF) -
t

/f1+ (t1 | &, NCE N {exactly one in-crossing in ]t,, [} ﬂC;")fUt+ (t—1t2 | &,)dt,

= (2 - 212)

where
FH(t,t ] &)

e L 2 —213
fr(tl‘gfc) ’ 1 ( )

fr(t | Eanct) =2

The last term on the right-hand side of (2-212) withdraws from fi* (¢, | £, NC}t) the
rate of out-crossings at the time ¢; of the sample curves which have at least one further
in-crossing to the safe domain in the interval |¢;,%[ on condition of an out-crossing at
the time t.

Define Uy,,; = C;f N {exactly one in-crossing in Jt2, %[} N C;". Then, fit (t1 | &, N Uty 1)
fus (t—t2 | &) = f3H(t1,t2 ; Uyt | E, NCF) represents the 2nd order rate of out-
crossings at the times t; and ¢, of the sample curves which make exactly one in-crossing
to the safe domain in the interval ]tz,#[ on condition of &, and on condition of an
out-crossing at the time ¢. For this quantity the following identity holds

fi-}-(tl lg!o ﬂutz.i)fU{"'(tutz Igta) = fU,+ (t—tg | gtﬂmc;t)fl-{-(tl l 8;“16?)(2—214)

From (2-212) and (2-214) the following relation is obtained, similarly to (2-37) and
(2-170)

t
fur(t—ti | &) = fitt | &, NCY) 1—/fUt+(t —t2 | &, NCH)dty | (2 -215)
11

fir(t | &, N Utz,t)fujr (t — ta | £, ) fulfils the integral equation

f1+(tl I‘-c"to ﬂutz,t)ij‘(t =13 | Efo) - 2++(t1:t2 | Sto nct+) -
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t
/ fFH(tota | £ MU ) s (t—ts | Ei,) dis (2 — 216)
itz

fHt(t,tz | & N uta,t)fUl+ (t —t3 | &,) signifies the 3rd order rate of out-crossings

from St,, Sty Sty to < t1 <tz < t3 <t of the sample curves which make exactly one

in-crossing to the safe domain in the interval |t3, ¢[ on condition of £, and on condition

of an out-crossing at the time ¢. For this quantity the following identity holds
fFH(tta | &, nuta,t)fUl+ (t —t3 | &) =

fur(t—ts | ExNCENCE) 7 (t1,t2 | &N CF) (2 — 217)
From (2-212), (2-216) and (2-217) follow

fupt =t | &) = fif (i | €, NC) -

b 1 t
/f;**(tl,tz | & OVE) (1 — /fu;r (t—ts | &, NCENCE) dtg) dt; (2 —218)
t) t2

fupt—t1 | &) = ff (| €, NCF) -

t t t
/ £t ta | £, 0 CH) dty + / / £ (tasta | €4 NUias) s (t— s | ) dtadts
31

ty i

(2 —219)

Continuation of this process until the nth term leads to the result

t
fupt—t1] &) = fit (1 | €, NCYF) "/f2++(t1:t2 | €&, NCH)dty +--- +

ty

it t t
(_l)nﬂlff_,, / f:++"'+(t1,t2,t3,.-- o | Eii ﬂCj')-
th—1

t; t2

t
(l—/fupr (t—tnrr | EoNCENCENCEN - NC) dtnﬂ) dty - - dtzdty(2—220)
G
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and

£l 16, ﬂutz,t)fujr(f—tz | €)= fFF (41,82 | €, NCT) -
t

/fs+++(tlst2,t3 | £ ﬂc?) dtz +---+

iz

t t
i' (_1)!1-2/___ / f;}-++m+(t11t2vt3:"' !tn | Sto DC:—) )
{ t2 th-1

t
(1 - ffug+(t—tn+1 | &, NCENCE n---nc;;)dtnﬂ) dtn - --dits (2 — 221)
tn

From (2-8), (2-34) and (2-220), the following series is then obtained for the first-passage
probability density function

fT:(t | Efo) =fl+(t I gfo) _/f2++(tlat I gto)dtl ERRRE

to
t t t t
(_1)“// e [ ] f:—l-‘-l---+++(t11t23' o ,tn...]_,tn,t | E"!g) 4

to 11 th—2tn_1
t
(1—/fU:r (t —tat1 | ExNCENCEN - NCE_| ncj;)dtnﬂ) dtpdt,_q - dtsdt
tn
(2 —222)

From (2-3) it follows that the integrand of the last term of (2-222) is symmetric in the
indexes t;,... ,t,_1. After renaming of the integration parameters (2-222) can then be
written

i
fr(t ] &) =f1+(t|ao)—/fﬁ(tl,tmu)dt] M
tg

ar [ [

to to

t

n—1
/ f’rt{-1+++(tn1 :tZ:tlytlgto)'
to

t
(1—-/fut+(tb'r[£}o ne; n--»ncgnc;t)dr) dtn - diadty (2 — 223)
31




'—

From (2-220) and (2-221) the following formal expansion for fi(t1 | €, N Uy, ) is
obtained as n — o0

t
B (tta | Ea NCF)— [ fiHH (b1, b, 85 | £, NCH)dts + - - -
fit (b1 | EgNUey ) = 2 o
T2 | E,NCH) = [ fiFH(ta,ts | &, NCH)dts + - --
ta

t

f;++(t1’t2’t I gtU) - ffj+++(tlat2:t3;t | 8:0) dt3 + -
ty

t
f;+(t27t | gf-o) - ff.?:+++(t21t3st I Stn) dfa o v n
t2

> (-1)y F:;t-j(tlatmt | &)

j=0

Z(_l)j Féf‘(t%t | Etu)
7=0

(2 - 224)

Analogous to (2-48) and (2-180) fy+ (t —t2 | &, NC;) fulfils the integral equation

fup(t—t2 | E,NCE) = fit (2 | &, NCENCE) -

t
/f;-(tz | Szo ﬂC;t ﬂuta't)fgt-l-(t — i3 | Stu ﬂC;t) dta , to <t <ty <t (2 '—225)
ta

where

f;++(t11t21t Igt )
+ + Ao+ — 0 _

fiH(tz | € NCE NUy,e) =
t
(e, ts | E, NCENCH) = [ £t ts s | Eo NCENCH) dty + - -
t3

¢
Fls | E,NCENCE) = [fH(ts,ta | E, NCENCH) dty + - -
t3

t
j+++(t1:t‘2:t37t | gtu) - ff;++++(t1,t2,t3,t4,t l gtu) dig +---
t3
t
f;++(tl"t3’t l gfo) - ffj+++(tlat3}t4at | Eto) dtti +---

t3
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i_ojo( 1) Ff (t15t2:t3:tlgto)
- (2 - 227)

o0

Z =1 Fti(t, ta,t | &)

Similarly, fys (¢t —tn41 | £, NCEN---NC;) fulfils the integral equation

fug(t=tas1 | EaNCEN - NCE) = fF (tarr [ E, NCEN---nCE NCT) -

t
/ Fi (b | € NCE N NCE Ny ) Fip (= tata | £ NCH N 1CH )t

tn+1

t0<t1<"'<tn<tn+1<t (2—228)
'@{5 where

| Fhotrt (b, ot thay t

a1 [EonCEn-net nef) = +2+ (st | E) (2 — 229)

| n+1 (tlv"' 1tn:t|€to)
5 5__:0( )3 n+31(t1:"' :tn+1?tn+2=t , g!u)
fl (tn-l-l | gto ﬂcxﬂﬂctt nutn_l_z’t) = J_oo
Z( 1)JF1;’_+2,j(t1: :tn)tn+2:t | gto)

0

(2 — 230)

fU (t -t | &) = fit (¢ {exactly one in-crossing in Jt1,8[} | &, NCF) is the rate
A of out- -crossings from the safe domain at the time ¢ of the sample curves which make
g exactly one in-crossing in the interval Jt;,¢[ on condition of &, and on condition of an
out-crossing at the time t;, cf. (2-21). fol (t —t1 | &, ) fulfils the integral equation

t
fuz (t=t1 | &) = fiF (t ] Etunc;:)—ffﬁ(t [ ‘s‘tc,rw,{h,tz)fUt_1 (ta—ty | £,) dto(2—231)

where

P st | B
L] g el = 2f+((t11|;3), to < t; <t (2 - 232)
1 0
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The following expansions for fu- (t—1t | &:,) and for the kernel £ (t | &, N U, t,),
analogous to (2-188) and (2-190), can be derived from (2-231)

t
fU;1 (t—t1|&,) = Tt & ﬂctt)_/f;"f-(t%tlgtg NCH)dty + -+
51

o ff]

t;

th—1
fjm+++(tn:"' st31t2at ] Eto nc;t) %
tq
tn
(l"foa (tas1 =11 [ &, NCE N nCEnCEnc) dth) dtn - dtzdty
t

tl<tn+1(tn<tn_1<"'<t3<t2<t (2_233)

Y (1) Fffi(ts,t | &, NCYE)
fiF (| Usye,) = 2

=0
X (1PFi( |80 ncE)

w w
J};}(*U"Fﬂ (t1,t2,t | &)

= (2 — 234)
> (~1)iFf(t,ta | £,)

7

From (2-3) follows that the integrand of the last term in (2-233) is symmetric in the

indices ¢5-1,... ,13,%;. After renaming of the integration parameters and application
of (2-8), (2-233) can then be written

t
1
fuz (t—t1 | &,) = AN (sz(fht | €) —/f;rH(fiatz»t | &) dta + - +
ty

it t
(__1)11"1 / o / fi—fflil-++(t1!t2)"' 7tn9t I gtg) :
tl tn-l

’

133
(l—ffu- (r—t|&NnCtn--.nct nc;*)df) dtn---dtz)
ty n
t1

t1<t2<t3<"'<tn+1 <t

(2 - 235)
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From (2-33) and (2-235), the following series is then obtained for the first-passage time
probability density function

le(t gf-u) f1 t|£to / tl tlgt(,)dt1+ -+

(—1)“]/ / SR s et )

to 4

1—/fU_(~r—t1 |E,NCEN---NCE NCH)dr | dty - ditadty (2 — 236)
ty 7

(2-223) and (2-236) are seen to converge to the same inclusion-exclusion series in the
conditioned crossing rates as (2-42). These series only differ because of different formu-
lation of the remainders, and are both generated by the identity (2-33).

The Markov system (2-79) with a safe domain defined by a single constant upper barrier
b for the displacement response is considered again. Let f XU- (byz,t—t | é}u) dtdz be
1

the joint probability of out-crossings in the time interval ]t,t + dt] at the barrier b with
the out-crossing velocities in the interval |z,z + dz] of the sample curves, which make
exactly one in-crossing to the safe domain in the interval ], t[, on condition of &, and
on condition of an out-crossing at the time ¢;. With an argumentation similar to the
one leading to (2-193) the following integral equation for f)'(U; (b,si:],t —t | Stu) can
then be formulated '

t oo

fXUz—l (b,ﬂ.f,t t] | gtu) -—-.'EQ{Z}(IJ 33 t |£t° ﬂCtl //-’L‘q.{z} b .TB t ] b Ig,t2)
i1 0

Fiu- (b22,t2 = t1 | €x,) divadty (2 —237)

where

b oo
f f'Tl q9{z) (ba:‘c?t I bailvtl)f{x}{)'(}(xﬂato;b:i'l-,‘tl) d$0d£i71
oo 0

I

9{z} (b,d’),t | gtoncj;) = -
ilf{x}{)‘;'} ($01t0;b>:b1atl) dzodz,

(2 — 238)

Using (2-23), fu+ (t —t1 | £4) is then obtained from the solution of (2-237) as follows

fup(t=t1] &) = %/Afxu (b,2,t—t1 | &) di (2 — 239)
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In complete analogy with (2-86), (2-87), (2-90), (2-95) integral equations similar to
(2—237) can be formulated for more involved Markov systems.

Upon inserting (2-239) into (2-34) the following solution is finally obtained for the first-
passage time probability density function

t oo
fr(t | &) = i (t] &) - /ff‘(tl | €s) /fo;l (b,2,t —t1 | £,) divdty (2 — 240)
to 0

(2-193), (2-196) or (2-237), (2-240) involve computational efforts comparable to (2-81),
(2-84).

An integral equation with some resemblance to (2-237) was indicated by Siegert (1951, eq. (5.6)),
considering the interval length until a zero first-passage crossing at the time ¢ in either upward or
downward direction on condition of a zero crossing at the time #; < t for a stationary 2-dimensional
Markov vector process. All results in this section 2.4 have not previously been published by the author.
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2.5 Summary and conclusions

Initially, in section 2.1 relationships are derived between the first-passage time proba-
bility density function on condition of the event &,, fr,(t | &,), and the probability
density functions fy+(t—t1) and fy+(t —11 | &, ) of, respectively, the length of the time
interval spent in the safe domain from the previous in-crossing at the time ¢; until an
out-crossing at the time ¢, and the elapsed time interval from the previous out-crossing
at the time t; until an out-crossing at the time ¢ on condition of &,. &, denotes the
event that a subset of initial values belongs to the safe domain at the time #;. The re-
lationship of these functions to the probability of failure Ps([to,t]) in the interval [to, ]
is also indicated.

In section 2.2 a Volterra integral equation is stated for fr, (¢t | &,). In this formu-
lation the kernel function is introduced as a new unknown function. Based on the
said integral equation inclusion-exclusion series in the joint conditioned out-crossing
rates f*(t1,...,tn | &,) are derived for fr,(t | &,), and for the nominator and
denominator of the kernel function of the integral equation. Next, an integral equa-
tion is formulated for the first-passage time probability density function at the time
t on condition of later out-crossings at the times t;,... ,t,, which is denoted fr, (¢ |
&, N C{'l' N---N C;'; ), to <t <ty <+ <ty This quantity occurs in the remainder of
the inclusion-exclusion series for fr,(t | £,). The idea is to obtain an approximate so-
lution to this quantity from the integral equation. By resubstitution into the truncated
series for fr,(t | &,), rapid convergence can then be expected. Further, an integral
equation is formulated for the nth-passage probability density function, fr,(t | &),
and the associated inclusion-exclusion series for this quantity and for the nominator
and denominator of the kernel function are derived. Next, it is shown that all the
integral equations and inclusion-exclusion series referred to alternatively may be formu-

lated in the joint crossing rates f t(¢;,... ,tn; S, N--- N Sr.. | &,) of the sample
curves in the safe domain at the discrete instants of the time 7,... ,7,, on condition
of &,. In case of suitable choice of the intermediate instants of time 7,... , 7, this

approach results in more accurate approximate solutions to the various integral equa-
tions, and in a more rapid convergence of the various inclusion-exclusion series. Next,
an inclusion-exclusion series is formulated for the hazard rate, which is of more direct
applicability in reliability problems, and a non-linear integral equation of the Volterra
type is formulated for this quantity. A basic problem of all the mentioned inclusion-
exclusion expansions is that the series are divergent at truncation of any order as the
time length of the excitation grows to infinity. Moreover, a rather limited number of
terms can generally be evaluated. Various ways of truncating these series are reviewed
in example 2-1. The conclusion drawn is that all available closure methods are based on
weak assumptions and seem to be motivated primarily by their ability to evaluate the
series on closed form. Instead, integral equation methods with appropriate approxima-
tions to the kernel functions and involving the same computational effort are advocated
for. Finally, dynamic systems driven by processes with independent increment, such
as the Wiener process or a compound Poisson process are considered. The state vec-
tor made up by displacement components, velocity components and possible hysteretic
components then forms a Markov state vector. Integral equations of the Volterra type
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are formulated for the joint probability density function of the first-passage time and
the associated velocity and hysteretic components at a first passage. The first-passage
time probability density function is next obtained by marginalization. The kernel of
these integral equations is formed by the transition probability density function of the
Markov vector, which is assumed to be known with sufficient accuracy. Hence, no new
unknown functions are introduced, and exact solutions can in principle be obtained.
Integral equations are formulated for the single and double barrier problem of a single
degree-of-freedom non-linear and non-hysteretic oscillator, for a non-linear and non-
hysteretic multi-degree-of-freedom system, and for a single-degree-of-freedom hysteretic
oscillator. In example 2-2 various kernel approximations and bounding techniques re-
lated to the integral equation for fr, (¢t | &,) are investigated. The considered problem
is a linear single-degree-of-freedom oscillator subjected to Gaussian white noise. The
conclusion of the investigation is that the best kernel approximation is obtained if the
series expansions of the numerator and the denominator of the kernel expansion are
truncated to the first term. This is so, because both the numerator and the denomina-
tor of the truncated series are then upper bounds, and hence counterbalance each other
to some extent. Two of such kernel approximations are selected for further examina-
tion. The first is expressed in terms of 2nd order joint conditioned out-crossing rates
of the type f5F*(t1,t2 | &,) and the other is in terms of 2nd order joint unconditioned

out-crossing rates of the type fi*(¢1,t2). The corresponding solutions for the first-

passage time probability density function are designated fr_snf)(t | &,) and f:(,fl')(t | &)

In example 2-3 bounds are formulated for fr,(t | £;,) in terms of the joint crossing rates
fHt(t,...  ta; S, NN Sy | &), and the optimal position of the control points
T1,... ,Tm to narrow these bounds is investigated. The considered physical system is
a single barrier stochastic start problem of the linear single degree-of-freedom system
of example 2-2. The conclusion drawn from the numerical example is that the bounds
with optimally positioned control points become significantly sharper than correspond-
ing bounds without control points. Further, the optimal position of the control points is
confined to relatively narrow intervals determined by the dynamics of the system, and
hence they can be determined rather easily. An approximation for the first-passage time
probability density function is formulated based on the 1st upper bound with no con-
trol points. The approximation takes into consideration the clumping of out-crossings
of narrow-banded response processes at low to medium barrier levels. In example 2-4
approximations for the kernel of the integral equations for fr, (¢ | &, N C;') are con-
sidered. Specifically, a kernel approximation involving joint 3rd order unconditioned
out-crossing rates of the type fif T*(ts,t1,t) is investigated. The corresponding solu-

tion for the first-passage time probability density function is designated ffg{ )(t I Eio):
For the single barrier stochastic start problem for a single degree-of-freedom oscillator
as well for a 2 degree-of-freedom system, both subjected to Gaussian white noise, a
rapid convergence to the results obtained by Monte-Carlo simulation is noticed, com-
pared to the similar approximations based on unconditioned 2nd order out-crossing
rates. In all the mentioned examples the approximate first-passage time probability
density curves tend to be parallel to the simulated curve. Hence, the so-called limiting
decay rate of the first-passage time probability density function can be estimated in case
of time-invariant Markov systems subjected to stationary excitation and with a time-
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invariant safe domain. The limiting decay rate is nothing but the lowest eigenvalues of
the Kolmogorov forward and the Kolmogorov backward operators with absorption on
the entrance and exit part of the accessible part of the failure surface, respectively. In
example 2-5 solutions are obtained for the single barrier stationary start problem of a
linear time-invariant single degree-of-freedom oscillator subjected to stationary white
noise or stationary compound Poisson process excitation by numerical integration of
the integral equation for the joint probability density function of the velocity at out-
crossings from the barrier b and the first-passage time, fxp (b, 2,1 | €, ). In the case of
white noise excitation exact solutions are obtained to the extent of the accuracy of the
applied numerical integration scheme. In case of compound Poisson process driven sys-
tems, only approximate results are obtained, because the transition probability density
function is approximated by a Gram-Charlier expansion truncated after the 6th order.
Finally, an approximation for the first-passage time probability density function is in-
dicated valid for systems driven by compound Poisson processes with very sparse pulse
arrivals, based on assumed stochastic independence of the eigenvibrations from adjacent
impulses. The approximation becomes increasingly accurate, as the mean pulse arrival
rate goes to zero or the structural damping is increased.

In section 2.3 a Volterra integral equation is formulated for fy+(t —t,). Based on this
integral equation inclusion-exclusion series in the unconditioned crossing rates f, ;™%
(t1,... ytn,t) are derived for fr 4+ (t —t1) and for the nominator and denominator of the
kernel of the said integral equation. Based upon the relationship between fr, (¢ | &,)
and fr+ (t — t1) an alternative inclusion-exclusion series for fr,(t | £, ) in the indicated
joint unconditioned crossing rates is then obtained. Next, an integral equation is stated
for the probability density function of L} on condition of in-crossings to the safe domain
at the times ty,... ,tn, previous to the in-crossing at the time f,4, at the start of the
interval L. This quantity, which is denoted fi+(t —tnt1 [C; N NC; ), 81 < -+ <
tn < tat1 < t, occurs in the remainder of the inclusion-exclusion series for f L#(t—t1). If
an approximate solution to the integral equation for this quantity can be obtained, fast
convergence of the inclusion-exclusion series for f+(¢ — 1) and hence for fr,(t | &)
can be expected by resubstitution. The following identities can be proved to be valid,
frn(tz | &) = fiH (¢ Nrgey 1S+ | €,) and fL;l(t —t1) = fiF{t;i 0y, 4 Sr | CF). As
seen, the functions on the right-hand sides only differ with respect to the conditioning.
Based on this observation an integral equation for f E7 (t—1t,) is formulated, identical to
the one, previously mentioned for fr,(t | &, ), replacing the conditioning on the event
&:, with the event C; in the conditioned crossing rates. From this integral equation
inclusion-exclusion series in the joint unconditioned crossing rates f, ;"% (ty,... ,tpn, 1)
are derived for f;-(t —t1) and for the nominator and denominator of the kernel of
the said integral equation. Based on the mentioned relation between fr-(t—t;1) and
fr# (t — t1) an alternative inclusion-exclusion series in these unconditioned crossing
rates can then be derived for fr,(t | &,). Next, the single barrier first-passage time
problem of a linear single degree-of-freedom oscillator exposed to Gaussian white noise
is considered again for which case the displacement and the velocity form a Markov
vector. From the mentioned resemblance between the integral equations for fr, (¢ |
&€,) and fr-(t — ;) an integral equation for the joint probability density function
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Fxr- (b,z,t—1;) of the out-crossing velocities X at the time ¢ and L; can immediately

be formulated from the corresponding integral equation for fy T (b,z,t| &,). From the
numerical solution of this equation f T (t—t;1) is obtained by ma,rgma,llzatmn i L} (t—t1)
and finally fr, (¢ | £&,) can then be calculated from the relations linking these quantztles
to fy-(t —t1). In example 2-6 approximations to the kernel of the integral equation for
L;"(t — t1) are investigated. Two approximations are considered, one in terms of joint
3rd order joint crossing rates of the type f3 =% (t1,%2,t) and one in terms of joint 2nd
order crossing rates of the type f; ~(¢1,t2). The corresponding solutions for the first-
passage time probability density function are designated f;: (g ) (t | &,) and f (t | Eis s
respectively. For the considered single barrier stationary sta;rt, problem of the linear
single degree—of freedom and the 2 degrees-of-freedom oscillators subjected to Gaussian
white noise, fT 5 (t | £, ) turns out to give almost identical results to the approximation

(b) (t | &1, ), also based on unconditioned joint 2nd order crossing rates. However,
le)(t | &,) is doing better during the first few periods of first-passage times. In

the same way, f(g) (t | &,) is doing better than the approximation f(‘f )(t | &,), also
based on unconditioned joint 3rd crossing rates. The general conclusion draWn from the
example is that f(g)(t | &,) and (h)(t | £,) are the best considered approximations
based on joint 3rd and 2nd order unconditioned crossing rates. Example 2-7 shows the
appropriate kernel approximations to be used in the integral equation for fy 1 (t—t3 | C;)
and for fr+ (t —tns1 | Cf N---NCy ), which appear in the remainder of the inclusion-
exclusion series for f;+(t — ;). No numerical results are presented, but with reference
. to the conclusion in example 2-6 these approximations can be expected to provide the
! best approximations available based on joint unconditioned crossing rates of the order
n+3. Finally, in example 2-8 an appropriate approximation to the kernel of the integral
equation for th-! (t — t1) are formulated. The said kernel approximation is expected

to give results of equally quality as (g)(t | £,), based on the integral equation for
fr- (t —t1), although no numerical example is shown.
1

In section 2.4 a Volterra integral equation is formulated for fy+(t — 1 | &,). Based on
this integral equation inclusion-exclusion series are formulated for er+ (t—11|&,) and
for the nominator and denominator of the kernel of the said integral equation in the same
joint conditioned out-crossing rates f,f¥(t1,... ,t, | &,) as used for fr,(¢ | &,). Based
upon the relationship between fr, (¢ | £,) and ij-(t —t1 | &, ) an alternative inclusion-
exclusion series for fr, (¢ | £, ) in these conditioned crossing rates is then obtained. Next,
an integral equation is stated for the probability density function of U on condition
of &, and on condition of out-crossings from the safe domain at the times t,... ,t,,
prior to the out-crossing at the end of the interval U;*. This quantity, which is denoted
fur(t —tag1 | E,NCEN---NCE), t1 <--- <tp <t—1<t, occurs in the remainder
of the inclusion-exclusion series for fy+(t — 11 | &,). If an approximate solution to
this integral equation can be obtained, fast convergence of the inclusion-exclusion series
for fy+(t —t1 | &,) and hence for fr,(t | £,) is obtained by resubstitution. Next, an
integral equation is formulated for the probability density function fo (t—t1 | &) of
the interval U;” until the next out-crossing after an out-crossing from the safe domain
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has taken place at the time ¢. From this integral equation an inclusion-exclusion series
for this quantity and for the numerator and denominator of the kernel function is derived
for still the same joint conditioned out-crossing rates fif "t (t1,... ,t, | &,). Based on
a relation between fy-(t —1%; | &,) and fy+(t —# | £,) a 3rd inclusion-exclusion series
in these conditioned out-crossing rates can then be derived for fr,(t | £,). Hence, the
three alternative series turn out to be merely different formulations of the remainder of
the inclusion-exclusion series. Next, the single barrier first-passage time problem with
stationary start of a single degree-of-freedom oscillator excited by Gaussian white noise
is considered again, for which an integral equation is formulated for the joint probability
density function f XU (b,&,t —ty | &,) of the out-crossing velocities X at the time ¢

and the interval U;” on condition of &,. From the numerical solution of this equation,
fu-(t—1 | £, ) is obtained by marginalization. fy+(t —t | £,) and finally fr, (¢ | &)
can then be calculated from the relation linking these quantities to fy-(t —t1 | &,).
No numerical example of the theory of section 2-4 has been presented.

Finally, it should be mentioned that the main obstacle of all the presented methods
is that the areas of application are limited to the problems for which the necessary
crossing rates can be calculated. At present this means that only linear problems and
a very restricted class of non-linear systems can be analysed. Further, the dimension of
the considered response vector must be low. Even for the Gaussian vector processes of
medium high dimensionality the calculation of joint crossing rates will soon be practi-

cally impossible.
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3. MARKOV VECTOR METHODS

3.1 Introduction to Markov vector methods

In this section various models for the generating source of a vibratory system are pre-
sented. By a generating source is meant the final stochastic excitation on a vibratory
system, and not merely the loads. The actual dynamic loads may also be obtained by
a filtration of the generating sources.

The main distinction will be made between generating source processes, which have
sample curves that are continuous with probability 1, and those, which may be dis-
continuous (perform jumps). The scalar and n3-dimensional vector continuous source
processes are designated {W(t),t € [0,00[} and {W(%),t € [0, 00[}, respectively. Sim-
ilarly, the scalar and n4-dimensional vector discontinuous source processes are desig-
nated {V(t),t € [0,00(} and {V(t),t € [0,00[}. A basic approach in the following
outline is that all generating source processes have independent increments, i.e. for any
0 <ty <ty <--- < t, the stochastic variables AW (ty) = W(t1) — W(ty),AW(t;) =
W(tz)— W(t1), - AW (ta—1) = W(tn) — W(tn-1) are mutually stochastically indepen-
dent and independent of the initial value W (#y). This assumption restricts {W(t),t €
[0,00[} to a Wiener process, {W(t),t € [0,00[} to a vector (multivariate) Wiener pro-
cess, {V(t),t € [0,00[} to a compound Poisson process or an a-stable Lévy motion
process and {V(t),t € [0,00[} to a vector (multivariate) compound Poisson process or

a-stable Lévy motion.

The dynamic loading processes on an SDOF or n;-degrees-of-freedom system are desig-
nated {F(t),t € [0,00[} or {F(t),t € [0, 00[}, respectively. The corresponding scalar and
n,-dimensional displacement processes are designated {X(t),t € [0,00(} and {X(t),t €
[0, 00[}, respectively. The n-dimensional state vector process, describing the integrated
dynamic system made up of displacements and velocities, possible hysteretic components
and filter state variables for the load, is designated {Z(t),t € [0, co0[}. The basic assump-
tion in the present outline is that the state vector process can be modelled as a Markov
vector process, with the transitional probability density function g4z, (z,t | 20, to).

In section 3.1.1 the properties of Wiener, compound Poisson and a-stable Lévy motion
processes are described. In section 3.1.2 the dynamic modelling of loads obtained by
filtering of the generating sources is described and finally, in section 3.1.3, the modelling
of dynamic systems and the final formulation of systems with Markov properties are

given.

3.1.1 Generating sources with independent increments

3.1.1.1 Wiener process

A stochastic process {W(t),t € [0,00[} is a Wiener process (or Brownian motion), if

1. P(W(0)=0)=1
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2: The process has zero mean, i.e. the mean value function puw(t) = E[W(t)] = 0.

3: For arbitrary 0 < fp < #; < -+ < t, the increments AW (t,) = W(t;) —
W(to), AW (t1) = W(ta) — W(t1), -+ ,AW(tn-1) = W(tn) — W(tn-1) are
stochastically independent.

4: For arbitrary t and At the increment AW(t) = W(t + At) — W(t) has a
Gaussian distribution with the zero mean and with the variance

E[(AW(t))?] = DAt (3-1)

.' The diffusion coefficient D is assumed to be 1 for simplicity, a so-called unit intensity
Wiener process.

From the definitions a Wiener process can equivalently be described as a zero mean
Gaussian process with the auto-covariance function

kww (t1,t2) = min(t1, ;) (3-2)

Since, the auto-covariance function kww/(t1,%2) is continuous at the diagonal t; = t; =

t, the Wiener process is continuous in the mean square, see e.g. Arnold (1974). Further,
2

since the 2nd order mixed derivative ma—mznww(tl,tg) does not exist at the diagonal

t; = t; = t, the Wiener process is not differentiable in the mean square. The mentioned
properties of continuity and differentiability can even be proved to hold with probability

1
An n3-dimensional Wiener vector process {W(t),t € [0,00[} is defined as a vector
process, where all component processes {W,(t),t € [0,00[}, @ =1,... ,n3 are assumed

to be mutually independent, and unit intensity Wiener processes. One then has the
cross-covariance function of the process,

Kw,w,(t1,t2) = E[Wa(t1)Wp(t2)] = bap min(ty, t2) (3-3)

where 64 signifies the Kronecker delta.

3.1.1.2 Compound Poisson process

The Poisson process is characterized as a regular (orderly) stochastic point process with
independent increments. Let the increment of the counting process (the random number

of points) in [t,t + dt[ be denoted by dN(t) = N(t + dt) — N(t). A compound Poisson
process {V(t),t € [0,00[} is represented as

N(t) N(t) : :
V=3 =3 R-Hu-0)= [v()= [PoaNE) @3-
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where H(z) is the Heaviside unit step function given by
g { 1 , z>20
#=10 ., «<0 (-9

The specific definition of the unit step function becomes important, because impulses
up to but not including the time ¢; are being counted.

The generalized derivative of the compound Poisson process can then formally be rep-
resented as the following random train of Dirac delta impulses,

P N(t)
V()= ; Pib(t —t;) (3-6)

where §(z) is the Dirac delta function (or, rather pseudofunction), which is the gen-
eralized derivative of a unit step function. {N(t),z € [0,00[} is a Poisson counting
process giving the random number of time points ¢; in the time interval [0,¢[ (with the
additional assumption, P(N(0) = 0) = 1), and P; are independent random variables,
identically distributed as a random variable P. Each of the variables P; is assigned to
a random point t;. The variables P; are also assumed to be statistically independent of
the random times ¢;, or of the counting process N(t). Since, the counting process counts
the number of jumps up to, but excluding the one at the time ¢, the sample paths are

continuous to the left.

In the Stieltje integral representation (3-4) P(t) denotes the random variable assigned
to the time point occurring in the time interval [¢, ¢+ dt[. Since P(t1) and P(#;) for dis-
joint differential intervals are stochastically independent and independent of the Poisson
counting process, and the increments dN(#;) and dN(%2) of the Poisson counting pro-
cess are independent as well, it also follows that the increments dV(t;) = P(¢,)dN(t;),
and dV(t;) = P(ty)dN(t;) are stochastically independent, i.e. the compound Poisson
process has independent increments.

From the regularity properties it follows that

E[dN(t) = E [(dN(t)) ”] = y(t)dt + O(dt?) (3-7)

for any n, where v(t) is interpreted as a mean arrival (or occurrence) rate of events
(points). The probability function of the first order of the Poisson counting proccess is

given by, e.g. Snyder (1975)

Piny(n,t,0) = P(N(t) = n) == 7 exp|-

n!

("f V(T)dT) j v(r)dr (3-8)
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Making use of (3-4) and of the stochastic independence of P(7) and dN(7) the following
results are obtained for the mean value function puy(t) and the auto-covariance function

kvv(ti,ta)

uv(t) = E[P] ] u(r)dr (3-9)
min(ty,tz)
kv (test2) = E[P?] / v(r)dr (3 - 10)

The joint characteristic function of VT(t) = [V(t1),V(t2),... ,V(ta)] is given as,
Roberts (1972)

My (6;t1,t3,...tn)=E {exp (iiajV(tj))} =

/ [Mp (i 6;(1—H(r — t,-))) - 1} v(r)dr (3-11)

where Mp(6) is the characteristic function of the impulse strength. The corresponding
log-characteristic function can be expanded in MacLaurin series in terms of @ as follows

In My (8;ty,... ,tn) =

n n

S m VNG + 5 3 maV(E), Vit (6:)(06) + - (3-12)
j=1 T k=1
where

K[V )y s V)] =
min(ty,... ,tn)

E[P"] / H(l — H(r — t;))v(r)dr = E[P"] / v(r)dr (3-13)
j=1

o

is the joint nth order cumulant of the vector VT(t) = [V (t1), V(t2),... ,V(ta)]. Since,
the auto-covariance function (3-10) is continuous at the diagonal ¢; = ¢, = ¢ it follows
that the compound Poisson process is continuous in mean square. Of course, this is not
the case with probability 1.

R
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Alternatively, the compound Poisson process may be described by the random measure
M(dt,t,dp,p), which gives the random number of jumps during the time interval [¢, t4d#|
into the differential interval [p, p + dp| of the mark variable P. Since, the underlying
counting process is regular (i.e. the probability of occurrence of more than one jump in
the infinitesimal time interval is negligible) this measure has the following properties

Lt f M(dt,t,dp,p) = dN(t)
P

: P(M(dt,t,dp,p) = M™(dt,t,dp,p)) =1, n=2,3,...

: P(M(dt,t,dp,p) = 1) = v(t)fp(p)dtdp

: P(M(dt,t,dp,p) = 0) =1 — u(t)fp(p)dtdp

: P(M(dt,t,dp,p1) - M(dt,t,dps,p2) =0) =1, p1 # p2

: P(M(dtl,tl,dpl,pl) = M(dty,t2,dp2,p2) = 1) =
v(t1)fp(p1)dtidprv(ta) fp(p2)dizdps , 1 # 12

(3 — 14)

D Ot e W N

where P C R is the sample space of the random variable P, and fp(p) is its probability
density function. Notice, that the remainders of the order O(dt?) and O(dp?) have not
been indicated in (3-14). The first relation of (3-14) states that the total number dN(t)
of jumps in the interval [, ¢ + dt[ is obtained by summing up the jumps to all possible
intervals [p, p+dp[. This is so, since the possibility of multiple jumps during [t, t+d#[ has
been excluded by the regularity condition. The remaining properties all follow from the
regularity property of the Poisson counting process and the stochastically independent

increments of the compound Poisson process.

From the above properties it follows that

E[M(dt,t,dp,p)] = E[M"(dt,t,dp,p)] = v(t)fp(p)dtdp, n =2,3,... (3 —15)

E[M(dt1,ty,dpy, p1)M(dta, ty,dpy, pa)] =

(316
E[M(dty,ty,dpy, p1)| E[M(dtz,t2,dpa, p2)], t1 # t2 )

If the jump during [t,t + dt[ takes place into interval [p,p + dp], i.e. the jump has the
magnitude P(t) = p and M(dt,t,dp,p) = 1, the increment of the compound Poisson
process is dV(t) = p = pM(dt,t,dp,p). Summing up the possible jumps into all the
contiguous intervals, i.e. summing over the whole sample space P of the random variable
P, yields the following integral representation for the unconditional increment of the

compound Poisson process

dV(t)=LpM(dt,t,dp,p) (3-17)
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Alternatively, the compound Poisson process. may then be written as the following
stochastic integral

V(t) = f /P pM(dr,,dp,p) (3-18)

More generally, it follows that with probability 1
@) = ([ Mttann) = [ puantdp,p) (3-19)
P P

In the context of (3-17) the left-hand side of (3-19) represents an n-fold Stieltjes integral
over P". However, because of the 5th shown property of (3-14) all off-diagonal terms
cancel, and only the diagonal terms on the right-hand side of (3-19) give the contribution

to the integral.

Next, a multivariate compound Poisson process {V(t), ¢t € [0,00[} is defined as an
n4-dimensional vector process, where all component processes {V,(t), t € [0,00[},a =
1,... ,n4 are mutually statistically independent compound processes. Each component
process is defined by a random measure M, (dt, t, dp, p) correspondmg to a certain mean
arrival rate v4(t) and a mark variable P,.

3.1.1.3 a—stable Lévy motion

Quite a wide class of random excitation processes with jumps can be described in
terms of a—stable Lévy motions, which turn out to have independent increments and
discontinuous sample paths. Initially, some fundamental notations and definitions are

introduced.

A random variable is said to have a stable distribution if it can be represented as the sum
of independent, identically distributed random variables whose probability distributions
follow the same law as the distribution of this variable.

A generalized Central Limit Theorem (see e.g. Samorodnitsky and Taqqu (1994)) states
that the limit distribution for the sum of independent, identically distributed random
variables is a stable distribution. It is a Gaussian distribution (according to the usual
Central Limit Theorem) if these variables have finite variance.

There is a large family of distributions known as a-stable distributions satisfying the
stability condition. The a-stable random variables X, denoted as X ~ S,(0o, 3, i), are
defined by the characteristic function expressed in the general form of

exp{iud — 0®|6|*(1 — :Bsgn (6) tan 2T &)}, a €]0,1[ or ]1,2],

exp{zpﬁ—a|€|} s e=1, =0 =y

Mx(6) :{
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where a €]0,2] is the index of stability or the characteristic exponent, 8 € [~1,1] is the
skewness or asymmetry parameter, ¢ €]0, 0o is the scale or dispersion parameter and
p €] — 00, +00] is the shift or location parameter.

Unfortunately, the analytical inversion of the characteristic function (3-20) is only feasi-
ble in a few special cases, e.g. for S3(0, 0, u) which is the Gaussian distribution N(y,o?),
or in the case 51(c,0, ) which is the Cauchy distribution with the density function

1 o)
fx(e) =~ = g (3 - 21)

The characteristic property of a—stable random variables is that, except for the case
a = 2, they have infinite variance and higher order moments, since for a €]0, 2[

E[|XP] = o0, p € [a,00]
E[[X[”] < oo, p€0,qf

(3 —29)

For example, if @ = 1, the distribution has infinite mean value (Cauchy distribution).
Of course, in the case @ = 2 (Gaussian distribution) all the moments are finite.

For different sets of parameters, a wide variety of probability density curves can be
modelled with the help of a—stable distributions, both with positive and negative skew-
ness. Positive values of the skewness parameter 3 correspond to ’positive skewness’,
where the right-hand side tail of the density curve is heavier, or thicker, than the left
hand-side tail. A characteristic property of these curves is that they have inverse power
(or algebraic) tails, which means that the tails decay more slowly than the tails of the
Gaussian distribution. Hence, the a-stable distributions are suitable in modelling the
distributions with ’heavy’ tails. This may be relevant to the phenomena in which the
jumps, or impulses, occur, since in those cases the high values of the observed quantity
are more likely to occur than in the case of a Gaussian process.

Next, an a-stable Lévy (standard) motion is defined as a stochastic process {V(t), t €
[0, 00[} for which

1: P(V(0)=0) =1
2: {V(t),t € [0,00[} has independent increments.

3: For arbitrary ¢t and At the increment AV(t) = V(t+At)—V(t) has an a-stable
distribution, Sq((aAt)'/, 8,0), where a is a positive constant.

An a-stable Lévy motion is a Wiener process, when @ = 2 and it is symmetric for

g'=1
\ The characteristic function of the increment AV/(t) during the interval [t, {4+At[ becomes
exp (—(aAt)lB[“(l — i(3sign (6) tan %E)) , @ €]0,1for ]1,2]
Mav@)(0) = (3—23)

exp(—aAt]9|) s e=1.8=0
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A random measure M(dt,t,dp,p) may be introduced for the a-stable Lévy motion,
defined in the same way as for the compound Poisson process. Moreover, the integral
representation (3-18) is valid for a—stable Lévy motions as well.

The probability of making a jump into the interval [p, p + dp[ during the time interval
[t,t + At] is given by fav(y(p)dp. If At is sufficiently small this probability can also be

expressed as P(M(At,t,dp,p) = 1). Hence, one may write

AlitfilOP(M(At,ta dp,p)=1) = Aim_ fav(p)dp (3 —24)

Similarly, a multivariate a—stable Lévy motion {V(t), t € [0,00[} can be defined as an
n4-dimensional vector process, where all component processes {V,(t), t € [0,00[}, @ =
1,...,n4 are mutually independent and defined by the individual random measures
My(dt,t,dp, p).

In what follows it will be assumed in general that the ns-dimensional generating source
process {V(t), t € [0,00[} is made up of mutually independent component processes
{Va(t), t € [0,00[}, which may be either compound Poisson processes or a-stable Lévy
motions. Due to the independent increments each component process is then completely
defined by its so-called jump probability intensity function Jyy, }(pa,t) defined as

" 1
Jvay(post) = At—}t},lgp—*ﬂ AtApq P(MQ (88,1, Apay pe) = 1) (3 —25)

Seeing that there may be no jump or one jump in [¢,t + dt[, (3-25) implies that the
expectation £ [Ma(dt, b dYaDa )] , if it exists, is evaluated as

E[Ma(dtatadpﬂr:pa)] = J{Vu}(pﬂ'it)dp&dt (3 - 26)

From the 3rd mentioned property in (3-14) it follows that the jump probability intensity
function of a compound Poisson process is

Jivy(p,t) = v(t)fr(p) (3 —27)

For the a—stable Lévy motion from (3-24) it follows that

1 11 .
Jvy(p,t) = lim —=fave(p) = lim o f exp(—t6p)Mav (1) (8)df (3 —28)

—0o0

Upon inserting (3-23) into (3-28) and substituting z = [p|d and u = Tp‘?j the following

result can be obtained

1 a
™ |p|at!

Jvy(p,t) = f(a, B,sign(p)) (3 —29)
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where

f(a, B,sign(p)) = lim L cos (:r sign(p) — uz®f tan a—ﬁ-) exp(—uz®)dz =

k] k] 0 u 2 p -

0

o0
. am . . & am
31_11}) (ﬂ tan 751gn(p) cos (:c — sign(p)uz®ftan 5 ) -
. e o am a—1 o
sin (3: — sign(p)uz®f tan 7) az®" " exp(—uz®)dz (3 —30)

The last statement follows from the integration by parts of the first part. The last-
mentioned formulation is preferable at numerical applications, since the numerical dif-
ferentiation is avoided. It should be noted that the integral does not converge uniformly
as u approaches zero. Hence, the integration and the limiting operation cannot be in-
terchanged. As seen the function f(«,(,sign(p)) only depends on p through its sign
and then it merely acts as different constants for positive and negative values of p. It is
then seen that the jump probability intensity function of an a—stable Lévy motion has
a singularity of the order |p|**! as p — 0, i.e. the probability intensity of performing
small jumps is much higher than the one of performing larger jumps. For § = 0 (3-30)
provides

o0

f(e,0,sign(p)) = 1{im /al‘a_l sin(z) exp(—uz®)dz (3 -31)

—0
4]

As it is seen, f (as, 0,sign(p)) is completely independent of p in this case. For @ = 1 and
a = 2 (3-31) provides, respectively,

f(l,(],sign(p)) 0 f(2, [),Sign(p)) =={) (3 —32)

Further, it can be shown that f (a, 0, sign(p)) tends to infinity as @ — 0. Relationships
(3-29) and (3-32) imply that the jump probability intensity function of the Cauchy
process and the Wiener process are, respectively,

1
Jvy(p,t) = = = (3 - 33)

T Pe

Ty(pt) =0 (3 -34)
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3.1.2 Dynamic loads obtained by filtration of processes with independent
increments

Consider the linear SDOF oscillator

m(X + 2woX + wiX) = F(t) (3 — 35)

In general, the stochastic excitation process {F(t),t € [0,00[} has no independent
increments. Hence, the vector process [X, X]? is not Markovian.

One way to remain within the framework of the Markov approach is to regard such
excitation processes as an r-th order differential form of an auxiliary process, which in
turn is the result of filtering the generating source with independent increments through

an sth order filter (s > r).

Hence, the loading process can be expressed as

Fit)=pYD +p YD 4. 4pyY (3 — 36)

where Y("(t) = ::, Y (t) and Y (¢) are the response of an sth order linear time invariant

filter, governed by the differential equation

Y(’-’) + q1 Y(s_l) R = qu == V(t) (3 i 37)

D0sP1y--- 2 Pryqis- -+ s in (3-36), (3-37) are real constants. The process V(#) stands for
the generalized derivative of any generating source process with independent increments,
i.e. of a Wiener process, of a compound Poisson process, or of an a—stable Lévy motion.

Then, the augmented state vector [X, X, X, Y, e Y(’_l)] z is a Markov vector process.

The differential rules (3-36) and (3-37) can alternatively be given in the following integral
form

F(t) = / Bt — 7)dV(7) (3 38)

where
1T e 1 [ ., P(iw)
Be=s | o) = | Mty -
h(t) 5. / e (iw) o / e Qi) w (3 —39)

and P(z) and @(z) are polynomials of order r and s, respectively,

P(z) =poz" +p1z" '+ +prz
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Qz)=2"+qz"" + -+ py2 (3 — 40)

In (3-38) and (3-39) A(t) and H(iw) = P(iw)/Q(iw) are the impulse response and the
frequency response functions of the shaping filter, respectively. In formulation (3-38) it
is assumed that the load prior to ¢ = 0 is zero. If r < s and the roots z; of Q(z;) =0
have negative real parts, i.e. Re(z;) < 0, the integral (3-39) can be evaluated as follows,

see e.g. Nielsen (1993)

0 , 150,
8
3 2t __P(z)
)= ngej fl(z._z,,) @ B2l (3-41)
k=1
k#j

The frequency response function of other time-invariant linear systems can often be
approximated by a rational one.

The Poisson-driven train of general pulses may in the simplest case be regarded directly
as the result of filtering the train of Dirac delta impulses (3-5) through a rational linear
filter such as (3-35) and (3-36). Upon inserting (3-5) into (3-38) one obtains

N(t)
F(t)=)_ Ph(t—t) (3 - 42)
=1

More generally, the filter equation may be a non-linear and time-varying sth order
differential equation, and the output equation (3-36) can be a non-linear time-varying
transformation of the filter state variables up to and including the rth derivative.

3.1.3 Governing stochastic differential equations in state vector form

The general equation of motion of a non-linear, non-hysteretic, SDOF system with the
mass m is, cf. (2-80)

m(ji + u(X,X)) = F(t) (3 - 43)

Especially, for the Duffing oscillator, (3-43) attains the form

m(X +26woX +wd(1+ eX?)X) = F(t) (3 — 44)

where the constant € may assume any value, ¢ € R, and wy and { are the circular
eigenfrequency and the damping ratio of the corresponding linear oscillator, respectively.
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The differential equation (3-43) can be recast into the following set of first order equa-
tions, cf. (2-80)

%Z(t) = ¢(2Z(t)) +dF(t) (3 —45)

w0-[35]. <0 - Lt xn ] 2= (] 0=

Equation (3-45) is known as the state vector formulation, where Z(t) is the state vector
and c(Z(t)) is termed as the drift vector.

In the case of a hysteretic SDOF oscillator the time-history dependence (hereditary
property) of the restoring force acting on the mass can be taken into account by in-
troducing an extra endochronic state variable ). Assume that the restoring force is
made up of its hysteretic component mw?(1 — a)Q, its linear elastic part mw2aX, and
its linear viscous part m2(woX, in parallel. The parameter «, which is termed the
secondary to primary (post- to pre-yielding) stiffness ratio, specifies the fraction of the
linear elastic part of the restoring force, remaining during plastic loadings, due to the
strain hardening or strain softening effects. The equation of motion then becomes

m(X + 2¢wo X + w? (X +(1- oz)Q)) = F(t) (3—147)

In order to close the system, a constitutive relation must be introduced, which relates the
hysteretic state variable ) to the state variables X and X. This is given in differential

form as follows

Q =r(X,Q)X (3 - 48)

where k may be interpreted as a non-linear state-dependent spring stiffness of the hys-
teretic component of the restoring force.

The state vector formulation of (3-47), (3-48) is still given by (3-45) with the following
new definitions, cf. (2-93)

X(t) ‘ X 0
Z(it) = | X(t) |, c(Z(t)) = [—2@;0}{ - wg_(aX + (1- a)Q) ,d= ;;11-— (3—49)
Qt) (X, Q)X 0

Various hysteretic models are determined from various constitutive equations. For a
bilinear oscillator the non-dimensional spring stiffness assumes the following form, Kaul

and Penzien (1974)

k(X,Q) =1-H(Q-qy)(1 - H(-X)) - H(-Q — ¢,)(1 - H(X)) (3 - 50)
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where H(z) is the Heaviside unit step function (3-5). The quantity g, is the yield limit,
which is equal to the displacement, at which yielding takes place for the first time. As
seen in figure 3.1a, £ = 0 when the oscillator is in the elastic range or at the point
of moving into this range. The corresponding bilinear behaviour of the total restoring
force aY + (1 — a)@Q is depicted in figure 3.1b.

x=0 k=0 k=1
qy‘7é /

|
|
X
i =1 L
i oo |
. |
xsl/r\,czg 4y = dx :
b) aX +(1-a)Qy T
g}adX

Fig. 3-1: Bilinear oscillator. a) Constitutive relation for the hysteretic state variable.
b) Constitutive relation for the total restoring force aX + (1 — a)Q.

The Bouc-Wen smooth hysteretic model is given by, Bouc (1967), Wen (1976)

5(X,Q) =1 - peign(X) 2 |2 £
qy |9y Qy

n—1 n

= (3 —51)

where 3,7, n are the parameters to be calibrated from available tests. If + vy =1, ¢,
can be identified as the yield level.

Furthermore, if the loading process {F(t), t € [0,00[} is the result of the filtering de-
scribed above, the state vector as given by (3-49) must be augmented by the state
variables of the filter [¥,Y,... ,Y(*~1)] and the augmented state vector is governed by
the following system of first order ordinary differential equations obtained from (3-36),
(3-37), (3-47), (3-48)

%Z(t) =c(Z(t)) +dV(t), t >0 (3 -52)
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LD

Z(t) = ,d= (3 — 53)

Fleg) 0
| yria—1 | L dj

~- X =
—2woX —wi(aX +(1-a)Q) + YD 4 By (=D 4 ...y &y
K(X,Q)X
¥

c(zt)=| ¥ (3-54)

y(s—1)
| —q YD~ —gY _

Equation (3-52) may be termed as the state vector formulation in terms of the generating
source process, where dj is the suitable constant. Equation (3-52) should be solved with
suitable initial condition Z(0) = Z,, which may be deterministic as well as stochastic.

With the help of standard techniques of structural dynamics (the d’Alembert principle
in combination with the principle of virtual work) the equations of motion of a general
non-linear and hysteretic MDOF system can be written in the following matrix form,
Nielsen, Mgrk and Thoft-Christensen (1989)

MX + CX + KoX +g7Q = F(¢) (3 — 55)

X(t) is an ny-dimensional vector and F(t) are the external loads conjugated to X(t).
M, C and K signify the global mass matrix, the global linear viscous damping ma-
trix and the global stiffness matrix from the linear elastic part of the structure, all of
dimension n; X n;. M is symmetric and positive definite, and Ky is symmetric and
positive semi-definite. C is generally non-symmetric and positive definite for dissipative
systems. Q(t) is a vector of dimension n; of generalized stresses from all plastic ele-
ments, conjugated to the generalized strains, q(t). The relationship between the rates
of the generalized strains and the rate of the external degree-of-freedom is defined by
the following geometrical condition

q=gX (3 — 56)
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The geometrical matrix g = g(X(t)) of the dimension n; X n; is an analytical function
of the external degrees of freedom X(%) in the general geometrically non-linear case.
For geometrically linear structures, g becomes a constant, and (3-56) can directly be

integrated.

In order to close the differential system (3-55) a constitutive equation for the generalized
stresses must be formulated. For an ideal elasto-plastic structure this can be given on
the form, Nielsen, Mgrk and Thoft-Christensen (1989)

Q = x(q,Q)4 (8 - 57)

For a physical linear system, the symmetric positive semi-definite stiffness matrix x(q, Q)
of dimension ny X n3 is independent of the state variables q(t) and Q(t), in which case
(3-57) can be integrated. For non-linear elastic systems, & = k(Q) is an analytical
function of Q and is independent of q. For a physically linear or physically non-linear
system Q(t) can be eliminated in favour of the linear or non-linear function of X(t) in
(3-55). For elasto-plastic systems, K = &(q,Q) is a non-analytical function of Q and
q. In this case Q serves as endocronic state variables. If the system is both physically
and geometrically linear, the global stiffness matrix from the corresponding structural

elements becomes K; = g7kg.

Taking into account the possible equations for the hysteretic behaviour and those for
a filter, one can build up the state vector of all the displacements, velocities, hys-
teretic components and state variables for the filter. The augmented state vector Z(t)
is governed by the equations in the form of (3-57). Taking due account of the fact
that the generating source may consist of an n3-dimensional Wiener vector process
{W(t), t € [0,00[} and an n4-dimensional jump vector process {V(t), t € [0,00[} the
usual differential equations are next converted into the following state vector formula-

tion
dZ(t) = c(Z(t),t)dt + ddW(t) + edV(t), t > 0
3 — 58
2(0) = % . &5
r X o7 [ ) X ]
X M~ (-CX-KoX-g"Q+p Y+ +p,Y)
3 «(gX, Q)gX
Zt)=| | |, (@)= Y (3-59)
y(s-2) Y(s.—l)
|yl | —a YO . qY
F 0 - -0 L q1 qs J
0 0
0 0
0 0
d — . , e = . (3 - 60)
0 0
du y L€g J
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As seen, q(t) has been eliminated by means of the geometrical relation. In what follows
c will be termed as the drift vector and d as the diffusion matrix.

Equation (3-60) can be generalized further, assuming the structural system to be time-
varying, so the drift vector becomes especially dependent on time, and that the matrices
d and e may depend on the state of the system and time. Hence, the following formu-

lations are arrived at
} is <51}

dZ(t) = c(Z(t),t)dt + d(Z(t),t)dW(t) + e(Z(¢),t)dV(t), t > 0
Z(0)=1Z,

The governing stochastic differential equations (3-61) together with the random initial

condition can be converted into the integral form of

t t

t
2) =2+ [ ()7 + [ (2 7)aWE) + [ e(@(r),r)avir) (362
0 0 0
If the dynamic behaviour of the system is governed by the set of first order differential
equations (3-61) and the generating source processes are the ones with independent
increments and are statistically independent of random initial conditions Zg, then the
state vector {Z(t), t € [0,00[} is a Markov process.

Example 3-1: Equivalent shear models for reinforced concrete structures
exposed to earthquakes

r | b) /Mn,
I e %0 I
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E%% 261G s ‘j:\/:“‘“gj‘:‘:;{f‘ |
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C IO Y | Yxa® B Tﬁ_l
0] ) m,
Y “xo ij
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—_—

iig(t)

e

Figur 3-2: A) Instrumented reinforced concrete structure. b) Equivalent shear model.
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It is common practice to instrument important structures in seismic active areas to control the damage
development. Assume, the horizontal ground surface accelerator i4(t) and the horizontal displacement
are measured at a number, n;, of points along the building, not necessarily coinciding with the storey
beams as shown in fig. 3-2a. X;(t) signifies the displacement of the ith measurement point relative
to the displacement of the (i — 1)th measurement point. Generally, the n;th measurement point is
assumed to be located at the top storey. Especially, X;(t) signifies the horizontal displacement of the
1st measurement point relative to the ground surface.

Next, an equivalent shear building with n; degrees-of-freedom is introduced, see fig. 3-2b. In this
case, Xi(t) is assumed to represent the relative displacement between the (i — 1)th and the ith storey
beam of the equivalent shear structure. Then, X;(t) is assumed to cause an interstorey shear force of
magnitude m;T;, where m; is the ith storey mass. The equations of motion in terms of the relative

displacements can be written as

X1 = paTy = Ty — iig , t>0

Xi=pip1Tipn — (i +1)Qi +Qicy , t>0 , i=2,3,- ,n —1

. (3—63)

Xﬂl = _‘(ﬂﬂ.l + 1)Tn +Tn1—1 1 t> 0

XB(O):XI(O)ZO ¥ izllzl"'lnl

T; = 2Co,iw0,i Xi + of (i Xi + (1 - @i)Qi) = L e 1 (3 —64)

Qi =w(Xn @i, DXy 5 £30 ; =0 y =120 m (3 —65)

D; = g(Xi, Q)X , t>0 , Di(0)=Dip , i=12,--,m (3 — 66)

2Qyi a; .

a; = { ———1— )", 1=1,2,---,n 3 -67

' 2Qy,i+Di ! ( )
m; .

Hi = 3 322,3,"',111 (3—68)
mi_1

where m;ZCQ,gwg','X,- and m;wg'ia,;X,- are, respectively, the linear viscous part and the linear elastic
part of the shear force per unit mass, T;, as given by (3-64). Hence, wo; and (g, i = 1,2, --ny,
are merely parameters to specify the linear parts of the shear forces and should not be confused with
the natural frequencies and modal damping ratios of the structure. These parameters along with the
mass ratios p;, 1 = 2,3,---n;, must be identified so that the elastic version of (3-63) and (3-64) with
a; = 1 provides the same undamped circular eigenfrequencies w;, modal damping ratios {; and modal
participation factors §; of the undamaged structure, as calculated or measured by non-destructive
testing. Notice, that the indicated discrete linear system has 3n; — 1 free parameters, wyp ;, ¢p,; and
u;, to fit the 3n; parameters, w;, {; and §;, obtained from the primary linear system identification of
the structure. Assuming that modal parameters of the lowest n; modes of the primary linear structure
have been identified, the indicated indeterminateness in the secondary systermn identification means that
conditions can only be met at the lowest n; — 1 modes.
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Fig. 3-3: Clough-Johnston hysteretic model.
The hysteretic component of the shear force, Q;(t), along with the attached state variable D;(t), is

modelled using the Clough-Johnston model as given by (3-65) and (3-66) with the non-dimensional
spring stiffness x(X;, Q;, D;) and the function g(X;, Q;) given as

x(Xi,Qi, Di) = H(Q;) (A;(t)H(X)(l ~H@Q@-gy)+ H(-X,-))+

H(-Qi) (A.-(z)H(—X)(l ~ H(~Qi —ay)) + H(ir,-)) (3 — 69)

9(Xi, Qi) = H(X)H(Q: — gyi) — H(-X:)H(-Qi — qy,i) (3 —70)

A= —Td (5 i)
gy,i + Di(t)

The stiffness degrading hysteretic constitutive law of the model can be represented as shown in fig.
3-3. The Clough-Johnston model deals with the stiffness degradation by changing the slope A;(t)
of the elastic branches as the accumulated plastic deformations, D} (t), and D (t), at positive and
negative yielding increase as shown in fig. 3-3. D;(t) = D}(t) + D7 (t) are the total accumulated
plastic deformations. For loading branches, the slope A;(t) is selected such that the elastic branch
always aims at the previous unloading point with the other sign. At unloadings, the slope is 1. D; g
is the initial value of the total accumulated damage which is zero before the first earthquake hits
and is assumed to be calculated from previous earthquake and displacement response records for the
succeeding earthquakes. H(z) is the unit step function as given by (3-5).

The novelty of the present model primarily stems from the modelling of the elastic fraction of the shear
force, j(D(t)), as a non-increasing function of the accumulated plastic deformation as indicated by
(3-67). The initial undamped structure is elastic. Hence, a; = 1 in this case. As larger and larger
parts of the structure between the (z — 1)th and ith measure point become plastic and damaged, «;(t)
is comparably decreasing.

The model of the shear force has 2 free parameters, g, ; and a;. These 2n; parameters are updated
after each significant earthquake so the shear model predicts the measured response when the mea-
sured ground surface acceleration is applied to the model. Subjecting a stochastic design earthquake
{iig(), t € [0,00[} to the calibrated shear model the residual reliability can next be estimated from the
stochastic behaviour of the damage indicators.

This necessitates an introduction of a damage indicator for the substructure between the (i — 1)th
and the ith measurement point. In the hysteretic model an equivalent linear spring stiffness for the
hysteretic component is defined by the slope, s;(f), connecting the previous extreme unloading points
at positive and negative yielding. As seen from fig. 3-3 this is given as
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2qy,:
s3i(t) = a0+ DiD) ?:’D,-(t) (3-172)

The so-called softening of the considered section of the structure is then defined as

6,-(t)=1~——L:.‘—(t)xl-—\/a;-f—(l—a;)s,':

2q ,': - . . -
" \/m (1 - a.(D.(t))) + ai(Di(t)) (3:—79)

In (3-73) wj(t) signifies the value of w; o at the time ¢ to be used in an equivalent linear shear model
in (3-64). For the case n; = 1, w;(f) can be identified as an estimate of the fundamental circular
eigenfrequency of the equivalent linear structure. (3-73) is a non-decreasing function of time and hence
displays the maximum softening encountered up to the time ¢. §;(¢) can also be measured from the
time series X;(t) using time-windowed ARMA-models (DiPasquale and Cakmak (1990), Kéoyliioglu,
Nielsen, Cakmak and Kirkegaard (1996)), time-windowed Fourier transforms (Mullen, Micaletti and
Cakmak (1995)) or wavelet transforms (Micaletti, Cakmak, Nielsen and Kirkegaard (1996)). The free
parameters, gy,; and a;, can then be updated from a weighted least square criterion, minimizing the
deviations between measured and estimated inter-storey displacements X (t), - -, Xy, (¢) and damage
indicators 8;(%), - ,65, (%) in the last encountered earthquake.

In this case the state vector of the integrated dynamic system of dimension n = 4n; becomes

;_{C(t) Xi(t) Q:i(t) Di(t) _
2= o0 [ X0=| i lew=| : [.Do=| : (3-74)
D(t) Xn, (1) Qn, (1) Da, (1)
_____ S0
rr--"" === =
: _ (1-a)wZmX : ;X
| R S
:Rﬁmx | l
| I
Il 7 i \‘E.;lg(t)

Fig. 3-4: SDOF hysteretic oscillator model.

Especially, for the case ny = 1 the shear model reduces to the hysteretic single-degree-of-freedom
hysteretic oscillator shown in fig. 3-4. The equations of motion and the maximum softening become

X(t) + 2owo X (t) + wj (a(t)X(t) +(1 -a(t))Q(t)) = —Poiig(t) , t>0

(3 -175)
X(0)=X(0)=0
& = [7@) (AOHCO( - H@ - ) + H(u - X))+
1(-Q)(AWH(-X)1 - H(-Q - ) + HX)|X®) , Q@ =0 (3 - 76)
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b(o) = (HXOH(Q - 0)) - B-X)H(-Q - 4)) X)) , D(©0) = Do (3-177)
oft) = (fi—ﬁ) (3-18)
—~ Qy("’) _
AN = L0 + b0 8 ~)
56 =1- \/ ﬁﬁt‘) (1-0) +a0 (3 - 80)

The top storey displacement of the structure relative to the ground surface, X(t), can be interpreted as
the first modal coordinate in a modal expansion if the mode shape is suitably normalized. The linear
circular eigenfrequency, wg, the damping ratio, {p, and the mode participation factor, fy, of the first
mode are assumed to be known before the arrival of the first earthquake.

The 10 storey 3 bay structure shown in figure 3-2a was tested experimentally by Cecen (1979) in the
model scale 1:10. The circular eigenfrequency, damping ratio and modal participation factor for the first
mode of the undamaged structure are w; = 6ms~*, (; = 0.035 and f; = 1.32. The first eigenvector
has been selected so the displacement of the top storey is 1.32 X({). The model was exposed to
3 sequential earthquakes shown in fig. 3-5, which are simulated versions of the 1940 El Centro NS
earthquake component. The time has been compressed with a factor 2.5 compared to prototype time

according to the applied model law,

The top storey displacement relative to the ground surface in the 3 runs has been shown as the unbroken
curves in fig. 3-6. The softening &(t) has next been derived from these data using an overlapping time-
windowing ARMA model suited for the displacement response. The time window is chosen as 2.4
seconds and the ARMA model is fitted for each such window. The estimates are located at the centre
of each window and the estimates are smoothed.

Test Gy a
(mm)

Runl 2.68 0.83

Run? 3.01 0.77

Run3 3.14 0.73

Table 3-1: Estimated hysteretic parameters.

Applying the SDOF model (3-75)-(3-80) in combination with the weighted least square deviation of
measured and estimated relative displacements z(t) and softenings 6(t) in each of the 3 runs, the
parameters shown in table 3-1 are obtained. Even though the excitation level and the structural
properties change dramatically throughout the 3 runs, these parameters only change slightly, which
is an indication of the feasibility of the whole concept of modelling. A perfect model would provide

constant parameters.

In fig. 3-6 the predicted displacements of the calibrated SDOF hysteretic model compared to those
obtained by measurements are shown. The agreements are generally good and comparable to what
can be achieved by much more involved finite element modelling, see Mgrk and Nielsen (1991b), Mgrk
(1992, 1993). The development of the maximum softening predicted by the calibrated model has been

shown in fig. 3-7.
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Fig. 3-6: Displacement of top-storey. Structure H1, Cecen (1979). (—): measurement. (- - -):
calibrated SDOF hysteretic model. a) Runl, apeax = 0.36 g b) Run2, apeax = 0.84 g. c) Run3,
apeak = 1.60 g. Koylioglu, Nielsen, Cakmak and Kirkegaard (1996).
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Figur 3-7: Development of maximum softening index in Runl, Run2 and Run3 with SDOF hysteretic
model calibrated to each run. Structure H1, Cecen (1979). (—): measurement. (- - -): calibrated

hysteretic model. Koyliioglu, Nielsen, Cakmak and Kirkegaard (1996).
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Fig. 3-8: Prediction of maximum softening index in Run2 and Run3 with SDOF hysteretic model
calibrated to Runl. Structure H1, Cecen (1979). (—): measurement. (- - -): calibrated hysteretic

model. Koyluoglu, Nielsen, Cakmak and Kirkegaard (1996).
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Fig. 3-9: Prediction of maximum softening index in Run3 with SDOF hysteretic model calibrated
to Run2. Structure H1, Cecen (1979). (—): measurement. (- - -): calibrated hysteretic model.
Koyliioglu, Nielsen, Cakmak and Kirkegaard (1996).

The capability of the SDOF hysteretic oscillator for predicting the development of the maximum soft-
ening in future earthquakes has been demonstrated in figs. 3-8 and 3-9. Fig. 3-8 shows the prediction
of the maximum softening index in Run2 and Run3 with the free parameters of the model calibrated
to Runl. In this case the extrapolation from the 0.31 g earthquake in Runl to the 0.84 g earthquake in
Run2 is possible, whereas the extrapolation to the 1.60 g earthquake in Run3 is too far, since the shear
model seems to overestimate the damage. However, if the free parameters are updated after Run2 the
damage development can still be observed very well in Run3 as shown in fig. 3-9.

The maximum softening damage index as a global damage indicator was introduced by DiPasquale and
Cakmak (1991). Strong correlation was demonstrated between actual damage levels and damage levels
with the maximum softening damage index computed through seismic assessment of actual strong-
motion records from medium-size RC-structures subjected to the 1971 San Fernando earthquake. By
means of Monte Carlo simulations, Nielsen and Qakmak (1991) demonstrated that maximum softening
damage index values encountered in a sequence of earthquakes form a Markov chain. This property
is essential for using the index as a predictor of the residual structural reliability on condition that
only its last observed value is taken into consideration. Nielsen, Koylioglu and Gakmak (1992) devised
a method for damage localization based on maximum softening damage indicators defined for various
parts of the structure, which were identified from an equal number of smoothed circular eigenfrequencies
of the equivalent linear shear structure. The method was only elaborated for the case n; = 2. The
Clough-Johnston hysteretic model was originally devised to model the stiffness degradation in RC shear
beams, Clough and Johnston (1966). The differential description of the model is due to Minai and
Suzuki (1985) and Mgrk (1989). The equivalent shear model presented in this example was formulated
by Koyluoglu, Nielsen, Cakmak and Kirkegaard (1996). The capability of the model in predicting the
expectation and the coefficient of variation of the damage in a future earthquake on condition of a
certain damage encountered during the previous earthquake was investigated by Nielsen, Skjerbzk,
Koéylioglu and Gakmak (1995) based on Monte Carlo simulations with 1000 independent realizations.
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The reference was chosen as the predictions obtained by the much more involved SARCOF finite
element program (Mgrk and Nielsen (1991a, 1991b), Mgrk (1992, 1993)). Only the predictions of the
SDOF version of the model was considered. In the paper it was concluded that the model predicts
the conditional mean values sufficiently correct, whereas the conditional variance is overestimated.
The sensitivity of the residual reliability of partly damaged RC-structure as predicted by the SDOF
model on the estimated hysteretic parameters g, and a was investigated by Iwankiewicz and Nielsen
(1995). The failure event was defined as the first-passage of the maximum softening of a critical level
of 6. = 0.5. Again, Monte Carlo simulation with 1000 independent realizations was used and the
predictions of the SARCOF program were used as a reference. The results indicate that the residual
reliability shows much larger elasticity with respect to gy than to a for significantly damaged structures
(6 € [0.30; 0.50[). For this reason it is recommended that g, is modelled as a random variable with
expected value equal to the calibrated value. The variational coefficient of the random variable should
not be selected larger than 0.1. Finally, Kdylioglu, Nielsen, Abbott and Cakmak (1996) have examined
the damage localization capability of the n;-dimensional version of the model. It was demonstrated
how the damage localization depends on the frequency contents of the excitation. The damage is
generally larger and more uniformly distributed, when primarily the 1st eigenmode is excited, which is
the basic assumption behind the concept of the global maximum softening damage index, Di Pasquale
and Cakmak (1991). Further, a high correlation between the softening &;(t) as given by (3-73) and the
energy absorption between measurement points was verified.

3.2 Forward and backward integro-differential Chapman-Kolmogorov equa-
tions for stochastic response and reliability problems

3.2.1 Forward and backward integro-differential Chapman-Kolmogorov equa-
tions and related initial and boundary values

The sample paths of a Markov process are continuous functions of time with probability
one if for any € > 0 the following condition is satisfied uniformly in z, ¢ and At, see e.g.
Bharucha-Reid (1960)
. 1
‘A],:Iilo N 9z} (x,t + Atlz,t)dx =0 (3 —81)

|x—z|>e

This condition expresses the property of continuous sample paths that the probability
of increments |x —z| larger than some small € of the process during a small time interval

At tends to zero faster than At.

If the sample paths are discontinuous, the following relationship must hold, for all ¢ > 0,
uniformly in z, and ¢ and for [x —z| > ¢

/ J{z}(x|z,t)dx >0 (3 —82)
|x—z|>e
where
. 1
Jizy(x[z,t) = lim = qqzy(x,t + At|z,t) (3 - 83)
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is designated the jump probability intensity function on the state vector Z(t).

The so-called derivate moments are defined as the following limits valid for all ¢ > 0,
and uniformly in x and ¢:

. 1
lim / (2 — 2)ayz) (%, + Atlz, t)dx = Ci(z, t) + O(e) (3 — 84)
|x—=z|<e
1
Alimo At / (zi — z,-)(a:,- — Zj)Q{z}(x,t + At|z, t)dx = D;;(z,t) + O(e) (3 —85)
[x—z|<e

Alternatively, the derivate moments are defined as

lim iE[Z;(t + At) - Zi(1)Z(t) = 2] = Ci(z,t) + O(e) (3 — 86)
Jim L B[(Zi(t4 A1)~ Zi() (2(t+ A8) - Z;(2)) [2(8)=2] = Dis (2, 1+ O(e)(3-87)

Since, the expectations in (3-84) and (3-85) are performed only for jumps |x — z| < ¢,
these quantities should be interpreted as the rates of moments of the continuous part
of the increment in Z(t) during [t,t + At[, conditional on Z(t) = z.

Upon insertion of (3-61) into (3-86) and (3-87) and observing that only the continuous
part, i.e. dZ(t) = c(Z(t),t)dt+d(Z(t),t)dW(t) is to be inserted into these expressions,
one has, upon using the incremental properties of the Wiener process,

Ci(z,t) = ci(z,t) (3 —88)
D,-_,-(z,t) = i dia (z,t)d,-o, (z,t) (3- 89)

In order to derive the jump probability intensity function Jyz)(z|x,t) of the state vector,
assume that a jump of magnitude p, in the ath component V,(t) of the generating
source process { V(t), t € [0,00(} takes place during the interval [t, ¢+ dt[. On condition
that the system is at the state Z(t) = x, the increment of the state vector becomes
dZ(t) = ea(x,t)pa, where e,(x,t) is the ath column of the matrix e(x,t), cf. (3-61).
The transition probability density function can then be represented by the Dirac delta

spike
o2 o+ dthe,) = 6(a — (x + ea(x, pa) (30
Since the probability of making a jump into [pa, pa + dpa[ during the infinitesimal time

interval [t,t + dt[ is given by J{v,}(pa,t)dtdpa, cf. (3-25), the unconditional transition
probability is obtained by summing over all contiguous intervals as follows

9z)(2,t + di|x,t) = di / 5(2 —(x+ ea(x,t)pa))J{vu}(pa,t)dpa (3 -91)
pu
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Relation (3-91) represents the probability density contribution in case of jumping from
Z(t) = x to Z(t + dt) = z due to a jump in the ath component. Since the com-
ponents have been assumed to be mutually statistically independent, the probability
density contribution from all n4y component processes can be obtained as the sum of the

contributions (3-91)

qz) (2, + dt|x,t) = dt }: / z — (x + ea(x, t)pa)) JVa}(Past)dpa (3 —-92)
C!—-l pa

From (3-83) and (3-92) the jump probability intensity function of the state vector is
finally obtained as

Jizy(zlx,t) =) / z— (x+ ea(x,t)Pa)) J (v} (Past)dpa (3 —93)

a=1 P,

(3-93) was derived by Nielsen and Iwankiewicz (1996).

The development of the transitional probability density function g(z)(z,t | x,to) is
governed by the forward and backward integro-differential Chapman-Kolmogorov equa-
tions. For systems with combined deterministic drift, Wiener process driven (diffusions)
and jump process driven, these were derived by Gardiner (1985). Forallz € Sy, x € S,
where t > to, ¢(z)(2,t | X, o) is shown to fulfil the following forward integro-differential

Chapman-Kolmogorov equation:

0
a(J{z}(z,t Ix! tﬁ) = K:z,t[‘?{Z}(z’t l X,to)] y b E]tﬁatll (3 - 94)

Kz,t[a(z) (2,1 | x,t0)] =

n n n

_Eg(Ci(Z,t)Q{Z}(Z,t | x, o) )+; ZE 3 ( ij(zat)q{z}(Z,tlx,to))+

i=1 ! i=1 j=1

/(J{Z}(z |y, t)aqzy (v, 1 | %, t0) — Jyzy (¥ | 2,t) qqzy (2t | X,to))dy =
S,

—Z c.(z t)qqz) (2, tIx, to)] +

2 ZZ 32.02 (Z dta z t)d_m(z t) Q’{z}(z tlx to))

i=1 j=

/ 9(z) (2 — ea(t)pa, tX, t0) — ¢z} (2, t]x, to))J{v,,}(pa)dpa (3 - 95)
a—]p
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where (3-88), (3-89) and (3-93) have been applied.

Similarly, for any y € S, z € S; where tll > t,q{z}(y,tl ] z,t) fulfils the backward
integro-differential Chapman-Kolmogorov equation

0
5z (.t ]2, )+ KL [gizy (v 11 1 2,8)] =0, t € [to, s (3 —96)

Kiazy(y ti]z.t)] =

2

Zc (2,t) 5~ q{z}(y,n |2,8)+ 5 ZZDq(z *)a B, 1t | 2,0+

:-1 Jj=1

fJ{Z}(x Iz,t)(Q{Z}(y,tl | %,t) — gz (v, 11 | z,t))dx N
St

- a
iz:; Ci(z‘a t) a_?,'gQ{Z} (y? tl tza t) +

—ZZ (z dzc«(z t ch(z t) Be a Q{Z}(y:tllz t))

i=1 j=1

Z / 9z} (v, t1]2 + ea(2, t)pas t) — gz} (v, 112, t))J{v }(Pa)dpa (3-97)
or—l,p

(=4

The linear functionals K, [-] and KT,[-] indicate the forward and backward integro-
differential Chapman-Kolmogorov operators, respectively. z and t in (3-94) signify the
forward state and the forward time, whereas z and ¢ in (3-96) represent the backward

state and the backward time.

At the evaluation of the last statement of (3-95) the vector e,(t) has been assumed
to be state independent (independent of y). Then, the evaluation of the integral of
5(3 — (y + ealy, t)pa)) with respect to y is very much simplified. If e, = e,(y, t), i.e.
it is state dependent, a preliminary change of integration variables must be performed,
which is defined by the transformations

»

u=y+es(y,t)pa
Y = aa(u, pa, t)
du
’det (I + g—;—%pa)

> (3 —98)

dy =

where a,(u, pa,t) is the inverse transformation, g_e& is the gradient matrix of e, (y,¢)
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with respect to y and det (I + g—;}pa) denotes the Jacobian. Then (3-95) becomes

3

IC,,t[q{z] (z,t|x,t0) } a%(c,(z t)az) (2, tIx, to))

=1

133 5 (35 o)l i) +

i=1 j= a=1
n4
gz 2alZ, P 1), %, to
(2} (2a(2, Pas 1), tIX, to) — g1z} (z,tIx,t0) | Jiva}(Pa)dpa (3 — 99)
= de, (a.‘, (5|Pu )t)st)
a=lp | |det (I + oyT Pa)

The derivation of (3-95), (3-97) and (3-99) based on (3-93) was given by Nielsen and
Iwankiewicz (1996).

x

B3 i~ N W
"
/ | -ast)

v/J b
/6St(°)
68(1) \w n
LA o

Nos? |y,

Fig. 3-10. Sample path of the state vector of SDOF non-hysteretic oscillator subjected
to combined Wiener process and jump process excitation. Double barrier deterministic
start problem.

The forward and backward integro-differential Chapman-Kolmogorov equations must
be solved with proper boundary and initial conditions, which will next be derived based
on a requirement that g{z)(z,t|x, ;) and initial conditions should fulfill both equations.

In fig. 3-10 the sample path and the double barrier deterministic start first-passage
time problem for the single-degree-of-freedom non-hysteretic oscillator subjected to a
combined Wiener process and jump process excitation are illustrated.
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The surface (boundary) 05, of the safe domain S; may be divided into the accessible
part S{*), which can be reached in a finite transition time and the non-accessible part
3.5}(2), which can only be reached after infinitely long time intervals. These parts are
defined as follows

85 = {z €05, | VX € Sty quzy(z,t | X,t0) > 0} (3 - 100)
85 = {2 € 05/ | Vx € Sty : qpz)(z.t | %,t0) =0} (3 —101)

In the example shown in fig. 3-10 the accessible and non-accessible parts of the boundary
are given as 65{‘1) = {(z,z)|(z =aVz=>b)A —o0o <z < oo} and 3552) = {(z,2)]a <
z<bA(d=-00VZ=o00)}

For the considered system a jump of the generating source process {V(t), t € [0, 0o}
causes a discontinuity (jump) in the velocity component of the state vector, cf. (3-45),
(3-46). Especially, the jumps close to the accessible surface B.S't(a) are tangential, hence
no jumps out of the domain are possible. Generally, this is assumed to be true, i.e. the
jump probability intensity function fulfils Jyz, (z|y,t) =0forally € S; and z € S¢.

Any finite jump at z close to the accessible part of the surface 65’,(a) then takes place
in the tangential direction. Since the jumps of the state vector due to the jumps of the
ath component of the generating source are in the direction of e,(z,t) these jumps will

only be tangential to the surface 85 if

Vi €lto, ta] , z € 8S: nT(z,t)ea(z,t) = 0 (3-102)

where n(z,1) signifies the unit normal vector in the outward direction of the surface 9.5,
with components n;(z,t), see fig. 2-4.

Hence, the flux of probability mass through the accessible surface BSE“) is caused totally
by the convection and diffusion components. The abbreviates ¢(%)(z,t) = 9z (2,1t |
x,tp) and ¢1)(z,t) = 9(z}(¥,t1 | 2,t) are introduced. Application of the divergence
theorem then provides

5} | ffgﬂ’(z,t) (Eﬂgz—’” — Ka,e [q(")(z,t)}) dzdt =
' o (3-103)

ty
g (z,t
—f/q(g)(z,t)( q agz’ )+,c;f,[q(1)(z,t)])dzdt+R[q(°)(z,t),qm(z,t)]
ty S,

where K, [-] and KT,[]] are the forward and backward integro-differential Chapman-
Kolmogorov operators as given by (3-95), (3-97) and (3-99), and

R[¢(z,1),¢V(z,1)] =
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/ 2z (¥t | 2,11 )agzy (3.t | X, f0)ds — / a2y (7,11 | 2 ta)agzy (2o | x,40)dz +

Stl S‘o
n I
>/ n.r(z,t)[(cf(z,t)q(‘”(z,t) - Y5 5 (D 0a0(2,8) )¢z t) +
. = Zj
=1 tO 35‘ J"""l
S 0 1] 9
Zq (Z,t)ﬁ Dij(Z,t); ¢’ (z,t)| dadt (3—104)
=1 I

Ci(z,t) and D;;(z,t) are given by (3-88), (3-89). If ¢(9(z,t) = q(z)(z,t | x,%9) and
¢dV(z,t) = q(zy(y,t1 | 2,1) are assumed to fulfil the forward and backward Chapman-
Kolmogorov integro-differential equations (3-94) and (3-96) throughout Sy, the left-hand
side and the first term on the right-hand side of (3-103) cancel. Hence, R[¢(")(z,1),
¢"(z,t)] = 0. The initial time ¢ and the terminal time #; may be varied. From (3-
104) the necessity of the following initial and boundary conditions for g(z)(z,t | x,t,)
and ¢(z}(y,t | z,t) is then deduced

VxX,z € St,0 qqz)(2,t0 | X, t0) = 6(z — %) (3 —105)
Vy,z € Si,: qzy(y,t1 | 2,t1) = 6(z —y) (3 —106)
Vi €lto, t1], X € Sty , 2 € S ¢ (2,t) = q(zy(2,t | X, 20) = 0 (3—107)
Vt €lto,t1[, ¥ € Sty , 2 € 3SV: ¢W(2,t) = quzy(y,t1 | 2,8) =0 (3 —108)

Vt €lto,t1[, X €Sy, , Yy € Sy, , 2 € OSy:

n

> [ )| (Ciamnemn - ; 2 5 (Dis@.06%@,) )Jd (e, )+

1
asi®)

= 1 a
qu(z,f)_p,,(z,t)__qm(z,t)] day =0 (3 109)
2 i r 1]

j=1

The conditions (3-105) and (3-106) specify the initial and terminal conditions to be
used for the forward and backward Chapman-Kolmogorov integro-differential equations,
respectively.
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The condition (3-107) signifies that the probability density for arriving at a boundary

point z on the non-accessible boundary 85}(2) from an internal point x in the domain
St, is zero for the finite transition times ¢ — ¢;. Similarly the condition (3-108) states
that the transitions from a boundary point z at 85; to an internal point y in S, are
zero for the finite transition times t; — ¢.

Due to these conditions the surface integral in (3-109) can be confined to the accessible
part BSt(a) of the boundary. (3-109) is the necessary condition which must be fulfilled by

the forward and backward differential Chapman-Kolmogorov equations in combination,
Nielsen and Iwankiewicz (1996). For example, (3-109) may be fulfilled by the forward

equation on some part of 35}(“) and by the backward equation on the remaining part.

Consider two sufficiently smooth functions u(z) and v(z) defined on S;. If these functions
in combination fulfil the boundary conditions (3-107), (3-108) and (3-109), it follows
from the indicated derivation that

/u(z)Kfz,t[v(z)]dz = fv(z)Kg:t[u(z)]dz (3—110)

St St

This means that (3-107), (3-108) and (3-109) are the necessary conditions in order for
K[| and ng: ¢[-] to be mutually adjoint operators.

3.5'5“) may be further divided into the entrance part, BSEO), and the exit part, 35}(1),
which in case of the indicated jump condition are defined in the same way as for diffusion

processes, Fichera (1960)

Zn: ni(2,)(Ci(2,t) - % a—(z}D"" (2.t)) < 0} 4= 111

i=1

8™ = {z € a5

Zn: ni(z,t)(C;(z,t) ~ -;* B%D,-j(z,t)) > 0} (3 —112)

=1

a5 = {z € a5

(3-111) and (3-112) cover all 35}( *) except at certain isolated points, where the probabil-
ity current is tangential to the surface. Further, the boundary may be divided into the
degenerated part, where 3, ; D;;(z,t)ni(z,t)n;(z,t) = 0, and the non-degenerated part,
where 3, . Dij(z,t)ni(z,t)n;(z,t) # 0, Fichera (1960). For the present dynamic system
and the indicated jump condition, all accessible parts of the boundary are degenerated,
and only the non-accessible parts can be non-degenerated.

For the system shown in fig. 3-2 the entrance part is BSEO) ={(z,%)[(z=ari>0)V
(z =b A & <0)} and the exit part is 35§1)= {(z,8)|(z=aAi <0)V (z=bAi> 0)}.
The surface parts have been indicated in the figure along with the non-accessible part

as?.
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The unconditional probability density function of the state vector at the time ¢; becomes

fizy(z,t) = fS 9(z) (2, t|x,10) f(z) (X, to ) dx (3 —113)

to

Upon multiplying (3-94) by fiz}(X,%0) and integrating over x, this is seen also to be
governed by the forward integro-differential Chapman-Kolmogorov equation

2 fray(emt) = Kuelfizy(2.1) (3 114)

The relevant initial condition is obtained applying (3-105) in (3-113)

fz(2,t)|,_,, = fz(z,to) (3 —115)

3.2.1.1 Wiener process driven systems

Consider the system driven by an n3-dimensional Wiener process {W(t),t € [to, co[}.
The governing stochastic equation (3-61) reduces to the classical It6’s differential equa-

tion, Arnold (1974)

dZ(t) = c(Z(t),t)dt + d(Z(t),t)dW(t) , t€Eto,00[ }
(3 —116)

Z(to) =7y

For this case the names Fokker-Planck-Kolmogorov and Kolmogorov backward opera-
tors are coined for the forward and backward differential Chapman-Kolmogorov opera-

tors. These become, cf. (3-95), (3-97)

=~ 9
Kot [‘I{Z}(Z,t[x,to)J =~ 5 (c,»(z,t)q{z} (z, t|x,t0))+
.. 52 na
5 ; ; aZiazj Z dia (z1 t)dja (zg t)Q{Z} (Z, tlx, to) (3 _ 117)

n

0
'CzT,t [Q{z} (y’ t1z, t)} = Z ci(z, t)gt_qz} (y, t1lz, t) +

=1

n n na 2
% >3 (Z dia(2,t)dje(2,1) 5;%;}7«1{2:} (v, 1]z, t)) (3 - 118)

a=1
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3.2.1.2 Compound Poisson process driven systems

Now consider the system driven only by an n4-dimensional multivariate compound
Poisson process, {V(t), t € [to,o0[}. The governing stochastic equation (3-61) then
reduces to the following stochastic differential equation

dZ(t) = c(Z(t),t)dt + e(Z(t),t)dV(t) , 1t €]to,00] }
Z(to) = Zo

(3 -119)

Using the jump probability intensity function for the component Poisson processes as
given by (3-27) the jump probability intensity function of the dynamic system (3-93)

becomes

ng

Jzy(z|x,t) =) z/or(lf)/ z — (x +ea(x, t)pa))fp (Par)dPa (3 —120)

a=1

The forward integro-differential Chapman-Kolmogorov operators (3-95) and (3-99) be-
come

(c‘(z t)q{z}(z tx, to)) -+

.M:
QJ‘QJ

Ka,t [(J{z} (z,t|x,t0)] = —

Z Vﬂ(t) / (Q{Z} (Z - eo'(t)past|x1 tO) — q{z} (z:tlx: tﬂ))ff".:at (Pa)dpa (3 = 121)
a=1 Py

.0
Kzt [Q{z}(Z,ﬂX,to ] - B (C; z,t) q{z}(z t|x, tg))
L q ao(Z, Pa,t), t|x,t
S ) [ | plelrathinh) o) | foutea)deate-120)
a=1 5\ |det (1+ beq (aa(zpa 1) t) B )
a ayf o

(3-122) was derived by Renger (1979) using a different approach than used here.

The backward integro-differential Chapman-Kolmogorov operator corresponding to
(3-97) becomes

’CzT,:[fJ{Z}(y’tllzat)] Z i(2,8) 5 q{z}(y,tllz t)+

I,_

+ Z Va(t) / (Q{Z} (v,t1|z + ea(z,t)pa,t) — q(z} (¥, t1 lzat))fpa (Pa)dpa (3 —123)
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Alternatively, using a Taylor expansion of the function ¢(z) (z — ea(t)past | x,t) and
9z} (y,tl | z + eo,(z,t)pc,) the forward and backward integro-differential Chapman-
Kolmogorov operators (3-121) and (3-123) are recast into a purely differential form
with infinite sum of the partial derivatives. Thus

2. 8
/Cz,t[f}{z}(zat | x,t0)] = — Z a(c"(z’t)qu}(zat | x, ta))+

=1
- (_l)k S k . 6’“
Z A Z Ua(t)E[Pa] Z eﬁa(z, t) ---eikcr(z;t) m{z}(z,t | X,t0X3—124)
k=1 a=1 i, k=1 31 ik

E E d
K2, [‘-I{Z} (v,t1 | z,t)] = Zci(zat)é’;Q{Z}(Y1tl | 2,¢)+
i=1 :

ccally g e o*
> i Z va(t)E[PE] Z Ciya(Z, ) -~ e"""(z’t)_“_az-l T om, ) (v,t1 | 2,t)(3—125)
k=1 a=1 MR b | ¥ t

(3-124) and (3-125) are valid if the expectations E[P}] exist for all @ = 1,...,n4 and
k = 1,2,.... The expansion (3-124) is valid even for state dependence of the vector

eq(z,1), as indicated. In physics (3-124) is known as the Kramer-Moyal expansion of the
forward integro-differential Chapman-Kolmogorov operator, Gardiner (1985), Risken

(1984).

3.2.1.3 a-stable Lévy motion driven systems

The stochastic equation governing the behaviour of the system driven by an a-stable
Lévy motion is still given by (3-119) where {V(t),t € [to, 00[} now represents an ng-
dimensional vector of statistically independent components of a-stable Lévy motions
{Val(t),t € [to,00[}.

The jump probability intensity function J{z(z|x,t) of the state vector is then given by
(3-93), where the jump probability intensity function J{v, }(pa,t) of the ath component
process is given by (3-29), (3-30).

The forward integro-differential Chapman-Kolmogorov operator corresponding to
(3-95) becomes

n

Ka,t[aiz) (2, t1x,t0)] = — Z %(c,-(z,t)Q{z}(z,t]x,to))+

i=1 :

Z f(Q{Z} (Z - eﬂ‘(t)pﬂ'atlxa tU) — 4{z) (Z, tlY?tU)) J{V,,}(Paa t)dpa (3 = 126)

a=1 P,
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The backward integro-differential Chapman-Kolmogorov operator corresponding to
(3-97) becomes '

n

0
’CL [Q{z} (v,t1z, t)] — z ci(z, IE)gij‘{z} (Y, tz, t) +
i=1 ’

[
Z /(q{Z} (¥, t1]z + ea(2,t)past) — qz) (¥, Iz,t)) TV} (Pa)dpa (3 —127)
azlpa

3.2.2 First-passage time problems

Consider a Markov system with the deterministic start in x € S;,. Transitions from
this state to a later state z at the time ¢ are governed by the forward integro-differential
Chapman-Kolmogorov equation (3-94). The system can only leave the safe domain S;
through the exit part of the boundary 35}1) , and re-enter in the safe domain through
the entrance part 35{0). In the reliability problems one is concerned with sample curves
which have not left the safe domain in a given interval J¢, t]. Transitions from any point
X € Sy, in the safe domain at the time ¢y to some point z € B.S't(o) on the entrance part
of the boundary should then be prevented, corresponding to the boundary condition
9(z)(2,t|x,t0) = 0. This implies that any realization at the point of re-entering the safe
domain through the entrance part of the boundary is absorbed or extracted from the
sample and all remaining sample curves have never left the safe domain up to the time
t. q(zy(z,t|x,1o) is then seen to fulfil the following boundary and initial value problem,

of. (3-94), (3-105)

0
EQ{Z}(Z,tIX,to) =K [Q{z}(z,t ' x,tg)] , Vit E}tg,tll , Vze S,

9z} (2, to|%,t0) = 6(z —x) , V2 € Sy, (3 - 128)

Q{z}(z,tlx,to) =0 5 Vi E]to,tl] , T € BSEO) U 3552)

where K, ¢[-] are the forward integro-differential Chapman-Kolmogorov operators (3-
95) or (3-99). No boundary condition need to be formulated on the exit part of the

boundary 95 t(l ),

Knowing the solution of (3-128), the first-passage time distribution function, Fr, (¢|x, o)
on condition of a deterministic start in x € Sy, is given as

Fr(t|x,to) =1— /Q{Z}(Z,tlx,to)dz (3 —129)
S

Let fiz}(x,to) be the 1st order probability density function of the state vector process
{Z(t),t € [to,t1]} at the time ¢,. The probability density function at the time ¢ on
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condition of being in the safe domain at the time ¢ is then given as

I aqzy(z,tlx, t0) fzy (x, to )dx

f{Z}(Z,tI&U) = Stq f f{z}(x,to o (3 —-130)
S

to

Since Ky ,¢[-] is a linear operator, it follows from (3-128) that f(z)(z,t|€,,) fulfils the
boundary and initial value problem

J 3
ét_f{z}(z’t I Etu) = Kzz,t {f{z}(z,t I gtn)] y Vi E]to,tl] ’ Vz € St

_ f{Z}(zatO)
f{z}(z,to | gto) o f f{z}(x,to)dx ’ Vze Stn ; (3 -— 131)
SgD

fizy(z,t0 | £,) =0, V t €lto, 1] , 2 € SV U IS )

The first-passage time distribution function on condition of stochastic start at the time
to 1s then given as

Fr, (t|&,)=1— ]f{z}(z,t | £, )dz (3-132)
St

Alternatively, the reliability problem can be formulated based on the backward integro-
differential Chapman-Kolmogorov equation. In order to specify the boundary conditions
for absorbtion of sample curves it is noticed that any state z € B.S't(l) on the exit part
of the boundary inevitably leads to an outcrossing into the unsafe domain. Hence, it
is not possible to have a state z € 6551), and a state y € Sy, in the safe domain at
the later time ¢;, without performing one or more outcrossings into the unsafe domain
in the intermediate interval |¢,¢;]. Since one is interested in the sample curves, which
remain in the safe domain throughout the interval J¢,t;], transitions from z € BSEI)
to y € Sy, should then be prevented. Hence, q{z}(y,tlfz,t) should fulfil the following
boundary and terminal value problem, cf. (3-96), (3-106)

0
EQ{Z}(Y:tl |Z,‘t) + K::t [Q{Z}(yatl I Z,t)] =0, Vte [tO)tl[ , Vz € Sy

Q{Z}(y,tllz:tl) = 6(3 - Y) y Vz € Sfl (3 - 133)

¢z (¥, t1lz,t) = 0, Vt €lto, [ , 2 € 88 U S?

where KT,[] is the backward integro-differential Chapman-Kolmogorov operator
(3-97). No boundary condition need to be formulated on the entrance part of the
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boundary BSEU). In combination the absorption boundary conditions in (3-128) and
(3-133) fulfil the necessary boundary condition (3-109).

Upon inserting into (3-133), the first-passage time distribution function Frp(t|z,t) at
the time ¢, on condition of the deterministic start in z € S; as defined by (3-129) is seen
to fulfil the following boundary and terminal value problem

;%FTI (tilz,t) + KL, [Fry(ts | 2,1)] =0, Vt € [to,ta] , V2 € 5,

Fr(ti|z,t1) =0, Yz € Sy, (3—134)

Fr.(ti|z,t) =1, Vt €lto, t1] , z € 8S™M UHSP

Assume that (3-134) is integrated backwards until the time ¢ = ¢;. From the obtained
solution Fr,(t1|z,t0), the first-passage time probability distribution function at the time
t; on condition of stochastic start at the time ¢y is then obtained as follows

f FTl(tl |zyt0)f{z](Z,t0)dz

54
Fr,(t | &) = f f{z}(z,to)dz (3 —135)
S

to

A significant facilitation is obtained, when the following stationarity conditions are
fulfilled

qzy(y,t1 1 2,t) = qqzy(y | 2,81 — 1) (3 —136)

S =S (time-invariant) (3—-137)
Equation (3-136) will be fulfilled, if the generating source processes {W(t),t € [to,1]}
and {V(t),t € [to, 1]} are stationary, and if the structural system is time invariant, i.e.
if the drift vector and the diffusion matrices fulfil c(Z(t),t) = c(Z(t)), d(Z(t),t) =
d(Z(t)) and e(Z(t),t) = e(Z(1)).

Then, the forward and backward integro-differential Chapman-Kolmogorov operators
are not explicitly depending on time, i.e. Kyq[] = K,[] and K[| = KT[-]. From
(3-129) it follows that Fr, (t; | z,t) = Fr,(7 | z), where 7 = t; — ¢ signifies the elapsed
time interval. Equation (3-134) can then be reformulated in the following way

a

EJzn_rl(f |z) — Kl [Fr(r|2)] =0, Vr €]0,00[, V2€ S

Fr,(0|z)=0,Vze S
Fr(r|z)=1, Vr€]0,00[, z € S Uds?

(3 — 138)

(3-134) must be solved for each terminal time ¢, to get (3-135), whereas (3-138) only
requires a single solution of the same initial and boundary problem to obtain all terminal
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times. Finally, Fr,(t | &,) can be obtained from the solution of (3-138) as follows, cf.
(3-135)

fFT;(t —to | Z)f{z}(z)dz

_ 5
Fr.(t|&,)= !f{z}(Z)dz (3 —139)

Fr,(r | z),7 =t —1, as determined from (3-138) specifies the first-passage probability
distribution function, in case of deterministic start in the state Z(¢g) = z € S at the
time to. From (3-138) it follows that the Nth order moment of the first-passage time,
mn(z) = E[T{" | Z(to) = z € S|,N = 1,2,..., can be obtained from the following
recursive system of boundary value problems

Nmy_1(z) + K [mn(z)] =0, Vz€ S, N=1,2,... }
(3 — 140)
mn(z) =0, Yz € S U as®
where mo(z) = 1. The case N = 1 represents the classical Andronov-Pontriagin-

Vitt equation. The general equation (3-140) is known as the generalized Andronov-
Pontriagin-Vitt equation, Andronov, Pontriagin and Vitt (1933), Bolotin (1967).

The solution of (3-138) is given by the uniformly convergent series

Fr(r|z)=1- Z dpe™ 277 3(M(3) (3 —141)
n=1
[ ¥(")(z)dz
d g (3 — 142)

" T Tu(2)20) (z)dz
S

where U(")(z) and ®(")(z) are the eigenfunctions of the forward and backward operators
with the appropriate absorbing boundary conditions, and A, are the corresponding
eigenvalues, which are all assumed to be simple. The indicated quantities are determined

from the eigenvalue problems

An‘p(n)(z) + K, [\I’(n)(z)] =0, Vze S yn=12,... }

3143
¥™(z)=0, Vz e 8S® Uas® ( )
And(2) + K7 [8(2)] =0, V2€ S, n=1,2,... }

(3 —144
3™(z) =0, Yz € SV U ds? )
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The solutions ()\n, Q(")) and (/\n, \I'(”)) may be complex. If so, the said solutions appear
as pairwise mutually complex conjugated. Above, the eigenspectrum has been assumed
to be discrete. In the case of a continuous spectrum, (3-141) is replaced by

e 0) = ] = f d(0)e>"B(z, \)dA (3 — 145)

From (3-139), (3-141) and (3-142) the following solution can be obtained for the proba-
bility density function and the probability distribution function of the first-passage time
on condition of stationary start at %

o0
frn(t| &)= Z gy Nl t) (3 — 146)
n=1
2 C
Fr(t|&,)=1- ; ﬁe—"n“—“) (3 — 147)

[¥M(z)dz [ 2™)(2)f(z)(2)dz
S S

Cn = An [ (2)8(M)(z)dz [ fiz)(z)dz
5 s

(3 —148)

The numerical solution of the initial and boundary value problems (3-128), (3-131),
(3-133), (3-134), (3-138), (3-140), as well as the eigenvalue problems (3-143), (3-144)
primarily involves a discretization of the forward and backward integro-differential
Chapman-Kolmogorov operators. This problem will be dealt with in sections 3.4 and

3.5.

In case of a discrete eigenspectrum it follows from (3-146) that fr, (¢|&;,) o c;e™*1{t=t0)
i.e. the first-passage time probability density function has an asymptotic exponential
decay as t — oo. The limiting decay rate, A, forms the lowest eigenvalue of the for-
ward and backward integro-differential Chapman-Kolmogorov operators with absorb-
ing boundary condition. On the other hand, the existence of a limiting decay rate
of fr,(t|Ss,) is an indication of a discrete eigenspectrum as explained subsequent to

(2-117).

Example 3-2: Single- and double barrier first-passage time problems for
1-dimensional Markov processes

Consider the non-linear SDOF oscillator (3-43) exposed to a Gaussian white noise with the auto-spectral
density Sg, and assume that the inertial forces mX are negligible compared to the other terms entering
the equation. Further, it is assumed that u(X, X) = g(X)X 4 k(X)X. The stochastic equations of
motion can then be written as the following It6 differential equation

dZ(t) = ¢( Z(t))dt + d(Z(t))dW () , Z(0) = zo

_k(Z®) ., 7So £9(2(1)) B
q2@) 20~ gy AW =

V2750 (3 — 149)

Z(t) = X(t), «(2Z(t) = ~mg(2(1))
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where {W(t),t € [0,00[} is a unit intensity Wiener process, and zg is the initial value. Above, the
Gaussian white noise has been interpreted as the limit of a sequence of broad-banded Gaussian pro-
cesses, for which the solution process fulfils a Stratonovich stochastic differential equation with drift-
and diffusion functions ¢(Z(t)) = —k(Z(t)Z(t)/g(Z(t)) and d(Z(t)) = ~/275,/(mg(Z(t))), Wong
and Zakai (1965), Sobczyk (1991). The drift function for the equivalent It6 equation as indicated by
(3-149) includes a correction term due to the state dependent diffusion function, Arnold (1974).

The drift and diffusion functions become, cf. (3-88), (3-89)

Clz)=clz) , D(z)=d%z) (3 - 150)

In the case of a double barrier first-passage time problem, (3-138) can be written

2
%Fjﬁ(f |2) - C()3 o 5 Fn(m12) D;z') ;2 Fr.(r]|z)=0, ¥r €]0,00[, ¥z €]a, b]
Pr,(0]2)=0, Vz E]a,b[ (3-151)
Fr(r|2z)=1,V7r€0,0[, z=aVz=1}
and (3-143), (3-144) become
(n)(yy_ 4 () 1d? () ): _
AW (2) 7 (C(Z)‘I’ (Z)) +2d22 (D(z)\lf (2) 0, z€la,b[, n=1,2,... —
(M () = ¥ (B) =0
MEM(:) + C(2) @‘“)( PR D(z) "' 258 =0, relabl, n=1,2,...
(3 - 153)

&) (a) =d™)(b) =0

The eigenvalues Ap, obtained from (3-152) and (3-153) will be well separated, i.e. the eigenspectrum is
discrete. From the solution of (3-152), (3-153) the first-passage time probability distribution function
on condition of deterministic start in zp €]a, b[ becomes, cf. (3-141), (3-142)

FTl(t —tg|zo)=1- Z dnfb(“}(mg)c')‘“(‘_“‘) (3 — 154)
n=1
b
f\I‘{"’)(z)dz
dn = —° (3 - 155)
f\IJ(n)(z)tD(“)(z)dz
a

The single barrier problem is obtained as @ — —oco. In this case it is observed that the separation of
eigenvalues A\, = An41 — A, approaches zero, i.e. a continuous eigenspectrum is obtained. Corre-
spondingly, the discrete eigenvalue expansion (Fourier series expansion) is replaced by the continuous
eigenvalue integral transform (Fourier transform) (3-145).

As an example, consider a linear SDOF oscillator, where also the linear elastic restoring forces are
negligible m2¢wg| X| >> m|X|, m2lwo|X| >> mwng| In this case g(Z) = 2(wp, ¢(Z) = 0, so
(3-149) reduces to

dW(t) , Z(0) = zo (3 - 156)

Wl = m22wg
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This case is the classical Brownian motion equation, studied by Einstein (1905). The drift and diffusion
constants become, cf. (3-150)
21|‘So

(3 —157)

C=0, D=z ———
' (m2Cwp)?

The eigenvalues, eigenfunctions and expansion coefficients become, cf. (3-152), (3-153), (3-155)

nr \2 D )
A= (b—a) 2
&M (z) = (™) (z) = sin 1/ 2%‘(6 —z)
. (3 — 158)
b
(") (z)dz
gf@ (z)d , ]
e =2 ()
f(q)(")(z))2dz

With initial start at z = 2y the solution (3-154) becomes

Fr(t—to|zo)=1- i %(1- (-—1)")sin 1/%(baxo) e~ Anli=to) (3 - 159)

n=1

The difference between the eigenvalues becomes

2n+1 =D
Adp = Apg1 = An = (T:‘ah)? — (3 — 160)

For the single barrier problem, obtained as a — —oco0, AA, approaches zero and the continuous eigen-
spectrum is obtained. Hence, the solution becomes, cf. (3-145)

[ea]

FTl(t-—tg|a:u):1—/d()\)sin 1/%(!;—1:0) e~ Mt-to)g) (3 — 161)

0

Applying the initial value Fr, (0|zg) = 0 one has

1=/d(A)sin 1/%(.5—%) dA (3 — 162)
0

Multiplying by sin (\/ %(b - zo)) and integrating over [0, oo[, d(}A) is finally obtained as the following
inverse sine Fourier transform
1.1
d(A) = — - -
(A) ~3 (3 - 163)

The solutions (3-161), (3-163) can next be shown to have the following closed form representation

b—=z
Fr(t—to | 20) =2~ 20 | ———oe (3 — 164)

\/D(t - to)

The validity of (3-164) can alternatively be proved directly upon insertion into (3-151).
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3.3 Moment equation methods

A jump of magnitude p, in the ath component V,(t) of the generating source process
{V(t),t € [0,00[} at the time ¢ results in a jump of magnitude dZ(t) = e, (Z(t),t)pqa of
the state vector Z(t). Consider next an arbitrary sufficiently smooth function f(Z(t),t)
of the state vector Z(t) and of the time t. A jump of magnitude dZ(t) = e (Z(t),t)pa of
the state vector implies a jump of magnitude df(Z(t), t) s f(Z(t) + eq(Z(1), t)pa,t) -
F(Z(t), t) of the function f. The jumps to all contiguous intervals from all ny compo-
nents can then be written as the following sum, Nielsen and Iwankiewicz (1996)

#(2).0=3 / (F (Z(t)+ea(Z(2), Ypas t) £ (2(2), 1)) Ma(dt,t, dpa, Pa)(3—165)

a=1 P,

Making use of the fact that any increment during the infinitesimal time interval is the
sum of the increments due to a continuous motion and due to a possible jump, one can

then write

df (Z(t),t) = f(Z(t + dt),t + dt) — f(Z(t),t) =

) , —~ 0 ) 3
f(Za(:) Do+ 3 __Ji%(_*lt_) (ci(z(®). 1)t + 2 dia(2(t), ) AWa(2)) +

i=1

% >y (f: dia (Z(t), ) dja (Z(t),t)) ombz;

i=1 j=1 \a=1

i /(f(z(f) + ea(Z(t), t)pasrt) — f(Z(t),t))Ma(dt,t,dpmpa) (3 — 166)

a=1 P,

where (3-87), (3-116) have been used for the Wiener process driven part of the increment
dZ(t). Equation (3-166) is the generalized Ito differential rule for the diffusion and jump

excited systems.

Taking the expectation of both sides of (3-166) and using (3-26) the generating equation
for moments the following is obtained

%E [f(Z(t),t)} =E [% f(2(), t)] +E [KZI, [f (2(t), t)]] (3 —167)

where KT,[] is the backward integro-differential Chapman-Kolmogorov operator,
(3-97). Equation (3-167) can alternatively be derived as follows
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%E[f(Z(t),t)] - E[d%f(Z(t),t)] =/d%(f(z,t)q{z}(z,t [ y,tg))dz s

B[ £(20,0)] + [ 1 0Keulamy(ant |y,00))da =
St

£[2 f(20).4)] + S/ K 10w B i, & [y ) =

B[ 2 5(20).4)] + B[KL 11 (2),1)]] (3-168)

where the commutation of K, [] and KT,[-] as specified by (3-110) has been used.
Hence, it has been implicitly assumed at the derivation of both (3-167) and (3-168)

that either the entire boundary 0S; is non-accessible, i.e. 95y = BSt(z), or the jump
condition (3-102) and the boundary condition (3-104) are fulfilled at the accessible

boundary BSEG).

The zero time-lag joint statistical moments of the order k are defined as
iin(®) = B |20 () Ziy(0)] (3 - 169)

The corresponding zero time-lag joint central statistical moments of the order N are

defined as

Xirin(t) = E[Z] (1) -+ 2} (1)] ~ (3-170)
where
Z(t) = Zi(t) — wi(t) (3 —171)

Differential equations for these quantities are obtained choosing f(Z(t),t) = Z;, (t)---
Z;(t) and f(Z(t),t) = (Zi,(t) — pi, (1) -+ (Zin (t) — pi (1)), respectively in (3-167).

Hence
d T
Ei,ui-l...;-k(t) = E|K,; [Z,fl(t) P Zu(f)] , k=1,...,N (3-172)

%/\.‘1--4‘,‘(15) =FE [%((zi;(t) — wiy (8)) -+ (Zin (8) - #ik(t)))] -

BKL[(20) - ) G = )]+ B=2 N 1w
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These moment equations do not exist for a-stable Lévy motion driven processes. For
compound Poisson process driven processes they only exist if the moment E[P"] of the
order N of the mark variable exists.

Upon truncating of the hierarchy of moment equation at the order NV, and taking all
the symmetries into consideration, (3-172) contains totally n + Ln(n + 1)+ --- + il
-1+ ; : ;

n+1)--(n+N-1) = EJ{V:} 2_ 1 +J differential equations. Consequently,
these become increasingly difficult to handle as n or N become large. By numerical
solution of the moment equations the tensor notation should be maintained through an
indirect addressing of the various tensor components into a 1 dimensional array. Manual
handling of these equations is only possible for low values of n and N.

3.3.1 Closure schemes for hierarchy of moment equations

A closure scheme simply means a procedure for evaluating the expectations on the right-
hand sides of (3-172), (3-173) by means of a tentative joint probability density function
fizy(z,t) of the state vector Z(t) = [Z1(t), - ,Zn(t)] T, containing a number of free
parameters, which are calibrated in a way that the joint pdf displays all the provided
moments p;,...i, (t) or Aj,...i,(t) as determined by the hierarchy of moment equations
(3-172) or (3-173). Consequently, the number of free parameters must be equal to the
number of moment equations.

The joint nth variate characteristic and log-characteristic functions of the process Z(t)
admit the following Taylor-expansions

oo . n )
M;zy(8,t) = Z Do Biinin (8650, - i, (3 —174)
k=1 T 0=
lnM{Z}(g t Z %— Z niliz"'fk(t)gil 9152 e 91'1: (3 = 175)
k=1 Lgese 22k =1

where ki, ;,..iy(t) signifies the joint cumulants of the order N. Comparing (3-174) with
(3-175) the following relations between joint moments and joint cumulants are obtained

o0 f n
)
FI T D Hivisein (i iy By =
Ty geee stk

k=1

HP(E:H_E:fmuedﬂ&ﬁu- m) (3 — 176)

. Z k._ Z Kijig--ig (t)ﬁ'h Bi; i aik

k=1 11,0tk

o~

(1+Z ko Z Hiyig- u(t)euatz ' 9,;,:)

(3-177)
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Upon expanding the exponential in (3-176) and comparing terms of the common fac-
tor 6;,6;, ---6;, the joint moments ;,i,...;,(f) may be expressed in terms of the joint
cumulants &;,i,...i, (t). Similarly, upon expanding the logarithm in (3-177) as a Taylor
series the inverse relation expressing the joint cumulants in terms of the joint moments
is obtained. These take the form

ki(t) = pi(t)

kij(t) = A1)

Kijk(t) = Aije(t)

Kijki(t) = Aijra(t) = 3{ i () Ani (1)},

Kijkim(t) = Aijkim(t) — 10 {Xij(£) Arim (1)},

Kijktmn(t) = Xijrimn(t) = 15 {Xij(t)Akimn (1)}, — 10 {Xijk () Aimn(2)},
+ 30 {Ai; () Ari(£)Ama(t)},

Y

\ (3—178)

where {-}, indicates the symmetry operator defined by (2-69).

The so-called quasi-moments f;,;,....y () are introduced by the relation, Stratonovich

(1963)
o i = > ik n
exp(z k! PN G 9‘*) =1+ k! Biyig---in (1)8i, 64y - - - 6,
$=3"" Burita=1 k=3 " i i (3 —179)

Expanding the exponential of (3-179) as a Taylor series one can express the quasi-
moments in terms of cumulants, i.e.

Bijk(t) = xiji(t)
Bijui(t) = kijra(t)
Bijkim(t) = Kijkim(t)
Bijkimn(t) = Kijkimn(t) + 10 {Ki5k(t)Kimn(t)},  (3—180)
Bijkimnp(t) = Kijktmnp(t) + 35 {Kijk(t)Kimnyp(t)},

Bijkimnpg(t) = Kijkimnpq(t) + 35 {Kijki(t)kmnpqg(t)}, + 56 {Kijk(t)Kimnpq(t)},

)

The inverse relationships are obtained by taking the logarithm on both sides of (3-179)
and expanding the logarithm on the right-hand side as a Taylor series.

The multivariate probability density function can be evaluated as an inverse Fourier
transform of a characteristic function. Using (3-175), (3-179) one has, Stratonovich

(1963)
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f{z}(z,t)z f ---/exp(—z’ZB;z;)M{z}(a,t)d&dé’g---d6'n=
—00 -0 =1
co o0 . n , n 2-2 n
/ / exp (=i Y 0 )exp (V- w0+ 5 D w0610 )
=1 t1=l I1,l2=1
(sz', Z lﬁ,l,, i (8)6i, 63, -6 )daldeg---dﬂnz
o0 1 n
f{z}(z,t) =§0n(2)( Zk— Z ﬂ’llz 1k(t)Hlnz u(z)) (3‘— 181)
k=3 11 yeee ik =1

where Hy i,. .i.(2) = Hiji,..,(Z; p, &) are the multivariate Hermite polynomials defined
from

(—l)k ak
on(z; 1, k) 0z -+ -

Hiyipin (258, 8) = 55 Pn(zim, k) (3 - 182)
171

and ¢n(z) = @a(2z; #, &) is the multivariate Gaussian joint probability density function
with mean values y; = &; and covariances k;; = A;j.

The expansion of (3-181) in terms of multivariate Hermite polynomials will be referred
to as a Gram-Charlier type A expansion.

Biyiy-i, (t) may alternatively be determined from the expectation

ZD ZO ZO
/Biti2"°ik (t) =kIE [Ghi:“-ik ( . ’ : 3 - )] (3 == 183)

UZI aZ? O'Zn

where Z?(t) is defined by (3-171) and oz(t) is the standard deviation function of the
ith component process. Gi,iy.iy(2) = Giyigoiy (2 4, 8) = Hijiyooi (23 ,671) is the
multivariate adjoint Hermite polynomial, determined from

IR W . ol
(PR} v My = Z py K
s o2 1, K1) Oz, -+ Oz, TPV H

(3 — 184)

where ¢, (z; , £7!) is the multivariate Gaussian joint probability density function eval-
uated for the inverse covariance matrix & ~1. It is easily demonstrated that the following

orthonormality condition prevails

s ] 0

/---/G,—l...,-,(z;p,,n)H,—l...,-,(z;u,n)cpn(z;u,oc)dz=

—=0C -—0oC
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{0 y T#S (3 — 185)

6i1.f1 v '6irjr y T=28

where 6;; signifies the Kronecker delta. (3-183) follows immediately using (3-185) in
(3-181). Upon expanding the adjoint multivariate polynomial (3-183) provides a relation
between the quasi-moment and the centralized moments A; i,...i, (%)

Alternatively, the tentative joint pdf can be written in terms of the following expansion
in terms of products of univariate Hermite polynomials

oo

fz(z,t) = (1) (én) Z Yiyigein (0)Hiy (61) - Hi (€n) (3 — 186)

0z, (t) - 02,(t) i1 tig++ia=0

oz palt) _
&= p_ry (3—187)

H;(z) is the univariate Hermite polynomials of the ith order defined by

a0y = E2 Lo - %(-1)“ RE A o= (3188
o) = o(z) d:z:"(p N o Pia » Pha = a!(i — 2a)! (8- )
1 z? z3 z?

7i1i2---in(t) = i1!i2!"'in!E I:HH (UZ;, ) H*z (UZ;2 v Mg (O'_Z,-“) =

7 i [ .1'—20‘ Zn—g n
@ e e
Dl 2 2 ety " iy o3 T ) o (1)

(3 - 189)

where [-] signifies the integer part of the argument. The 1st statement of (3-189) follows
from the orthogonality property of the Hermite polynomials

y =]

/ H,-(w)ﬂ,-(m)sow)dm{ﬁ i (3 - 190)

Yiyiz-in (t) are termed the Hermite moments. Since, Ho(z) = 1, Hi(z) = z and H(z) =
.'1'2—1 one sees that “Y00---0 = ]., Y10.--0 = Yo1--.0 = Yo0...1 = 0, Y20---0 = Y02---0 = Y00..-2 = 0.
The last statement of (3-189) provides an explicit relation between the remaining non-
linear Hermite moments and the joint centralized moments A;, i,....; (t).
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(3-174), (3-175), (3-181) and (3-186) represent various expansions of the joint charac-
teristic function and the joint probability density function. The free parameters of these
expansions are the joint moments p;,...iy(t), the joint cumulants «;,...;y (), the joint
quasi-moments including the mean values p;(t) and the covariances «;;(t), and the Her-
mite moments v;,...iy (t), respectively. Closure schemes are obtained upon truncating
any of these expansions at the order £ = N and calibrate the free parameters by the re-
lations derived above to the provided joint moment p;,...i, (£) or A, .5, (), k=1,... , N,
obtained from the solution of (3-172) or (3-173).

In case the hierarchy of moment equation (3-172), (3-173) are truncated at the order

N, moment neglect closure simply means that all joint moments above the order N are
ignored in (3-174). Hence, the following characteristic function of the tentative joint

pdf is obtained.

N .. n
1
M{z}(ﬂ,f) =1+ E F E ,Uilig---ik(t)ehgiz 2 'aik (3 — 191)

k=1 1,00 0 =1

In case of polynomial drift vectors unprovided moments of the order p; .iy_ (%),
Py -in42(t) -+, occur on the right-hand side of (3-172) in case the hierarchy of mo-
ment equations is truncated at the order N. Moment neglect closure involves that these
moments are simply ignored. Normally, such an approach leads to poor results and bad

numerical stability of the differential system.
Cumulant neglect closure means that all joint cumulants above the order N are ignored
in (3-175). Hence, the following log-characteristic function of the tentative joint pdf is

obtained

n

N
(4
lnM{Z}(G’ t) = Z F Z Kiyigeiy (t)eﬁ 9?12 we B (3 e 192)
k=1

21,00 50 =1

As mentioned subsequent to (2-160), the theorem by Marcienkiewicz (1939) raises se-
rious theoretical objection against the truncation (3-192) for N > 2. This means that
the moments evaluated by means of the joint pdf originating from (3-192) cannot be
exact for any stochastic process.

In case of closure of the hierarchy of moment equations at the order N for systems
with polynomial drift vectors, explicit expressions for the unprovided joint central mo-
ments i, ...ix4,(t)y Aijeinyq(t),... can be derived from the conditions &;,..ix,, (t) =
0, Kiy-eing:(t) =0,... From (3-178) the following expressions are obtained for N = 4

Aijkl'm(t) =10 {)\ij(t)Aklm(t)}s
Xijktmn(t)=15{ i () Arimn(t)},+10 {Xijk () Atmn (1)}, —30 {Ai; () Akt () Ama ()},

(3-193)
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The lowest-order cumulant neglect closure, obtained by neglecting the cumulants of
orders higher than two, is the so-called Gaussian closure. Then the hierarchy of moment

equations is truncated at second-order moments.

Quasi-moment neglect closure means that all joint quasi-moments above the order N
are ignored in (3-181). In this case the following tentative joint pdf is obtained

f{z}(z t) - ‘Pﬂ z){l + Z Z ﬁulz ik (t)Hn ig...1k (Z)} (3 = 194)

1 stp=1

In case of polynomial drift vectors, explicit expressions for the unprovided joint central
moments Aj...iy 4, (), Aij-iny,(), - can be derived from the conditions 8;, ...iy,, (t) =
0, Biy-in “(t) =0,... for the corresponding quasi-moments. For N = 4 it follows from
(3-178), (3-180) the joint central moments of the order 5, 6, ... that

0 = Kijkim(t) = Aijrim (t) — 10{ ;) Akim (1)}, b

0= ’cijklmn(t) + IO{El'jk(t "clmn} ==
Xijkimn(t) = 16{Xi; () Akimn(t) }, + 30{Xij () Aki(D)Ama(t)},

4

Xijkim () = 10{Xi;; () Akim (1)},

/\ijklmn(t) = 15{Aij(t)/\klmn(t)}3 — 30{)\;j(i)/\k1(t)/\mn(t)}’ (3 _ 195)

"

As seen the expressions for A;jkimna(t) in (3-193) and (3-195) differ by the term involving
3rd order moments.

Hermite moment neglect closure means that all joint Hermite moments above the order
N are ignored in (3-186). Hence, the following tentative joint pdf is obtained

N

f(z,t) = #(61) - ¢ (En) b Vivizein () Hiy (&) - Hip (€n) (3 —196)

0z,(t) - 02z,(t) t1+iz2+-+in=0

In case of polynomial drift vectors, explicit expressions for the unprovided joint central
moments A, ..iy,,(t), Aij.ingi(t),... can be derived by means of (3-189) from the
conditions ¥, iy.i, () =0, ty +ta+ - +ip=N+1, N+2,.

The indicated closure schemes (save the moment neglect closure) all work well if the
joint pdf is almost Gaussian, i.e. of the monomodal and smooth type. Then the joint
cumulants above the 2nd order are relatively small, so the expansion (3-175) is supposed
to converge rapidly with k. Simularly, the Gram-Charlier type A expansions (3-181)
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and (3-186) can be seen as expansions around basic Gaussian distributions. Hence, the
joint quasi-moments and joint Hermite moments are relatively small in case of almost
Gaussian distributions, and rapid convergence of these series is expected as assumed in
the closure schemes. However, joint pdfs of the multimode type or the mixed continuous
discrete type do arise in numerous cases in stochastic dynamics. Well-known examples
are the so-called two-well potential problem, arising in globally stable postbuckling
vibrations of systems with cubic non-linearities, SDOF hysteretic oscillators and Poisson
driven systems with low pulse arrival rate. If the indicated closure schemes are applied in
such cases with significant deviation from Gaussianity, the resulting moment equations
may turn out to give inaccurate results even at relatively high order of closure N (say
N > 6) or may even become unstable, so no solution at all can be obtained. Rather
than merely increase the order N in these cases it may be more favourable to modify the
tentative joint pdf (i.e. the closure scheme) in a way that it has the degree-of-freedom
of modelling such anomalies. Such modified closure schemes will briefly be presented

below.
%5
‘U(x)mug
T T T
6
4_
2..
0—
n . . . ) . A . T
25 -2 15 -1 _ -05 0 05 1 15 2 25  zg
) fx(z) - zo
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03} ,
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0.1
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2%s =2 15 -1 05 o0 05 1 15 2 25 zo

Fig. 3-11: Two-well problem, zq = \/g . a) Potential function. b) Stationary marginal
probability density function of displacement, white noise excitation, zq_:gum_’ -z =1,
The classical two-well problem deals with the Duffing oscillator in case of post-buckling

vibrations with hardening non-linearities. The functions u(X(t), X(¢)) in (3-43) can
then be written, cf. (3-44),

u(X (), X (t)) = 2¢woX(t) —wa (1 —eX?(£)) X(t) , w¢ >0, >0 (3 -197)

2
The non-dimensional potential energy function U (:c)%%, where zp = \/%— is the equi-
librium distance, has been shown in fig. 3-11 along with the stationary marginal pdf
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of X(t) in case of Gaussian white noise excitation. In this case the following tentative
joint pdf of X (t) and X (t) is appropriate.

fXX(xai'vt) = %(fvx(m +:1’,'0,.’i?,t) =+ fVX(_I + zg, _‘i,t)) (3 = 198)

fvx(v,2,t) is a temporarily unknown joint pdf of X(t) and the auxiliary variable V(t),
which is assumed to be monomodal with the mode value at (v,Z) = (0,0). Then, the
mode values of (3-198) will be close to z = +aq, if f, 4 (+220, £,t) =~ 0. As seen the set-
ting (3-198) ensures that the stationary joint pdf fulfils fy x(z,%,t) = fy x(—z,—2,1),
which is caused by the anti-symmetry of the drift vector ¢(Z(t)) = —c(—Z(t)) in com-
bination with zero initial conditions, cf. (3-46), (3-197). Joint moments of X(t) and
X () are related to joint moments of V(t) and X(t) as follows

E[X™(OX"(0)] = 5(1+ (-1 B[(V() - 20) " X" ()] =

HEEILDY ( ’}‘) (~zo)" I E[VI($)X" (1) (3 - 199)

j=0

The joint moments [VI(t)X"(t)],j + n < N, can all be expressed in terms of the
provided joint moments E[X HX "(t)], m+n < N, upon solving the linear equations
(3-199). For m+n = N + 1, N +2,... joint moments E[VI(t),X"(t)],j + n =
N +1, N+2,-- appear on the right-hand side. However, since f, x (v, £,t) is assumed
to be almost Gaussm.n these moments can be expressed in terms of lower order joint
moments E[VI(t)X™(t)], j + n < N by means of a cumulant neglect closure scheme
and hence by the provided joint moments E[X m($)X "(t)], m +n < N. A modified
cumulant neglect closure scheme has then been formulated for the evaluation of the
unprovided joint moments E[X"‘(t)X“(t)], m+n=N+1,N+2,...

For N = 2,4 the following equations can be derived for the stationary variance o2 X0 in
case of ordinary cumulant neglect closure, Koyliuoglu and Nielsen (1996)

L TP SR S
2(wim? X0 e A4l

(3 — 200)

3.0 ,0 2 a2
2Cwgm g 15ch,0 zs

7So 2 1 (30°'X0+32¢ wim zﬂfgaxo) —0
0

These equations represent quadratic and cubic equations in cr},o, respectively. The !
1st equation provides the identical solution as obtained by the Gaussian closure. The
corresponding results for modified cumulant closure at the order N = 2 and 4, obtained

by the procedure explained above, read
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2 WS() 3
2$0 + QCWsz v 3 o-g(,ﬂ - ;(2;03(,0 = 0
3 —201
wS o 1 (Z1058+300%, + 3pEatod, (3 —201)
2Cwim? Kip 2 150_,{,0 — z} -

For N = 2 the result (3-201) is tantamount to assuming V(t) ~ N(0, 0%), o2 =
o%0— zf. As shown in example 3-7 below, even the case N = 2 improves the results
mgmﬁcantly compared to the exact result.

a) fqlg) * = b) fqlg) = : i

S, § e i
425 -02 -015 -01 -005 O 005 01 0I5 02 025

1

o8

9 fol@) . ' d) Jola)

07

08 06
05
08
0.4
o4 03
o2
02
1

-1 -08 08 04 02 o 02 04 08 08 1

Fig. 3-12: Stationary probability density function of hysteretic component in Bouc-
Wen hysteresis and equivalent replacement at closure at the order N =4, wy =1, ( =
001, «a =0.05, g =+ =05, n =1.0, aXO:z’c_::gS# 1, ergodlcsamplmgafter

300000 Tp. a) gy = 0.20. b)g, = 0.35. c) gy =1.00. d) g, = 2.00.
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Fig. 3-12 shows with unbroken line the marginal pdf fg(gq) of the hysteretic component
Q(t) for the Bouc-Wen oscillator (3-49), (3-51) for variable values of the yield level gy,
exposed to stationary Gaussian white noise at an intensity producing the stationary

variance 0% , = ZC—:gﬂr-n-; = 1 of the corresponding linear oscillator. The results have
2 0

been obtained by ergodic sampling with the sampling interval 3000007,, T, = i—: As
seen, the marginal pdf has a marked double peak appearance, noticeable even at the
relatively high yield level of ¢, = 20x 0. Consequently, a modification of the closure
scheme along the same line as specified for the two-well potential problem should be
applied. However, a substantial difference between the two problems appears, since the
modal value gg of fo(g) is not known in advance, but has to estimated from the available

moment equations.

The following tentative joint pdf of the state variables X(t), X(¢) and Q(t) will be
applied

1 . .
fxxq(®:%,0:t) =3 (fxxv(w, ,¢,t) + fxxv(—2, -2, —q,t)) (3 —202)

where the marginal pdf fy(v) of the auxiliary variable V(t) is assumed to have its modal
value in the vicinity of v = go. Further, fy(v) is assumed to be effectively equal to zero
outside the interval [—gy,gy]. (3-202) insures the symmetry property f xo(z,%,¢,t) =
fxxo(—2,—%, —gq,t), as caused by the anti-symmetric drift-vector in (3-49) with zero
initial conditions. Similar to (3-199) the following expectations of combined stochastic

variables, h(X(t), X (¢), Q(t)) and X'(t)X™(¢)Q"(t) can be formulated
E[h(X(1), % (1),Q()] = 3 (r(X©), X (1), VO)+h(-X (1), ~X (1), ~V($) ) (3-209)
BIX(0Xm(0@®)] = 5 (1+ (- D" ) BXOXm0Ve]  (-20)

The auxiliary joint distribution fy gy (3, ,,t) is assumed to be monomodal, for which

reason the following Gram-Charlier type A expansion may be stated, cf. (3-196)

N

; _ e&1)p(é2) o (OH : .
fX)'(V(xi z,Y, t) = m fV(v) h+izz+ia=0 Yiriais (t)Hu (51 )le(gﬂvla(v)(?'_?‘os)
6!‘: = G'X(t) y € = J){’(t) (3 — 206)
Vi(v) = Z Vi,av” (3 —207)

As seen from (3-187) and (3-206), (3-205) has the prerequisite that E[X(t)] = E[X(t)] =
0. H;(€) are the Hermite polynomials as given by (3-188) and V;(v) signifies the or-
thonormal polynomials of the distribution fy(v), fulfilling
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/ Via (0)Vin (0) i (v)do = 615, (3 - 208)

Insertion of(3-207) into (3-208) provides the following equations for the determination
of the coefficients of the polynomials ( 3-207)

TR
Z Z Vi, Vig e E[VIH22] = 6 (3 — 209)

a1=0 as=0

(3-209) can be solved sequentially for Vi, in ascending order of i. Using the orthog-
onality properties (3-190) and (3-208) the expansion coefficients v;,,:,(¢) in the series
(3-205) can finally be determined from, cf. (3-189)

Taisia(t) = = B[H (fg)ﬂ.-,(é)mm]:

114!

8 g i 11-207 4o 1 —2a o
iﬂig! e e R t,0n 00 Yig,a g;_zal(t)a;—zal(t)aﬁs(t)
(3 —210)

The first of the expansion coefficients Yiyigis(t) read

Yooo = 1 )

Y100 =0 » Yo10 =0 » Yoo1 =0

Y200 = 0 y Yo20 =0 Yooz =0 f (3-211)

Y10 = ;,%lf; v o=, oy = 1;’;"

The expectations E [c,- (Z(t)) Z: (t)] appear in the covariance part of the moment equa-

tions (3-237) and (3-239) below. Only the non-linear 3rd component with the drift
vector component c; (Z(t)) = —c3( — Z(t)) as given by (3-51) need to be calculated by
means of (3-205). Using (3-203) the following results may be derived

E[c3 (1) Z:(t)] = Ele; (Z(t))m(t)] =
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( N
W iitistiz=0
o2 N

4 M22 — _q{; E Y0iqis (ﬂfiz(lsl)gia(lan = 1)+7f52(210)gi3(01n))

¥ ia+i3=0

N
H23 — %"‘i E Y0izig (ﬁfiz (01 1)91‘3(2: = 1) + 'Yfi?(l’ 0)9;’3(1, n))

\ Y oda4iz=0

(3 — 212)

where V;(t) signifies the components of the auxiliary vector VT (t) = [X(¢), X (1), V(t)],
and

fi(myn) = / £™ €™ H(€)p(€)de (3 - 213)
gi(m,n) = /Umlvl"Vi(U)fv(U)dv (3 —214)

(3-213) and (3-214) are defined for integer values of m and arbitrary real values of n.
However, analytical evaluation of the quadratures in terms of (-) and ®(-) is only
possible for integer values of n. (3-212) will do at closure at the order N = 2. In case

of closure at the order N > 2, expectations of the type E [ca (Z(t))Zil(t) o ZiN—l(t)J
must be evaluated. These can be represented by sums of products of one-dimensional
quadratures similar to (3-212).

The number of free parameters of the marginal pdf fy(v) reflects the order of closure.
At closure at the order N = 2, fy(v) may have 1 free parameter, which is calibrated

from the following condition following from (3-204)
E[V(t)] = E[Q*(t)] = paa(t) (3 — 215)

Similarly, at closure at the order N = 4, fy(v) may have 2 free parameters, which are
calibrated from the conditions E[V?(t)] = E[Q*(t)] = pss(t) and E[V*(t)] = E[Q*(¢)] =
,u3333(t), etc.

Hence, at closure at the order N = 2 the following reversed orientated Rayleigh distri-
bution may be applied

0 , U E gy, 00
PO etyren (F3G52)7) © val-ooal (3~ 216)

gy —90

prz — ZZX S ki fin(1,0) (ﬁfiz(os 1)gis(1,n = 1) +'}’fi2(110)9i3(0,n)),

i:l
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(3-216) has its modal value at v = go. go is the only free parameter of the distribution,
which can be determined as follows

T m 1 1pss
qg—qy(lﬂ\/g'}'\/g‘—ﬁ-{-'z"&g—) (3—1217)

Obviously, (3-217) requires p33(t) > ¢2(1 — ¥). This will be fulfilled for severe non-
linear cases, where ¢, is significantly smaller then the stationary standard deviation
of the corresponding linear oscillator ox o as given by (2-103), i.e. for the cases for
which the present modified closure approximation has been devised. In figs. 3-12a
and 3-12b the dashed line signifies the approximation for fg(g) = %(f v(g) + fv(—a)),
calibrated using the simulated value of pg3 in (3-217), as well as the normal distribution
folg) = %{p(;%), 0Q = /[33, assumed by the Gaussian closure scheme. Obviously,
the modified closure approximation at the order N = 2 is a more realistic approximation
to the simulation result than the Gaussian approximation. Figs. 3-12c and 3-12d
show various cases, where p33(t) < ¢2(1 — ), and the present modification is then
no longer useable. However, in these cases the Gaussian approximation resembles the
simulation results far better. Gaussian closure, and ordinary cumulant neglect closure
approximations in general, may then be used in these cases.

The few lower moments and expansion coefficient v; o of the distribution (3-216) read
E[V]=(gy = 00)(ay = V/7)
E[Vz] = (gy — )° (a§ - 2\/?'% + 2)
E[V?] = (gy — 00)*(of — 3y/Fa] + 6ay —3,/F) } (=218)

E[V*] = (gy — 90)* (ey — 4/F 0} + 120} - 3\/Fa, +8)

3

Vo, 0 = 1

V1,0 = _(ay - \/%_) 4.2._,r

U1 = qu-qo 2

V2,0 = (0‘5 - f_—:ay *+ %f%) T b (3 -219)

_ 1 (2&,,—-3@) 4—m

V2,1 = T, 0

v e 1
2,2 — (gy—q0)? 16—5m

S (3 — 220)
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In case of ideal elastic-ideal plastic systems the plastic branches of the constitutive
equations may be attained with finite probability. Hence, the joint pdf of the state vec-
tor fz)(z,t) will be of the mixed type with a continuous part representing the elastic
branches, and discrete probabilities, formally indicated by delta spikes, representing the
various plastic branches. Minai and Suzuki (1985) and Suzuki and Minai (1985) sug-
gested the following closure scheme to be used for the bilinear elasto-plastic oscillators

as given by (3-49), (3-50)

fxxo(z,28,0) = fxxv(z,2,q) +8(g - qy)/foV($:i=“)du +

9y
—qy

5("‘9’"‘%) ] fXXV(Iai'au)du! (‘T,i‘sQ)ERXRX [_anﬁf] (3_221)

Friv(@ig) = ———p (=)o () (2
L (x. 1 = — —_— — ) -
xxvit, T, q UXO'XUV(P ox 4 oy ¥ =

5 () (2)m ()

i+j+k=0

where (-) is the frequency function of a standardized normal variate and H;(-) is
the Hermite polynomium of the i:th degree given by (3-188). ~;ji signifies the Her-
mite moments as given by (3-189), evaluated with respect to the auxiliary joint pdf
fxxv(z,2,v). The relationship between the joint moments of (X(t),X(t), Q(t)) and

(X(t),X(t),V(t)) reads

EX'®)X™®Q"®)] = Jﬂf(t)ﬂx’“(t)ﬂx'}(f) Z YiikTLiTm,i8n,k(B) (3 —223)
i+j+k=0

where f = ¢,/oy and

e / ””H,-(w)so(:c)df{o , 1=0V(I—4) odd

— 00

ipi-iy2 5 1 SIA(I—1) even (3 —224)

g ] =p
s tlB) = [ =" Hi(x)p(z)de + A" / Hy(z)p(z)dz + (~B)" f Hi(z)p(z)de =
-8 8 —co

0 , (n—k) odd
(3 —225)

(5]
Pak + 2 Z_:O(—l)"m.a(ﬁ"tk—za(ﬁ) ~tntk—2a(B)) , (n—k) even
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o0

t(B) = f 2 ola )z (3 — 226)
B

where pi o is given by (3-188). tx(8) can be explicitly expressed in terms of ¢(-) and
().

However, rather than using (3-223) oy is calculated from the transcendent equation
2] _ 2 9y -
E[Q’] = oy s2,0 (Uv) (3 —227)

(3-227) implies the assumption yp04 = 0 in (3-223). This restriction has been imposed
in order to prevent significant negative side loops of the approximate joint pdf, and has
the consequence that (3-221), (3-222) cannot be calibrated to the moment E[Q%(t)]. In
principle this means that the marginal pdf fg(g,t) is represented by a closure scheme
at the order N = 2.

The closure scheme (3-221), (3-222) will be used in the examples (3-3), (3-4) and
(3-5) below, which deal with the stochastic analysis of ideal elastic-ideal plastic systems,
in combination with an equivalent cubic expansion technique derived by the author es-

pecially for such systems.

A dynamic system driven by a compound Poisson process with low pulse arrival rate
represents still another example, where modification of any ordinary closure scheme such
as cumulant neglect closure, quasi-moment neglect closure, Hermite moment neglect
closure, etc. may be necessary in order to achieve accuracy and numerical stability
of the moment equation method. Assume, that the said system is defined with initial
conditions Z(t) = zo at the time #;. Then, the system performs a deterministic drift
(eigenvibration) from the initial values, Z(t) = d(t|zo, ), until the first impulse arrives.
The probability Py(t,%0) of no impulse arrivals in the interval ]to, t] follows from (3-8)

t

Py(t,to) = P(N(t) = 0) = exp ( - /I/(T)d?') (3 —228)

to

The probability Py(t,10) is large, if either the length ¢ — ¢y of the time interval is small
or the mean arrival rate v(7) is small. It follows that with the probability Py(t,?o)
the system will be placed at the position d(t|z¢,fp). The remaining probability mass
1 — Py(t,tp) will be continuously distributed in the state space, due to one or more
impulses in the interval ¢, t]. The joint probability density function of the state vector

can then be written

Fizy(z,t) = Po(t, o) fizy (2, tIN(t) = 0) + (1 — Po(t,t0)) fiz) (2, t{N(t) > 0) =
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Po(t, )6 (2 — d(tl20,t0)) + (1 = Po(tst0)) fevy (22) (3 — 229)

The auxiliary process {V(t),t € [to, 0o{} signifies the state vector on condition of at least
one pulse arrival. In contrast to f(z)(z, t) the joint probability density function of V()
will be continuously distributed without any discrete contributions. Hence, any of the
above-mentioned closure schemes may apply to this distribution. The joint moments
and _]oint centra,lized moments of Z(t) and V(¢) are designated p;,i,...i, (t), Ai iy, (%)
and p? ;. (1), Ad4,...q, (1), respectively. From (3-229) it follows that

Piriz-in (t) = Po(t,t0) [ | di; (tlzo,t0) + (1 — Po(t,t0)) s, .0, () (3 — 230)

3=1

where d;(t|zg, to) signifies a component of the deterministic drift vector. Especially, the
mean values of Z(t) and V(t) are related as

pit) = Po(t, to)di(t|zo, to) + (1 — Po(t, t0)) u; (t) (3—231)

' The relationship between the centralized joint moments of Z(t) and V(¢) then becomes

)\;1,-2...,-n(t)=E[ljZf’j(t)} PBH =i (1) + (1 - R)E [Hzo(t)}

Py H (diy — sy () = (1 = Po)E[fI (20 -0+ T 0= 4))] =
(Rt @(—_‘%—) H (diy — iy 1)) +
(1-Py) _,-=Zg C:) {o\?lz‘,...i,,_j(t) k=E+1 (pae () — di,‘)}s : (1 fGPO )J (3 —232)

where (3-231) has been used. Further, E[], signifies expectations with respect to
fiv}(z,t), and the arguments of Py(t,t0) and di(t|zo,t0) have been omitted for ease
of notation. The inverse relation can be derived in a similar few steps

mz in(t) = [f_[ (Zf.i (t) - ”(i),- (t))]o =
=1

- 1

- (1) + POE[ﬁ(Zz, () - u,(1)] =

= J=]
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P, 2 1 n P
“aoR P‘:)n+1 ,131 (diy =iy () + 1= PUE[JIJ1 (25 )+ o (dy b (t)))] =

n

ﬁ:—%ﬁ H (dij = i”fi(t)) +

(1—Pﬂ) j=1
o i N
=P ,:ZO (J) {)\m‘,...in_;(f) k=}1+1 (du - uik(t))}s ' (1 fPﬂ) (3 —233)

For systems with polynomial drift vectors the following modified cumulant neglect clo-
sure scheme may be used. In case of closure at the order N all centralized moments
A e i;(t), 7 > N with respect to the continuous joint pdf f(v) (z,t) are first expressed
in terms of corresponding centralized moments of the order j < N by means of the cumu-
lant neglect closure approximations (3-193). Then, A;,;,...i,(t), n > N may be expressed
in terms of the centralized moments A} 2-i; (t)y 7 < N by means of (3-232). Finally, all
joint moments A?”-E__,i,_ (t), 7 < N within this expression can be expressed by Aigigeni; (),
7 < N by means of (3-233), and the requested closure scheme is obtained. In case of
closure at the order N = 4 the following explicit closure approximations for the 5th and

6th order joint centralized moments may be derived for the case d;(t | 2, ty) =0

1 Py(1+ P,
Aijklm(t) = 1— PU IO{AijAklm}a - (UT('F)‘DZ—)]-O{#*'ij“m}S -
— 40

2P, P,
ﬁlf){ﬂ'i/\jkaxlm}a + ﬁ5{#i'xjklm}s +

ot i
Py(1+ 4Py + P?

! (1 ;)3 0)10{ﬂiﬂjl—5k)‘tm}s -
=P
Po(1+ 11P, + 11P¢ + )
i-F) Ml Pk (3 —234)
- 40
15 15P,

Migrtnnlt) = m{)\tj’\klmn}a = ;ﬂ {tistj Akimnl}s +

10 Py(14 Py -2P?
i——?o{/\ijkl\lmn}s + 0( 1 —0P3 0)20{#;'#_1'#]:/\1:7111}3 -

0

60F 2.15
EI—;T{#:'AjkAlmn}s = m{AijAklAmn}s +

- P -R

2P, - 45

a"j"P_)g'{#iﬂj’\kl'\mn}s T

=4

Py(1+ 7Py — 5P2 — 3P3)

ls{ﬂip‘jnukﬂ'l/\mn}s +

(1-Po)°*
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Py(1+420P, — 40P3 — 5P3)
(1-P)°

fhi g fhk S o fhn (3 —235)

In case of stationary excitation, Py(t,ty) — 0 as ¢t — t; — oco. Hence, the discrete part
of the joint probability density function (3-229) vanishes, and the ordinary cumulant
neglect closure approximations (3-193) are obtained from (3-234) and (3-235).

The indicated modified cumulant neglect closure scheme for compound Poisson process
driven systems was first suggested by Iwankiewicz and Nielsen (1992a,1992b). The
method was applied to the problems described in example 3-9, and turned out to improve
the numerical stability significantly in case of small values of Py(t,t0). The derivations
(3-232), (3-233), (3-234), (3-335) are due to Nielsen and Iwankiewicz (1995).

The method of equivalent linearization was introduced by Booton (1954), Kazakov (1956) and Caughey
(1963). Further development to MDOF systems is due to Atalik and Utku (1976), Kaul and Penzien
(1974), Iwan and Mason (1980), Wen (1980) and Ahmadi (1980). The technique, intended for slightly
non-linear systems, was found to produce reasonable results even for large non-linearities in some cases.
A review of applications was given by Spanos (1981) and by Roberts and Spanos (1990). Uniqueness
and existence of the equivalent linear system were discussed by Spanos and Iwan (1978). However,
as demonstrated by Langley (1988a) and Fan and Ahmadi (1990) for a three-well potential problem,
uniqueness is not guaranteed in multi-modal systems. Further, the accuracy of the system is very bad

in such cases.

Gaussian closure technique was suggested by Iyengar and Dash (1978), Dash and Iyengar (1982). As
mentioned, and first pointed out by Wu and Lin (1984), Ahmadi and Orabi (1987) and Noori and
Davoodi (1988), these technique is identical to the equivalent linearization technique with Gaussian
evaluation of the equivalent linearization coefficient for the mean value and covariance equations. The
evaluation of higher order moments by means of a joint Gaussian pdf, calibrated entirely from the
second moment equations, is questionable and inconsistent.

The rate of convergence of cumulant neglect closure schemes in almost Gaussian systems was studied by
Wu and Lin (1984). The lack of accuracy and instability in systems which are essentially multi-modal
was discovered by Sun and Hsu (1987), Fan and Ahmadi (1990) and Soong and Grigoriu (1993). The
lack of convergence of the ordinary cumulant neglect closure scheme for the two-well potential problem
was observed by Bergman et al. (1994) using closure schemes up to the order N = 8. In contrast, the
indicated modified cumulant neglect closure scheme due to Koyliioglu and Nielsen (1996) converges at
the usual rate of convergence of almost Gaussian systems as shown in examples 3-5 and 3-8 below. The
general conclusion seems to be that applications of the cumulant neglect closure scheme to any highly
non-Gaussian case require modification, guided by physical insight into the system dynamics. Hermite
moment neglect closure schemes were first suggested by Crandall (1980, 1985), and have been further
developed by Minai and Suzuki (1985) and Suzuki and Minai (1985).
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3.3.2 Wiener process driven systems

Using the Kolmogorov backward operator (3-118) in (3-172) and (3-173) the following
differential equations for the mean value and the joint central moments are obtained.

%m(t) N E{C,-(z(t),t)J (3 — 236)
220 =2 {B[4(a00.070]}, + 3 Bl @(0.050 (20,0
d

3;5)\1~J,-,c(7s)=3{ [ (Z(t),t) 2%t Zk(t)]}
+3Z{ [dia (2(8), 1) dja (2(8),£) 22(8)| }
%Ai,kl(t) =4 {E [c?(Z(t),t) z;?(t)zg(t)z?(t)] } b (3 —237)

" 62 {B[da(2),t)dsa (2(0),) 220)200)] }

D voin ()= 5 (B[, 20,0280 28,0] } +
N(Nz_ E Z {B|disa(2(t),t)dira(Z(), 1) 25,(1) - 24, (1) }s

a=1
where the centralized drift vector has been introduced, defined as
c(Z(t),t) = c(Z(2),t) - E[c(Z(t),t)] (3 —238)

In the case of state-independent diffusion terms (3-237) reduces to

000 =2 {E[2@0.920]}, + 3" a0

'(%)\z‘jk(t) =3 {E [c?(z(t),t)zf(f)zf(t)] }s
Exnt) = 4 {B[2(20),0) 2802 OZ0)] } +

A ! (3 — 239)
6 Y {dia(t)dja(t)Au(t)},

%,\gl...m(t) =N { [c?! (Z(t),t)zg(t)...zgn(t)] }a +
N(N -1) &

Z_:{d,:m(t)d,-za(t)/\ia...,-w(t)}s
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Of special interest is the case of a system with polynomial non-linearity, e.g. in terms of
a cubic form of the state variables as for the van der Pol and Duffing oscillators. In this
case the following cubic expansions of the drift vector and the centralized drift terms of

the centralized state variables can be formulated

Ci(Z(t), t) = Ai 4 Bing»; + CangEnZg + Dimnngzzgzg (3 = 240)
C? (Z(t), t) = Bingn - C;mn(Zngg P )\mn) + Dzmnp(Zg—;ZgZ]? - /\mnp) (3 = 241)

In (3-240), (3-241) and below the summation convention has been used for simplicity,
with the dummy indices ranging from 1 to n. The explicit time dependence of the left-
hand sides of (3-240) and (3-241) suggests that the tensor component A4;, Bim, Cimn and
Dimnp may be time-dependent for time-varying systems.

The expectations of the drift term multiplied by the state variables can now be explicitly
performed. (3-239) becomes

d
==y = A; + Cimn)\mn + Dimnp)‘mnp

dt
%A,-J-(t):2{3.—,,,,/\,“]-}3+2{C,-mn)~mnj}s+2{DimnpAmnpj},+§:d;a(t)dja(t)
a=1

%)\ijk(t) = 3{BimAmjk }, +3{Cimn(Amnjk — Amadji)} ,+ [ (3_249)
8 Dimns Cosnggc — Arauphin) ],
%M;‘kl(f) = 4{BimAmjtt }, + 4{Cimn(Amnjrt — AmnAje) )} +
4{ Dimnp{Amnpitt — AmapAjat)}, +6 i {dia(t)dja(t)Au(t)}, J

a=1

The cumulant neglect closure scheme (3-193) or the quasi-moment neglect closure
scheme (3-195) can immediately be used in (3-242).

In case of hysteretic systems, the drift vector is non-linear and non-analytical. Hence, it
is neither polynomial nor admits an approximate Taylor-expansion. In order to handle

such systems an equivalent strucural system may be introduced for which the drift vector
Cieq(Z(t),t) admits the cubic expansion in the centralized state variables (3-240).

The difference between the drift vector of the original system and the equivalent system
is specified by the error vector

£ = i —Cegsi = 6 — A — BinZy — Cimnn 25,23 — D 25,2021 (3 — 243)

For the class of systems with drift vectors specified by (3-54) or (3-59), the optimal
choice for the equivalent system is taken to be the one for which the expectation E[ezey]
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becomes minimum. The expansion coefficients are then determined from the conditions

0
——FElerer] =0, Elerer] =0, ete. (3 — 244)

g

resulting in the following system of linear algebraic equations
E[Ci] = A + CimnAmn + Dimnp/\mnp )
E[C?Z_?] = Bim)‘mj + Cimn)\mnj + Dimnp)\mnpj
E[C?Z;]Zg] = BimAmjk + Cimn(/\mnjk - )\mn)\jk)“l"
> (3 — 245)
Dimnp()\mnpjk = A1r:rw'1p"\‘1'k)
E[c}Z} Z} Z]) = BimAmjkt + Cimn(Amnjkt — AmnAjki)+
Dz’mnp()\mnpjkl - Amnp)\jkl) J

Especially, equivalent linearization implies that the drift vector of the equivalent system
admits the expansion

Ceq.i(Z(t),t) = Ai + BimZn, (3 — 246)

The next step is to investigate to which extent the equivalent system with expansion
coefficients determined by (3-245) represents the original system. First, it is noticed
that all the expectations entering the right-hand sides of (3-239) also occur in (3-245)
for the determination of the expansion coefficients. Further, if (3-245) is inserted into
the right-hand sides of (3-239), these become identical to the right-hand sides of (3-242).

Hence, the following theorem has been proved (Nielsen, Mgrk and Thoft-Christensen
(1990a, 1990b)): The propagation of the mean values and the joint central moments
up to order N = 4 will be identical for the original and the equivalent cubic system,
provided the same approzimate pdf is applied to both systems for evaluation of all the
ezpectations, and provided the coefficients of the polynomial ezpansion of the equivalent
system are determined from a least mean square criterion.

A generalization to equivalent systems with a polynomial expansion of arbitrary order
N > 1, including N = 1 corresponding to equivalent linearization, is straightforward.
Actually, this system and the original system predict identical mean values and joint
central moments up to the order N + 1, provided the same approximate pdf is applied to
both systems for evaluation of the expectations including unprovided joint central mo-
ments of order N +2,... ,2N appearing in the equations for the equivalent coefficients,
and provided the coefficients of the polynomial expansion of the equivalent system are
determined from a least mean square criterion. Especially, if the exact joint pdf is ap-
plied to both systems, exact joint moments up to and including the order N + 1 are

obtained.
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For the equivalent linear system (3-246) the following results are derived for the tensor
components A; and B;,, from (3-245) '
m=E@@m@]
(3 —247)
B E[c:?(zm,t)zg(t)] K72

where &} signifies the components of the inverse covariance matrix &jm = \jm. The
equivalent linear system (3-246) predicts a Gaussian response, when applied to the
system (3-116) with state independent drift vector and deterministic or Gaussian dis-
tributed initial values. In these cases the consistent choice for the evaluation of the
expectations in (3-247) will be a Gaussian closure scheme. Using the following well-
known property for the expected value of combined stochastic variables generated by a

normal vector

c? Ci 3
B[0(2(0),020] = B [i-%z%*—)] — [a—(azf:ﬂ] Kmi (3-248)

then (3-219) can be written

B - 5 20 -2

(3-249) is due to Atalik and Utku (1976). Gaussian closure will not give consistent
results, when applied to hierarchy of moment equations for non-linear systems truncated

above N > 2.

Quite often structural systems possess the following symmetry properties
c(Z(t),t) = —c(-Z(¢),1)
3 — 250
d(Z(t),t) = d(=Z(2),¢) ( )

If further the initial value Zo = Z(0) = 0 in (3-116) it can be stated that u;,...;, () =
Aiy iy (1) =0, N odd. (3-250) is referred to as the zero mean condition. For the cubic

polynomial system (3-240) this implies that 4; = Cimn = 0. (3-240) and (3-242) then

reduce to

Ceq,i(z(t):t) = BimZm + Dimnpzmznzp (3 - 251)
d o )
E#ii = Z{Bimﬂmj}s + 2{Ijg'm,n,p;!«'-ml"l;:l}‘g + Z dla(t)dJa(t)
a=1
d
Eﬂijkl = t-l{Birm\'iﬂ'a_ﬂc!}_9 " ¥ 4{JDs'mﬂp#mnp;ikl}s =+ ¢ (3 == 252)
na
6> {dia(t)dja(t)i},
a=1 /
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where Bim and Dimnp are determined from, cf. (3-245)

ElciZj] = Bimpimj + Dimnplmnp; (3 —253)

EleiZiZx2)] = Bimpmirt + Dimuglmnpii

Example 3-3: Stochastic response analysis of hysteretic oscillators driven by
Wiener processes

Upon calculating the expansion coefficients in (3-245) or (3-253) an analytical form of the joint pdf
fz(z,t) with a number of free parameters must be specified in order to evaluate the expectations on
the left-hand sides. These free parameters are then sequentially calibrated from an equal number of
statistics available. If the same joint pdf is applied in the original system with moment equations (3-239)
the same joint moments are predicted according to the indicated theorem. Then, at first sight nothing
seems to be gained by the introduction of an equivalent polynomial system. However, in hysteretic
systems only the differential equations specifying the hysteretic components will be non-linear and non-
analytical. The idea to be presented in this example and the following examples 3-4 and 3-5 is then
to replace only these components with an equivalent cubic expansion, whereas the linear components
remain unchanged. In contrast, the mean least square solutions obtained from (3-245) and (3-253)
provide a polynomial expansion even for the linear components. Since fewer parameters are varied such
a method no longer predicts correct joint moments even if the exact joint pdf is used for the evaluation
of the equivalent polynomial expansion coefficients.

The SDOF hysteretic oscillator (3-47), (3-48) is considered, where {F(T),t € R} is a stationary Gaus-
sian white noise with the autospectral density Sy. The constitutive equation of the oscillator is modelled
as a bilinear oscillator with the non-dimensional spring stiffness given by (3-50). As seen from (3-49)
the zero-mean conditions (3-250) are then fulfilled. Since, the system is analyzed with the zero initial
conditions, Z(0) = 0, the reduced equivalent cubic expansion (3-251) of the drift vector in (3-49) as
well as the reduced moment equations (3-252) is then valid.

The first two drift vector components c¢;(Z(t)) in (3-49) can be written in the following way

&(Z) = By Znll) » i= 1,2 (3 — 254)
(Bll=O y Biz =1 , Bia=0
.521 = —awg y Bgz = —2(&)0 i 323 = ng(l = af)

As mentioned, the idea of the present method is to keep this linear expansion for these state variables
unchanged. Only the component c3(Z(t)) is replaced by an equivalent cubic expansion in the form

c3,e0(Z(t)) = k(X, Q)X = B3z X +B33Q+ D3222 X3 + D3325 X2 Q+ D1233 X Q* 4 D1333 Q% (3 - 255)

The expansion coefficients in (3-255) are determined from the least mean square criterion, leading to
the following system of linear equations, similar to (3-253)

M22  M23  p2222  M2223  H2233 (42333 B3 E[),(EN]
B33 f2223  HM2233  [2333  H43333 Bss E[XQx]
M222222  H222223 M222233 H222333 Dagaz | _ | E[X*&]
H222233 H222333 H223333 D3zas | — | E[X3Qx] 8~ 266)
symm. #223333 1233333 D3233 E[X?Q%x]
14333333 D3333 E[X Q%]
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The expectations on the right-hand side of (3-256) as well as the joint 6th order moments on the left-

hand side are calculated by means of the following marginal version of the Minai-Suzuki closure scheme
(3-221), (3-222)

Fxq(2:9) =fo(i,q)-i-é'(q-Qy)/f;'(v(i,u)du +

—qy 9y
6("'? - Qy) f f)'(v(z'!u)du ) (a.:)‘I) € R x ["qy)‘h'] (3 - 257)

(E)() 3 e (E)m(2)

fj'v(ér v) =
gx
j+k=0

UXO'V

The joint 6th order joint moments appearing in the global moment equations (3-252) are still approxi-
mated by the ordinary cumulant neglect closure approximation given by (3-193).

The following approximate methods have been investigated:

a: equivalent linearization using Gaussian closure with the system of differential equations for the joint
central moments closed at covariance level.

b: closure of the original system (3-192) at the order N = 4 using the full 3-dimensional expansion
: (3-221), (3-222).

c: present method. All expectations in (3-256) are calculated from the marginal pdf (3-257), (3-258).
The joint 6th order moments of (3-252) are calculated by an ordinary cumulant neglect closure

scheme.

i d: present method. All expectations in (3-256) are calculated from the marginal pdf (3-257), (3-
‘ 258). The joint 6th order moments of (3-252) are calculated using the full 3-dimensional expansion
! (3-221), (3-222) at the order N = 4.
\

Any difference between results for the cases b and c is partly due to the fact that in the latter case only
a single drift vector component is replaced by an equivalent cubic polynomial expansion, and partly
to the application of the ordinary cumulant neglect closure scheme in the moment equations (3-252),
which works bad for any joint 6th order moments involving Q(t). If all 3 components of the drift vector
in case d had been replaced by cubic polynomial expansions, this case would have given results identical
to case b for all joint moments up to and including the order 4 according to the theorem on page 142.
Discrepancies of results between these cases may then be attributed entirely to the replacement of
only the non-linear and non-algebraic hysteretic incremental equation of the original system with an

equivalent substitution in cubic polynomial form.

To verify the obtained results, a numerical Monte-Carlo simulation has been carried out. Generation of
realizations of a broad-banded zero mean Gaussian process was performed by the method of Penzien,
Clough and Penzien (1974). The integrated dynamic system (3-49), (3-50) with the system data
wp =1, =0.05, gy = 1.0 was solved by a 4th order Runge-Kutta scheme, with the initial conditions
Z(0) = 0. The excitation level of the Gaussian white noise was chosen so the stationary variance of the

corresponding linear oscillator becomes a'?,(’o = ic—:%i-l-; = 1. The time step was selected as At = %,-g-,
0

Tyi= f.-_: being the period of linear, undamped eigenvibrations. The sample size of ensemble response
time-histories was 5000, from which the relevant response statistics were determined.
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Fig. 3-13 shows the time-dependent variation of the standard deviation for X(t), X(t) and Q(t) with
post-yielding stiffness ratio @ = 0.0, corresponding t6 an ideal elastic-ideal plastic oscillator. From fig.
3-13a it is evident that equivalent linearization with Gaussian closure significantly underestimates the
displacement variance. Moreover, the method predicts a stationary displacement variance in contrast
to the characteristic variance drift displayed by the simulation result, resembling the linearly increasing
variance in classical Brownian motion exposed to stationary Gaussian white noise. The cases b and d
give almost identical results. Actually, the relative difference in the prediction of ox (t), both in the
example shown in fig 3-13a and the following examples in figs. 3-14 and 3-15, is everywhere below
0.4%. Consequently, it may be concluded that it is allowable to replace only the constitutive equation
by a polynomial expansion. The difference between cases b and ¢ can then be attributed primarily to
the application of the ordinary cumulant neglect closure scheme in (3-252).

As reported by many authors, equivalent linearization is capable of describing the response charac-
teristics for the velocity and the hysteretic restoring components, both of which attain stationarity.
This is also the case for the present system. However, as shown in figs. 3-13b and 3.13c the closure
approximations applied in cases b, ¢ and d all give slightly improved results compared to those obtained

by Gaussian closure.

In order to evaluate the applicability range for the proposed method, an investigation with various
degrees of non-linearity represented by the post-yielding stiffness ratio « has been performed. The
results for « = 0.1 and @ = —0.1 for the time-varying standard deviation of the displacement are
given in figs. 3-14 and 3-15. From these it may be concluded that the proposed approximate method
in combination with an ordinary cumulant neglect closure scheme is generelly applicable and offers
substantial improvements compared to equivalent linearization. The results for velocities and hysteretic
restoring components have not been indicated, but they do not differ qualitatively from those shown in
figures 3-13a and 3-13b. Notice that the case of softening post-yielding stiffness ratio & = —0.1 implies
instability in case of static loading on this branche.

In the present example a method for approximate stochastic analysis of hysteretic systems driven by
Wiener processes is presented. The basic idea of the method, which is considered to be a generalization
of equivalent linearization, is to replace the non-linear and non-analytical constitutive equations of
the system with an equivalent polynomial expansion in the state variables entering these equations,
leaving all linear and polynomial non-linear components unchanged. Next, the coefficients of the
polynomial expansion are determined from a least mean square criterion. The constitutive equations
of a structural system are normally specified within each structural element. The present method
makes it possible to break down the problem of calibrating a tentative joint pdf of the state variables
from system level to element level. This is because only the joint pdf of the state variables entering
the constitutive equation of a certain structural element need to be specified in order to estimate the
parameters of the polynomial expansion. Especially for multi degrees of freedom systems this turns
out to be a decisive facilitation as demonstrated in example 3-5. The method is combined with an
ordinary cumulant neglect closure of the global moment equations. The method has been applied
to a bilinear SDOF system subjected to Gaussian white noise excitation, using an equivalent 3rd
order polynomial expansion for the constitutive equation. The expansion coefficients are evaluated
utilizing a 2-dimensional joint pdf based on a truncated Gram-Charlier series with a Minai-Suzuki
modification. Comparison has been made both to equivalent linearization with Gaussian closure, to a
closure scheme of the original system based on a truncated 3-dimensional Gram-Charlier series with
a Minai-Suzuki modification, and to a scheme which makes it possible to evaluate the errors inherent
in only replacing the non-analytical constitutive equations entering the drift vector with equivalent
polynomial expansions. Results obtained from these cases have been compared to those obtained
by Monte Carlo simulation. From the obtained results it is concluded that the assumption of only
expanding the non-analytical constitutive equations gives insignificant errors. Further, the present
method offers significant improvements compared to equivalent linearization with Gaussian closure,
The main deviation of the method relative to a truncated 3-dimensional Gram-Charlier series with a
Minai-Suzuki modification can then be attributed to the application of an ordinary cumulant neglect
closure scheme in the global moment equations, where the discrete probabilities at the plastic branches
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are ignored. A modified cumulant neglect closure scheme taking this problem into consideration for
bilinear oscillators with an equivalent polynomial expansion is presented in the following example 3-4.

The equivalent polynomial expansion technique was proposed by Nielsen, Mgrk and Thoft-Christensen
(19902), who also investigated the implications of replacing only the non-algebraic components with
equivalent polynomial expansions, and of the application of ordinary cumulant neglect closure schemes
in the resulting global moment equations.

Example 3-4: Reliability analysis of hysteretic systems driven by Wiener
processes

During hysteretic deformations the micro-structure of the material is partly damaged due to dislocation
migration, development of micro-cracks, etc. So-called damage indicators are introduced as a macro-
scopic measure of the integrated effect of such microscopic deterioration of the structural material over
finite domains. Damage indicators are designated as global or local depending on whether they are
controlling the damage in the entire structure or only in a part of it. Damage indicators should be
included in the state vector in order to get a complete description of the instantanous state of the sys-
tem. In order to close the integrated dynamic system differential equations must then be formulated,
specifying the development of these new state variables. From the physics of the problem it is clear that
any damage indicator will be an irreversible non-decreasing function with time. The right-hand sides
of the said differential equations then become non-negative and non-linear functions of all introduced
structural and damage state variables in their most general formulation. The non-linearity may even
be non-analytical for some damage indicators, as demonstrated by (3-66), (3-70) and by the following

equation (3-261).
In this example the SDOF bilinear oscillator defined by (3-47), (3-48), (3-50) is considered again. The

excitation F'(t) on the right-hand side of (3-47) is obtained from filtration of non-stationary Gaussian
white noise through a time-invariant rational filter of the order (r,s) = (1,2). F(t) then becomes, cf.

(3-36), (3-37)
F(t) = psY(t) + p1Y (1) (3 — 259)

Y4 qV +qY =dHW(t) (3 — 260)

where po, p1, q1, q2 are constants. {W(t),% € [0, co[} signifies a unit intensity Wiener process, and d(t)
is a non-stationary deterministic modulation function.

The accumulated plastic energy dissipated by the system is used as damage indicator D(t) . The
differential equation specifying the evolution of D(t) becomes

D) = (1 - gy (HOOH(@ - ) - H-X)H(-Q - ) ) X = (X, QX (0 (3 261)

(3-261) is easily derived from the sketch shown in fig. 3-1b. H(:) is the Heaviside unit step function
given by (3-5). The equations of motion can then be written by (3-52) with the state vector, the
diffusion vector and the drift vector given as follows, cf. (3-54)

X(t)
X(t)
Z(t) = gg . d(t) =
Y(t)
V(1) d

(3 — 262a)

oo ocoo

—_
~~
—
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X
-—2Cu-:gX —.wg(ozX +(1-a)Q)+ %%Y + &y
c(Z(t)) = ;((fg))j{( (3 — 262b)
}‘, .
—-nY —qY

x.()'(,Q) is given by (3-50). (3-52) is solved with the initial values Z(0) = Zg = 0, i.e. the system is
at rest and undamaged at the time ¢t = 0. It follows that the functions (X, Q) and g(X,Q) fulfil the
symmetry and anti-symmetry conditions
K(X,Q) = k(—-X,-X) (3 — 263)
9(X,Q)=~-9(-X.-Q) (3 — 264)

In case of zero initial values, (3-263) implies that E[X'(t)X™ (t)Q™(t)] = 0 for odd values of | +m + n.

d(t) specifies the intensity of the white noise. This is assumed in the following form, Saragoni and Hart
(1974)

d(t):dgexp(—b(Ti—lnTL—l)) (3 —265)

T is the time of maximum intensity do, and b is a limiting decay rate of the excitation. dy is specified
so it produces a prescribed value of the stationary standard deviation ox ¢ of the corresponding linear
system under stationary excitation. dp is then related to ox ¢ as follows

264(62 +eley —elezea)
do = \/ 2 OX,0 (3 — 266)
e3 — €€y
where
e; =q1 + 2(w , €2 =gyt wl+ 2w
1_Q1 C02 2"“%2 0 Cofh} (3 - 267)
e3 = 2Qwoqr +wyg1 , €4 = Wiqs

The relation (3-266) can be derived from a well-known result for the stationary variance of a linear
system with rational frequency response function exposed to Gaussian white noise, see e.g. Nielsen

{1990).

The system is assumed to fail, whenever the damage indicator exceeds a critical value d., for the first
time. Since, D(t) is non-decreasing with probability 1 the first-passage time probability distribution
function of the problem becomes

Fr,(t) =1 = Fp()(der) (3 — 268)

Hence, the reliability problem is reduced to the determination of the probability distribution function
Fp(1)(d) of the damage indicator D(f). More generally, when an nj-dimensional damage indicator
vector D(t) has been defined as in (3-74), the structure is assumed to operate safely, when D(t) € S;,
where S; C R"3. In this case Fr, (t) becomes

Fr,(t)=1- /.fD(t)(d) dd (3 — 269)
S
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where fp(¢)(d) signifies the joint probability density function of the damage vector D(t).

The objective of the present example is primarily to determine the distribution of D(t) in terms of its
time-varying moments by means of an equivalent polynomial expansion of the drift vector (3-262b). In
example 3-3 it has been demonstrated that application of an ordinary cumulant neglect closure scheme
in the global moment equations in connection with the equivalent polynomial expansion technique leads
to reduced accuracy of the estimated moments. Actually, when the equivalent polynomial expansion
coefficients are evaluated by means of a closing scheme taking the discrete probability mass at the plastic
branches into consideration, simultanous application of an ordinary cumulant neglect closure scheme
ignoring such probabilities seems to be inconsistent. For this reason a modification of the ordinary
cumulant neglect closure scheme based on the same 2-dimensional Gram-Charlier type A expansion
with a Minai-Suzuki modification (3-257), (3-258), as used at the evaluation of the equivalent polynomial
expansion coefficients has also been suggested in the example.

Only the non-linear and non-analytical components &(X,Q)X and g(X,Q)X of the drift vector (3-
262b) are replaced by equivalent polynomial expansion, whereas the remaining linear components are
kept unchanged. As shown in example 3-3 this will only introduce insignificant errors compared to a
complete polonomial expansion of all components. The equivalent polynomial expansions must meet
the symmetry and anti-symmetry properties (3-263) and (3-264). For K.(X,Q)X the relevant cubic
polynomial expansion is given by (3-254) with the equivalent cubic expansion coefficient determined
from (3-256). For g(X,Q)X the corresponding expansion reads, cf. (3-240)

9(X, Q)X = As + Cu22 X + Cy23 X Q + Ci3a Q* (3 —270)

The expansion coefficients of (3-270) are determined from the least square criterion, leading to the
following system of linear equations

1 Ha2 K23 M33 Ay 0
Mo222  M2223 2233 Cizz | _ | E[X?g]
symm. (2233 [2333 Ciaa | | E[XQg] @ ~271)
143333 Cyaa E[Q%g]

The expectations on the left-hand side of (3-271) are all provided by the joint moment equation (3-
252) at closure at the order N = 4. The expectations on the right-hand side are obtained by the

2-dimensional closure scheme (3-257), (3-258).

Equivalent linearization corresponds to Cimn = Dimnp = 0in (3-240). (3-271) then gives A4 = 0. This
means that all the coefficients in (3-270) are zero. Consequently, damage indicators for which (3-264)
is fulfilled cannot be analysed by equivalent linearization techniques.

Consider the auxiliary vector VT(t) = [X,X,V, DY, Y] and its sub-vector VI'(t) = (X, D,Y, Y] with
the joint pdfs fv(v,?) and fyv,(vo,f). Instead of (3-221) the following scheme is suggested

fz(2,t) = fv(z,1) +8(q — g9y) fv, (20, 1) /f;'(v(x'.vt)du *

L]
—qy

6(~q = gay)fv,(2o,t) / [y (2,u)du (3 -272)

—oo
The difference between (3-221) and (3-272) is that Vg(t) and [X,q] have been assumed mutually
independent in the evaluation of the discrete probabilities. This is merely a formal setting. The

right-hand side of (3-272) will still be calibrated to represent all provided moments of the moment
equations at closure at a certain order V. The benefit of the formulation (3-272) is that the same
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2-dimensional Gram-Charlier type A expansion with a Minai-Suzuki modification (3-257), (3-258) as
used in the evaluation of the expectation in (3-256) may be applied without further calculations of
Hermite moments. From (3-272) the following expression can be derived for the joint central moments

oftheorder L=i+j+k+14+m+n

E[XiXIQ*D'y™y"] = E[X'X'Q*D'Y™Y™], +E[X'D'Y™Y"]; - P;x (3 - 273)
where

oo 00 0o —{qy
Pji = //.@f(q;-uk)f,-w(;e,u)di-du +/fi:j((—qy)k—u")fxv(i,u)da}du (3 —274)

—00 gy —00 — 00

E[]o signifies expectations with respect to the joint pdf fv (v, £). For L < N these can all be expressed in
terms of the provided joint moments upon solving the linear equations (3-273). However, since fy (v, t)
has been assumed to be monomodal and almost Gaussian, joint moments E[X'X7Q*Dlymy=]
L > N, appearing on the right-hand side of (3-273) can all be expressed in terms of similar moments
of order L < N by means of an ordinary cumulant neglect closure and hence by the provided joint
moments. In what follows this approach will be referred to as the modified cumulant neglect closure

scheme for bilinear oscillator with an equivalent polynomial expansion.
The following approximate methods have been investigated:

a: Monte Carlo simulation.

b: Cubic polynomial expansion with an ordinary cumulant neglect closure scheme.
¢: Cubic polynomial expansion with a modified cumulant neglect closure scheme.

To verify the obtained results, a numerical Monte-Carlo simulation has been carried out. Generation of
realizations of a broad-banded zero mean Gaussian process was performed by the method of Penzien,
Clough and Penzien (1974). The integrated dynamic system (3-52), (3-262) was solved by a 4th order
Runge-Kutta scheme, with the initial conditions Z(0) = 0. The time step was selected as At = %,
To:= f}—“’ being the period of linear, undamped eigenvibrations. The sample size of ensemble response
time-histories was 5000, from which the relevant response statistics were determined. The moment
estimates stabilized already after 1000 realizations.

The following system data, all in SI-units, are used in the example
m=10 , wg=10 , (=0.01 , =00 |, g, =1.0

Po = 0.0 , m=10 y @1 = 2.0 y g2 = 4.0 (3 = 275)
b=020 , T =90 , ox0=20

Notice that an ideal elasto-plastic oscillator has been considered (¢ = 0.0). Further, 9—:’?‘-& = 2.0
corresponds to a relatively strong excitation, so the considered system should be classified 'a.s highly

non-linear,
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Fig. 3-16: Time-dependent standard
deviation of displacement response, ox ().
Nielsen, Mgrk and Thoft-Christensen (1990b).
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Fig. 2-16 shows the time-dependent variation of the standard deviation of the displacement X (¢). Time
has been normalized with respect to Ty = f%. As seen the modified cumulant neglect closure scheme
produces significantly better results than the ordinary cumulant neglect closure scheme. Figs. 2-17 and
2-18 show the corresponding time-dependent variation of the standard deviations of the velocity X (t)
and the hysteretic component Q(t). Again, the modified closure scheme produces the best results in
comparison to those obtained by Monte Carlo simulation, although both schemes give acceptable results
for these components as expected. Figs. 2-19 and 2-20 show the time-dependence of the standard
deviation and the mean value function of the damage component D(t), respectively. The ordinary
cumulant closure scheme produces slightly better results than the modified closure scheme. However,
both closure schemes underestimate the standard deviation significantly. In contrast, the modified
cumulant neglect closure scheme produces very accurately estimates for the mean value function, which
is underestimated by the ordinary cumulant neglect scheme. The general conclusion that can be
drawn from these results is that the modified cumulant neglect closure scheme provides more accurate
predictions than the conventional cumulant neglect closure scheme. From the physics of the problem
and the inherent properties of the modification (3-272) this is believed to be the case for any system

undergoing heavy yielding.

The application of the equivalent polynomial expansion technique to non-linear and non-analytical
damage indicator differential equations was suggested in Nielsen, Mgrk and Thoft-Christensen {(1990b),
where also the indicated modified cumulant neglect closure scheme was presented.

Example 3-5: Stochastic response analysis of hysteretic multi-storey frames
under earthquake excitation

N, +8N_, u, +bu,

Incrementally
5 deformed state
T5

Initial state

Ley ]

Fig. 3-21: Plane beam element in initial state, deformed state and incrementally deformed state.
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Fig. 3-21 shows a plane beam element in the initial unloaded state, in the deformed state and in the
incrementally changed deformed state. The generalized strains of the element are selected as

Qe = [@‘] (3 - 276)

Ue

@7 = (©,,0,) signifies the member end rotations relative to the chord line and u. is the elongation
along the chord line with signs as defined in fig. 3-21. The generalized stresses conjugated to q. are

Q.= [IX,I:] (3-277)

M7 = [M;, M;] are the member end section moments, and Ne is the axial force along the chord line
in the deformated state. The rate of the internal degrees of freedom g, is related to the rates of nodal
point degrees of freedom xg' = [£1,...,Zg], with components defined relative to the local element fixed
(z,y, z)-coordinate system shown in fig. 3-21, through the geometrical conditions

qe = BeXe v~ 218)

where
0 -1/t -1 0 1/1 0

ge=| 0 11 0 0 -1/1 1 (3 — 279)
= 0 01 00

| is the chord length of the beam element in the deformed state. g. is the geometrical matrix at element
level, relating external and internal degrees of freedom.

The beam elements are assumed to follow an elasto-plastic behaviour. Hence, the existence of a strain
rate independent yield function, f.(Q.), is assumed, which separates elastic states, f.(Q.) < 0, and
plastic states, f.(Q.) = 0. For the sake of simplicity fe(Q.) is assumed to be differentiable. Using
plastic potential theory with the associated flow rule the incremental constitutive equation can be

written, cf. (3-57)

Qe = Kfe(ﬁe, Qe)‘ie (3 = 280)

T
3 8[5
'ic,[)aqe (D ) ne,o
8

Ke(de, Qe) = Ke,0(Qe) — H(A)H(fe(Qe)) L - (3 - 281)
(aac ) Keo 54T
(34) oot
Ke,09e
R : (3 - 282)

T
a 8{5
(fme ) Ke05q?

K., signifies the local incremental elastic stiffness matrix , which may depend on Q. in case of non-
linear elasticity, A is the plastic potential multiplier and H(z) is the Heaviside unit step function as
given by (3-5). Generalization of (3-280) to hardening plasticity and to non-differential yield surfaces is
straightforward using the classical plasticity theory. Hardening rules require the introduction of extra
state variables to be included in the integrated state vector of the dynamic system, see Mgrk (1989).

In the present case (3-280) will be specified with the following additional assumptions
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1: The material is assumed to be linear elastic perfectly plastic, and all unloadings are linear
elastic with unchanged elasticity modulus.

2: Axial forces have negligible influence on the load-bearing capacity.

3: External loads are applied at system nodes, i.e. all elements are free of external loading.

The elements act as a yield hinge element with plastic deformations confined to the end sections.
Further, the axial elongations are assumed to be linear elastic. Hence

. AFE
Ne = Tue (3 == 283)

where A is the cross-sectional area and E is the modulus of elasticity. For the remaining internal
degrees of freedom, the stiffness matrix equation (3-280), can be written

Ke(®p, M) = (1 — o)1 — az)Kp + 1 (1 — ag)Kq + az(1 — oy ) K3 (3 — 284)
_2EL [ 2 -1 _3EIL [0 0 _3EL [1 0
=272 [ 3 S m=2 [ ] =2 o o] b e

where Iy denotes the bending moment of inertia. The indicator function, a;, can be written

(4, Mi) = H(-My + M;)(1 — H(-6;)) + H(-M, — M;)(1 - H(6;)), i =1,2 (3 - 286)

where My is the yield moment. It follows from equation (3-286) that

o; = 1 when yield hinge i is open and loaded,

a; = 0 when yield hinge ¢ is closed or is at the point of being unloaded into the elastic range.

The above-mentioned assumption 2 may not be valid if the axial forces are sufficiently large, and the
storey drift is substantial. However, such P — § effects can be taken approximately into consideration
by a slight modification of the indicated expression for the incremental stiffness matrix.

Below, the loading process F(t) in (3-55) is obtained by filtering amplitude modulated Gaussian white
noise through a Kanai-Tajimi-filter, Tajimi (1973), with filter parameters (g, w,, corresponding to the
case (r,s) = (1,2) in (3-36), (3-37). Neglecting linear viscous damping (3-55), (3-57) then attains the
form

MX + KoX + g7Q = MU(2{yw Y +w}Y) (3 — 287)
Y + 20w Y + wlY = —iig(t) = —d(t)W(2) (3 — 288)
Q=k(4,Q)4 (3 - 289)

X(t) of the dimension n; contains the global translational and rotational degrees of freedom measured
relative to the ground surface. Q(t) of the dimension n; is an assemblage of the generalized stresses
Qe(t) from all plastic elements. The global geometrical matrix g of the dimension n; x ny contains
the local geometrical matrices g. given by (3-279) transformed to global coordinates. U of the dimen-
sion ny X 1 is a vector specifying the stiff-body motion of all global degrees-of-freedom due to a unit
horizontal translation of the ground surface. Finally, (3-289) represents an assemblage of local consti-
tutive relations (3-280). The local stiffness matrices K.(qe, Q) appear as block-matrices in K£(q, Q).
{W(t),t € [0,00[} is a unit intensity Wiener process and d(t) is a deterministic modulation function.
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The Kanai-Tajimi filter may be interpreted physically as a shear response model of a sub-soil overlaying
a bedrock. w, and (g are then the undamped circular frequency and damping ratio of the sub-soil in
shear, Y(t) is the ground surface displacement relative to the bedrock, and i ,4(¢) signifies the horizontal
acceleration time-series at the top of the bedrock. This interpretation is valid as long as the mass of
the structural system is negligible compared to the mass of the sub-soil within a characteristic area
surrounding the structure, i.e. that no significant feed-back from the structure occurs in the coupled

soil-structure dynamic problem.

The state vector formulation of the system is then given by, cf. (3-58), (3-59)

dZ(t) = c(Z(t))dt + d(t)dW (t), t > 0
} (3 — 290)
Z(0)=0
X X . 0
X ~M~ (Ko X +87Q) + U(2(,w,Y +w;Y) 0
Z() = | Q| <(Z() = | x(gX,Q)gX ,d)=| o | (3-291)
Y Yy 0
¥ —2(qwgY — wZY —d(t)
It is assumed that the following symmetry conditions are fulfilled
K(Z(t) = (-Z(t)) A g(Z(t) = g(-Z(1)) (3 - 292)

Then, the symmetry properties (3-250) are also valid. Together with the initial values Z(0) = 0 the
equivalent cubic expansion (3-251) and the moment equations (3-252) are then valid.

The idea of the present method is to replace the constitutive equations (3-280) by equivalent cubic
polynomial expansions in the local state variables Q. and qe, where the equivalent cubic expansion
coefficients are determined at element level by a least square criterion. The global cubic expansion
coefficients B;; and Dj;x; can next be synthesized from the local expansions by a transformation and
assemblage procedure. Compared to the global least square procedure for the determination of B;;
and Djjx as follows from (3-253) some accuracy is lost at the expense of obtaining a2 much simpler
identification procedure. Hence, the local constitutive equation (3-280) is replaced with the following

equivalent cubic expansion

(Ke(Qe, Qe)ae)y 2 baaRe,r +darskRe 1 Re g Rekc , =1, ,na. (3 — 293)

where R, ; is a component of the 2n; . dimensional sub-state vector R., defined by

R: = {gc] (3 —294)

and ng . is the dimension of Qe or q.. In (3-294) summation convention has been assumed over dummy
indexes I, J, K over the range 1 to 2ng .

The theory has been applied to the simply supported two-storey single bay frame shown in fig. 3-22.
pi, Ai, I; and M, ; specify the mass per unit length, cross-sectional area, bending second moment of
inertia and yield moment of element i, respectively. All elements have the same moduli of elasticity.
For all members the yield hinge model with the incremental stiffness matrices (3-284), (3-285) and
a consistent mass matrix are applied. The frame is loaded by horizontal acceleration forces fi, f2
applied symmetrically to the system nodes. Deformations of the frame will then be asymmetric and
the symmetry can be utilized to reduce the problem as shown in fig. 3-22b. Further, high frequency
modes corresponding to the axial degrees-of-freedom X, X3 have been condensed from the system by
a Guyan-like reduction scheme. Hence, the global displacement vector of dimension n; = 4 becomes
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XT(t) = [X2(t), Xa(t), X5(t), X6(t)]. The intensity function d(f) of the excitation process {iiy(¢)} is
assumed to be constant for ¢ > 0, and all earthquake excitations are horizontal in the plane of the

frame. The system data are shown in table 3-2.
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Fig. 3-22: a) Two-storey frame. Geometrical and physical designations. b) Global degrees of freedom.

¢) Designation of potential yield hinges.

i Ay I; My,
Beam (kg/m) (10~3m?) (10—°m*) (10% Nm)
1 46-0 586 2-63 80
2 46-0 5-86 2-63 80
3 2000 o 3-89 90
4 1000 oo 1-945 40

Table 3-2: System data for the two-storey frame. E = 2.1-10!! N/m?, wy = 15.6s™!, (g =086, d*> =

0.15 m?/s3.

Fig. 3-23: Assumed plastic deformation.

#:.0,.8,

For the present frame it will be assumed that primarily the lower columns behave plastically, see
fig. 3-23. For this reason an equivalent cubic expansion for the constitutive relation for this beam
element will be introduced, whereas equivalent linear expansions are introduced for the remaining
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beam elements 2, 3 and 4. In principle all beam elements are then assumed to be plastic, so Ky = 0
in (3-287). For the simply supported beams elements 1, 3 and 4 in fig. 3-22b only a single generalized
stress variable, selected as the end-section moments Mi, My and M; from fig. 3-22¢, need to be
introduced. The state vector of the integrated system of dimention n = 15 then becomes ZT(t) =
[XT(2), XT (1), My,... ,Ms,Y(t),Y(t)]. Using a; = 1 in (3-284), the constitutive equation relating
Mj to the conjugated end section rotation ©;, reads

L EI ..
w(M;,61)0; = 3-1-—-1-(1 - a(M1,01))0; , (3 - 295)
1
(3—295) is replaced by the following equivalent system with a cubic polynomial expansion in M;, and
©,
(K(My,01)81),, = b1 My + b0 + dy M7 + dy M7 ©1 + d3 M; 672 + ds©3 (3 — 296)

The expansion coefficients in equation (3-296) are determined from the least mean square criterion,
which leads to the following system of linear equations, similar to equation (3-253)

BIMZ) EDLO)] EIM)  EIMPS.] E(MION EDMGONT p [ EMi6i
BO7  EMYO)) EMON EpSY ESY | ] | mi6i
E[M?)  E[MP©,] E[M{©}] E[M}e]]| |dy| _ | E[M}6;«]
Symm. EMA62) EMPOY EMISH | | dy | = | Epprer | G2
E[M?6}] E[M6]] | |da B(M,63x]
2CH d4 E[6}n]

The expectations on the left- and right-hand sides of equation (3-297) are evaluated by means of an
approximate joint pdf f,r o (m,8) of M; and ©;. The marginal pdf of M; is of mixed type with
a continuous part for m G] My,1, My,1[, and discrete probabilities for m = —M, ; and m = M, ,,
formally represented by delta functions. This fact is displayed by the following tentative joint pdf based
on a Hermite moment closure at the order N = 4 with a Minai-Suzuki (1985) type of modification

+0o0 -My
-fM;é, (m,fj) — fvél(m,é)+6(m -My1) / fvél(u,é)du+5(-—m -My,1) fvél("!é)d”s
My, - o0
(m,0) € [-My,1, My,1]x] - 00, 0] (3 — 298)
1 é = 6
Fi m m
fvél(m’ f) = Vo, P (;) ‘P(g:‘) ,-;u vij Hi (a—V—) H; ("él ), N=4 (3 —299)

where the standard deviations ey and 0y, 8 well as the Hermite moments +;;(t) are evaluated with
respect to the auxiliary continuous joint pdf fvél (m, 9)

Due to the symmetry condition (3-292) it follows that +;; = 0, i+ j odd. Moreover, y90 = 1 and
Y20 = Y02 = 0. The remaining 8 non-trivial free parameters, including oy and o, are determined

from the following joint moment relations similar to (3-223)

4
kS = ok ol pr ey [ My
E[M;6]=0oyog Z Yii T, Skyi ( > ) (3 — 300)

R My
i+j=0
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where r; ; and sy ;(8) are given by (3-224) and (3-225). The calculation of E[M{‘@r] is explained below.
Rather than using (3-300) oy is determined from the transcendent equation

M
E[M?] = 03, 52,0 ( y'l) (3 — 301)
oy

Equation (3-301) implies that 450 = 0. This restriction has been imposed in order to prevent negative
side loops of the approximate joint pdf, and has the consequence that this quantity cannot be calibrated
to E[Mf]

For the general beam element with yield hinges at both ends the equivalent constitutive relation (3-293)
is used. With ny , = 2 this contains 4 linear terms and 20 cubic terms. Consequently, a total of 48
different expansion coefficients enters the polynomial expansion. These are determined from a system
of linear symmetric equations similar to equation (3-297).

The equivalent to equation (3-298) for this case can also be given, Nielsen, Mgrk and Thoft-Christensen
(1989). The tentative pdf must display the discrete probabilities that one hinge is yielding and the
other hinge is elastic, or both hinges are yielding. The latter formally occurs as a product of two delta

functions in the tentative joint pdf.

©,(t) is related to the global degrees of freedom X(t) through the compatibility condition

_ Xs(t)

T Xs(t) (3 - 302)
X

é1=

The expectations E[M}©!] k+1 < 4, on the left-hand side of (3-300) can then be related to the provided
moments i, i,...i, (t), m < 4 upon insertion of (3-302) and expanding the expectation. Further, if
(3-302) is inserted into the equivalent cubic expansion (3-296), and the result is introduced into the
drift vector (3-291) the global tensor components B;;;, and Djmnp of the equivalent cubic expansion
(3-251) can be evaluated.

It should be emphasized that even if the exact least mean square solution to the coefficients in equation
(3-296) could be obtained, this would not necessarily provide exact estimates of the joint central mo-
ments, when inserted into equation (3-252) as stated by the theorem on p. 143. This is because only the
constitutive equations are represented by an equivalent polynomial expansion, whereas the expansion
coefficients of equation (3-251) in principle should originate from an equivalent cubic representation of
all components of the drift vector, whether these are linear or not. However, as learned from example
3-3 these additional errors are quite ignorable.

Finally, the resulting moment equations (3-252) are closed by the cumulant neglect closure scheme
(3-193).

To verify the results obtained by the present approximate method, a numerical simulation study based
on the Monte Carlo technique has been carried out. Generation of realizations of a broad-banded, zero
mean and stationary Gaussian process was performed by the method of Penzien, Clough and Penzien

(1974).

The differential equations were solved by a 4th order Runge-Kutta scheme, with the initial conditions
X(0) = 0. The time step was selected as At = T5/300. The sample size of response time-histories
was 2000. For each of these the system equations have been integrated from 0 to 6 Ty, where the
fundamental period of linear eigenvibrations is Ty = 0.98 s.

The following approximate methods have been investigated:

a: equivalent linearization using Gaussian closure

b: equivalent linearization using (3-298), (3-299) with N = 2
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¢: cubic series expansion in yield hinge 1 using (3-298), (3-299) with N =4
d: cubic series expansion in yield hinge 1 using (3-298), (3-299) with N =4

In cases a and b the constitutive relations in all 5 yield hinges have been linearized. However, in case b
the expansion coefficients of the equivalent linear system have been calculated from a more realistic joint
pdf of the state variables. In cases ¢ and d the cubic expansion equation (3-296) has been applied to
yield hinge 1, where excessive yielding is likely to take place. For the remaining yield hinges equivalent
linearization with Gaussian closure is applied in case ¢, whereas equivalent linearization using (3-298),
(3-299) with N = 2 is applied in case d.

From figs. 3-24 and 3-25 it is evident that equivalent linearization with Gaussian closure significantly
underestimates the displacement response of the upper and lower storey. Utilizing the more realistic
pdf as in case b to determine the linearization constants improve the results only slightly. Further, it is
seen that equivalent linearization in both cases predicts a stationary variance response in contradiction
to the characteristic drift in the storey displacement displayed by the simulation result and by cases
c and d. Further, the standard deviations of the 2 storeys approach each other as time goes by. This
behaviour can be explained with respect to the deformation mode shown in fig. 3-23. Ignoring the
elastic deformations of the upper storey, the frame deforms as an SDOF ideal elastic-plastic oscillator.
The non-stationary variance response under stationary Gaussian excitation is similar to the time-linear
variance response in classical Brownian motion. The indicated analysis shows that this effect is hidden
in the joint central moments of the 4th order, whereas closure at 2nd order (covariance level) will always

predict a statlonary response.

As reported by many authors, equivalent linearization is capable of describing the response character-
istics for velocities and end-section moments. This is indeed the case for the present system. In figs.
3-26 and 3-27 the velocity response for the upper and lower storey is shown. The cubic expansion of
(3-296) is seen to improve the result compared to the simulation result. The time-dependent standard
deviations of the end-section moments My and M5 are shown in figs. 3-28 and 3-29.
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Fig. 3-24: Time-dependent standard deviation of upper storey displacement.
Nielsen, Mgrk and Thoft-Christensen (1989).




162
'
TXs (t) A
&0
—
"__”__...-ﬂ""
60+
e e
40+ — sim
— (1)
— e (D)
204 — — ()
............ ()
2 T T T T T T o lI'T() I
0 1 2 3 4 5 6

Fig. 3-25: Time-dependent standard deviation of lower storey displacement.
Nielsen, Mgrk and Thoft-Christensen (1989).
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Fig. 3-26: Time-dependent standard deviation of upper storey velocity.
Nielsen, Mgrk and Thoft-Christensen (1989).
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Fig. 3-27: Time-dependent standard deviation of lower storey displacement.
Nielsen, Mgrk and Thoft-Christensen (1989).
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Fig. 3-28: Time-dependent standard deviation of end-section moment of lower columns.
Nielsen, Mgrk and Thoft-Christensen (1989).
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Fig. 3-29: Time-dependent standard deviation of end-section moment of upper storey beam element.
Nielsen, Mgrk and Thoft-Christensen (1989).

In the present example a method is presented for approximate stochastic analysis of hysteretic, framed
structures. The basic idea of the method is to replace the non-analytical and non-linear constitutive
equations of beam elements, which are likely to be exposed to severe damage, with an equivalent
cubic expansion in the state variables entering these equations. For the remaining beam elements
an equivalent linear expansion or a linear elastic analysis is performed. The expansion coefficients of
the equivalent polynomial expansions are evaluated by means of a mean least square criterion, where
unprovided expectations are evaluated using a truncated Gram-Charlier series in terms of univariate
Hermite polynomials with a Minai-Suzuki modification. The global hierarchy of joint central moments
is next closed at the order N = 4 by means of a cumulant neglect closure scheme. The method
has been applied to a two-storey linear elastic-ideal plastic framed structure subjected to Gaussian
white noise of relatively high intensity, filtered through a Kanai-Tajimi filter. For comparison a Monte
Carlo simulation analysis has been performed. From this it is concluded that equivalent linearization
procedures give qualitatively and quantitatively erroneous results. Only if equivalent cubic expansions
are introduced for the most exposed elements a Brownian motion type of non-stationary variance drift
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can be reproduced. Being a moment equation procedure the method suffers from the well-known
drawback that the calculation time increases dramatically with the dimension n of the state vector and
the order NV of the closure scheme. A system reduction of the external degrees of freedom, e.g. by
means of Guyan reduction as in the example, should be performed and the number of plastic elements

critically selected.

The indicated method was presented by Nielsen, Mgrk and Thoft-Christensen (1989). Previous to that
time Baber and Wen (1982) and Baber (1986) have presented methods for hysteretic frames, where the
yield hinges are replaced by hysteretic springs with a Bouc-Wen type of constitutive relations between
moments and spring rotations. Since equivalent linearization was applied, these results are confined
to relatively small plastic deformations. Casciati and Farivelli (1984) used an identical analytical
technique. The calculated Gaussian response inherent in the equivalent linearization technique was
used to calculate the structural reliability based on certain damage measures. Such an approach is only
possible in case of very small plastic deformations.

Example 3-6: Reliability analysis of saturated sand deposits under earth-
quake excitation

earth
surface L
___j sand element
. U(J’.‘Q ) t)
h subsoil layer
T2
Ug
—_—
—A—A A m A A A A = A= A=
bedrock ~——5H-waves

Fig. 3-30. Subsoil layer under earthquake excitation.

Fig. 3-30 shows a saturated sand layer of thickness h covering a rock surface. During an earthquake
SH-waves propagate from bedrock upwards through the sand layer. The horizontal displacements at
the surface of the bedrock uy(t) and of the sandlayer u(z3,t) are assumed to occur under plane strain
condition, where z; is a vertical coordinate measured from the bedrock surface towards the free surface,
and z; is the horizontal coordinate axis parallel with the direction of the bedrock displacements. During
an earthquake, shear stresses oy5(z3,t) act on the planes perpendicular to the coordinate axes with

irregularly varying sign and magnitude,

In the present example the relevance of damage equations of the type (3-261) for saturated sand
deposits under earthquake excitation will be investigated and verified in cases where liquefaction is
considered the principal failure mode of the soil. Liquefaction is loss of strength due to pore pressure
built up during cyclic loads of soil. In complete analogy with the failure event defined in example 3-4
liquefaction in soil is assumed to take place, when the accumulated energy dissipated in a certain unit
volume reaches a critical limit. The rate of dissipated energy per unit volume is given by

E= 2019619 (3 - 303)

where €12 signifies the shear strain rate.
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[ Test specimens Vestbjerg Sand Lund No. 0
Mean diameter d (mm) 0.11 0.40
Uniformity U 3.6 1.7
Void ratio e 0.62 0.63
Density index I 0.77 0.70

Table 3-3: Properties of test sands.

a) 2012[(kPa]
40

€12

'

L }5‘/" 0.3%

Fig. 3-31. Hysteretic curves. a) Stress versus strain. b) Mobilization factor versus strain. Test results
with calibrated Bouc-Wen representation.

Fig. 3-31a shows the stress-strain relationship obtained by triaxial testing for the samples described
in table 3-3. The behaviour of the sand is seen to be strongly hysteretic. Fig. 3-31b shows the same
results using the socalled mobilization factor Q(t) = 6—‘:;‘; as dependent variable. ¢y, = 12,y (1)
signifies the shear strength at the time ¢. Notice, that the mobilization factor is usually defined as the
! fraction of the deviatoric stress to its maximum value, and consequently refers to 3-dimensional stress
states. The present interpretation only applies to the considered case of pure shear. From the tests
it was concluded, that the shear strength ¢12,4(¢) and the elastic shear modulus u(t), defined as the
averaged slope of the hysteretic loops, both decrease from initial values 015, (0) and x£(0) as the pore
pressure builds up. An interesting finding was that the deterioration of these quantities was almost

proportional, i.e.

p(z2,t u(za,0
(22,1) ~ 20 1800 (3 — 304)
dlz.y(xmi) ‘712,y(m2,0)

The figure 1800 applies to all considered tests and even for different sorts of sand. Apparently, the
hysteretic loops in fig. 3-31b is much smoother than those in fig. 3-31a. As shown by the unbroken curve
in fig. 3-31b the hysteresis related to the mobilization factor may then be represented by the Bouc-Wen
hysteretic model (3-48), (3-51). For applications of the Bouc-Wen model the following normalized shear

strain turns out to be useful

t) 0
X(t) = 20_—1’:,(;; D) e12(t) = 20—-————1"2‘.220) €12(1) (3 — 305)

Per definition Q(t) is restricted to the interval ] — 1, 1[, so gy = 1.0 must be used in (3-51). The best fit
was obtained with 8 = 1.0, ¥ = 0.0, n = 0.5 for the other Bouc-Wen parameters. Again, these values

applied to all tests and all investigated sorts of sand.
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Fig. 3-32: Measured value of damage indicator in cyclical testing with variable amplitude g,.

As a damage measure the accumulated energy per unit volume is introduced, normalized with respect

to the quantity Eiz-—‘;%%"lﬂ. The normalization factor may be interpreted as twice the strain energy per
unit volume, if linear ,efastic deformations were present up to the maximum shear stress 13 ,(23,0).
Introducing the mobilization factor and the generalized strain defined by (3-305) in (3-301), the differ-
ential equation specifying the development of the damage indicator can be written

D(t) = f(D) QX (2) (3 — 306)

where the following non-dimensional function has been introduced

_ o12,y(1) _ p(t)

TP = s ® ™ w0 =50
As seen, the consecutive deterioration of the strength and the stiffness have been related to the damage
parameter through the non-dimensional function f(D). The validity of (3-306) has been verified in fig.
3-32, where the value of E(t) at liquefaction has been measured for 6 cyclic tests performed at different
stress amplitudes g;. Under complete liquefaction corresponding to D(t) = d., the shear strength
vanishes, so f(D) — 0 as D — dcr. An appropriate assumption for the unknown function f(D) then

18

!
g = -9—) , I e
f(D) = (dcf < (3 — 308)
0 3 D 2 dcr

Equation (3-208) does not describe the test results in full detail, and the value of [ has to be estimated
by experience. [ seems to vary in the interval 0.5, 2.0]. To omit the problem of specifying this parameter
the following linear expansion will be applied
1
f(D) = Cys + Ds2as D, Caza =1 , Dazsa =-—— (3 — 309)

cT

In the numerical example simulation results based on (3-308) with [ = 0.5 will be compared with the
analytical results obtained using (3-309) Insertion of the expansion (3-309) into (3-306) provides a
polynomial expansion similar to (3-270). The major difference is that (3-206), (3-309) is a polynomial
expansion of the original system, whereas (3-270) is a polynomial expansion of an equivalent system,
which will produce the same moments as the original system up to some order under certain specified

conditions.
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The indicated damage indicator may be used in a reliability analysis in the considered context of
ordinary stochastic differential equations, if the sublayer continuum is appropriately discretized. In
this connection the following shape functions for the shear stress and for the shear strain may be used

o12(za,t) = m(o,t)(l - (r- %)e) ) , £=22 (3 - 310)
era(2,1) = €12(0, 0%'(€) (3 -311)

&(¢) is a non-dimensional shape function, fulfilling the boundary conditions $(0) = ®’(1) = 0, and
normalized so ®'(0) = 1. ®'(£) signifies the derivative with respect to £. In (3-310) the shear modulus
p(z2, D) has been assumed to vary linearly between a minimum value u(h, D) at the free surface to
the maximum value (0, D) at the surface of the bedrock, i.e.

.u(h’ D) ) T2
D)t 1- —_—] — a
u(z2, D) = u(0, )( ( 20.D)) h (3 - 312)
The equation of motion for the shear layer reads
8o12(z2,1) 32!1(.1!2, t) ( )
= 2h® 0,1 t —
9o, P—p = €12(0,1) +diy(2) (3 -313)

where p is the mass density of the soil, and the indicated approximation for the displacement field
follows from integration of (3-311). Next, (2-313) is multiplied with the variational field followed by an
integration over [0, &], resulting in the SDOF equation of motion

2612(0, 1) +w 0’:5?0;) a° iig(t) (3 - 314)

where ag is the mode participation factor and wyp is the circular eigenfrequency of the sublayer defined
as

1

J ®(€)de
ag = ?— = (1.180) (3-315)

[ ®2()de

0

(1- (- 18 Jweor

i i o '(€))"d¢

wz g #(0,0 _I‘(0,0) - (l 620 M) (3_316)
(1 ph? ' phz

f ®2(¢) dé
4]

In (3-216), the fraction f’i—%‘% has been assumed constant and equal to its initial undamaged value

i :; g) as a further assumption. As shape function the first undamped eigenvibration mode is used,

fulfilling the eigenvalue problem

% ((1 -(1- 555 )5) f‘f‘l’(‘f)) oy i @) =0 3 - 317)
®(0)=d'(1) =0, ¥'(0) =1
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The results for ag and ""’0 in the outermost right-hand brackets of (3-315) and (3-3186) relate to solution of

(3-317) for ﬁ%c?’ﬁ')l . Notice that the product }I‘?ﬁ"'o‘)“""’o in (3-317), and hence ®(¢), is independent

of _eh”_ as follows from (3-216). Finally, upon eliminating €12(0,t) and ¢12(0,¢) in favour of the

(0,0)
gentrahzed strain X (t) and the mobilization factor Q(t) at the surface of the bedrock, (3-314) can be

written in the form (3-47) as follows

X(t) + W2 F(D)Q(t) = F(t) (3 — 318)
F(t) = —‘%"% kg (2) (3 — 319)

It is interesting to compare (3-318) to the SDOF model (3-75) for RC-structures. In both cases the
hysteretic fraction (1 — «) of the restoring force is dependent on the damage parameter. However as
specified by f(D), the hysteretic fraction has the opposite variation from 1 to 0 in the present case as

the liquefaction develops.

Nielsen, Thoft-Christensen and Moust Jakobsen (1989) applied the described dynamic model (3-48),
(3-51), (3-306), (3-318) to a reliability analysis of the problem defined in fig. 3-30. The loading
process F(t) was modelled by the non-stationary white noise filtration (3-259), (3-260), (3-265) with
the following parameters of the output equation (3-259) and amplitude of the intensity function (3-265)

a 0,0
pp=0 , P1=——UM y do = 4/2q192 63, (3 — 220)

h U12,y(U, [])

The specified expressions for pg and p; mean that the auxiliary variable Y () in (3-259), (3-260) can be
identified directly as the bedrock acceleration i4(¢). The indicated expression for dy implies, that the
stationary surface bedrock accelerations at stationary white noise excitation become equal to 09 The
constitutive equation for the hysteretic component Q(t) was approximated with the following eqmva]ent

linear expansion, cf. (3-246)

(K(X,Q)X),, = B2z X + B33 Q (3 — 321)

Equivalent linearization of the Bouc-Wen model was first suggested by Wen (1980), who applied a
Gaussian closure scheme for the evaluation of the equivalent expansion coefficients, leading to (3-249).
In the present case the 2-dimensional version of the Hermite moment neglect closure scheme (3-196)
at the order N = 2 has been applied instead. (3-309) was truncated at the indicated 1st order level,
resulting in a cubic expansion of (3-306). The resulting moment equations (4-352) were closed at the
order N = 4 by means of an ordinary cumulant neglect closure scheme.

To verify the obtained results, a numerical Monte-Carlo simulation has been carried out. Generation of
realizations of a broad-banded zero mean Gaussian process was performed by the method of Penzien,
Clough and Penzien (1974). The integrated dynamic system (3-51), (3-52), (3-262), (3-306), (3-308),
(3-318) was solved by a 4th order Runge-Kutta scheme, with the initial conditions Z(0) = 0. The time
step was selected as At = %u Ty = 3.‘_7(; being the period of linear, undamped eigenvibrations. The

sample size of ensemble response time-histories was 1000.

The following data in agreement with test results have been used in the numerical study

wp = 11.06 s—* , ag = 1.180 , h=305m
p = 1850 kg/m?® , 1=05 , der =119

#(0,0) = 2.18 - 10% Pa , pu(h,0)=2.18-10" Pa , 012,4(0,0) =1.21-10° Pa

A=10 , v=10.0 .y (3 - 322)
b=10.2 , Tm =1s , "Dﬁg =4.5 m/s?

g1 =14.25 5! , ga = 242.1 572




a
~\
ox ()}
359 e ————
- s
20 4 //
4

15 4
10 4
§ -
(1] T T T T T T TrL

0 2 4 6 8 10 12 0

Fig. 3-33: Time-dependent standard
deviation of normalized strain, o x (f).
Nielsen, Thoft-Christensen and
Moust Jakobsen (1989).

pp(t)
120 4

100 4 i
80 + 7

60 4
404
20+
t

0 T T T = T T =
0 2 4 6 8 o 12 To

Fig. 3-35: Time-dependent mean value
function of damage component, pp(t).
Nielsen, Thoft-Christensen and

Moust Jakobsen (1989).
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Fig. 3-37: Time-dependent skewness
of damage parameter, Skp(t).
Nielsen, Thoft-Christensen and
Moust Jakobsen (1989).
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Fig. 3-34: Time-dependent standard
deviation of mobilization factor, o (t).
Nielsen, Thoft-Christensen and

Moust Jakobsen (1989).
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In the figs. 3-33 - 3-37 time dependent response statistics for X(t), Q(f) and D(t) have been shown.
Curve a indicates results obtained by Monte Carlo simulation and curve b results from equivalent
polynomial expansion. Time has been normalized with respect to the period of linear eigenvibrations
Ty = i—’;—. Fig. 3-33 shows the time dependence of the standard deviation of X(f). Apparently,
equivalent linearization underestimates the variance response of the normalized strain X (t), confirming
the similar observations in examples 3-3 and 3-5. In fig. 3-34 the standard deviation of the mobilization
factor Q(t) is shown. Again, in agreement with previous observations equivalent linearization produces
results in acceptable agreement with simulation for this quantity. Q(t) indicates the shear stress
normalized to the present shear strength. Hence, the slight decrease of og(t) with time is not due to
the deterioration of the shear strength, but should be attributed to the the decreasing intensity of the
excitation process, cf. (3-265). Figs. 3-35 - 3-37 show the time dependence of the mean value function,
the standard deviation and the skewness coefficient of the damage indicator D(t). The latter quantity
is defined as Skp(t) = E[(D(t) - pp(t))a]/d% (t). A good agreement between semi-analytical and
simulated results is obtained for the mean value function and for the standard deviation, whereas the
semi-analytical values for the skewness coefficient are only acceptable for TL > 8. This verifies that a
precise modelling of the f(D) is not nescessary, as long as only the lower-order momemts of D(t) are
requested. The considered severe earthquake with o0 = 4.52} causes mean damage values larger than

der = 119 at the end of the considered interval, indic‘a.ting a high risk for liquefaction.

In the present example it was demonstrated that liquefaction in saturated sand deposits under earth-
quake excitation is highly correlated to the accumulated dissipated energy in the soil. Secondly, it was
demonstrated that the hysteretic behaviour of the so-called mobilization factor may be modelled by a
Bouc-Wen model with parameters that apply to all tests and to all considered sorts of sand. Finally, a
SDOF model for the sublayer was formulated, with cubic polynomial expansion of the damage equation
based on a linear expansion of the function f(2), and an equivalent linear expansion of the Bouc-Wen
constitutive equation. The accelerations of the bedrock surface was modelled by a non-stationary

rational filtration of Gaussian white noise.

The indicated SDOF model is primarily aimed at a relatively crude modelling of single layered deposits,
A MDOF generalization, aimed at more accurate modelling of single layer or multilayered subsoils, was
devised by Mgrk and Nielsen (1990).

Example 3-7: Modifled cumulant neglect closure of two-well potential oscil-
lator and modified closure scheme for the Bouc-Wen oscillator

In this example the modified cumulant neglect closure scheme for the two-well potential problem will be
compared to the results obtained by ordinary cumulant neglect closure scheme at the orders N = 2, 4

for the parameter values M—Z‘g-ﬂm—, =1, w=1,¢=0.01.
0

Ix(@)ox o |
o0 | — Modified CNC |
0.90 I
. r
o.10 | Gaussian closure !
0.00 J

w/a'x

Fig. 3-38: Stationary probability density function of displacement component of two-well potential

SDOF oscillator and equivalent replacements at closure at the order N = 2. —'g—ﬂ—- =1, w =1,

i [

-7.00 -4.20 -1.40 1.40 a.n0 1.00 I
I

2¢wym? i

¢ = 0.01. Koylioglu and Nielsen (1996).
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Fig. 3-38 shows with unbroken line the exact stationary marginal pdf fx(z) of the displacement
component X(t) for the modal value zp = /10. Besides, the modified cumulant neglect approximation
fx(z) = ﬁ;—((p( ”;‘;" )+ o “‘Zt” Yok = (;r?,{‘,J — z2, as well as the Gaussian closure approximation

fx(z) = U;,o o( 0;,0 ) is shown. ag{‘u of the replacements have been determined from the modified and

ordinary closure approximations (3-201) and (3-200). For the present case these become o o = 10.0333

and ”g(,n = 4.1387, respectively. For comparison the exact stationary variance is ”,27( o = 8.7136. Hence,
at the order of closure N = 2, (3-201) represents a significant improvement compared to (3-200).
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a
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Fig. 3-39: Non-stationary development of displacement variance. a) o3 (t) versus time for ordinary
cumnulant neglect closure at the orders N = 2,4,6 compared to exact solution, Bergman et al. (1994).
b) 0% (t) versus time for modified cumulant neglect closure at the order N = 2. L

2(wim? =lLw =1,
¢ = 0.01. Koyltoglu and Nielsen (1996).
In fig. 3-39a the development of the non-stationary displacement variance predicted by ordinary cu-
mulant neglect closure is shown in comparison with the exact solution obtained by a Petrov-Galerkin
variation of the Fokker-Planck equation. As seen, no convergence to the exact result is achieved. Fig.
3-39b shows the corresponding result obtained by the modified cumulant neglect closure scheme.

a) o% ee b) 0'3( 20
2} w4l
18 e}
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Fig. 3-40: Stationary displacement variance 0'3(‘0 as a function of the modal value z5. a) Closure at

the order N = 2. b) Closure at the order N = 4. ﬁ“m—z =1, wp =1, ( = 0.01. Koylioglu and

Nielsen (1996).

Fig. 3-40 shows the results for the modified and ordinary cumulant neglect closure in comparison
with the exact solution as a function of the modal value zo. The modified cumulant neglect closure
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solutions as obtained from (3-201) are much closer to the exact solution than the ordinary cumulant
neglect closure solutions for all values of zo. However, convergence of the modified cumulant neglect
closure to the exact solution is slow. Apparently, the significant improvement of the modified cumulant
neglect closure is already present at closure at the order N = 2, and is caused by the more realistic
representation of the tentative joint pdf applied in this scheme.

Monte Carlo simulation Modified closure, order N = 2 Gaussian closure, Wen (1980)

0.662 0.5568 0.6932

Table 3.4: Bouc-Wen oscillator. Stationary standard deviation ox ¢ of displacement.

Next, the Bouc-Wen oscillator (3-47), (3-48), (3-51) exposed to stationary Gaussian white noise is
considered. The parameters of the oscillator are {(; =0.01, « =0.05, 8=y=0.5n=1, gy = 0.35 and
u—’;gf;— = 1.0, and the system is assumed at rest at the time ¢t = 0 with the initial conditions Zy = 0.

In t.Dable 3.4 the results obtained by Monte Carlo simulation, by the Gaussian closure scheme and by
the modified closure scheme (3-205) closed at the order N = 2 are shown. The stationary result for the
Gaussian closure scheme was obtained as the transient values after elapsed time 307,;. For the modified
scheme the results were calculated by means of a Newton iteration scheme from the stationary moment
equations with the left-hand sides of (3-329) set equal to zero. The indicated result is similar to that
of the two-well potential problem. Substantially improved results are obtained if the applied closure
scheme reflects the physics of the considered problem.

Ordinary closure schemes such as the cumulant neglect closure, the Hermite moment neglect closure
scheme, the quasi moment neglect closure scheme will definitely converge to the correct result, if the
underlying assumed joint pdf as specified by the expansions (3-192), (3-194), (3-196) converge to the
actual joint pdf. Basically, these expansions are specified as deviations from a Gaussian or almost
Gaussian distribution. For multi-peaked problems or even joint pdfs of the mixed type with discrete
probability components the convergence of these essential mono-modal series expansions is slow or non-
existing, which explains the poor performance of these methods in such problems. Instead, the closure
scheme should reflect the physics of the considered problem as demonstrated in the considered exam-
ple. The main drawback of modified closure schemes is the more involved mathematical formulations

required.

The modified closure scheme for the two-well potential problem was formulated by Kayliioglu and
Nielsen (1996). The modified Hermite moment neglect closure scheme applied in the Bouc-Wen problem
is due to Nielsen and Koylioglu (1997).
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3.3.3 Compound Poisson process driven systems

Using the Kolmogorov backward operator (3-125) in (3-172) and (3-173) the following
differential equations for the mean value and for the joint central moments are obtained

for dynamic systems exposed to an n4 dimensional compound Poisson process {V(t),t €
[0,00[} as defined in section 3.1.1.2.

dit,u,-(t) = Ble(2(t),1)] + i va(t)E[Po] E e (Z(t),t)] (3 — 323)
a=1

#3;0) =2{B[(2(0),) 220)] } +

:lva(t)E[Pa 2{E[,a (Z(t),t zﬂ(t)]} +

: Va (t)E[PZ] E[e,,, Z(t),1) e (Z(2), t)]

a?)‘ijk(t)=3{E[c‘-’(Z t)ZO(t)ZD(t)]} +

aﬁ_fl ua(t)E[Pq]?,{ [ 0 (Z(),) Z23(t)Z2(t) ”

§ va(t)E[P2] { [e,a(z t)eja (Z(2) ,t)Zk(t]}a +
] ]

3
& > va()E[P3 [em(Z(t) t)ejo(Z(1), 1) exa (Z(t),1)

Fhim(t) = 4{5{0 )Z,”(t)]} +

f) va(t)E[Pa]4{ [ ,O,(Z(t) t Zo(t)ZO(t)ZO(t)]} +

§j va(t)E G{E[e:a(z(t) t)e_,c,(Z(t )Z“(t)zﬁ(t)]} i
(£

——

=1

[P
}: Va(t) E[P

a=]

|
Jo {E e (200) eso (@O Dera (2D 270 ], +
2, s )

5 va(t)E[PY] [ein (Z(2), t) eja (2 (1), t) era (Z(2), t)e;o,(Z(t)t]

a=1

%Ail...in(t) =N {E[c?1 (Z(t),t)Z?z(t)"' Z?N(t)] }s B

4

> va(t)E[Pa|N {E[ei,a(Z(t),t)]/\,-2___.-N(t)}a +

cr'—l

>: %, vaBLPL () {Bena(20),0) - eina (20,928, 25,0)]} |

k=1 a=1

| (3 —324)

(3-324) are valid for all impulses for which the moments E [Pciv fora=1,...,n, exist.

Further, in (3-324) the centralized drift vector (3-238) has been introduced, as well as
the centralized diffusion vector defined as
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e’ (Z(t),t) = e(Z(t),t) — E [e(Z(t), t)] | (3 — 325)

In case of scalar compound Poissonian excitation, and the diffusion terms is state inde-
pendent (3-323) and (3-324) reduce to

gg,u,-(t) =E [C,‘(Z(t),t)} +v(t)E [P] ei(t)

d%)\,-j(t) =2{B[d(2(),1)20()] }_ +v(OE[P*]eit)e;(t)
-%,\i,-k(t) =3{B[2(2(1,9) 2] 201)] } +v(OE[Pei(t)e;(t)ex(t)
() =4 {E[2(@0,020020780]} +

v(t)E [P2]6 {ei(t)e; (t)/\kl(t)}s + v(t)E [P4]e,'(t)6j(t)ek (t)ei(t)

b (3—326)

C%A,-]...m(t) =N {E[c?1 (Z(t),t)Zf’z(t)...z?N(t)]}s n

N
Z V(t)E [Pk] (J;r) {ei1 (t) B (t))\fk+1---iN (t)}s

k=2

7/

In case of cubic polynomial expansions of the drift vector and the centralized drift terms
in the centralized state variables, as given by (3-240) and (3-241), (3-326) become

ad—t#i(t) =A; + C:'mnAmn + Dimnp’\mnp + V(t)E [P] e:'(t) A
‘-f—{/\,'j(t) = 2{B;‘m/\mj }.s i {Cimn'\mnj}a i Z{Dimﬂp’\mnl’j}3+
v(t)E[P?ei(t)e;(t)

%'\ijk(t) - 3{Bim/\mjk}_g + S{Cimn()‘mnjk == AmnAjk)}s"’
3{D£mnp(/\mnpjk i /\mnp'xjk)}s + V(t)E [Ps]el(t)ejf(t)ek(t)

EXiiki(t) = 4{BimAmjkt }, + 4{Cimn(Amnjrt — AmnAjkt)} ,+ f (3-327)

4{Dimnp(/\mnpjkl - ’\m“-”’\j“)}s +v(t)E [Pz]ﬁ{ei(t)Ej(t)Akt(t)}s+
v(t)E[P*]ei(t)ej(t)er(t)e(t)

S Xis awlD)= N{Bimdmis..iz }, + N{Ci,mn(Ainis..in — AmnAfz__,iN)}s'*'
N{Dilmnp(Amnpig...iN - /\mnpAig...iN)}a+

N
E V(t)E [Pk] (]1:’.) {eh (t) Tty (t))\iku---iw (t)}s

k=2
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Again, in (3-327) the summation convention has been used for simplicity, with the
dummy indices ranging from 1 to n. For a linear system (Cimn = Dimnp = 0), (3-327)
is automatically closed at any order of truncation. Hence, the response moments of a
linear system driven by a compound Poisson process can be calculated with arbitrary
accuracy. For any non-linear system identical closing problems appear as encountered

for Wiener process driven systems.

For hysteretic systems exposed to compound Poisson process driven systems the equiv-
alent polynomial expansion technique for the non-analytical and non-linear drift vector
may be used in the same way as explained in section 3.3.2 for Wiener process driven

systems.

Example 3-8: Dufling oscillator subjected to a train of filtered Poisson driven
pulses

Consider the dynamic response of the Duffing oscillator (3-44) with the loading process {F(t},t €
[0, oo[} obtained as the output process from a filtration through a rational filter of the order (r,s) = (0, 2)
of a homogeneous compound Poisson process {V(t},t € [0,00[} with mean arrival rate v. Then the
drift vector becomes cubic polynomial and the moment equations (3-327) apply. The idea of the present
example is to demonstrate the applicability of the modified cumulant neglect closure scheme (3-234),
(3-235) at closure of the moment equations (3-327) at the order N = 4.

The equations of motion are given by (3-52) with the following definitions of the state vector, diffusion

vector and drift vector

X(2) 0
2= |y | d0=ew=|g (3 - 3280)
Y(t) 1
X .
o(Z(t)) = —sznX GRS ¥ (3 - 328b)
-qaY - qY

Introducing centralized state variables in (3-328b) a cubic polynomial expansion of type (3-240) is
obtained. The non-zero tensor components become

A= 3
Az = —2wopy — wF(pm +epd) + By

Az =

As = —qips — qap3

Biz= 1

By = —wl(1+3ep?) , Biz=-2wp , Baa=EL ¢ (3 -329)
By, = 1

Byz=—q2 , By =-—q1

Ca11 = —3ewd s

D111 = —ew} J
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The following methods have been investigated:

a: Monte Carlo simulation.

b: ordinary cumulant neglect closure scheme at the order NV = 3.
¢: ordinary cumulant neglect closure scheme at the order V = 4.
d: ordinary cumulant neglect closure scheme at the order N = 5.
e: modified cumulant neglect closure scheme at the order N = 4.

The generation of time histories for the Monte-Carlo simulation approach has been performed in the
following way. Assume that an impulse arrives at the time t;, where a sample p; of the mark variable
P is generated. The impulse strength P = p; causes a jump of the state vector of magnitude AZ(t;) =
Z(t}) — Z(t7) = e(t)pi. Next, a sample of the following impulse arrival time t;4; is generated, using
that the interarrival times of a homogeneous Poisson counting process is exponentially distributed with
mean value % The system then performs eigenvibrations in the interval J¢;,t;41[, with the initial
values Z(t}). The eigenvibrations of the dynamic system (3-52), (3-328) are solved by a 4th order
Runge-Kutta scheme, with the time step Af = %g, Ty = f—% being the period of linear, undamped
eigenvibrations. The sample size of ensemble response time-histories was 50000, from which the relevant
response statistics were determined.

The following system data are used in the example

m=10 , wp=10 , (=005 , =05 3 _ 330
po=10 , g =456 , g3 =5.76 (3 - 330}

The indicated values for ¢; and g3 correspond to a circular eigenfrequency of wy = 2.4wy and a damping
ratio of {y = 0.95 of the shaping filter. Hence, the filter is almost critically damped, and the filtered
compound Poisson process {F(t),t € [0,00[} given by (3-42) appears as a sequence of non-oscillating
general pulses. The strength of the impulseg is assumed to be Rayleigh distributed, P ~ R(c?), where
v

4(5:;2
stationary variance 03{‘0 = 1 of the corresponding linear oscillator exposed to an equivalent Gaussian
white noise with the auto-spectral density 2w E[P?]. Then, for € = 0.5 the linear part X(¢) and non-
linear part £X3(t) contribute equally to the restoring force of the oscillator, and the system should be
classified as substantially non-linear. Two values of  are considered, namely v = 0.05wy and v = 0.1wy,
corresponding to an average number of impulse arrivals of 0.17 and 0.2x per eigenperiod Ty. v = 0.1wy
signifies in some sense a limiting case. If v is below this value the response of the system appears as

highly non-Gaussian, Janssen and Lambert (1967).

- . 2 L3
the parameter o2 is determined, so = 2(—:'5;2- = 1. This level of excitation implies the
a

Fig. 3-41 shows the results for the time-dependent variance of the displacement X (t) at the relatively
high mean rate of impulses v = 0.1wp, obtained for the ordinary cumulant neglect closure at the order
N =3, N =4 and N = 5. Closure at the order N = 4 and N = 5 gives practically identical results for
—,1-f~ > 2, where only the latter has been shown. As expected, the best result is obtained for closure at
the order N = 5, but all approximations give acceptable results. Fig. 3-42 shows the time-dependence
of the mean-value function for v = 0.1wp. The results obtained by ordinary cumulant neglect closure at
the order NV = 4 have been compared to those obtained by the modified cumulant neglect closure at the
order N = 4. The latter scheme improves the results substantially compared to simulation in the initial
part of the excitation, where the modification of the joint pdf as given by (3-229) is most important. Fig.
3-43 shows the corresponding time-dependence of the variance function. Results obtained by ordinary
cumulant neglect closure at the order N = 4 have been compared to those obtained by the modified
cumulant neglect closure scheme at the order N = 4. Again, substantial improvements are noticed in
the initial phase. Fig. 3-44 shows the time-dependence of the mean value function at the lower mean
arrival rate v = 0.05wp. Ordinary and modified cumulant neglect closure schemes at the order ¥ = 4
have been compared. The ordinary cumulant neglect closure scheme becomes numerically unstable at
-,;.— ~ 0.5, whereas the modified closure remains stable. Finally, fig. 3-45 shows the corresponding

0 i
results for the variance.
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The general conclusion that can be drawn from these results is that the modified cumulant neglect
closure scheme derived from the setting (3-229) provides more accurate predictions in the early phases
of excitation and increases the stability of the numerical scheme. This improvement is especially
pronounced if the mean arrival rate of impulses is very low, and the response is correspondingly non-
Gaussian. However, even the modified cumulant neglect closure scheme runs into numerical instability
at sufficiently low mean arrival rates. In the present example this was noticed around v ~ 0.01wy.
Hence, moment equation methods for compound Poisson process driven systems are best applied at
medium to high mean arrival rates of impulses.

The present modified cumulant neglect closure scheme was devised by Iwankiewicz, Nielsen and Thoft-
Christensen (1990). The first attempt to apply moment methods to geometrically non-linear dynamic
systems driven by compound Poisson processes was made by Iwankiewicz and Nielsen (1992a), using
an ordinary cumulant neglect closure scheme.

3-9: Reliability analysis of hysteretic systems driven by compound Poisson
processes

The aim of the present example is to demonstrate the applicability of the equivalent polynomial expan-
sion technique for hysteretic systems exposed to compound Poisson processes. The Bouc-Wen oscillator
(3-47), (3-48), (3-51) is considered with various specifications for the excitation {F(t),t € [0, 00[}. Fur-
ther, a reliability analysis will be performed, using the accumulated dissipated energy on the hysteretic
component as the damage indicator, leading to the damage indicator differential equation

D(t) = QX(¢) (3 - 331)

(3-331) corresponds to the general damage indicator format (3-261) with 9(X,Q) = Q.

In one case the loading process is given by an unfiltered homogeneous compound Poisson process with
the mean arrival rate . Then, the equations of motion of the integrated dynamic system is given by
(3-52) with the following definitions of the state vector, the diffusion vector and the drift vector

X(2) 0
’ 1
Z(t) = g((:)) LA =e() = | T (3 - 332a)
D(t) 0
X. -
—2wp X —wi(aX +(1-a)Q
o(Z(t)) = éx“ Q% 6 (1-)Q) (3 — 3320)
QX

x(X,Q) is given by (3-51). In the other case the loading process is obtained from a filtration of the
stationary compound Poisson process through a time-invariant rational filter of the order (r,s) = (0, 2).
In this case the state vector, the diffusion vector and the drift vector can be written

X(t) 0
X(t) 0
2= | 20 | . dm=e =g (3 - 333a)
Y (t) 0
Y (1) 1
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X
2w X —w 2aX+(1-0)Q)+ B2Y
(Z(t)) = 5(;’(‘ QX (3 — 333b)
Y "
—-qY - @Y

The systems (3-332) and (3-333) will be analyzed by means of an equivalent cubic polynomial expansion.
In the present case the right-hand sides of the damage differential equations are analytic and quadratic.
Then, only (X, Q)X in the drift vectors is replaced by a cubic polynomial expansion whereas the
remaining linear or quadratic components are kept unchanged Since, the system is non-zero mean the
following expansion in the centralized state variables X0 =X- E[X] and Q° = Q- E[Q)] is appropriate,

cf. (3-240)
c3,00(Z(t)) = K(X, Q)X = A3 + B3z X° + B33 Q" + Ca22(X°)? + C32aX°Q° + C333(Q°)*+
Dszzz(}'(o)a i Dazza(kn)on + D3233X°(Q°)2 + D3gas(Q° )3 (3 — 334)

The expansion coefficients in (3-334) are determined by a least mean square criterion, leading to the
following system of linear equations

1 0 0 Azz Az Aas Aa222 Az23 Agaa Azzz ] Az 7]
A2z Azz Azzz Aza3 A2zz Aszzza A2z Azzaz Azaas Bas
Aaz Azzz A2az Azaz A2z23 Az2a3 Azazz Aasaas Bs;
Az222  A2223  A2233  Azz222  Azz223 A22233 Azzaas Cs22
symm. A2233 A2333 A22223  Az2233  Az2azzs Azsass Cazs | _
A33az  A22233  A22333  A233zz A33aas Caaz |
A222222  A222223  A222233  A222333 D399
A222233  A202333  A223333 D3223
A223333  A2333as Das33
Aazaaza ] L Daass

[w(X, Q)X
n(X Q)XXD
K(X,Q)XQ°
nEX Q;X(?g")u
(X, QXXQ
K(X, Q)X(QC)? (3 -335)
n(X,Q)J'r(X°)3
K(X,Q)X(X°)? Q
w(X, QX X°(Q)’
(X, QX(Q)°

2

The expectations on the right-hand side of (3-335) as well as the unprovided joint central moments
of the 5th and 6th order on the left-hand side are calculated by means of the following quasi-moment

neglect closure scheme at the order N, cf. (3-194)

Fxo(#:9,t) = ea(#, ¢; (1), K(2) {HZ o Z Bisis..iv O iy iy...i0 (8,05 LD, n(t))}(a 336)

I' 1asee "k-]
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where n = 4 or n = 6 signify the dimension of the state vectors (3-332a) og (3-333a). ¢2(z, q; (1), &(t))
indicates the bivariate Gaussian joint probability density function of [X(t), Q(t)], and Hijiy..i,
(z,q; p(t), K(t)) are the related multivariate Hermite polynomials defined from (3-182). Notice, since
N = 4 that all joint quasi-moments J;, ,...i, (t) entering (3-336) are identical to the corresponding
joint cumulants, ¢f. (3-180). The joint central moments of the 5th and 6th order may be evaluated
analytically in terms of the parameters entering (3-336). Analytical evaluation of the expectations on
the right-hand side of (3-335) in terms of (-) and ®(-) can only be performed for integer values of n in
the Bouc-Wen model (3-51). Closed form solutions for the case n = 1 have been derived by Iwankiewicz

and Nielsen (1992b).

Results will also be derived for the equivalent linear expansion version, where only the linear terms
are retained in (3-334). The equivalent linear expansion coefficients will still be calculated by (3-336)
truncated both at the orders N = 2 and N = 4, where the former corresponds to Gaussian closure.

The global moment equations of the equivalent cubic system is given by (3-327). The system is closed
by an ordinary cumulant neglect closure scheme at the order N = 4 for both the equivalent linear ex-
pansion and the equivalent cubic expansion procedures with equivalent coefficients calculated by means
of (3-336) truncated at the order NV = 4. The ordinary cumulant neglect procedure is appropriate in
the present case, since relatively high mean arrival rates are considered. However, in case of equivalent
linearization with Gaussian evaluation of the expansion coefficients closure of the global moment equa-
tions at the order N = 2 is performed. Even though the cumulant neglect closure and the quasi-moment
neglect closure schemes differ for the joint 6th order moments as seen from (3-180), the local closure
scheme (3-336) and the applied global closure scheme are consistent in the sense that modifications as
specified by (3-229) for the discrete component of the underlying joint probability density functions,
representing the probability of no impulse arrivals during the interval [to, t[, have not been performed in
any of these cases. As learned from example 3-4, the modification for discrete probability components
should be performed at the determination of the local equivalent polynomial expansion as well as at
the closure of the global moment equations, if increased accuracy and stability are to be achieved.

The results of the moment equation method will be compared to those obtained by Monte Carlo
simulation. The generation of time-histories is performed in the same way as explained in Example
3-8. The eigenvibrations of the dynamic systems (3-52), (3-332), (3-333) are solved by a 4th order
Runge-Kutta scheme with the time step At = %g-, Ty = f}—’; being the period of linear, undamped
eigenvibrations. The size of ensemble response time-histories is 50000, from which the relevant response

statistics are determined.

The following system data are used in the example

m=10 , wp=10 , (=001 , «a=0.05
B=05 , ¥y=05 ! (3 —337)

po=10 , g =456 , gz =5.76

The filter constants ¢; and ¢y are identical to those used in example 3-8 with the consequence that the
filtered compound Poisson process {F(t),t € [0,00[} applied to the system defined by (3-52), (3-333)
appears as a sequence of non-oscillating general pulses.

For the system defined by (3-52), (3-332) two different distributions for the impulse strength P are
considered. In the 1st case P is assumed to be Rayleigh distributed, P ~ R(O‘Z), where the parameter
¢? is determined from E[P2} =202, In the 2nd case P = R— E[R], R ~ R(o?), which implies E[P?] =
4—'2'102. o? of the various distributions and the mean arrival rate of impulses, v, are next specified,

2
so ﬁ%[f;],- = 5m. For the present example, as defined in (3-337), this corresponds to ve? = 0.17 or
0

vel = 2'_4:, respectively, Notice that the indicated level of excitation causes a stationary variance

= 57 of the linear oscillator exposed to an equivalent Gaussian white noise with the auto-spectral

2
9x.0
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density 2wvE[P?]. The modification of the setting '63(‘0 = 1 used in previous examples has been
performed in order to make direct comparison with the zero mean and non-zero mean equivalent
linearization results of Wen (1976) and Baber (1986) for the white noise excitated problem, identical
to equivalent linearization of the present system with Gaussian evaluation of the equivalent linear
expansion coefficients and with zero mean and non-zero mean impulse strengths, respectively. Hence,
a mean excitation of ¥ E[P] = va'\/? = 0.8 is used in the non-zero mean case equal to the one used
by Baber (1986), leading to a mean arrival rate of impulses as high as v = 1.297wq, or 8.149 impulses
per linear eigenperiod Ty on average. It is known that the Poisson distributed train of impulses tends
to a Gaussian white noise as ¥ — co in such a way that v E[P?] is kept constant. Another of the ideas
of the example is to demonstrate the effect of substituting a compound Poisson driven systems by an
equivalent white noise excitation. It is shown that for strongly non-linear hysteretic systems as the
present significant deviations in the displacement response may occur even with the indicated relatively
high impulse arrival rate.

The obtained results have been shown below in figs. 3-46 - 3-57 versus the non-dimensional time ,I—f—

The solid line represents simulation, the dash-dotted curves denote the results obtained by equivalent
statistical linearization with the closure scheme (3-334). The dashed curve represents equivalent cubic
expansion, and the dotted curve indicates the results obtained by Gaussian white noise, i.e. global clo-
sure at the order N = 2 and equivalent linearization with Gaussian evaluation of expansion coefficients.

Figs. 3-46, 3-47 and 3-48 show the time-dependent mean value functions of the displacement, the

hysteretic component and the damage indicator for the case of non-zero mean impulse strengths. All

considered methods give acceptable results for these quantities, although the white noise approximation

is overestimating the mean value of the hysteretic component somewhat at larger excitation intervals.

Since, E[X(t)] = E[X(t)] = 0 in the stationary state as ¢ — oo it follows that w2 (aE[X(t)] + (1 —

o) E[Q(t)]) — i’ﬁm[fl. As seen from (3-347), lim E[Q(t)] ~ 0 and so lim E[X ()] ~ %gnl = 16 as
o

i — oo.

Figs. 3-49, 3-50 and 3-51 show the corresponding results for the time-dependent variances of the
displacement, the hysteretic component and the damage indicator. The equivalent linearization schemes
clearly underestimate the variances of the displacement and the hysteretic component, but are still
qualitatively in agreement with the simulation result. However, the variance predictions for the damage
indicator obtained by the linearized schemes are completely wrong. Instead of predicting an increasing
variance similar to the one observed for stationary white noise excitation of hysteretic systems, cf. figs.
3-19 and fig. 3-36, a decreasing behaviour is predicted. Equivalent linearization technique will predict
the exact variance, if all the expectation entering the mean least square criterion are evaluated from
the exact joint distribution, as stated by the theorem on p. 143. The expansion (3-336) truncated at
the order N = 4 was thought of as a better approximation to the exact distribution than the normal
distribution, and hence some improvements of the variance predictions were expected. However, since
no such improvement is observed, it can be concluded that (3-336) truncated at the order N = 4 is
still not sufficiently accurate to accomplish any significant improvement. In contrast, the equivalent
cubic expansion procedure with an ordinary cumulant neglect closure scheme gives accurate variance
prediction of all three state variables. The relatively good agreement for the variance of the damage
indicator is mainly due to the fact that the damage rate is quadratic in the state variable, and hence
it is exactly represented by a cubic polynomial expansion. As already learned from examples 3-3, 3-4
and 3-5 the characteristic behaviour of strongly non-linear hysteretic systems is hidden in the 4th order
correlations, for which the equivalent cubic expansion is the consistent level of expansion.

Figs. 3-52, 3-53 and 3-54 show the results obtained for the time-dependent mean value functions of the
displacement, the hysteretic component and the damage indicator for the case of zero mean impulse
strengths, E[P] = 0. In this case one has the asymptotic behaviour of the mean values lim E[X (t)] =
—1=2 }im E[Q(#)]. With lim E[Q(¢)] ~ —0.025, as seen in fig. (3-54), it follows that lim E[X(2)] ~
0.475. The Gaussian white noise case predicts E[X(t) = 0, coincident with the abscissa axis in fig. 3-
52. The observed non-zero mean values of the displacement response for the compound Poisson driven
system are a consequence of non-zero higher order odd moments of the impulse strength in combination



182

with strong non-linearity of the oscillator (small value of «), and represent a significant difference to the
equivalent Gaussian white noise replacement. As seen in fig. 3-52, equivalent linearization based on the
series (3-352) truncated at the order N = 4 gives qualitatively correct non-zero mean predictions of the
displacement mean value, although the quantitative agreement is not good. An acceptable agreement
with the simulation resulis is only obtained for the equivalent cubic expansion approach.

Figs. 3-55, 3-56 and 3-57 show the results for the corresponding time-varying variances. The equivalent
linearization methods significantly underestimate the variances of the displacement and the hysteretic
component compared to the simulation results, whereas the equivalent cubic expansion approach over-
estimates these quantities somehow. Again, the various equivalent linearization schemes were incapable
predicting even qualitatively correct results for the variance of the damage indicator, and have been
omitted in fig. 3-57. In contrast the results of the equivalent cubic expansion approach are in good agree-
ment with the simulation results. The irregular behaviour of the simulation results for the hysteretic
components displays the absolute error of the Monte Carlo method with 50000 generated realizations.

For the system (3-52), (3-333) driven by a filtered compound Poisson process the impulses are assumed
to be non-zero mean Rayleigh distributed, P ~ R(¢?). The mean arrival rate and the parameter o are
chosen as v = 1.0wp and ¢ = 3.708. This specific choice is based on evaluations similar to those given
by (3-266), (3-267), and implies approximately the same mean value and variance for the displacement
as obtained for the system (3-52), (3-332).

The results obtained are shown below in figs. 3-58 - 3-63. The solid line curves represent simulation, the
dash-dotted curves denote the results obtained by equivalent statistical linearization with the closure
scheme (3-334), and the dashed curve represents equivalent cubic expansion. No results are presented
for the equivalent Gaussian white noise representation.

Figs. 3-58, 3-59 and 3-60 show the time-dependent mean value functions of the displacement, the
hysteretic component and the damage indicator. All methods considered give acceptable results for
these quantities as expected from the similar results for the unfiltered case. Figs. 3-61, 3-62 and
3-63 show the corresponding results for the time-dependent variances of the displacement, the hysteretic
component and the damage indicator. Again, the equivalent linearization schemes clearly underestimate
the variances of the displacement and the hysteretic component, and give completely misleading results
for the damage indicator. The variance predictions of the equivalent cubic expansion are in much better
agreement with the simulation results and are of the same quality as those of the unfiltered case. The
calculation time for the various methods in comparison to those used for the Monte Carlo simulation
was 0.88% for the equivalent linearization and 6% for the equivalent cubic expansion technique.

The following conclusions may be drawn from the the study in this example. Both of the considered
equivalent linearization schemes are able to predict the mean value function of the state variables
with acceptable accuracy. However, the variances of the displacement and the hysteretic component
are significantly underestimated, and the variance prediction of the damage indicator is completely
misleading. Since, the results of the two equivalent linearization methods are of the same quality,
the idea of using a Gram-Charlier type A expansion for the joint pdf in the one method in order to
approximate the true distribution better, and hence achieve better results as suggested by the theorem
on p. 143, does not work when the series is truncated at the order N = 4. In contrast the equivalent
cubic expansion technique in combination with an ordinary cumulant neglect closure approximation
provides accurate estimates of the mean value function and variance of all state variables, and seems
to provide one of the best semi-analytical schemes available for the analysis of hysteretic system driven

by compound Poisson processes.

Further, it has been demonstrated that significant non-zero mean displacement responses may occur in
hysteretic systems with small elastic restoring forces exposed to a compound process with zero mean
impulses and non-zero odd moments of higher order, even at the relatively high mean arrival rate
of impulses of v = %Bﬁ-. Hence, the replacement of compound Poisson process excitations with an
equivalent Gaussian white noise on these conditions, as is often claimed to be legal, should be performed

with caution.
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3.3.4 Compound renewal process driven systems

A renewal counting process {N,(t),t €]to,00[} can be defined as a sequence of random
time points t,%2,... ,t, on the positive real line, such that the interarrival times I; =
t; —ti—1, ¢t = 2,3,... are positive, mutually independent and identically distributed
random variables. The point process is called an ordinary renewal counting process if
the time I; = t; measured from the origin to the first event has the same distribution
as other time intervals I, I3, ..., Cox (1962), Cox and Isham (1980). This means that
the counting starts at the time ¢y after the arrival of the Oth impulse, which is not
counted. If I; has a distribution different from other time intervals I;, the point process
is denoted a general or delayed renewal counting process. In that case the time origin
is placed arbitrarily. An ordinary renewal process can be defined equivalently as the
sequence of positive, mutually independent and identically distributed random variables

{8 = 1,8, . )
Let Cjy,¢4 a4 signify the event of an impulse arrival during the interval |¢,¢+ At]. For the
ordinary and the general renewal processes the probability that a random point occurs
in each of the disjoint intervals Jt;,t; + Aty],... ,]tn,tn + Aty] can be written
fﬂ,O(tl, ey tn)Atl vk ¥ Atﬂ + O((&tmax)ﬂ—l'l)
P(Cuy tr+a6)M N0ty tatat]) =
fn,g(tl, RLECE ) tn)Atl e Atﬂ, + O((Atmax)n+1)
(3 — 338)

where Atmayx = max(Aty,... Atn). fao(ti,... ,ta) and fr g¢(t1,... ,t,) signify the prod-
uct densities of the order n for the various definitions of the reneval process. These have
identical meaning to the nth order crossing rates defined in section 2.1, which are actu-
ally product densities for underlying processes counting the number of specific crossing
events. fno(t1,...,ta) and fn ¢(t1,... ,tn) may easily be expressed in terms of the
product densities of the 1st order f ,(t) and fy 4(¢). With t; <--- < ¢, it follows from
the assumption of mutually independent interarrival times that

n

P(C]t'l rt1+At1]m. ! -ﬂC]tn ;tn+Atn]) =P(C]tl $t1+Atl]) H P(C]t”t'.*_At'] l C]:i_l,ti—l'f‘At,'_;]) =
i=2
Fao(trseee sta) = fro(tr) [ ] fiolti — tiz1) (3-339)
=2
Frg(tise o otn) = fro(t) [ ] fro(ti — ti-1) (3 — 340)
=2

If the probability density functions of I; and {I;, : = 2,3,...} are denoted f;,(-) and
f1(+), the 1st order product densities are obtained from the following integral equations,

known as the renewal equations, Srinivasan (1974)

Fo®) = f(8) + [ oot = )i () (3 — 341)
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Figur 3-64: Realizations of compound point processes. a) Compound Poisson process.
b) Compound Erlang renewal process.

Let the considerations be confined to the class of Erlang renewal processes, i.e. the
ones for which the interarrival times I; are independent, gamma distributed random
variables, I; ~ G(k — 1,v), with the probability density function given by

Uktk_l

fr(g)z(k_l)!exp(—vt) i 120 , =12 (3 — 343)

The case k£ = 1 corresponds to a negative exponential density function, hence it is
the case of a Poisson process. Since, the gamma distributed random variable with
parameters (k — 1,v) has the same distribution as the sum of k independent, negative
exponentially distributed random variables with parameter v, the events driven by an
Erlang renewal process {N.(t),t €]tg,00[} with parameter k can be regarded as every
kth Poisson event, taken out of a stationary Poisson process {IV(t),t €]to, 0o} with the
mean arrival rate v, cf. e.g. Osaki (1992). Since, the increment of a Poisson counting
process is independent, I; is exponentially distributed with mean value Ll-, no matter if
the Oth impulse has arrived at the time ¢y or previous. Hence, the distinction between
ordinary and general renewal counting processes becomes immaterial in this case.

The idea is to recast the renewal-driven impulse process, or the excitation term of
the dynamic system in such a way as to obtain a non-zero impulse magnitude for
every k, 2k, 3k, ... Poisson event and zero magnitudes for all other Poisson events. The
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governing stochastic equations (3-119) can then be written in terms of the following
stochastic integro-differential equations as follows

dX(t) = a(X(t),t)dt + b(X(t),t) p(N(t)) f pM(dt,t,dp,p) (3 — 344)
P

As seen, the structural state vector, the drift vector and the diffusion vector have tem-
porarily been denoted X(t), a(X(t),t) and b(X(t),t), respectively. M(dt,t,dp,p) is a
Poisson random measure, cf. (3-14), and p(N(t)) is the required zero-memory transfor-
mation of the Poisson counting process {N(t),t €]to, 00[} with the property

1, NO)=k-1,2k-1, 3k—1,...

p(N(®)) = { 5

(3 — 345)

, else

The transformation satisfying the required property is found to be

S:‘ ( *ﬁi) ZU (t) (3 — 346)

J"U

?S'"II—'

p(N()) =

The equivalence of (3-345) and (3-346) follows from direct evaluation of the power series
(3-346) in the quantity exp (i2r(N(t) + 1)/k). Noticing, that U;(t) = Ug_;(t), where *
denotes the complex conjugate, the right-hand side of (3-346) can be evaluated as

ko—1
%(1 +2 ; C_,-(t)) , kodd
p(N()) = :o“_l (3 — 347)
%(1 +2 3 Ci(t)+ Cko(t)) , keven
j=1
where

C,(t) = Re(U;(t)) = cos (2«M2—tﬂ) L j=1,2... k-1  (3—348)

Cio(t) = exp (z’ﬂ(N(t} 4 1)) =(-1)NO+H "k even (3 —349)
S;(t) = Im(U;(t)) = sin (2#2'—(-—]\;'(2—4_1)) v =12 e el (3 — 350)
ko = ["’—”2*-—1] (3 — 351)

[-] denotes the integer part. Next, C;(t), S;(t), 7 =1,... ,ko — 1, and Ci,(t) in case of
k even, will be considered as additional auxiliary new state variables, somewhat similar
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to the auxiliary state variables introduced for the shaping filter (3-36), (3-37). This

means that stochastic differential equations specifying the development of these new
state variables must be formulated, which is done in the following few steps

dU;(t) = U;(t + dt) = U;(t) =

exp (iZ:rrj(N(t) L ;jN(t) x 1)) — exp (i2wﬂ%ﬂ) -

U,-(t)( exp (a‘21r-i—dN(t)) -1) = U,-(t)( exp (i2w%)—1)dN(t) i =1,2,... ko(3-352)

The equivalence of the last two statements of (3-352) follows from the fact that the
right-hand sides give the same result for both dN(t) = 0 and dN(¢) = 1.

Specifically, the equations for the real and imaginary parts become
o i a |
dC;(t) = [C’j(t)(cos (2775) —1) —S;(t)sin (sz)] dN(t),j=1,...,k—1(3-353)

dC,(t) = —2Ck,(t)dN(t) , keven (3 — 354)

ds;(¢) = [C‘,-(t)sin (2W%>+Sj(t)(cos (2w%)—1)]dN(t) L i=1,... ko—1(3—355)

' The state vector augmented by these new variables is governed by the stochastic integro-
differential equations

dZ(t) = c(Z(t),t)dt + /e(Z(t),t,p)M(dt,t,dp,p) (3 — 356)
P

! where for k even

FX(t) 7 [a(X(2),t) T
Ci(t) 0
; S1(t) 0
: Cz(t) 0
| Z(t) = | 200 . c(Z(t),t) = |0 (3 - 357)
Cro1(2) 0
Sko_l(t) 0

| Calt) Lo |
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[1(1+2 i"z:f: Cj(t) + Cro(t)) b(X(2),8)p

e(Z(t),t,p) =
(Z®).t.p) Cy(t)sin (2r%) + Sz(t)(cos (27% 1)
bko_;(t)(cos (211'&,:;1-) - 1) — Sko—1(t)sin (27"5&1;__1)
Ckoma(t)sin (22271) + S, (1) cos (2r2a1) — 1)
L —2C, (1) s
and for k£ odd
r X(t) [a(X(t),t) ]
Ci(1) 0
Sl((t)) 0
Co(t 0
Z(t) = | 5,(t) , <(Z(t):t) = | o
Chom1(t) 0
[ Sky-1(t) - L0 .
= kp—1
L1+2 > C;())b(X(2),t)p
Ci(t)( cos (2r}) = 1) — Su(#)sin (27})
Ci(t)sin (2n}) + S1(t) ( cos (2r}) — 1)
e(2(t) ) = | Co)(c0s (271) —1) = Suft)sin (2r})
Cy(t)sin (272) + Sz(t)(cos (27%) - )

_Cko_l(t) sin (27r£‘1,c_—1) + Sko—-1 (t)(cos (27r£°kll~) - 1) ]

Cl(t)(cos (211'%) — 1) — 51(t)sin (2"7 )
Ca(t)sin (2n}) + S1(t) (cos (2n}) — 1)
Cz(t)(cos (2n2) — 1) — Sy(t)sin (272)
)=

Cto-1(t) (cos (2m2272) = 1) — Sip-a(¢)sin (2riec2)

(3 — 358)
(3 — 359)
(3 — 360)

The state vector Z(t), augmented by additional auxiliary state variables as governed
by equation (3-356), is driven by a Poisson process, and hence forms a Markov vector
process. The differential rule and the equations for joint central moments then follow




191

from (3-166) and (3-324) with the minor correction that only the components of the
diffusion vector e(Z(t),t, P) belonging to the structural state variables are proportional
to the impulse strength P. The resulting equations read

df (Z(8), 1) = —(—(t—)—)dtwc ANCODIEE ?I%(t”_’f)dt 4

Zc;(Z(i),t)%ﬁQ’ﬂdt-F ] (f(Z(t)+e(Z(t),t, p),t)—f(Z(t),t))M(dt,t,dp, p)(3—361)
1=1 ' P

Lui(t) = E[Ci(z(t)!t)] +vE [ei(z(t)’t’ E[P])]

a‘—‘;)\,‘j(f) = Z{E[C? (Z(t)’ t)Z?(t)] }s t
v-2{B[ed(2(t),t,P)23(1)] } +
VE[e: (@01, P)es (2(0),0P)|

Sxn(t) = 3{B[2(2(1),) 20 Z2)| } +
v 3{ E[ed(2(2),4, P) 22()23(1)| } "

v 3{ Bei(2(t).t, P)e; (Z(t),t, P) Z3(1)] }s +
vE|ei(2(t),t, P)e; (Z(2),t, P)er (2(2), 1, P)]

Eagu(t) = 4{E[2(2(0),0) 22022020 (1))} +

v 4{ B[e(2(t),t, P)Z2()Z3()20(8)| } +

v 6{ E[ei(2(t).t, P)e; (2(1),1, P)Z1)20 (1)) } +

v 4B [e;(2(t),t, P)e; (Z(2),, Pex (2(t),1, P) Z0(t)] +
z/E[e,-(Z(t),t,P)ej(Z(t),t,P)ek(Z(t),t,P)e;(Z(t),t,P)]
$xirin () = N{E[4,(2(0),1)28,8) -+ 28, (0] } -

v N{Ele:, (2(t),t P)],\,,”_,-N(t)}s +

= v (){Blen (@01 6.P)-ea (20,6, P) 28,0 28,0)] )

b (3—362)

In case of low mean arrival rates of impulses it may be necessary to modify the applied
closure scheme in order to take into consideration the probability that no compound
Erlang impulses have yet excited the structure during the interval o, t[. The probability
of no Erlang events, P(t,tp), is equal to the probability of less than k Poisson event.

Hence, cf. (3-8)
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P(t,t0) = Z ("(t exp (- v(t —to )) (3 — 363)

n=0

Only the structural state vector components X(t) should be subjected to the modi-
fication, whereas the remaining auxiliary state variables, assembled in the subvector
Y(t), are unchanged. Hence, the closure scheme (3-229) should be reformulated in the

following way

Focny)(x,y, 1) = P(t,t0)6 (x—d(t|x0, to )f iy (¥, )+ (1-P(t, to)) fivyy (%, ¥, )(3—364)

where P(t,t)) is given by (3-363) and d(t|xo,?0)) signifies the eigenvibrations of the
structural system (3-344). For polynomial non-linearities modified cumulant neglect
closure schemes similar to (3-232), (3-233), (3-234) and (3-235) may be derived next.

The moment equations for the special case k = 2 were originally devised by Iwankiewicz
and Nielsen (1994). The theory presented, covering systems driven by an arbitrary
compound Erlang process and using a completely different approach, is due to Nielsen,
Iwankiewicz and Skjeerback (1996).

Example 3-10: Excitation processes reducible to compound Poisson pro-

cesses
Consider the point process {V(t),t €]y, oo} with the increments
dV(t) = p(N(t))dN(t) (3 - 365)

where p(N(t)) is a zero memory transformation of the homogeneous Poisson process {N(t), t €]to, o0}
with the mean arrival rate v. If p(N(t)) is given by (3-346) the Erlang process is obtained, for which
it has just been demonstrated that introduction of the auxiliary state variables (3-348), (3-349) and
(3-350) reduces the augmented dynamic system to a Markov system with the state vector given by
(3-357) or (3-359). In this example the conditions for such a reduction will be closer investigated. The

product densities of (3-365) become
A(t)=vE [p(N(t))} (3 — 366)
Btz v in) = V"E[p(N(h ) -'p(N(tu))] (3 - 367)

Introduce Y;(t) = p(N(t)+3j—1),j=1,2,..., as new auxiliary state variables. The differential
equation specifying the development of these state variables can then be written

4%y (6) = p(V(O) + AN () = (N (®) = (p(V(0) +1) = p(N () ) AN () = )

dYi(t) = (Y2(t) — Y1 (t))dN(2)
dYa(t) = (Ya(t) — Y2(2))dN(t) f (3 — 368)

dYi(t) = (Y (8) = Yie(®))dN(0) )
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(3-368) is proved in the same way as (3-352), using that either dN({) = 0 or dN(t) = 1. The hierarchy of
differential equations (3-368) cannot be closed unless Y} ;1 (f) can be expressed in terms of the previous
auxiliary state variables. As an example assume the following linear dependence

Yiga(t) = —a: X (a1Y1(t) +a2Ya(t) + - - +akYk(’3)) g Gy el (3 — 369)

(3-368) then attains the form
dYi(1) = (Ya(t) - Ya(1)dN (1)

dYa(t) = (Ya(t) — Ya(t))dN(t) (3 — 370)

aYe(t) =~ (FETHAW + -+ B2V 1)+ (14 2N dNE)

(3-369) implies that p( N(t)) must fulfil the AR difference equation

a1p(N(t)) + azp(N(t) + 1) + - -+ arq10(N(t) + k) =0 (3 - 371)

The solution of (3-371) reads
&
p(N(t)) = ij)\f(’) (3 - 372)
i=1

where b; € C, and A; denote the solutions of the characteristic equation

ap +aA+--+apAF=0 (3 - 373)

If |A;| # 1 the corresponding term in (3-372) either extincts or explodes. Hence, in case the point process
(3-365) is assumed to be homogeneous, it is necessary that the eigenvalues all have the magnitude 1,

SO

Aj=exp(iv;) , v €ER , j=1,2,... .,k (3-1374)

The solutions of (3-373) are either real or complex conjugates in pairs. For a homogeneous point process
all solutions of the former kind, save A; & 1, are excluded by the stationarity requirement, from which
it follows that the most general expression fulfilling (3-371) has the appearance

ko
p(N(t) =bo+2) (Re(bj) cos (v N(t)) — Im(b;) sin (v; N(t))) +brog1( =)V (3 375)

i=1

bo and bg, 41 signify the coefficients in (3-371) related to the eigenvalues A\; = 1 and Aj = -1, and
2ko denotes the number of complex eigenvalues with +; # 0. Imposing the extra conditions on the
invariants ai, ... ,az4; of (3-373) that only solutions of magnitude 1 are permitted, v; is related to
aj,...,ak41 via a one-to-one correspondence. As seen from (3-346) the Erlang process follows from
(3-372) upon specialization of the parameters b; and +;.
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Upon insertion of (3-373) into (3-367) the following expression is obtained for the product densities

k k
Falbyyene da) = 0™ z Z b, ..-bjﬂE[Aﬁ(tl)---/\ﬁ(t“JJ =

ji1=1  jn=1
k k "

" Z Z bjy -+ bj  ATTIATTE A2 A, exp (u(zﬂ —ta—1)(Aj, - 1))

j1=1 in=1
exp (V(tn—l —tn—2)(XinAjuoy — 1)) L eexp (V(tl = t0)(Ajn Ajuon -t Xy — 1)) (3 — 376)
where it has been assumed that ¢ < #3 < -+ < t;. Consider an arbitrarily regular counting process
with product densities fn(f1,... ,ta). The eigenvalues with argument v; and the coefficients b; as well

as the order of expansion k may then be determined, so the right-hand side of (3-376) approximates the
left-hand side up to a certain order. Next, from the obtained parameters v;, the expansion coefficients
ay in (3-369) are determined, and a closed system of auxiliary differential equations (3-370) is obtained.
By then, an approximate representation of the actual counting process with an equivalent Poissonian

process has been achieved.

Example 3-11: Duffing oscillator exposed to compound Erlang process with
k=2,k=3and k=14

Consider the Duffing oscillator (3-44) with the following parameter values

m=10 , w=10 , (=005 , =05 (3 — 377)

The excitation process { F(t), t €]0, 00} is modelled as a compound Erlang process with the cases k = 2,
k = 3, k = 4. In order to make meaningful comparison between these cases, the mean arrival rate v
of the impulses will be adjusted so that ¥ = 10wg. The impulse strengths are assumed to be Rayleigh
distributed, P ~ R(¢?), with ¢ = 0.1. The stationary mean value and variance of the corresponding
linear oscillator exposed to Poissonian impulses with the mean arrival rate § then become

vEP] _vy3e

Hx0 =% wim Tk wim (3 — 378)
, _v E[PY) v o
7x0 = k4Cwim?  k 2(wim?
Hence, ux,0 = 1/ 3 and ox,0 = 1.0. Deviation of results obtained from these figures can be attributed

partly to the non-linearity and partly to distributions of interarrival times different from the exponential
distribution. To estimate the effect of non-linearities on the result the moments for a linear oscillator
with € = 0 exposed to a compound Poisson process excitation with mean arrival rate v = 10wy will

also be calculated.

The hierarchy of joint statistical moments (3-362) is truncated at the order N = 4. Since the drift terms
c?(Z(t)) are cubic polynomial in the state variables, joint central moments of the 5th order appear in
the equations for the 3rd order moments, and 5th and 6th order moments appear in the equations
for 4th order moments. The mean arrival rate of Erlang impulses is as high as ¥ = 10wy = -27%05. I

this case it is not necessary to modify the closure scheme according to (3-366), and the unprovided

moments of the closure scheme are all obtained by means of the ordinary cumulant neglect closure
scheme (3-193).
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The results of the moment equation method are compared to those obtained by Monte Carlo simulation.
The simulated results have been based on averaging over an ensemble of 32000 independent response
i realizations, each obtained by numerical integration of the governing equations of motion (3-52), (3-
332), (3-333). The interarrival times of the Erlang process between sequential impulses are generated
as a sum of k mutually independent exponentially distributed random variables. The discontinuous
change of the state vector due to the generated impulse strength, and succeeding eigenvibrations of
the system until the arrival of the next Erlang impulse are performed in the same way as explained for
compound Poisson driven systems in example 3-8. The eigenvibrations of the system between impulse
arrivals were calculated by a 4th order Runge-Kutta scheme with the time step At = 3—13-, To = 2=

being the period of linear, undamped eigenvibrations. “

The obtained results for the mean value function and the variance function of the displacement are

shown in figs. 3-65, 3-66 and 3-70 for the cases k = 2, k = 3 and k = 4, respectively. The unbroken

curves signify the approximate analytical results from the moment equation method, the dotted curves

indicate the results from Monte Carlo simulation, and the dashed-dotted curve indicates the results for
{ the linear oscillator, when exposed to an equivalent Poisson process. The first thing to notice is that the
agreement between the approximate analytical results and the simulation resultsis very good. Secondly,
the mean value functions are practically the same in all cases, meaning that this quantity is insensible to
the distribution of the interarrival times. The variances, however, have a marked tendency to decrease
with increasing values of k. The stationary value of these become o% (o0) =~ 0.30, 0% (00) ~ 0.24 and
cr} (o0) =~ 0.21 for the 3 cases. Hence, it may be concluded that the displacement variance depends
significantly on the specific distribution of the interarrival time between Erlang impulses.

B..) Hx (t) 25 T T T T T
2

1.5 \ % i - B B
v - e N N B TR MR
) W
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L 0 1) A 1 —L
6 8 10 12 To

b) O'fY(t) 0.8 T T T T T
061 i

0.4} .

t

0 2 4 6 8 10 12 To

Fig. 3-65: Compound Erlang process, case k = 2. a) Time-dependent mean value function, pux (t).
b) Time dependent variance function, 0% (t). Nielsen, Iwankiewicz and Skjerbaek (1996).
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Fig. 3-66: Compound Erlang process, case k = 3. a) Time—dependeﬁt mean value function, pyx (¢).
b) Time dependent variance function, ¢% (t). Nielsen, Iwankiewicz and Skjeerbaek (1996).
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Fig. 3-67: Compound Erlang process, case k = 4. a) Time-dependent mean value function, ux (t).
b) Time dependent variance function, a}(t). Nielsen, Iwankiewicz and Skjeerbzek (1996).

The considered example demonstrates the applicability of the moment equation method for the problem
of a Duffing oscillator driven by a compound Erlang process after reducing the problem to an equivalent
compound Poisson driven system. The obtained results of the example clearly show that the mean value
function of the displacement process is insensible to the distribution of the interarrival times, whereas
the variance function strongly depends on this distribution.
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3.4 Path integration techniques

For a long time in physics e.g. Wehner and Wolfert (1987), Kleinert (1992), path
integration methods have been applied to the numerical solution of the Fokker-Planck
equation for the case of white noise excited non-linear systems. The application of
the method to structural mechanics problems is due to Naess and Johnsen (1991) and
Johnsen (1992). The basis of path integration approach is reducing the time continuous
state continuous Markov vector process to a Markov chain by considering the process at
discrete instants of time and by discretizing the sample space of the process. Sun and
Hsu (1988), (1990), used a similar approach, named cell-to-cell mapping, following the
earlier work of Crandall, Chandiramani and Cook (1966) on the method. However, as
shown below, cell-to-cell mapping turns out to be merely a different way of evaluating
the convolution integrals at transitions, and hence the discretization of the state space.
Hence, path integration and cell-to-cell mapping are merely different names for one and
the same thing. In what follows the former name will be coined.

Let gqz)(z,t | x,to) signify the joint transition probability density function of the
Markov vector process {Z(t),t € [to,t1]}. Further, let fz)(z,t:;) be the 1st order
probability density function at the time t; = ¢ + iAt, ¢ = 0,1,2,.... Next, the 1st
order probability density function at the following instant of time ¢;;; is given by the

convolution integral

fizy(z,tiy1) = f?{Z}(zati+1 [ x,t:) frz)y (%, ti)dx (3 - 379)
Se;

From (3-379) the time continuous vector process has been discretized to the instants of
time t; = to +iAt. In order to discretize the state space, the sample space Sy, is divided
into a finite number N of small volumes Az, with an interior centre at z;. If Az; is
sufficiently small for q(z)(z;,t: + At | z&,t;) and f(z}(zk,t:) is approximately constant
throughout the cell, the probability arg'ﬂ) of being in the jth cell Az; at the time t;4;
is then given by the Riemann sum

N
=Y Q! | =l N (3 — 380)
k=1
Wf,i) =~ Az fz)(2k, ti) (3 —381)
QS0 ~ Azjqzy(z),ti + At | 74, 1) (3 - 382)

More accurate calculations of the nodal probabilities (3-381) and the components (3-
382) of the transition probability matrix Q) of the Markov chain were performed by
Naess and Johnsen (1991) and Johnsen (1992) upon interpolating among adjacent nodal
point values by means of B - splines.
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If the' Markov process {Z(t),t € [to,t1]} is stationary and the intervals At between
observations of the process are equidistant, the transition probability matrix becomes
independent of the time of transition t;, i.e. Q(“) = Q, and the Markov chain becomes
stationary, as well. The transition of states (3-380) can then be represented by the

matrix equation

0+ — Qr) = Qin(® (3 —383)

where (9 is an N-dimensional vector of the state probabilities 11'5:) after 7 transitions,
and 7% signifies the initial distribution at the time to.

In reliability problems absorbing states on the exit part of the boundary BSE‘.I) are
characterized by the transition probability Qxx = 1 = Q;x =0, ;7 # k. Each absorbing
state then forms a recurrent class, whereas all non-absorbing states make up a single
class of transient states. The transient states are all the cells within the safe domain
St,. The non-absorbed probability mass, which remains in the transient states after i
transitions represents the reliability of the system at the time #;,.

In stochastic response problems no absorbing states within the sample space should be
specified. However, in practical calculations one needs to delimit the sample space, so
artificial absorbing states are specified at sufficiently distant positions for the probability
of accessing these states to be small enough. The application of cell-to-cell mapping
methods to reliability problems and to stochastic response problems is then completely

identical.

For the stochastic response problem in case of stationary Markov chains one may be
interested in the question, whether a stationary distribution () to (3-383) exists, ob-
tained after infinitely many transitions as ¢ — oo, irrespective of the initial distribution
(% applied. Since the Markov chain in this case is irreducible, positive recurrent and
aperiodic, the answer to this question is positive, see e.g. Osaki (1992). The limiting
distribution must be invariant to further transitions, and can then be determined from

the equation

7x(®) = Qn() (3 — 384)

(3-384) determines m(*) as the normalized eigenvector to a linear eigenvalue problem
with the known eigenvalue A = 1. This eigenvalue is simple, since the Markov chain
is irreducible, and the solution 7{>) to (3-384) then is unique. Hence the coefficient
matrix I — Q has the rank N — 1 and (3-384) can be rearranged into a system of
linear equations of the order N — 1. Alternatively, #(°) can be obtained by iterating
in the transition equation until convergence for an arbitrary initial value distribution
w(® is attained. Since A = 1 is the largest eigenvalue of Q, this corresponds to the
power method approach in numerical solution of linear eigenvalue problems. Since
the eigenvalue A = 1 is known, the former approach is normally the most efficient
one. Moreover, for symmetric problems, such as double barrier problems, the size of
eigenvector problem can be further reduced.
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As seen from (3-382) the transition probability matrix relies on the transition probability
density function. Since this is not known in general, nothing seems to be gained at first.
However, the method benefits from certain asymptotic results for ¢(z)(z;, t: + At | zx, t;),
valid for small transition time intervals At. In sections 3.4.1 and 3.4.2 it is demonstrated
how these results are obtained for systems driven by Wiener processes and for systems
driven by generating source processes with jumps. In both cases the illustrative example
is a non-linear, non-hysteretic SDOF oscillator. This is so, because at present path
integration methods have not yet been extended to MDOF systems.

3.4.1 Path integration methods for Wiener process driven systems

The Wiener process driven system (3-116) is considered. At transitions from the state
Z(t;) = zy it is assumed that the transition time interval ¢ — ¢; is sufficiently small for
the drift vector ¢(Z(t),t) to be approximated by a linear function of the state vector
Z(t), and the diffusion matrix d(Z(t),t) to be considered a constant as a function of
Z(t), although it may still be a function of time. Hence, for t €]¢;,¢; + At] it is assumed,

cf. (3-326)
c(Z(t),t) ~ A(t) + B(t)Z(t) (3 — 385)
d(Z(t),t) ~ do(2) (3 — 386)

The process cannot perform any jumps, so (3-385) and (3-386) will certainly be ac-
ceptable, if only the transition time interval is sufficiently small. Since the approx-
imated system is linear under Gaussian white noise excitation, the response becomes
Gaussian too. This is the principle of local Gaussianity, valid for non-linear Markov sys-
tems, during small transition time intervals. The transition probability density function

q9(z}(2,t | zk,t;) then becomes
1
(2m)% (det (M)

9z} (2t | 2k, ti) exp (—%(z—u(t)) Tf\‘l(t)(z-u(t)))(3—387)

T
where p(t) = E[Z(t) | Z(t:) = 2] and A(t) = B[(Z(t) — u(t)) (2(2) - n(®))” | Z(t:) =
zk] are the conditional mean value vector and the conditional covariance matrix func-
tion, respectively. These are the solutions of the following ordinary differential equa-

tions, (3-240), (3-242)

%p(i) = A(t) -+ B(t)ﬂ(t) s Tl p(t,‘) = I (3 - 388)

9M(®) = BOAD + AOBT() + do()df(1) , At:) =0 (5 - 339)
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Normally, the linearization parameters A(t),-do(t), B(t) depend on the initial state zj.
In case of applications in path integration methods (3-388) and (3-389) should then be
solved for initial values z; in all N cells, and for each transition from ¢; to ¢;4;. In
case of stationary excitation in time-invariant problems A(t),do(t) and B(t) no longer
depend explicitly on time.

Moreover, if the time interval At between transitions is constant, the Markov chain be-
comes stationary, and (3-388), (3-389) need only be integrated once for all N considered

states.

The various path integration methods are characterized by the way the functions A(t), dq(t)
and B(t) are defined. In ascending order of complexity at least the following four spec-
ifications can be used

A = ¢z, t;)
do = d(zk, i) (3 —390)
B=0

A(t) = c(zg,t) — B(t)zi
do(t) = d(zk,1) (3—391)
B(t) = 2rc(zk,t)

A(t) = c(p(t),t) — B(t)u(?)
do(t) = d(u(t), 1) (3 - 392)
B(t) = g2re(pu(t),t)

A(t) = E[e(2(1),1)] - B(t)u(t)
do(t) = E[d(z(t),t)} (3 — 393)
B(t) = E[gfc(zm,t)]

Insertion of (3-390) into (3-388), (3-389) provides the following solutions for the condi-
tional moments

w(t) ~zp + c(zp, ti)(t — ti) }

Alt) e d(zk,t,')dT(zk, )t — ;) (3 —394)

(3-387), (3-394) are identical to the asymptotic solution by Risken (1984), which was
used by Naess and Johnsen (1981) and Johnsen (1992). Because of the crude level of
approximation inherent in the linearization scheme (3-390) this approximation can only
be expected to give accurate results for very small time steps. This may cause numerical
inconveniences in the non-stationary case, where transitions from an initial distribution
79 are requested, and in reliability problems, because a large number of transitions
(3-383) are requested for evolutions of the system in any finite time interval. However,
if only a stationary distribution () is required, this problem is omitted using the
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eigenvalue approach (3-384) in favour of iterating (3-383) until convergence. The use of
the method is due to the simple analytical results (3-394) for g(t) and A(2).

Relationships (3-391) correspond to a first order Taylor expansion of ¢(Z(t),t) and zero
order Taylor expansion of d(Z(t),t) from Z(t;) = zx. In this case the differential equa-
tions (3-388) and (3-389) become mutually uncoupled systems of differential equations,
which usually have to be solved numerically. Because of the more accurate lineariza-
tion somehow larger time steps At between transitions can be applied compared to the

previous case.

In turn, relationship (3-392) corresponds to a first order Taylor expansion of ¢(Z(t),t)
and zero order Taylor expansion of d(Z(t),t) from the running mean value u(t). Now,
the systems of differential equations (3-388) and (3-389) become mutually coupled and
non-linear. This does not imply any practical problems since these equations must be

solved numerically anyway.

The unknown expectations at the right-hand sides of (3-393) are supposed to be eval-
uated by the running joint probability density function (3-387). Then the result cor-
responds to the equivalent linearization scheme in the expected least square sense by
Atalik and Utku (1976), cf. (3-249). The resulting expectations will be non-linear func-
tions of p(t) and A(¢), resulting in mutually coupled systems of ordinary differential
equations upon insertion into (3-388), (3-389). This method was first used by Sun and
Hsu (1990) (in their previous work Sun and Hsu (1988) the transition probability matrix
Q was obtained by a simulation procedure). The methods resulting from the assertions
(3-392) and (3-393) are assumed to give results of the same quality. In both cases much
larger transition time intervals At, than for the assertions (3-390) and (3-391), can be
assumed. In some cases At can be chosen as large as 0.5Ty, Ty being the fundamental
eigenperiod of the linear oscillator.

The linearization schemes (3-391), (3-392) were suggested by Nielsen and Iwankiewicz (1996). The
principle of local Gaussianity was also used by Askar, Koylioglu, Nielsen and Cakmak (1996) and by
Koyltoglu, Nielsen and Cakmak (1996a), (1996b) in devising various Monte Carlo simulation schemes
for geometrically non-linear and hysteretic systems, allowing for larger time steps than conventional
explicit numerical integration schemes. The schemes were based on the Ermak-Allen algorithms, Ermak

and Buckholtz (1980), Allen (1982), devised for Monte Carlo simulation in molecular dynamics. Such
algorithms require a piecewise linearization for which the the linearization schemes (3-391), (3-392) and

(3-393) were considered again.

Example 3-12: Duffing oscillator subjected to a Gaussian white noise

The Duffing oscillator (3-44), (3-45), (3-46) is considered with the following parameter values

m=10 , w=10 , (=003 , £=02 (3 - 395)

Since d is constant in time and independent of the state vector no approximation is needed for this quan-
tity. For the cases (3-390) - (3-394) the quantities A(¢) and B(t) defining the equivalent linearization
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of the drift vector become

A=| % ,

F.G—2<gozk — wj (zk +e23) (3 — 396)
B=1y o

[0
A=

:2eowgmi] ) (3 — 397)
a= | —wi (1 + 3ex?) —2Cwu]

_|o
- [ 0 1 ]

-w2(1+ 3€u§(t)) —2Cwp

|8

Al = [2&: 00|
0 (3 — 399)

1
B(t) = [—wg (1 + 3e(pd(t) + M1 (t))) ‘ZCWO}

Hence, the 1st order Taylor linearization from the running mean, (3-398), and the expected least-square
minimization (3-399) only deviate in the component By, of the gradient matrix. (3-398) is significantly
easier to a apply in case of hysteretic multi-degrees-of-freedom systems.

(3-398) will be applied for the determination of the stochastic response and reliability of the Duffing
oscillator exposed to Gaussian white noise. In the numerical calculations the limits of the mesh are
taken as [—4ox,0,40x,0] % [~ 4oy g 40y o], where ox ¢ and Tx.0 denote the stationary standard
deviations of the displacement and veloc:ty of the corresponding linear oscillator. A uniform coarse
20 x 20 mesh is applied, so Az = 0.40x 0, A2 = 040y 4 The transition probability density at one
transition time-interval has been obtained from (3-385), (3-386), (3-388), (3-389), (3-398) for all 400
cells using a 4th order Runge-Kutta scheme. The transition time-interval was selected as At = 1;9-,
where T} is the eigenperiod of the linear oscillator. The auto-spectral density function of the Gaussian
white noise has been selected, so ox ¢ = Tx.0= =

The results for the stationary marginal pdfs of the displacement and velocity have been shown in figs.
3-68 - 3-71. To emphasize on the tails of the distributions the results have also been shown in semi-
logarithmic scale. The solid line curves represent the analytical solutions, whereas the results marked
with e and o signify the numerical results obtained from iterating (3-383) n = 60 times and from the
eigenvector solution (3-384), respectively. The iteration solution was started with deterministic start in
the origin Z(0) = 0. From these results it is concluded that the path integration method provides very
accurate results for Wiener process driven systems at all levels of probability including the tails even
with the applied coarse mesh and the applied large time step. In turn, the applicability of large time
steps is a consequence of the relative accuracy of the linearization schemes (3-392) and (3-393). The
calculation times were 39s for the iteration approach, and 139s for the eigenvector approach. Notice,
for the present problem the number n of iteration required to achieve convergence is determined by the
criterion n{ Atwy ~ 2.8. Hence the benefit of using the iteration approach is partly due to the relatively

large time step of At = -2 and the large damping ratio of { = 0.03. Johnsen (1992) used a time step
of At = 'fﬁ%%? and a 47 X 47 for the same problem with a damping ratio of { = 0.10. In this case the

eigenvector solution will turn out to be beneficial, especially in case of lower damping ratios.
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Fig. 3-68: Stationary pdf of displacement, fx (z).
Linear scale. e iteration, o eigenvector solution.
Koylioglu, Nielsen and Cakmak (1995).

03 0.4

0.2

7x,0f%(2)

(

&/ox o
‘ Fig. 3-70: Stationary pdf of velocity, fy ().

Linear scale. e iteration, o eigenvector solution.

{ Koyluoglu, Nielsen and Cakmak (1995).

15

20

Fig. 3-72: First-passage time probability distri-
bution function,Fr, (t | 0). Deterministic start
with a single constant barrier, b = 2.00 x (c0).
(—) Simulation, (---) path integration.

Nielsen and Iwankiewicz (1996).
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Fig. 3-69: Stationary pdf of displacement, fx (z).
Semi-log scale. e iteration, o eigenvector solution.
Koylioglu, Nielsen and Cakmak (1995).
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Fig. 3-71: Stationary pdf of velocity, fy (z).

Semi-log scale. e iteration, o eigenvector solution.

Koyliioglu, Nielsen and Gakmak (1995).

Fig. 3-73: First-passage time probability density
function, fr, (t | 0). Deterministic start with a
single constant barrier, b = 2.00 x (c0).

(—) Simulation, (- --) path integration.

Nielsen and Iwankiewicz (1996).
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In figs. 3-72 and 3-73 the time dependence of the first-passage time probability distribution function
and the first-passage time probability density functions are shown for the same Duffing oscillator in case
of a single constant barrier first-passage time problem with deterministic start at Z(0 = 0, obtained
by Mente-Carlo path integration and simulation, respectively. The path integration results are shown
with an unbroken curve and the simulation results with a dotted curve. The barrier level is 2.0¢ x (c0),
where the stationary variance 0% (oc) = 0.721023 was obtained from the analytical 4th order cumulant
neglect closure solution, Wu and Lin (1984). The simulation results are based on 32000 independent
realizations, obtained from numerical integration of the equations of motion (3-44), (3-45), (3-46), by
means of the 4th order Runge-Kutta scheme with the time step At = 418'- Generation of realizations
of a broad-band broken line zero mean Gaussian process was performed by the method of Penzien,
Clough and Penzien (1974). As seen from fig. 3-72 the computed results overestimate the probability
of failure somehow during the first period of the excitation, which provides a parallel translation of
the first-pasage time probability distribution curve obtained by path integration compared to the one
obtained by simulation. This effect can be attributed to the problem of convecting and diffusing the
probability mass, initially concentrated at Z(0) = 0, to the nodes of the mesh, with the relatively large
transition time step of Tp/4 in combination with the applied coarse 20 x 20 mesh. The first-passage
time probability density functions on fig. 3-73 were obtained by numerical differentiation, which caused

the highly irregular behaviour.

The general conclusion from this example is that path integration methods are useful both for stochastic
response problems and for reliablity problems of SDOF non-linear oscillators. For stochastic response
problems very coarse meshes may be used, whereas a somewhat finer mesh should be used in reliability
problems. The main shortcoming of path integration methods is the rapid growth of the cpu time for
problems of higher dimension than 2. According to Naess and Johnsen {(1991) the cpu time for the
path integration method applied by them easily runs up to many hours on a work station (Dec 3100)
for 3-dimensional problems. Hence supercomputing (parallel computing) becomes nescessary at even

higher dimensions.

3.4.2 Path integration methods for systems driven by processes with jumps

In this section attention will be restricted to systems driven by a scalar generating
source process with jumps {V(t),t € [to, oo[}.

Initially, the case of a system driven by a scalar compound Poisson process is considered.
Let q(;) (z,t | Zx,ti) be the transition probability density function of the state vector
from the state Z(fg) = zx on condition of exact n impulse arrivals in the time interval
[ti,t], and let Pn}(n,t,t;) denote the probability function of exactly » arrivals in this
time interval as given by (3-8). Using the total probability theorem the unconditional
transition probability density function can then be written as

9z} (2,1 | 2k, ti) = ZP{N}(n,t,tf)qi'z')}(z,t | Zk, t:) (3 — 400)

n=0

The 1st term in the sum (3-400) is identical to the 1st term in the modified closure
(3-229). q?]z)}(z,t | Zx,1;) describes the purely deterministic drift (eigenvibration) of the
system from the state Z(t;) = z, since the states are conditioned on no impulse arrival.
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Then qioz)}(z,t | zk,t:) is given as

g (2t |2, te) = ] 6(s; - ds(tlze, ) (3 — 401)

=1

where d(t|zg,t;) with the components d;(t|zx, ;) denotes the deterministic drift motion
of the system from the initial state z4 at the time ¢;. The vector d(t|zk,t;) is the solution
of the initial value problem originating from (3-119)

0
ad(tlzk,ti) = c(d(t|zk,t:),t) , t>t; , d(tize,t) =z (3 — 402)

For linear systems (3-402) may be solved analytically, depending on whether a funda-
mental basis of solutions can be found. This is the case of linear vibratory systems,
for which modal decoupling can be used. For other linear systems and for non-linear
systems (3-402) must be solved numerically.

The remaining conditional transition probability density functions, qig)](z,t | 2g,%),
n > 1, are all continuous functions without delta spikes, and of the same order of
magnitude, of. (3-229). Since Pyny(n,t,t;) = O((u(t,-)(t - t,-))“), it follows that (3-

400) can be written as
q(zy(2,t | 2k, ti) = Po(t,t;-)q?g}(z,t | Zk,ti) +

(1= Polt, fo))qﬁ;)}(%t | Z,t:) + 0((V(ti)(t — t;‘))z) (3 —403)

where the probability of no impulse arrivals in the interval [ti, 1], Po(t,t:) = Pyn}(0,t,1;),
is given by (3-228). The asymptotic relationship (3-403) forms the basis for path inte-
gration methods for Poisson driven systems. The specific formulation of (3-403) ensures
that upon chopping the remainder, the quality of a genuine (actual) probability density
function is preserved, i.e. the integral of the function over the sample space is exactly
equal to one, for any choice of the transition time interval ¢ — ¢;. Further, it is impor-
tant to notice that the remainder depends on the magnitude of the produect »(¢;)(t — tly
rather than of the interval length ¢t — ¢; itself. Hence, truncation is permitted if

v(t)(t —t) < 1 (3 — 404)

. For any finite transition interval (3-404) is more easily fulfilled for sparse pulse trains, for
which v(t;)Ty < 1, Tp being the fundamental eigenperiod of the corresponding linear
structure, than for dense pulse trains. Hence, in contrast to the moment equations
method of section 3.3.3 and the Petrov-Galerkin finite element formulation of section
3.5, which both work well for rather dense pulse trains and run into numerical instability
for sparse pulses, the indicated path integration method is designed to work the other
way around in providing the best results for sparse pulses.
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On the other hand the coarseness of the mesh sets lower bounds for the admissibility of
the transition time interval, £ —¢;. This is so, because the distribution of the convected
probability masses to the adjacent nodes in the mesh cannot be done sufficiently accu-
rately, if t — t; is too small. Let ¢*) = |c(zk, ;)| be the magnitude of the convection
vector at the centre of the kth cell, and let Az(¥) be the diameter of the cell in the
direction of ¢(zy,t;). It is then required that a convection at least of the length Az(F)

should take place during the interval ¢ — ¢; in all cells, i.e.

c(k)(t )

Pt —t)>A:0 = B =

where C'%) is the local Courant number for the kth cell. Numerical instability and

inaccurate results occur if C(¥) becomes too large in some part of the mesh. For a
SDOF system c(*) ~ Az in the most critical cells close to origo. Then C(¥) ~ Ai[;;t" o

_x;n:iiat_) ~ wy(t — t;) follows. Hence, the followmg lower bound for the transition time
interval is obtained from (3-405), ¢t —¢; > ;2 W. Therefore, a decrease in the transition

time interval must be accompanied by a finer mesh to guarantee stability and higher

accuracy.

At the determination of qglz)}(z,t | Zk,t:) the state is conditioned on exactly one im-
pulse arrival in [t;,t[. The arrival time (first-passage time), T}, of this impulse has the
probability density function, e.g. Osaki (1992)

fry(r) = —t—& , T E [t (3 — 406)
[ v(u)du

t;

Assume that the impulse arrives at the time T} = 7 and has the strength P = p. Up to
the time 7 the system has been performing eigenvibrations from the initial state z; at
the time ¢;. Then the state at the time 7~ is given by Z(7~) = d(7|zk, ;). At the time 7
a discontinuous change of the state of magnitude AZ(7) = e(d(r|zk, t;), 7)p takes place,
so the state at the time 7+ becomes Z(71) = d(r|zk, t;) +e(d(7 |2k, t;), 7)p, cf. (3-165).
e(Z(r),) signifies the diffusion vector of the system, cf. (3-119). Succeedingly, during
the time interval |7, {] the system continues performing eigenvibrations with these initial
values, so the state at the time £ is

2i(t) = di(t]d(r]z, ;) + e(d(7lze, t), )P, 7) (3 — 407)

Joint statistical moments conditioned on the state z; at the time ¢; and on exactly one
impulse can then be evaluated from

E(Zi(t) - Zi,(t) | 2,1, N(t) = 1] =

/ / H d;; ’d(i‘fm‘c, t;) + e(d(r|z«, ti), 7)p, T)fp(p)le (7)dpdT (3 —408)
3=1
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At the derivation of (3-408), the mutual statistical independence of T} and P has been
taken into account. In the same manner the joint characteristic function is obtained as,

of. (2-155)
Mzy(8,t | 2k, t:, N(t) = 1) = E[exp (167Z(t)) | 24, t;, N(t) = 1] =

] / exp( Zed(\d rlzi, i) +e(d(rlzk, t:), )P, ))fp@)fmr)dpd:r(s 409)

t; —o0

The results (3-408), (3-409) were derived by Nielsen and Iwankiewicz (1996). Next,
the function q&)}(z,t | 2x,ti) can be obtained as an inverse Fourier transform of (4-

409). Since this can be performed numerically since no severe singularities are present,
the problem has, in principle, been solved. However, the indicated method calls for
an enormous numerical effort. Alternatively, ¢ (1 ) (z,t | zg,t;) can be represented as
a Gram-Charlier or Edgeworth expansion, see (2 158). Again, extensive computa-
tions are necessary, and only approximate solutions are obtained, due to the manda-
tory truncation of this expansion. Instead, two numerically stable methods, derived
by Koéylioglu, Nielsen and Iwankiewicz (1995) and Koyluoglu, Nielsen and Cakmak
(1995), respectively, are presented below, which requires much less numerical effort.
The methods will be explained by a 2-dimensional state vector with the expanding do-
main [—4ox(t),40x(t)] x [~40%(t),40%(t)] as shown in fig. 3-T4. ox(t) and o4(t)
signify the nonstationary standard deviations of the corresponding linear oscillator ex-
posed to a comparable Gaussian white noise, which can be determined analytically. For
the sake of simplicity the method will be explained for the case where the diffusion
vector e is assumed to be state- and time-independent. However the method is equally

valid if this is not so.

x
A
:Ax /-40‘,-('0

~—d(tld(T+40 % |2k.ti) +ep, 7+4 =)

T
..... mnC t
/| Ee> Cd(tlziet) '
—40,” “doy
e » N d(tlz )
k

d(r+57 |2y, t;) +ep

N\
40)(,0

Fig. 3-74: Path integration of compound Poisson process driven system. Method 1:
Discretization of phase plane, and convection and diffusion of probability mass.




208

On condition of being in node zj at the time ¢;, the transition probability Qi of being in
node j at the time ¢ can now be evaluated as shown in fig. 3-74. The discrete probability
mass ’iTil‘) attached to node z; at the time ¢; is partly convected to d(t|zx,?;) with the
probability Py = Py(t,t;) on condition that no impulses arrive in |¢;,t]. The rest of
the probability mass vr,(:)( 1 — Py) is continuously distributed according to the transition
probability density q?z)}(z,t | z,t;) of exactly one pulse arrival in |¢;,]. Numerically,
this is attained by dividing the time interval [¢;, ] into a number of subintervals of the
length A7. In the subinterval [7, 74+ A7] a probability mass of magnitude le(T)AT'?TS) is
lumped at the time 7 + -;—A'r, and succeedingly diffused and lumped along the direction
e according to the probability density function fp(p), see fig. 3-74. At the position
d(7 + 3 ATz, t;) + ep a probability mass of magnitude fr, (7)A7 fp(p)Ap(1— Py )w,(ci) is
lumped. Next, this probability mass is convected to the position d (t|d(7 + 3 A7 |zk, ;) +
ep, T+ %Ar). Finally, at the time ¢ all the convected probability masses are distributed
to the 4 neighbouring nodal points, weighted according to their distances.

The second method is based on the following identity, valid for any 7 €]t;, ]
d(t|d(r|zk, ti),7) = d(t|zk, 1) (3 —410)

The left- and right-hand sides of (3-410) just state that the oscillator arrives at the same
position at the time ¢, if it starts on the very same trajectory at the position d(r |z, ti)
at the time 7 or at the position d(tilzk,t,-) = z; at the time t;. From (3-410) the
following Taylor expansion prevails for Z(t) given by (3-407)

ad(tld(ﬂzk,t,’),‘r)

Z(t) = d(t|d(T[zk,t.‘)+eP, = d(t|d(7|zk,t:),7) + a7 eP i =
k
d(tlze, t:) + P (tzk, t:) P + dP (tzx, t:) P* + - -- (3 —411)
where
d(l)(tlzk,ti) - 3d(;zk,t-‘)e

Z )

dO (t]zs, t;) = LeT LUt o (3 —412)
k0T

Equation (3-411) is basically a Taylor expansion in the impulse magnitude P. Notice
that the random time 7 entering the left-hand side of (3-411) has totally disappeared
at the right-hand side. Instead the unknown Taylor expansion vectors d(1}, d(® ...
appear. Differential equations for these quantities can be derived upon multiple partial
differentiations of (3-403) with respect to zx and contractions with the vector e
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8 ;od(t|zg,t;)y _ Oc d(t!n,te),t) ad(t|z ,t;) 8d(ti |z, t:) _ )
né?( (Blzzf )) - ( oz T B:f ? az: =k =
deld(t|zz,t;),
24Dz, t) = 2D G041, 1) | dO(Gla, 1) = e
f (3 —413)

dc|d(t|zk,t;),t
2 4@y, 1) = 20D garyyy, 4y 4

8%c(d i)t
%d(”T(ﬂzk,tdmd“)(tlzk,t,») . dD(t]zk, 1) =0

dzozT

where the partial differentiation with respect to the forward state z concerns the drift
vector c(z,t). Relationships (3-402), (3-413) represent a coupled system of n + n +
n + -+ non-linear 1st order differential equations for the determination of d(t|z,1;),
d(t|zk,t;), d®(t|zk,ti),. ... The indicated method was given by Kéyliioglu, Nielsen
and Cakmak (1995) in a somewhat more involved outline. Rather than formulating the
differential equations for dV)(t|zy,t;), d®)(t|z¢,;), ... directly as shown in (3-413), dif-
ferential equations were specified for the gradients £Td(t|3k,ti), %ﬁ*d(tle,ti), T
Taking the symmetry into consideration there will be n+ n? + Ln®+ ... such different
coupled differential equations. Hence, the specification (3-413) represents a signifi-
cant saving if n is of even moderate magnitude. Even so the original formulation by
Koylioglu, Nielsen and Qakmak (1995) proved extremely advantageous compared to
Monte Carlo simulation results as indicated below in example 3-13.

For a linear system the drift vector is a linear function of the state vector, so %rc( z,t) =

0. Due to the homogeneous initial values it then follows from (3-413) that dm(tin |zk,t;) =
0. Generally, it can be shown that d(™)(tg|zx,0) = 0, N > 1, in this case. Hence, the
Taylor expansion (3-411) becomes linear in P for linear systems. At small transition
time intervals ¢(Z(t),t) can be approximated by a linear function as stated by (3-385).
Since this approach works well even for rather large time steps in case of white noise
driven systems, it will also do so in the present case of compound Poisson driven systems.
Consequently, it can be concluded that one can chop all terms higher than the 1st power
in P in the expansion (3-411) with pretty good accuracy. Notice, that this approxima-
tion merely concerns the drift vector, and puts no restrictions on the magnitudes of the

impulse strength P, as may appear at first sight.
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Fig. 3-75: Path integration of compound Poisson process driven system. Method 2:
Convection and lumping of probability mass.

As an approximation assuming the linear expansion in P in (3-411) even for non-linear
systems, the convection and lumping of probability mass can be explained in the fol-
lowing way, see fig. 3-75. The probability mass wi") at the node z; at the time {; is
convected to the position d(#|zk, ;) according to the Oth order term in (3-411), where a
probability mass of magnitude w,(:)PD(t, t;) is lumped. As specified by the 1st order term
in (3-411) the remaining probability mass Wi{) (1= Po(t,t:)) is distributed along the line
with the direction d)(t|z,t;) according to the probability density function fe(p) of
the impulse intensity P. At the position d(t|zx,t;) + d*(¢|zx,t;)p a probability mass
of magnitude wii) (1- Po(t,t:)) fr(p)Ap is then lumped as sketched in fig. 3-75. Again,
all lumped probability masses are redistributed to the 4 neighbouring nodal points,
weighted according to their distances.

Example 3-13: Duffing oscillator subjected to compound Poisson process.
Methods 1 and 2.

The Duffing oscillator (3-44), (3-45), (3-46) is considered, when driven by a stationary compound
Poisson process.

For Method 1 the following system data are used

m=10 , w=10 , (=001 , =02 (3 — 414)

The impulse strength of the compound Poisson process is assumed to be zero-mean normally distributed,
2

P ~ N(O,azp) with the variance chosen, so T::?;r? = 1, corresponding to the stationary standard
0

deviations ox,¢ = O%o0 = 1 of a linear oscillator exposed to an equivalent Gaussian white noise.

— 0.02x 0.2r

Three values of v are considered, namely v = 0.0lwy = To ¥V = 0.1wy = o V= 1.0wg =
,21.—’;, which may be categorized as the cases of sparse, medium level and dense pulse arrival rates,
respectively. Basically, the path integration has been performed by a uniform 20 x 20 mesh with the
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limits [—40x,0,40x,0] X [~40 5,40 ;]. However, in the case of v = 0.0lwp = D02x

peaked distributions occur at the origin, a non-uniform 25 x 25 mesh has been applied with a 4 times
finer spacing close to origin. In establishing the transition probability matrix, all convection problems
have been solved numerically, using a 4th order Runge-Kutta scheme. The transition time interval At
is passed by 3 uniformly distributed steps for diffusion, i.e. Ar = %At, see fig. 3-T4. An ensemble of
100000 Monte Carlo samples of the state vector is generated in order to estimate the stationary joint
probability density of X (¢) and X (¢) by the same way as explained in Example 3-8. Stationarity of the
response is assumed after 5075, at which time the stationary distributions have been sampled. In all
cases, simulation results for the pdfs have been obtained with the same class-width as applied in the

path integration scheme.

, Where very

In figs. 3-76 - 3-79 are shown the stationary marginal probability density functions of the displacement
and the velocity for the case of sparse pulse arrivals ¥ = 0.01wp. To emphasize on the tails the results
have been indicated both in linear and semi-logarithmic scale. Transition is passed with the relatively
large transition time interval At = Tp, so vAt = 0.02x. The stationary joint probability density
functions have been obtained from (3-383) with start in the origin using 100 iterations until stationarity.
As seen the probability density functions reveal pronounced peaks at the origin. This is because the
vibrations for sparse pulse arrivals almost extinct between the impulses as it can be observed in fig.
2-24. The oscillator is then in a position close to the origin for a large part of time, and hence there is
! a high probability density for the oscillator to be there. Since the dissipation of impulses is increased
at large values of ¢, the peaks will even increase as the damping ratio is increased. Actually, the
controlling parameter for the peakedness turns out to be the fraction -C%Q In order to catch the peaks,
results for the finer 25 x 25 mesh have also been obtained as explained above. The stationary standard
deviations obtained from path integration are ox(oo) = 0.787 and o 4 (c0) = 0.958, respectively. The
corresponding Monte Carlo simulation results are o x (co) = 0.799 and o4 (c0) = 0.999. Especially for
the fine mesh high accuracy is achieved, when compared to Monte Carlo simulations.

Figs. 3-80 - 3-83 show the correponding results for the case of medium level pulse arrivals v = 0.1wy.

The transition time interval is still kept at At = Ty, so vAt = 0.2w. The stationary standard deviations

obtained from path integration are ox(cc) = 0.868 and ox (00) = 1.022, respectively, whereas the

corresponding Monte Carlo simulation results are ox(cc) = 0.842 and oy (c0) = 0.999. As seen

from the results high accuracy compared to Monte Carlo simulation is obtained even in this case with
} vAt = 0.27, which may be considered the outermost limit for the theory.

In figs. 3-84 - 3-87 the results for the case of dense pulse arrivals ¥ = 1.0wy are shown. Under the
restriction that v E[P?] is kept constant at the value 4(wim? the response then resembles that of a
Gaussian white noise driven system. For this reason the analytical solution for the white noise case has
; also been shown. Stationarity was achieved after 50 iterations of (3-383). Even though the transition
time was reduced to l;ﬂ the method is now performing rather poor. Of course this i1s due to fact
that the restriction on the method, (3-404), is no longer fulfilled with the present value of vAt = .
The exact standard deviations for the white noise case are ox(c0) = 0.851 and oy (co0) = 1.000.
The corresponding results for Monte Carlo simulation are ox (co) = 0.852 and ¢4 (co0) = 0.997. The
conclusion is that for dense pulse arrivals an equivalent white noise approximation is doing better than

the indicated path integration method.
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Fig. 3-76: Method 1. Pdf of displacement, fx (z).
Linear scale. v = 0.01wg, At = Tp. Fine mesh:

(- - -) simulation, (—) path integration. Uniform
mesh: (-----) simulation, (---) path integration.
Koyltioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-78: Method 1. Pdf of velocity, fy(z).
Linear scale. v = 0.01lwg, At = Tp. Fine mesh:
(- - -) simulation, (—) path integration. Uniform
mesh: (-----) simulation, (- ) path integration.
Koylioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-80: Method 1. Pdf of displacement, fx (z).
Linear scale. v = 0.1wg, At = Ty. Uniform

mesh: (- - -) simulation, (—) path integration.
Koyltoglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-77: Method 1. Pdf of displacement, fx(z).
Semi-log scale. v = 0.01wg, At = Tp. Fine mesh:
(- - -) simulation, (—) path integration. Uniform
mesh: (-----) simulation, (-+-) path integration.
Koylioglu, Nielsen and Iwankiewicz (1995). \
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Fig. 3-79: Method 1. Pdf of velocity, fy ().

Semi-log scale. v = 0.01wy, At = Ty. Fine mesh:

(- - -) simulation, (—) path integration. Uniform

mesh: (---+-) simulation, (- ) path integration.
Koyliioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-81: Method 1. Pdf of displacement, fx (z).

Semi-log scale. v = 0.1wy, At = Ty. Uniform

mesh: (- - -) simulation, (—) path integration.
Koylioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-82: Method 1. Pdf of velocity, fy(£).
Linear scale. ¥ = 0.1wg, At = Tg. Uniform

mesh: (- - -) simulation, (—) path integration.

Koylioglu, Nielsen and Iwankiewicz (1995).

06

05|

e o
w -

ox,ofx(z)

01t

I/G’X,a

Fig. 3-84: Method 1. Pdf of displacement, fx (z).

Linear scale. ¥ = 1.0wp, At = Izﬂ Uniform
mesh: (- - -) simulation, (—) path integration,
(- -) exact solution to white noise excitation.
Koyliioglu, Nielsen and Iwankiewicz (1995).

z/o X0
Fig. 3-86: Method 1. Pdf of velocity, fy ().
Linear scale. v = 1.0wp, At = 229- Uniform
mesh: (- - -) simulation, (—) path integration,

(-++) exact solution to white noise excitation.
Koyliioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-83: Method 1. Pdf of velocity, fx ().
Semi-log scale. ¥ = 0.1wg, At = T. Uniform
mesh: (- - -) simulation, (—-) path integration.
Koyliuoglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-85: Method 1. Pdf of displacement, fx (z).
Semi-log scale. v = 1.0wq, At = ’1—;“- Uniform
mesh: (- - -) simulation, (—-) path integration,
(+--) exact solution to white noise excitation,
Koylioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-87: Method 1. Pdf of velocity, fy ().

Semi-log scale. v = 1.0wg, At = %9-. Uniform
mesh: (- - -) simulation, (—) path integration,
(-++) exact solution to white noise excitation.

Koyliioglu, Nielsen and Iwankiewicz (1995).
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Figs. 3-88 and 3-89 show the time dependence of the reliability function R(t[0) = 1 — Fr, (t|0) and the
first-passage time probabilty density function fr, (t]0) for the case of sparse pulse arrivals v = 0.01wyp.
The considered first-passage problem has symmetrically constant double barriers, b = —a = 1.00x
with deterministic start problem in Z(0) = 0. Results obtained by path integration with a transition
time interval At = 229- have been compared to those obtained by Monte Carlo simulations. The
simulation results are based on 100000 independent sample functions obtained by numerical integration
with the average time step %g-, by means of a 4th order Runge-Kutta scheme. The first-passage time
probability density functions for path integration and Monte Carlo simulation have been obtained by
numerical differentiation of the reliability function. As is the case for the white noise case, cf. figs. 3-72
- 3-73, the path integration method underestimates the probability of failure during the first periods
of excitation, because of the large transition time interval, made necessary by the coarseness of the

applied uniform 20 x 20 mesh.

Figs. 3-90 and 3-91 show the corresponding results for the case of medium level pulse arrivals, » = 0.1wg.
The obtained results have also been compared to those obtained by approximating the excitation process
with an equivalent Gaussian white noise excitation, which was obtained upon solving the boundary
value problem (3-138), using a Petrov-Galerkin variational formulation as explained in Section 3.5. As
seen the results for v = 0.1wy deviate significantly from those for the white noise case, whereas the
path integration results are in much better agreement with Monte Carlo simulation.

Figs. 3-92 - 3-93 show the reliability function and first-passage time probability density function for a
single constant barrier problem problem with stationary start in the safe domain. The barrier level is
b = 1.00x,. The initial distribution 7{%) was obtained from the analytical solution for the Gaussian
white noise case, which was lumped at the nodes of the mesh, and normalized, so the probability mass
within the safe domain amounts to 1. The simulation results were obtained by ergodic sampling based
on (2-31) with 10000 out-crossing events. As seen, the staircase character of the first-passage time
probability density function during the initial stages of first-passages cannot be caught by the path
integration results. Nevertheless, the correct limiting exponential decay, corresponding to a discrete
eigen-spectrum of the backward Kolmogorov-Feller operator with absorbing exit boundaries, cf. (2-117),

is clearly captured by the path integration method.

Figs. 3-94 and 3-95 show the corresponding solutions for the case of medium level arrival rate of
impulses, v = 0.1wg. Notice that the transition time interval has been reduced to At = Z.ﬂ;”- Again the
correct limiting decay rate is captured. Hence, the method provides an alternative to the results (2-162),
(2-166) for the determination of the lowest eigenvalue of the backward or forward Kolmogorov-Feller
operator with absorbing exit or entrance boundaries, respectively.

For Method 2 a slightly larger damping ratio of { = 0.03 has been used, resulting in the system data
specified in (3-395). The impulse strength of the compound Poisson process is still assumed to be zero-

2
mean normally distributed, P ~ N(0, o-f,), with the variance chosen, so i_(g‘% = 1. The mean arrival
0

rates of impulses are chosen as v = %wo. Then the fraction 5_:41 is approximately the same as for the
system in figs. 3-76 - 3-79, and markedly peaked behaviour should be expected. In establishing the
transitional probability matrix, the coupled differential equations (3-402), (3-413) have been solved by a
4th order Runge-Kutta scheme. The path integration is performed by a uniform 20 x 20 mesh with the
limits [—~40x,0,40x,0] X[~40 % 4, 40’2'0], and the transition time interval is taken as At = Ty. Solutions
for the stationary marginal pdfs of X (co) and X(c0) have been obtained both by iteration of (3-383)
with start in the origin using 50 iterations until stationarity, and by the eigenvector solution (3-384).
Monte Carlo simulation results have been based on an ensemble of 100000 Monte Carlo realizations
of X(t) and X(t) Stationarity of the response is assumed after 507, at which time the stationary
distributions have been sampled, using the same class-width as applied in the path integration scheme.
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Fig. 3-88: Method 1. Reliability function, R(¢|0).
Deterministic start, double barrier problem.
b=—-a=0xp,v=001uw, At = %‘l Uniform
mesh: (- - -) simulation, (—) path integration.
Koylioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-90: Method 1. Reliability function, R(¢|0).
Deterministic start, double barrier problem.
b=—a=oxg, v=01uw, At = 1;9- Uniform
mesh: (- - -) simulation, (—) path integration,
mesh: (- -:) white noise excitation.

Koyluoglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-92: Method 1. Reliability function, R(#|&y).

Stationary start, single barrier problem.
b=¢x0, v =001lwp, At = Ty. Uniform

mesh: (- - -) simulation, (—) path integration.
Koylioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-89: Method 1. First-passage time pdf, fr, (|0).
Deterministic start, double barrier problem.
b=—-a=o0x,, v=00lwy, At = —’1-;’1 Uniform
mesh: (- - -) simulation, (—) path integration.
Koylioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-91: Method 1. First-passage time pdf, fr, (¢|0).
Deterministic start, double barrier problem.
b=—-a=o0cx,0,v=01w, At= 22'1 Uniform

mesh: (- - -) simulation, (—) path integration,
mesh: (--+) white noise excitation.

Koylioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-93: Method 1. First-passage time pdf, fr, (¢|£).
Stationary start, single barrier problem.

b=o0xp, v =0.0lwy, At = Tj. Uniform

mesh: (- - -) simulation, (—) path integration.
Koylioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-94: Method 1. Reliability function, R(t|&p).
Stationary start, single barrier problem.
b=ox,0,v=01w, At= Iz‘l Uniform

mesh: (- - -) simulation, (—) path integration.
Koyliioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-96: Method 2. Pdf of displacement, fx(z).
Linear scale. v = -o;r—lwa, At = Ty. Uniform

mesh: (—) simulation, ¢ path integration, iteration,
(o) path integration, eigenvector solution.
Koyliioglu, Nielsen and Cakmak (1995).
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Fig. 3-98: Method 2. Pdf of velocity, fy ().
Linear scale. v = 0—1'\-]_""’0’ At = Tp. Uniform
mesh: (—-) simulation, e path integration, iteration,
(o) path integration, eigenvector solution.
Koylioglu, Nielsen and Gakmak (1995).

0 5 0 15 25 30 35 0

20
t/Ty
Fig. 3-95: Method 1. First-passage time pdf, fr, (¢|&).
Stationary start, single barrier problem.
b=o0ox0, v =01w, At = Izi Uniform
mesh: (- - -) simulation, (—) path integration.
Koylioglu, Nielsen and Iwankiewicz (1995).
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Fig. 3-97: Method 2. Pdf of displacement, fx (z).
Semi-log scale. v = 0—,’,1600, At = Tp. Uniform
mesh: (—) simulation, e path integration, iteration,
(o) path integration, eigenvector solution.

Koylioglu, Nielsen and Cakmak (1995).
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Fig. 3-99: Method 2. Pdf of velocity, f5(z).
0—1‘1_-3-w0, At = Ty. Uniform
mesh: (—) simulation, e path integration, iteration,
{o) path integration, eigenvector solution.
Koyliioglu, Nielsen and Gakmak (1995).
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In figs. 3-96 - 3-99 the obtained stationary marginal probability density functions of the displacement
and the velocity in linear and semi-logarithmic scale are shown. Upon comparison with the correspond-
ing results in figs. 3-76 - 3-79 obtained by Method 1 with a uniform mesh it is concluded that the
present distribution and lumping scheme is performing at least equally well. At the same time the
scheme is significantly simpler and faster to use. The necessary computing times for the path inte-
gration method based on iteration, on eigenvector solution and for the Monte Carlo simulation were
37s, 31s, and 13950s, respectively, which concludes that path integration offers extreme computational
advantages over the Monte Carlo simulation method.

The main conclusion to be drawn from this example is that both the convection and diffusion schemes
explained in figs. 3-74 and 3-75 provide accurate estimates of the probability density functions, even
with the mesh as coarse as 20 x 20. In reliability applications, the probabilty of failure is underestimated
during the initial periods of first-passages with such a mesh, and a finer mesh should be applied. How-
ever, even with the coarse mesh the methods are capable of capturing the correct limiting exponential
decay of the reliability function and the first-passage time probability density functions.

The path integration schemes of Method 1 and Method 2 are both based on the asymptotic expansion
(3-403), which is valid under the restriction (3-404). For the present example of a Duffing oscillator with
moderate non-linearity parameter this criterion turns out to be fulfilled for v < 0.1wp. As mentioned
in Example 3-8, moment methods work at best at the other extreme of very dense pulse arrivals. Upon
using the modified cumulant neglect closure schemes (3-234), (3-235), devised for closure at the order
N = 4, it was possible to extend the applicability of moment methods for the present example to mean
arrival rates down to v > 0.05wg. Hence the whole range of mean arrival rates has been covered by the

two methods in combination.

The differential equations for a dynamic system driven by Lévy a-stable motion is given
by (3-119) with {V(t),t € [to, oo[} signifying a Lévy a-stable motion. During the interval
[r,7 + dr[,7 €]ti, t[, an increment (impulse) of magnitude dV(7) is assumed to occur.
With the same approximation as assumed in Method 2 for compound Poisson process
driven systems, the state vector at the time ¢ from the impulse dV(7) can then be
written, of. (3-411), Z(t) ~ d(t|zk,t;) + A (¢|zx,t;)dV (7). Since, Z(t) is independent
of 7 and depends linearly on dV/(7), the state vector from all such differential impulses
becomes

Z(t) ~ d(t|zr, t:)+d D (t|ze, t)AV (L), AV(L) = /dV(T) = V(t)-V(t;)(3—415)

favey(p)

Fig. 3-100: Path integration of compound Lévy a-stable motion driven system. Con-
vection and lumping of probability mass.
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AV(t;) in (3-415) is an a-stable random variable AV (t;) ~ Sq((aAt)!/*,8,0), cf. (3-
23). According to (3-415) the probability mass wﬁu) at the node z; at the time ¢; is
then convected to the position d(t|zx,t;), where it is diffused along the direction of
d)(t|zk,t;), according to the probability density function fav(s)(p). At the position
d(t|zx,t:) + A (t|zx,t;)p a probability mass of magnitude wi')fﬁv(,_.)(p)Ap is then
lumped as sketched in fig. 3-100.

As shown by (3-356) - (3-360) a system driven by an Erlang renewal process can be
reduced to an equivalent Poisson driven system at the expense of the introduction of
a number of auxiliary state variables in addition to the structural state variables X(¢),
which control that only every kth Poisson generated impulse is applied to the structure.
This suggests that the devised path integration schemes for compound Poisson driven
systems can be applied also to compound Erlang driven systems as well. However, a
modification of the convection and diffusion scheme is needed to ensure that only every
kth Poisson impulse causes a convection and diffusion in the mesh. A modification of
the Method 2 path integration scheme has been devised by Iwankiewicz and Nielsen
(1996), and will be explained in detail in what follows.

=1 (p(N(t1))=0)

N1-B) ¥

N\
N
y

-~ J=2  (P(N(ts ))=1)
/ Tr(hl:) 4 (1) =
el 7 ,

Fig. 3-101. Discretization of the state space for the case k = 2. Convection and lumping
of the probability mass.

The function p(N(t)) defined by (3-345) repeats itself periodically, attaining the value
p(N(t)) = 0 during the first k — 1 Poisson events, followed by a value p(N(t)) =1in
the kth event. To each Poisson event in the cycle a path integration mesh is defined for
convection and diffusion calculation in the discretized structural state space variables,
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so totally k such meshes should be pointed out, as illustrated in fig. 3-101 for the case
k = 2 for a 2-dimensional structural sample space.

Assume that the system at the time ¢; is in the structural state X(¢;) = x; after the
(7 — 1)th Poisson event in the sequence has occurred, j = 1,... ,k — 1. During the
interval ]t;,t] the probability mass 7r£') of being at the node xx of mesh j at the time ¢;
is convected to the position d(¢|xk,?;) according to the Oth order term in (3-411). At
this position a probability mass of magnitude W,(CZ)P(} is lumped, where Py = Py(t,t;)
signifies the probability that no Poisson impulse has occurred in )t;,t]. If j < k£ — 1 the
remaining probability mass ﬁ,(:) (1—Pp) is transferred to the succeeding mesh j+1, where
it is lumped at the same position d(¢|xx,t;). However, if j = k — 1 the probability mass
'rr,(:)(l — Py) is distributed along the line d*(¢|xk, ¢;) in the mesh j = k, according to the
probability density function fp(p) as in the original formulation of Method 2. In either
case the probability mass 71';:)(1 — Py) is attached to the succeeding mesh j + 1, because
the distribution is performed on the condition that one extra Poisson event has occured
during |¢;,¢]. If the system at the time ¢; is in the structural state X(¢;) = x; after the
(k—1)th Poisson event in the sequence has occurred, the probability mass TT,(:)PU is still
lumped at the position d(¢|xk,?;) of mesh j = k. The remaining probability mass is
transferred to mesh j = 1, where it is lumped at the position d(t|xk,?;) to start a new
sequence. As previously, all lumped probability masses are finally redistributed to the
adjacent grid points in all k¥ meshes.

As specified by (3-357) and (3-359) the total number of auxiliary state variables amounts
to k — 1, so the dimension of the state vector Z(t) of the integrated dynamic system
becomes n+k —1. Appearently, using N cells per state variable in the discretized mesh,
the number of states of the Markov chain becomes (N + 1)n+k_1‘ However, the number
of states of the described path integration scheme only amounts to k(N + l)n, ie. the
growth is linear with k rather than exponential.

Example 3-14: Duffing oscillator subjected to compound Erlang process with
k=2
The Duffing oscillator (3-44), (3-45), (3-46) is considered with the following system data

m=10 , w=10 , (=001 , £=05 (3 — 416)

The strength of the impulses is assumed to be zero-mean normally distributed, P ~ N(0, cr?,) with the
2
i o4 2 3 .
variance chosen, so ¥ TE_'%;E = 1, corresponding to the stationary standard deviationsox o = oxo =1
of a linear oscillator exposed to an equivalent Gaussian white noise. Only the case k = 2 is considered

with the following three values of k:ao

, 0.01 P 1.00 0.126
—=4010 , —=¢020 =  wvAt=< 0.251 (3 - 417)

kwo 1.00 To 0.05 0.628

The indicated values of ﬁ make comparison possible to the compound Poisson cases considered in

example 3-13. Again the indicated arrival rates may be categorized as the cases of sparse, medium level
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and dense pulse arrival rates. The corresponding transition time intervals, At, have been selected to
meet the upper bound requirement (3-404). Obviously, the lower bound % > -51;, as stated subsequent
to (3-405), is not met by the specification of At for the case of sparse pulses. Hence, rather poor results
are to be expected in this case. The path integration has been performed by a uniform 44 x 44 mesh with
the limits [-50x 0,50 x,0] ¥ [—50‘5{‘0,50‘,-{'0]. The stationary marginal pdfs of X(co) and X(oco) were
estimated from (3-383) with start in the origin of the mesh j = 1 using 60 iterations until stationarity.
Again, comparison has been made with the results obtained by Monte Carlo simulation. The stationary
marginal pdfs were obtained by ergodic sampling, using a time-series of the length 40000007}, which
was obtained by numerical integration of the equations of motions by means of a 4th order Runge-
Kutta scheme with the time-step %1. The generation of the underlying compound Erlang process,
and the succeeding numerical integration procedure, was performed as explained in example 3-11. The
sampling was performed with the same class-width as applied in the path integration scheme at the
end of each integration time-step. Sampling was not initiated until the elapse of an initial transient

phase of length 200Tp.

o x (o) o 3 (c0)
= A At
ka TQ
sim. num. sim. num.
0.01 1.00 0.69938 0.70703 0.99768 1.00295
0.10 0.20 0.75587 0.79073 1.00138 1.06577
1.00 0.05 0.76174 0.64546 1.00151 0.80115

Table 3.5: Stationary standard deviations ox (00), ¢ (o0) of displacement
and velocity response as a function of 7=:_u

In table 3.5 the predictions of the stationary standard deviations obtained from path integration in
comparison to those of Monte Carlo simulation are shown. As seen, the results are excellent in the
case of sparse pulses ﬁ; = 0.01, they are still quite good in the case of medium level pulse arrivals,
'k!:_o = 0.10, but they are not satisfactory for 1:—0 = 1.00.

Below, in figs. 3-102 — 3-105 the stationary marginal probability density functions of the displacement
and the velocity for the case of sparse pulse arrivals, -;:—D = 0.01 are shown, with the non-dimensional
transition time interval ?‘T‘ = 1.0. To emphasize on the tails, the results have been indicated both in
linear and semi-logarithmic scale. As seen, the agreement with Monte Carlo simulation is very good.
Similarly to the comparable Poisson driven system in example 3-13 the marginal pdfs reveal pronounced

peaks at the origin in case of sparse pulse arrivals.

Figs. 3-106 and 3-107 show the prediction of path integration method in semi-logarithmic scale for
the case k;g = 0.01 for various values of the non-dimensional transition time interval %—0‘. The results

for %01 = 5.0 are not very good, because the upper bound criterion (3-404) has been violated in this

case. The case %—: = 0.2, which is close to the lower bound for allowable transition time intervals, still

provides good results. However, the best results are obtained for %—0‘ = 1.0, which is well within the

admissible interval for the transition time interval.

Figs. 3-108 - 3-111 show the corresponding results for the stationary marginal probability density
functions of the displacement and the velocity for the case of medium level pulse arrivals ﬁ = 0,1

with the non-dimensional transition time interval —%)1 = 0.2, which is close to the acceptable lower limit
for the transition time interval. As expected the results are not so good as those of the previous case

of sparse impulses.
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Fig. 3-102: Stationary pdf of displacement, fx(z). Fig. 3-103: Stationary pdf of displacement, fx (z).
Linear scale. k = 2, ﬁ = 0.01, %}—‘ = 1.0. Uni- Semi-log scale. k = 2, i’- = 0.01wyg, ?—: = 1.0. Uni-
form mesh: (—) simulation, (- - -) path integration. form mesh: (—) simulation, (- - -) path integration.
Iwankiewicz and Nielsen (1996). Iwankiewicz and Nielsen (1996).
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Fig. 3-104: Stationary pdf of velocity, fy(z). Fig. 3-105: Stationary pdf of velocity, Iy (%),
I Linear scale. k = 2, ﬁ = 0.01, %—; = 1.0. Uni- Semi-log scale. k=2, £ = 0.01wyp, %—D' = 1.0. Uni-
| form mesh: (—) simulation, (- - -) path integration. form mesh: (—-) simulation, (- - -) path integration.
‘ Iwankiewicz and Nielsen (1996). Iwankiewicz and Nielsen (1996).
101 F T T T I T T T
; 0
10" F i
' %l ]
~— 10 3 3
S ;
s i :
5 10_25' e
10'3 I 1 1 1 1 1 3
-4 -3 -2 -1 0 1 2 3 4

zfox,0

Fig. 3-106: Dependence of path integration results on the length of transition time interval At.

Stationary pdf of displacement, fx(z). Semi-log scale. k = 2, FEJE = 0.01, uniform mesh.

(—): simulation, (---): & =50, (--+): %—0‘ =1.0, (---) -%0“1 = 0.2. Iwankiewicz and Nielsen (1996).
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Fig. 3-107: Dependence of path integration results on the length of transition time interval At.
Stationary pdf of velocity, fy (). Semi-log scale. k = 2, F:ﬁ = 0.01, uniform mesh.

(—): simulation, (---): %—; =5.0, () %;t- =1.0, (---) ‘—T% =0.2.

Iwankiewicz and Nielsen (1996).
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Fig. 3-108: Stationary pdf of displacement, fx(z).  Fig. 3-109: Stationary pdf of displacement, fx (z).

Linear scale. k =2, == = 0.1, %—: =0.2. Uni- Semi-log scale. k = 2, 7:-5—0 =0.1, -?,—; = 0.2. Uni-
form mesh: (—) simulation, (- - -) path integration. form mesh: (—) simulation, (- - -) path integration.
Iwankiewicz and Nielsen (1996). Iwankiewicz and Nielsen (1996).
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Fig. 3-110: Stationary pdf of velocity, fy (z). Fig. 3-111: Stationary pdf of velocity, fy ().
Linear scale. k = 2, vag =0.1, %—: = 0.2. Uni- Semi-log scale. k = 2, -k:—o =01, -,1‘-‘% = 0.2. Uni-

form mesh: (—) simulation, (- - -) path integration. form mesh: (—) simulation, (- - -) path integration.
Iwankiewicz and Nielsen (1996). Iwankiewicz and Nielsen (1996).
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Fig. 3-112: Dependence of path integration results on the length of transition time interval At.
Stationary pdf of displacement, fx (z). Semi-log scale. k = 2, Tc":?},' = 0.1, uniform mesh.
. . . At _ . At _ . At _
(—): simulation, (---): 7*=1.0, () Fr =02, () 7==01L
Iwankiewicz and Nielsen (1996).
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Fig. 3-113: Dependence of path integration results on the length of transition time interval At.
Stationary pdf of velocity, fy (2). Semi-log scale. k = 2, -',;‘—':; = 0.1, uniform mesh.
(—): simulation, (---): %ﬂi =10, () éf =02, (---) #—; = 0il,
Iwankiewicz and Nielsen (1996).
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Fig. 3-114: Stationary pdf of displacement, fx (z).
Linear scale. k = 2, t%— = 1.0, % = 0.05. Uni-

0 o .
form mesh: (—-) simulation, (- - -) path integration.

Iwankiewicz and Nielsen (1996).
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Fig. 3-115: Stationary pdf of displacement, fx (z).
Semi-log scale. k = 2, -k—”@- = 1.0, -,IA,—: = 0.05. Uni-
form mesh: (—) simulation, (- - -) path integration.
Iwankiewicz and Nielsen (1996).
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Fig. 3-116: Stationary pdf of velocity, f; (). Fig. 3-117: Stationary pdf of velocity, fy(z).
Linear scale. k =2, % = 1.0, -,%-‘- = 0.05. Uni- Semi-log scale. k = 2, ﬁ = 1.0, —%;-"- = 0.05. Uni-
form mesh: (—-) simulation, (- - -) path integration. form mesh: (—-) simulation, (- - -) path integration.
Iwankiewicz and Nielsen (1996). Iwankiewicz and Nielsen (1996).
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Fig. 3-118: Dependence of path integration results on the length of transition time interval At.
Stationary pdf of displacement, fx (z). Semi-log scale. k = 2, 'k_:_u = 1.0, uniform mesh.
: : . At _ . At _ . Ar
(—): simulation, _ (---): BL=002 () §=01 (---): =005
Iwankiewicz and Nielsen (1996).
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Fig. 3-119: Dependence of path integration results on the length of transition time interval At.
Stationary pdf of velocity, fy (£). Semi-log scale. k = 2, 'E:;_D = 1.0, uniform mesh.
(—): simulation, (- --): %: =002, (---) %)5 =0.1, (---): -?-,0—' = 0.05.
Iwankiewicz and Nielsen (1996).
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Figs. 3-112 and 3-113 show the dependence of the pé.th integration results on %—‘ for the same case.
The results for &1 — 1.0 are unacceptably poor, because the upper bound criterion (3-404) has been

violated in thls case. The cases % = 0.2 and &% = 0.1 both provide more accurate results. However,

in the latter case a peak is predicted at the origin, which is not present in the simulation result. This
may be attributed to the application of too small transition intervals.

Finally, figs. 3-114 - 3-117 show the results for the stationary marginal probability density functions
of the displacement and the velocity for the case of dense pulse arrivals, kL = 1.0, with the non-

dimensional transition time interval At = 0.05. Due to the application of too small transition time

intervals the path integration results are neither quahtatlvely nor quantitatively in agreement with
simulation results. Again a peak is predicted at the origin, which is not present in the simulation

results.

The dependence on ,%: for the same case is shown in figs. 3-118 and 3-119. Although none of the cases
provide acceptable results, the accuracy is much better for the cases ?—;:0.05 and 0.1, than for the
case -f?—,;- = 0.02.

The example demonstrates the applicability of path integration technique for a Duffing oscillator sub-
Jjected to impulses driven by an Erlang renewal process of order k = 2. The applied path integration
scheme was a modification of the Method 2 for compound Poisson driven systems. Again, it has been
demonstrated that the path integration method provides accurate results for the case of sparse pulses,
whereas unaccaptable results are obtained if the non-dimensional transition interval % is either too

small or too large.
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3.5 Diffusion methods

Attempts to solve the forward or backward integro-differential Chapman-Kolmogorov
equations (3-94), (3-96), as well as the related reliability problems (3-128), (3-131) and
(3-134), (3-138) by means of conventional finite difference or finite element schemes
have proved to be unsuccessful, due to large convection velocities compared to the
diffusion velocities present in the phase space at large values of the velocity compo-
nent #, which renders such schemes unstable, when the local Peclet number becomes
large, Zienkiewicz and Taylor (1991). Such instability problems have also been found
in convective heat transport problems at large convection velocities, in fluid dynamic
problems at high Reynolds number and other mixed convection-diffusion problems with
high velocities. For the forward and backward Fokker-Planck equation Bergman and
his co-workers demonstrated in a number of papers on non-hysteretic simple oscillators,
Bergman and Heinrich (1982), Bergman and Spencer (1983), as well as hysteretic oscil-
lators, Spencer (1986), that corrections for the convection flows could be achieved by
applying a Petrov-Galerkin type of weighting with upwind differentiation to the weak
formulation of the ruling differential equations. Similar approaches have been proposed
by Langley (1988b), Langtangen (1990), and others.

In this section the reliability problem is considered for the non-linear, non-hysteretic
time-invariant SDOF oscillator (3-45), (3-46), subject to a stationary compound Poisson
process {F(t),t € [0, 00(} with the mean arrival rate v. The weak counterpart of (3-138)
with the Kolmogorov-Feller operator given by (3-123) or (3-125) is solved by a Petrov-
Galerkin approach. Because of the severe requirements of differentiability and continuity
in the z-direction, the shape and weighting functions for the &-component have to be
globally specified, which rules out the possibility of any finite element formulation of

the applied variational approach.

x
oR
R=%%-=...=0
aste
|

v=0l T~

Fig. 3-120: Boundary and initial conditions.
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A double barrier problem with constant barriers is considered, i.e. the safe domain S
is given as § = {(z,Z)] a <2 < b A —oo < < oo}. The boundary and initial value
problem for the reliability function R(7 | z) = 1 — Fr,(7 | z) then becomes, see fig.
3-120 and (3-138)

aR(‘rlxm) ¢ ZR(r |2,%)+u(z,2) ZR(r | z,8) - \
zk.ﬁ%—lwﬂmm =0, V7 €]0,00[, ¥(z,3) € S
RO |z,2)=1, ¥(z,2) €S b (3-418)

R(r |z,3) =0, ¥r €]0,00[ , ¥(z,&) € SM U HSD

! az"R(T |z,8)=0,n=12,..., V7 €]0,00[, ¥(z,2) € as® )

The Kramer-Moyal expansion for the backward Kolmogorov-Feller operator (3-125) has
' been applied in (3-418). Hence, it is assumed that moments E[P"] of the impulse
strength P exist for any order n. In what follows a scheme for obtaining numerical
solutions of (3-418) will be devised. First, the weak counterpart of (3-418) will be
derived. Assuming the weighting function v(z,z) to fulfil the boundary conditions
v(z,z) =0, (z,&) € 85, and using u(z,#) = R(r | z,2) in (3-110) it follows that

/ R e, S [, 3] i = / o, SET R |2 )] dads =
S
o O ; . ; ; ;
fv(x,m)g;R(T | z,%)dzds — /R('r | z,3)Ks [v(z,2)]dzdi = 0 (3 —419)
s S
(3-419) provides the weak counterpart of the considered problem. K, [v(z,z)] is the

' forward Kolmogorov-Feller operator given by (3-124). The variational equation (3-419)
is discretized upon expanding R(7 | z,2) into the following product form

Ip Jo
R(r|z,8)=3 3 Rrs(r)NP()NP(2) (3 — 420)
I=1J=1

The variational field v(z, Z) is also restricted to a subspace of functions expanded by
the following linearly independent basis

Vis(z,8) = VW), I=1,.. .0, J=1,..,J0 (3 — 421)
The shape functions N}l)(x) are continuous and the weight functions V}l)(m) are both

continuous and piecewise differentiable in |a, b[. Additionally, N}l)(w) vanishes on 85(1)
and V (3:) vanishes on 85", In the z-direction, the weight functions VJ(, )(a:) are
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continuous and infinitely many times differentiable in | — oo, co[. Further, V}z) (z) and
all its derivatives vanish on 85(?). In principle the shape functions N 32)(3':) need only be
piecewise continuous, and are not requested to fulfil any boundary conditions on 5.

The fulfilment of (3-419) for any variation w(z, ) within the considered subspaces leads
to the following discrete variational equations

Io Jo ) Io Jo
> S MuynnnBrn+ ) Y KnnnnRun =0

Iz=1 Jp=1 I,=1 J,=1
Li=1....,1o , Ji=1...,Jo (3 —422)

The components of the "mass”-tensor My, j, 1, s, and the ”stiffness”-tensor K7, j, 1,7, are
given as

b oo
My, = f Vi ()N (2)de / Vi2(2)ND (¢)ds (3 — 423)
a — 00

dz

-—00

AV (g 7
Kinln= f Wy (@) N{P(z)dz / ¢ VP(&)NP (2)dt —

b oo
/ f VIEI)(x)NI(:)(&")a—ax-(U(Jf,i)V}f)(i))Nf,f)(;&)dxd;&—

a —oo

k (2)
f vz )N(x)(,,)d”z( )" E[P ] / lld MCNOTHYN (3 424)

All integrals on the right-hand sides of (3-423) and (3-424) are the products of one-
dimensional quadratures, except the 2nd term on the right-hand side of (3-424). How-
ever, this term is also reducible to such a form if u(x,z) is given as a polynomial of
the state variables r and z, as is the case of usually considered non-linear oscillators

(Duffing, van der Pol, etc), i.e.

u(z, &)=Y Y a;a'dl (3 — 425)

i=0 j=0

If N}])(I) = V‘,(l}(:c) and Ngz)(w') = V}z)(i:), the conventional Galerkin approach is
obtained. By analogy with the corresponding white noise excited problem, this turns
out to render the numerical scheme unstable due to the large convection velocities at
|z] — oo. Numerical inaccuracies and instabilities can be overcome by introducing a
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Petrov-Galerkin type of weighting to consider upwind differencing. Petrov-Galerkin fi-
nite element schemes have been employed in numerous applications in convection dom-
inated problems, Zienkiewicz and Taylor (1991). Therefore, instead of the Galerkin
formulation, a Petrov-Galerkin approach will be applied to solve (3-419), (3-422). The
gist for the success of the Petrov-Galerkin solution is the proper selection of the upwind
parameter controlling the approximation for the correction of the convection flows.

1 . . g .
- 1 -"'-'-' \“- -— -
08 VI{ )(z) - N Flow
0.6} -
0.4} ’ M ]
N;(n(z) -
02} . :
0 % A A i n A e L Thewal
-1 08 06 04 02 0 02 04 0.6 0.8 1

x

Fig. 3-121: Shape and weight functions in the z-direction. (a =1, Az = 1).
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Fig. 3-122: Shape and weight functions in the i-direction. (8 = 1/2,v =1, Az = 712_;)

In the variational formulation shape and weight functions will be indicated, which fulfils
all the requirements of differentiability, continuity and boundary values. These functions
clearly constitute a basis for the finite dimensional subspaces for the spaces of the trial
functions and the weighting functions. In the z-direction, the following linear shape
functions and quadratic weighting functions are utilized, fig. 3-121

A-(z - ITAz)+1

N}l)(:c) =¢ —a(z-IAz)+1 ,
0 ;

N{(2) + aFpa(z)

Vi) ={ NO(z) - aFra(c) |
0 )

z €[(I-1)Az,IAz]
z € [[Az,(I +1)Az (3 —426)
elsewhere

z € [(I-1)Az,IAz]
z € [IAz,(I + 1)Az] (3 —427)

elsewhere
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Fl,l(m)=3(£—1)(r—1—i) : Ff,z(:c)=3(§;— )(I+1—i—)(3—428)
a=coth(%)—f,2:={“i : zig (3 —429)
1“,5:{12 i“:g (3 — 430)

where I'; is the local Peclet number and « is the upwind parameter. As shown in
fig. 3-122, the shape and weighting functions in the z-direction are specified globally in
order to fulfil the severe requirements of differentiability and continuity in this direction.
Shape functions are chosen as normal probability density functions with varying means
1 (z — JAz)?
NP ()= ———ex (——-—-.—--—" 3 — 431
s (#) V2ryAz % 2(yAz)? ( )
Weighting functions are chosen as the scaled first derivative of normal probability density
functions superimposed on the Gaussian curve

. : : — JAG i — JAz)?
VJQ?)(J;) - NSZ)(.?:) + \/é?f?Ai (m e ﬂf) exp (— (2?&}%) (3 —432)
B = coth (%—) - Fi (3 - 433)

2(u(z, 5) ~ L22)

L= A (3 —434)

TETP2]
uF;nP

The parameter +, used in the definition of the standard deviation of the shape and weight
functions, can be termed as the interaction parameter, since it somehow represents the
interaction degree of two weighting functions. The local Peclet number I'; and the
upwind parameter § are defined as position dependent in the (z, z)-plane.

The white noise case is obtained if the sum in the backward Kolmogorov equation,
(3-418), is truncated at £ = 2. The optimal choice for the denominator of (3-434) then
becomes vE[P?]/m? = vE[P?]/m?. In this case, ['; can be interpreted as a measure of
the relative strength of convective and diffusive velocities in the z-direction, and stability
is guaranteed if I'; < 2, Bergman and Heinrich (1982), Bergman and Spencer (1983),
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Spencer (1986). In the compound Poisson case, a straightforward generalization would
be to introduce the following quantity in (3-434) as the average diffusion constant

e k
vEPTY _ i (DR BIPY 3% R(r | 2,4)
2 e A (3 —435)
ITé 26;3R(T |.T,.'E)

After inserting (3-420) into (3-435), highly nonlinear differential equations are obtained
from (3-422). In order to preserve linearity, the following approximate diffusion coeffi-
cient is suggested as an alternative
—— (=1)* E[P*] o* .
VB _ S, G A e N (@)

2 2 2
m ;aazﬂN( )( )

(3 — 436)

With N (2)($) given by (3-431), the right-hand side of (3-436) can be evaluated as a
closed form expression. Using (3-436), the stability requirement on I'; is no longer
exactly fulfilled. However, since (3-436) is qualitatively correct, it follows from (3-434)
that the fraction % is an indication of the number of times the mesh width, Az,
must be reduced, compared to the white noise case, in order to ensure stability.

The semi-discrete equation of (3-422), which can be interpreted as a coupled system of
ordinary differential equations, is solved using the following unconditionally stable and

second order accurate Crank-Nicolson scheme.

(M + O.SATK)R(T +AT) = (M - 0.5ATK) R() (3 — 437)

Initial values R(0) are obtained from equation (3-420) after constraining the reliability
function to unity at 7 = 0. Each period is passed by 50 time steps to achieve convergence

in the Crank-Nicholson scheme.

The first-passage time probability density function fr,(t | z,Z) on condition of deter-
ministic start in (z,2) € S can be evaluated from (3-420)

Iy Jo

fr(t] e ) = ——R(r |2,8) ==Y Ris(r)N{P(2)NP (2) (3 — 438)

I=1J=1

where the derivatives Ry j(t) are calculated from (3-422) as given by the matrix solution
R(r) = —-M~'KR(7).

The indicated variational scheme and solution approach were suggested by Koyliioglu,
Nielsen and Iwankiewicz (1994), who also derived the somewhat lengthy analytical ex-
pression for the components of the mass tensor and the stiffness tensors (3-423) and
(3-424) for the case of a Duffing oscillator exposed to a compound Poisson process as
considered in the following example 3-15.
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Example 3-15: Reliability analysis of Duffing oscillator driven by a com-
pound Poisson process

The Duffing oscillator (3-44), (3-45), (3-46) is considered, when driven by a stationary compound
Poisson process. Generally, the following system data are used m = 1.0, wy = 1.0. The considered
values of the damping ratio { and non-linearity parameter € are indicated in the legend of the figures.
The impulse strength of the compound Poisson process is assumed to be zero-mean normally distributed,
P~ N(0, a‘f,). The safe domain S in fig. 3-120 is meshed into 30 x 30 identical rectangles. Boundaries of
the mesh in the #-direction are chosen as 5 times the stationary standard deviation ¢ ;(o0). This bound
is reduced to 2 times the standard deviation of the stationary response, when stability requirements
could not be met by the indicated mesh size. It should be noted that stability of the Petrov-Galerkin
solution is fully correlated to the local Peclet numbers. Hence, unstable results are expected for coarse
meshes. This will be illustrated in the coming examples. For the specification of the mesh width, the
standard deviation of the stationary response of the nonlinear oscillator is obtained from an initial
Monte Carlo simulation in which stationarity is assumed after 20 periods. Results are obtained for
the reliability function, R(t|0), and first-passage time probability density function, fr, (¢/0), only for
symmetric time-invariant double barrier problems, —a = b, with deterministic start in the origo, [z,z] =
[0,0].

Figs. 3-123 and 3-124 illustrate the convergence of the numerical schezme to the solution of the Fokker-
Planck equation as v — oo under the restriction of constant %%)5 for the cases of the relatively

o]

large damping ratio ¢ = 0.08 and the medium level damping ratio { = 0.01, respectively. The Gaussian
white noise results have been obtained from the variational principle and weighting functions proposed
in this study upon truncating the sumn in (3-418) after the first two terms. The dashed line indicated the
corresponding results obtained upon using the present solution with the excessive large mean arrival
rate of ¥ = 100wy. As seen, the results are in excellent agreement. The examples covered in figs.
3-423 and 3-424 have been taken from Bergman and Spencer (1983), who used somewhat simpler and

different weighting functions.

Fig. 3-125 shows the effect of the non-linearity parameter, £ on the reliability function and the first-
passage time probability density function. The following values, ¢ = 0.00, € = 0.25 and £ = 0.50, are
considered, representing the cases of linear, medium non-linear and significantly non-linear restoring
forces. In order to make comparison meaningful the barrier level b is adjusted in proportion to the
stationary standard deviation of the displacement, oy (00), which is obtained by Monte Carlo sim-
ulation. Corresponding to the indicated values of ¢ the following standard deviations are obtained
ox(c0) = 1.004, ox(oo0) = 0.827, ox(o0) = 0.759. From the results shown it is concluded that the
reliability function and the first-passage time probability density function are significantly dependent
on the non-linearity parameter.

Fig. 3-126 shows the dependence on the damping ratio, {. The following damping ratios have been
considered, ¢ = 0.05, ( = 0.10 and { = 0.15. The corresponding stationary standard deviations of the
displacement are o x (0c0) = 0.759, ox (c0) = 0.587, ox(00) = 0.501. From the results it is concluded
that the reliability function and the first-passage time probability density function are rather insensible

to the damping ratio.
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Fig. 3-123: Comparison with Gaussian white noise. a) Reliability function, R(¢|0). b) First-passage
time pdf, fr, (£/0). Deterministic start, constant double barrier problem. b = —a = o x (o0}, ¢ = 0.08,
e = 0.2, vE[P?] = 4¢wim? = 0.32. Kdylioglu, Nielsen and Iwankiewicz (1994).
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Fig. 3-124: Comparison with Gaussian white noise. a) Reliability function, R(¢[0). b) First-passage
time pdf, fr, (1/0). Deterministic start, constant double barrier problem. b = —a = ex (), ( = 0.01,
€ = 0.2, vE[P?] = 4(w3m? = 0.04. Koylioglu, Nielsen and Iwankiewicz (1994).
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Fig. 3-125: Dependence on non-linearity parameter, €. a) Reliability function, R(¢|0). b) First-passage
time pdf, fr, (¢|0). Deterministic start, constant double barrier problem. b = —a = 20 x (c0), ¢ = 0.05,
vE[P?] = 4(wim? = 0.20, v = 5wp. Koylioglu, Nielsen and Iwankiewicz (1994).
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Fig. 3-126: Dependence on damping ratio, (. a) Reliability function, R(t|0). b) First-passage time
pdf, fr,(t|0). Deterministic start, constant double barrier problem. b = —a = 20x (<), € = 0.5,
vE[P?] = 4Cwim? = 0.20, v = 5wy. Koylioglu, Nielsen and Iwankiewicz (1994).
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Fig. 3-127: Dependence on mean arrival rate, ». a) Reliability function, R(t|0). b) First-passage time
pdf, fr,(¢|0). Deterministic start, constant double barrier problem. b = —a = 20x(c0), ¢ =.0.05,
e = 0.5, vE[P?)] = 4(wim? = 0.20. Koylioglu, Nielsen and Iwankiewicz (1994).

103 T T . T v T T v T

T T T TrrT
Lol L1l

T,
L

Al 1Al

ozl

10!

T T T TTT1I0
[ N G W R 1

=1

100 i i i

"
5
v

wo

2
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Fig. 3-127 shows the dependence on the mean arrival rate, v. The following damping ratios have been
considered, ¥ = 5.0wp, ¥ = 2.0wy and wy = 1.0wg. The corresponding stationary standard deviations
of the displacement are ox (00) = 0.760, ox(o0) = 0.758, o x(oc) = 0.757. For comparison, the white
noise case has also been shown in the figure. As seen, the results are quite insensible to variations in
v. Hence, the case » = 1.0wp, corresponding to averagely 6.28 impulse arrivals per linear eigenperiod
T, is effectively equivalent to Gaussian white noise for the reliability problems considered for the
Duffing oscillator. Notice, in example 3-9 it was demonstrated that signifantly deviating displacement
responses were obtained for a compound Poisson process with » = 1.297w; and for the comparable
white noise process. However, this was observed for a hysteretic oscillator with small values of the
elastic fraction of the restoring force, . Attempts to reduce v beyond v = 1.0wy with vE[P?] kept
constant imply numerical instability with the present 30 x 30 mesh. Although, these instabilities can
be cured by decreasing the mesh size, limitations in the memory allocations of the avaliable computer

2 .
facilities prevented the application of finer meshes. The fraction ﬁ{%}l = AA;(‘:’ , which indicates the

necessary mesh refinement to ensure stability for finite values of v relative to the stable white noise
mesh, is plotted in fig. 3-128. As shown in the figure, a reduction factor of 32 in the mesh width is
necessary to obtain stability for mean arrival rates equal to v = 0.1wyg.

The main conclusion drawn from this example is, that the numerical integration of the backward
Kolmogorov-Feller equation for the reliability function of a SDOF non-linear and non-hysteretic oscil-
lator subject to a stationary Poisson driven train of impulses, based on a Petrov-Galerkin variational
formulation may be performed for relatively high values of the mean arrival rate, v. In the example the
limit was v > 1.0wp using a coarse 30 x 30 mesh. If smaller mean arrival rates are applied numerical
instability is observed. It is addressed how these instabilities can be cured using finer meshes. However,
the necessary width of the calculation mesh is decreasing dramatically as v decreases. As is the case for
moment methods the Petrov-Galerkin variational method is working at best at relatively large mean
arrival rates. A short parameter study for the Duffing oscillator was performed in the example, which
demonstrated that the reliability function and the first-passage time probability density function is
insensible to the value of the damping ratio, and highly sensible to the non-linearity parameter.
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3.6 Summary and conclusions

Initially, in section 3.1 Wiener processes, compound Poisson and a-stable Lévy motions
are introduced and briefly described. All these stochastic processes have independent
increments. It is discussed how some other actual random excitations can be modelled
using a filtration of processes with independent increments through a sharpening filter.
Thus the attention has been focused on the processes for which the response of the
dynamic system may be regarded as a Markov process. The general state vector formu-
lation for geometric non-linear elastic as well as hysteretic systems is given. Especially,
in example 3-1 equivalent hysteretic SDOF and MDOF shear models are formulated for
instrumentated reinforced concrete structures exposed to earthquakes. The models are
aimed at the prediction of the stochastic response and reliability and the global and
localized damage of the structure, based on a sequential updating of a few number of
system parameters. The accuracy of the predictions of the models as compared to avail-
able model tests 1s primarily due to a modelling of the elastic fraction of the restoring
force as a degrading function of the damage, corresponding to gradual transition from
elastic to plastic response, as larger and larger parts of the structure become plastic.

In section 3.2 the forward and backward integro-differential Chapman-Kolmogorov equa-
tions for transition probability density function of the Markov vector have been indi-
cated as a reference for later sections for system driven Wiener processes, compound
Poisson processes and a-stable Lévy motions. Further, the first-passage time problem
has been formulated based on the solution of the forward or backward integro-differential
Chapman-Kolmogorov equation with absorbing boundary conditions.

Section 3.3 deals with stochastic response analysis of Markov systems based on moment
equation methods. Initially, the generalized It6 differential rule for diffusion and jump
excited systems is derived, from which the generic equation for moments is derived.
Especially, explicit expressions for joint central moments have been indicated.

In Section 3.3.1 the closure problem for the hierarchy of moment equations is treated,
1.e. the specification of an approximate joint pdf for the state variables from which
unknown expectations may be calculated. The free parameters of the closure assumption
is calibrated, so that the said joint pdf displays the joint moments provided by the
retained moment equations. The moment neglect closure, the cumulant neglect closure,
the quasi-moment neglect closure and the Hermite moment neglect closure schemes are
adressed. It is emphasized that most of these methods are likely to work well for systems,
which are almost Gaussian, i.e. of the monomodal and smooth type. In fact they may
all be considered as expansions from Gaussian probability densities with the remainder
in the expansion beyond the first two terms measuring the deviation from Gaussianity.
Systems with joint pdf of the multimode or mixed continuous-discrete type are often
met in stochastic structural dynamics. For these cases the rate of convergence of series
expansions from Gaussianity may be very slow or convergence may be totally lacking.
Instead, modified closure schemes need to be formulated, guided by physical insight into
the system dynamics. A modified cumulant neglect closure scheme is presented for the
socalled double-well potential oscillator with a bimodal joint pdf. Even at closure at the
covariance level rather accurate results are obtained. In contrast the rate of convergence
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of the ordinary cumulant neglect closure scheme is extremely slow as demonstrated in
example 3-7. Next, a similar modification is suggested for the Hermite moment neglect
closure scheme applied to the Bouc-Wen oscillator exposed to high intensity Gaussian
white noise, in which case the marginal pdf of the hysteretic component displays a
marked double-peaked behaviour. Again substantial improvements are registered as
compared to the ordinary Hermite moment neglect closure scheme. Finally, a modified
closure scheme is proposed for Poisson driven systems with low mean arrival rate, where
a transient discrete probability component is present in the joint pdf, representing the
deterministic drift from the initial values on condition that no impulses have yet arrived.
Explicit expressions for the modified cumulant neglect closure scheme have been derived
for systems with polynomial non-linear drift vectors at closure at the order N = 4.

In section 3.3.2 moment equations for Wiener process driven dynamic systems are de-
rived. Especially, formulas for systems with cubic polynomial drift vectors (such as
the Duffing and the van der Pol oscillators) are addressed. Besides, the conditions are
determined for replacing a system with non-analytical (e.g. hysteretic) drift vector by
an equivalent system with polynomial non-linear drift vector. A theorem is proved,
stating that exact joint moments up to the order N + 1 are provided by the equiva-
lent system, if an equivalent polynomial expansion of the order N is applied, and the
expansion coefficients of the equivalent expansion are determined from a least mean
square criterion with the unknown expectations evaluated with the exact joint pdf. In
example 3-3 the method of equivalent polynomial expansion is applied to the stochastic
analysis of a bilinear hysteretic oscillator exposed to stationary Gaussian white noise.
The idea is to replace merely the constitutive equation for the hysteretic component by
an equivalent polynomial expansion, whereas the linear equations are left unchanged.
In contrast, the global mean least square criterion of the mentioned theorem assumes
that all components are replaced by equivalent polynomial expansions of the order N.
In the numerical example it is demonstrated that such an approach introduces quite
ignorable additional errors in the analysis. The benefit of the method is that only a
marginal joint pdf of the velocity and the hysteretic component need to be calibrated at
the calculation of the coefficients of the equivalent cubic expansion. The said tentative
joint pdf is selected as a truncated 2-dimensional Gram-Charlier series with a Minai-
Suzuki modification for the discrete probability of attaining the plastic branches. Two
equivalent linearization strategies are investigated. Both of these predict a stationary
displacement variance for the case of an ideal elastic-plastic oscillator (e = 0), in con-
trast to the Brownian motion type of variance growth displayed by the Monte-Carlo
simulation and the cubic polynomial expansion method. This suggests that the vari-
ance growth phenomenon is caused by joint moments of the 4th and higher order. The
main discrepancies between the cubic polynomial expansion method and the simulation
results can be attributed to the application of an ordinary cumulant neglect closure
scheme with no modification for discrete probability components in the global moment
equations. This problem has been further investigated in example 3-4, which includes a
reliability analysis of the bilinear hysteretic oscillator. The reliability analysis is based
on the observation of a damage indicator, which is selected as the accumulated energy
dissipated by the system during plastic deformations. The failure event of the system
occurs, when the non-decreasing damage indicator makes a first-passage of some critical
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level, dcr. The damage indicator is included in the state vector as an extra state variable,
and a differential equation has been formulated specifying its development with time.
The load process of the system is obtained from rational filtration of time-modulated
Gaussian white noise through a time-invariant rational filter of the order (r,s) = (1, 2).
The state variables of the filter is also included in the state vector of the integrated
dynamic system along with the displacement, the velocity, the hysteretic component
and the damage indicator. Only the differential equations for the hysteretic component
and the damage indicator are replaced by equivalent polynomial expansions. The con-
sistant expansions turn out to be of the 3rd order for the hysteretic component and of
the 2nd order for the damage indicator. At the evaluation of the equivalent expansion
coefficients a least square criterion is applied, and the joint pdf for the evaluation of
the unknown expectations is selected as a truncated 2-dimensional Gram-Charlier series
with a Minai-Suzuki modification. Besides, a modified cumulant neglect closure scheme
is devised for the global moment equations, which takes the discrete probability com-
ponents in the joint pdf into account. The closure scheme only requires the same joint
pdf of the velocity and hysteretic component as applied in the equivalent polynomial
expansions of the hysteretic and damage indicator differential equations. In the example
results obtained with the ordinary and the modified cumulant neglect closure scheme
have been compared with those obtained by Monte Carlo simulation. The conclusion
drawn from this comparison is that significantly better results are obtained with the
modified cumulant neglect closure scheme than with the ordinary scheme. Hence, the
same tentative joint pdf should be applied at the local and at the global level. Ex-
ample 3-5 deals with the stochastic analysis of hysteretic multi-storey plane frames.
Initially a differential formulation of the constitutive equations for elasto-plastic beam
elements has been indicated, connecting the rate of the generalized stresses and strains
of the element. This is next specialized to yield hinge models, where the generalized
strains and stresses are made up of the end-section rotations and end-section bend-
ing moments. The frame is subjected to a horizontal earthquake excitation obtained
upon filtering modulated Gaussian white noise through a Kanai-Tajimi filter, which
is merely a rational filtration of the order (r,s) = (1,2) with physically interpretable
filter constants. The state vector components for the integrated dynamic system con-
sist of nodal displacements and nodal velocities, the generalized stresses from all plastic
elements, and the filter state variables. The resulting differential equations on state vec-
tor form represent a MDOF generalization of the corresponding differential equations
for the elasto-plastic oscillator in example 3-4 with the generalized stresses forming the
multi-variate hysteretic components. Only the constitutive equations for the generalized
stresses (the hysteretic components) are replaced by equivalent polynomial expansions
in the local generalized stresses and generalized strain rates. Hence, the equivalent
polynomial expansion is performed at element level, which facilitates the formulation
of a global equivalent polynomial system significantly. The global joint moment equa-
tions are next closed by an ordinary cumulant neglect closure scheme. The theory has
been applied to a simply supported two-storey single-bay plane frame with the Kanai-
Tajimi filter exposed to a stationary Gaussian white noise. Severe plastic deformations
are most likely to occur in the lower storey columns. Equivalent cubic expansions are
only applied to the constitutive equations for these elements, whereas equivalent linear
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expansions are introduced for the remaining elements. The joint expectations of the
rate of the end-section rotations and bending moments, entering the least mean square
equations for the determination of the coefficients of the equivalent polynomial expan-
sions, are evaluated by means of a Gram-Charlier expansion to the 4th order of the
joint pdf with a Minai-Suzuki modification for plastic deformations. From the results
obtained it is concluded that equivalent linearization for all elements with Gaussian
evaluation of the expansion coefficients provides results for the displacement response
of the storeys that neither quantitatively nor quantitatively are in agreement with those
obtained by Monte Carlo simulation. Only slightly better results are obtained by an
equivalent linearization scheme, where a Gram-Charlier expansion to the 2nd order with
a Minai-Suzuki modification for plastic deformations has been applied for the evaluation
of the linear expansion coefficients. In both cases a stationary variance is predicted for
the storey displacements in contrast to the simulation results, which shows a similar
Brownian motion type of variance drift, as addressed in example 3-3. The inevitable
conclusion seems to be that equivalent linearization techniques should not be used for
elasto-plastic structures exposed to severe stationary excitations. Instead, the analysis
should involve at least the 4th order moments. In contrast the application of a cubic
polynomial expansion for the lower storey columns provided results, which are in much
better agreement with the simulation results. No significant difference is noticed in
the results, if the equivalent linearization for the remaining elements is performed with
Gaussian closure or with a joint normal pdf or with Gram-Charlier expansion to the 2nd
order with a Minai-Suzuki modification. In example 3-6 the theory has been applied
to the reliability analysis of saturated sand deposits under horizontal shear earthquake
excitations (SH waves), assuming liquefaction to be the principal failure mode of the
soil. Liquefaction is assumed to take place, when the accumulated dissipated energy
per unit of volume of the soil reaches a critical level. In the example the applicability
of this damage indicator is verified by triaxial testing of various sand samples exposed
to cyclic testing with variable amplitudes. The triaxial tests also show that the rate of
the mobilization factor, which for the present plane strain case can be defined as the
shear stress in proportion to the shear strength, can be related to rates of the shear
strain by a Bouc-Wen hysteretic model. The shear strength is a decreasing function
with time as the pore pressure builds up, and turns out to deteriorate proportionally to
the deterioration of the shear modulus. Both have been related to the damage indicator
by a simpel linear relation. A statically admissible stress field is prescribed, from which
the subsoil continuum is discretized into a SDOF system. The acceleration process at
the top of the bedrock is obtained from filtration of modulated Gaussian white noise
through a time-invariant rational filter of the order (r, s) = (1,2). The differential equa-
tion for the evolution of the damage indicator becomes cubicly polynomial, whereas the
differential equation for the velocity becomes quadratic. The constitutive equation for
the mobilization factor is replaced by an equivalent linear expansion, with the expan-
sion coefficients evaluated by a Gram-Charlier expansion truncated at the order N = 2,
whereas the linear, the quadratic and the cubic equation are left unchanged. The re-
sulting global hierarchy of moment equations is truncated at the order N = 4 by means
of an ordinary cumulant neglect closure scheme. The obtained results for the variance
response of the displacement and the mobilization factor are rather poor in comparison
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to simulation results, as can be expected from the application of equivalent linearization
to the hysteretic equation. However, excellent results are obtained for the mean value
and standard deviation of the damage indicator, whereas the skewness parameter of this
variable is less accurately estimated. The reason for the improved results for the lower
order statistical moments of the damage indicator in comparison to those for the other
state variables is merely the exact cubic polynomial form of the differential equation
of this variable. Improved results for the skewness parameter requires application of
higher order equivalent polynomial expansion of constitutive differential equation for
the hysteretic component and global closure at higher than the order N = 4.

Section 3.3.3 deals with the stochastic analysis of compound Poisson process driven
systems by means of moment equations. Initially, the differential equations for the joint
central moments of dynamic systems exposed to a multi-dimensional or scalar compound
Poisson process are indicated. Especially, the moment equations for systems with cubic
polynomial drift vectors are derived. In example 3-8 the theory is applied to a Duffing
oscillator. The idea of the example is to demonstrate the applicability of the modified
cumulant neglect closure scheme, devised for Poisson counting processes with low mean
arrival rates. Ordinary cumulant neglect closure schemes at the orders N = 3, N = 4
and N = 5, and modified cumulant neglect closure at the order N = 4 are considered.
The excitation process has Rayleigh distributed impulse strengths, and is obtained as
output process from a filtration of a homogeneous compound Poisson process through
a rational filter of the order (r,s) = (0,2). For the relatively high mean arrival rate of
impulses of v = 0.1wy, the considered ordinary cumulant neglect closure schemes work
well and all give acceptable results, although the best result is obtained for closure at
the order N = 5 as expected. In comparison to ordinary cumulant neglect closure at the
order N = 4 the modified cumulant neglect closure scheme gives substantially improved
results for the mean value functions and for the variance functions in the initial part of
the excitation, where the modification of the joint pdf is most important. Application
of a pulse train with the lower mean arrival rate of v = 0.05wy renders the ordinary cu-
mulant neglect closure schemes numerically unstable, whereas the modified scheme still
produces accurate estimates for the mean value functions and variance functions. From
the example it is then concluded that more accurate and numerically stable results are
obtained by the modified cumulant neglect closure scheme. However, even the modified
cumulant neglect closure scheme eventually renders into numerical instability as v is
reduced. In the present example this occurs for v >~ 0.01wg, which is approximately
one order of magnitude less than the corresponding limit for the comparable ordinary
cumulant neglect closure scheme. In example 3-9 a reliability analysis of a Bouc-Wen
oscillator exposed to both an unfiltered and a filtered homogeneous compound Poisson
process has been performed by means of the equivalent polynomial expansion technique.
The reliability analysis is based on a damage indicator, which is selected as the accumu-
lated energy dissipated by the hysteretic component. Then the said damage indicator is
quadratically polynomial. Only the constitutive equation for the hysteretic component
is replaced by a cubic polynomial expansion, whereas the remaining linear or quadratic
non-linear differential equations are kept unchanged. As in previous applications the
expansion coeflicients of the equivalent polynomial expansion are determined by a least
mean square criterion. Evaluation of the unknown expectations entering the mean least
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square criterion is performed by a quasi-moment neglect closure scheme, truncated at
the order N = 4. Besides, equivalent linear expansions of the hysteretic differential
equation are considered with the expansion coefficients evaluated by means of quasi
moment expansions truncated at the order N = 2 and N = 4, respectively. The former
linearization scheme is equivalent to a white noise excitation with Gaussian closure. The
hierarchy of global moment equations is closed at the order N = 4 by means of an ordi-
nary cumulant neglect closure scheme for both equivalent linear expansions and for the
equivalent cubic polynomial expansion. First, the case of excitation with an unfiltered
compound Poisson process is considered. Two alternative distributions for the impulse
strength are assumed. The first of these concerns an ordinary Rayleigh distribution,
while the other is a zero-mean centered Rayleigh distribution. The relatively high mean
arrival rate of impulses of v = 1.297wy is applied. For the case of an ordinary Rayleigh
distribution of the impulse strength the obtained results for the mean value functions
of the displacement, the hysteretic component and the damage indicator are all in good
agreement with the simulation results, both for the two equivalent linearization schemes
and for the cubic polynomial expansion method, although the Gaussian closure algo-
rithm overestimates the mean value function of the hysteretic component somewhat at
larger excitation intervals. The variance response of the displacement and the hysteretic
component is significantly underestimated by the equivalent linearization methods, and
these methods completely fail to predict the variance response of the damage indica-
tor. In contrast, the variances predicted by the equivalent cubic polynomial expansion
method are acceptable for the displacement and hysteretic component and very good
for the damage indicator. For the case of a zero-mean centered Rayleigh distribution
of impulse strengths it is demonstrated that significant non-zero mean values for the
displacement and the hysteretic component are present even at the relatively high mean
arrival rate of v = 1.297wy, which is a consequence of non-zero higher order odd mo-
ments of the impulse strength in combinations with small values of the elastic fraction
of the total restoring force, @. In contrast, the equivalent linearization scheme with
Gaussian closure predicts zero mean responses. Hence the replacement of a compound
Poisson process with a comparable Gaussian white noise process should be performed
with some caution for such systems even at relatively high mean arrival rates of the im-
pulses. The equivalent linearization scheme based on a 4th order quasi-moment neglect
series expansion captures the qualitative behaviour of the mean values, but the quantita-
tive predictions are not good. In contrast, the predictions of the equivalent polynomial
expansion are in excellent agreement with the Monte Carlo simulation results. Both
equivalent linearization techniques underestimate the variances of the displacement and
the hysteretic component. Only the equivalent cubic polynomial expansion gives accept-
able variance estimates, and is the only one of the methods that provide meaningful
and even accurate results for the damage indicator. Next, the case of excitation with
a compound Poisson process filtered through a time-invariant and rational filter of the
order (r,s) = (0,2) is considered. Only the case of an ordinary Rayleigh distribution of
the impulse strength is considered, and only the equivalent linearization scheme with
expansion coefficients evaluated from the quasi-moment expansion at the order N = 4
is investigated. The mean arrival rate is selected as relatively high as v = 1.0wy. As for
the non-zero mean case for unfiltered impulses the considered methods give acceptable
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results for the mean values. Again, the equivalent linearization method underestimates
the variance responses of the displacement and the hysteretic component, and com-
pletely fails to predict the variance response of the hysteretic component, whereas the
equivalent cubic polynomial expansion technique provides acceptable variance estimates
for all considered state variables. The conclusion to be drawn from the results of this
example is that equivalent linearization methods fail to predict the variance response
of all state variables. Especially for the damage indicator the results are completely
misleading. Hence equivalent linearization methods should not be used in a reliabil-
ity analysis of hysteretic oscillators exposed to compound Poisson processes if response
statistics beyond the mean value function of the damage indicator is requested. Only
equivalent polynomial expansion techniques of at least the 3rd order in combination with
an ordinary cumulant neglect closure scheme provide accurate estimates of the mean
value and variances of the damage indicator, and in fact seems to be the best available
semi-analytical scheme for the analysis of such response statistics. The computer time in
comparison to Monte Carlo simulation for the methods in the example is 0.88% for the
equivalent linearization methods and 6% for the equivalent cubic polynomial expansion

technique.

Section 3.3.4 deals with dynamic systems driven by compound Erlang renewal pro-
cesses. Initially, it is demonstrated that such systems can be reduced to an equivalent
system driven by a compound Poisson process at the expense of the introduction of
some auxiliary state variables. Next, the stochastic differential equations specifying the
development of these extra state variables are formulated. The integrated dynamic sys-
tem with the state vector made up of the structural state variables in combination with
the auxiliary state variables then form a Markov system, and the moment equations
for systems driven by a compound Poisson process can be applied in a slightly changed
form. Also the modified closure schemes for sparse pulse arrivals need to be changed
slightly. In example 3-10 the general conditions for reducing a system driven by a com-
pound regular counting process to an equivalent system driven by a compound Poisson
process are settled, and it is shown that the compound Erlang process is obtained as
a special case of the general formulation. In example 3-11 the stochastic response of a
Duffing oscillator exposed to compound Erlang processes with the parameters k = 2,
k = 3 and k = 4 is analysed. The impulse strength is assumed to be ordinary Rayleigh
distributed. To make comparison between the indicated cases meaningful the mean ar-
rival rate of Poisson events is selected as ¥ = 10wp. Then the average number of renewal
impulses per unit of time is the same for the three cases of k, and any differences in the
calculated response moments can be attributed to the different interarrival time distri-
butions. The indicated mean arrival rate of impulses is very large, so the hierarchy of
moment equations can be closed at the order N = 4 by means of an ordinary cumulant
neglect closure scheme. The obtained mean value functions and variance functions for
the displacement are all in excellent agreement with the simulation results. The mean
value functions are practically the same for the three cases of k. However, the variances
have a marked tendency to decrease with increasing value of k. From these observations
is concluded that the moment equation method can be used for the stochastic analysis
of a class of non-linear systems exposed to a compound Erlang renewal process after
reduction to an equivalent compound Poisson process driven system. The mean value
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function of the displacement response is believed to be rather insensible to the choice
of distribution for the interarrival times, and depends primarily on the mean arrival
rate of impulses. In contrast the variance function shows significant dependency on this
distribution. The application of compound Poisson processes as a load model for cases
where the interarrival times are far from exponentially distributed should then be done

with caution.

Section 3.4 deals with the numerical integration of the forward integro-differential
Chapman-Kolmogorov equation by means of path integration. Initially the applied dis-
cretization scheme is described, which reduces the time and space continuous Markov
vector process to an irreducible, positive recurrent and aperiodic Markov chain. In case
of stationary processes observed at equidistant time intervals it is next demonstrated,
how the stationary distribution may be obtained from a linear eigenvalue problem with

the known eigenvalue A = 1.

In section 3.4.1 the application of path integration to Wiener process driven systems
is dealt with. Since the state vector process does not perform any jumps in this case,
the drift vector may the approximated by a piecewise linear vector function and the
diffusion matrix by a piecewise constant matrix. For sufficiently small transition time
intervals the system then behaves as local Gaussian, and the differential equations for
the development of the conditional mean value functions and the conditional covari-
ances, as well as the transitional joint pdf can be specified at once. Four alternative
linearization strategies are indicated in ascending order of complexity. Especially, the
running mean linearization scheme and the equivalent linearization scheme are promis-
ing, since much larger transition time intervals may be used, then allowed for the other
two mentioned linearization schemes. The use of the latter schemes is due to the simple
solutions obtained for the conditional mean value function and the conditional covari-
ance matrix function. In example 3-12 the linearization schemes have been explicitly
stated for a Duffing oscillator subjected to Gaussian white noise. Next, the running
mean linearization scheme has been chosen with a uniform coarse 20 x 20 mesh extend-
ing four linear stationary standard deviations in the positive and negative displacement
and velocity directions, and with a transition interval of At = 1;'1. Excellent agreement
with Monte Carlo simulation results is obtained both at the central part of the marginal
distributions and at their tails. The first-passage time problem for a deterministic start
problem with a single constant barrier is also solved. The first-passage time proba-
bility distribution function obtained by path integration overestimates the probability
of failure somehow during the first period as compared to Monte Carlo simulation re-
sults, which is an effect of using the indicated coarse mesh in combination with the
relatively large transition interval. From the results of the example it is concluded that
the stochastic response can be determined by path integration with a very coarse mesh
without affecting the accuracy significantly, whereas a somewhat finer mesh must be

used in reliability problems.

In section 3.4.2 path integration methods are devised for systems driven by compound
Poisson processes, Lévy a-stable motions and compound Erlang processes. First the
case of a dynamic system driven by a scalar compound Poisson process is considered.
An asymptotic expansion is derived for the transitional joint pdf, valid under the re-
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striction vAt < 1, and involving only the transitional joint pdfs on condition of zero
and one impulse arrivals during the transition interval. The transitional joint pdf on
condition of zero impulses specifies the eigenvibrations of the system from the initial
conditions, which is obtained by numerical integration. The various path integration
schemes are sorted out in the same way as the transitional joint pdf on condition of
one impulse arrival during the transitional time interval is specified. Due to the restric-
tion on vAt, path integration methods are likely to work best for small values of v in
contrast to moment equation methods. For fixed v the restriction indicates an upper
bound for the choice of At. On the other hand it is shown that a lower bound for this
quantity also exists, so the optimal results are obtained, when At is confined to some
interval. Two methods are presented for the convection and diffusion of the probability
mass on condition of one impulse arrival during the transition time interval. Method 1
is based on the fact that the arrival time of the impulse is uniformly distributed in the
transitional interval for homogeneous Poisson processes. The transition interval is then
divided into a finite number of sub-intervals, and the convection and diffusion of the
probability mass are performed for each sub-interval in a sequence on condition that
the impulse arrives in the said interval. Method 2 is based on a Taylor expansion of
the state vector at the end of the transition interval in terms of the strength of the
impulse, P. The Taylor expansion coefficients only depend on the start- and terminal
time and the position of the system at the start of the transition, but not on the time
where the impulse actually occurs. Next, coupled ordinary non-linear differential equa-
tions for the determination of these expansion coefficients are formulated and solved
numerically. It is shown that the Taylor expansion for linear systems becomes linear in
P. Since a local linear replacement of the drift vector is always possible at sufficiently
small transition time intervals, it follows that the Taylor expansion of the state vector
in P becomes asymptotically linear as the transition time interval goes to zero. This
observation is the background for Method 2, which assumes such a linear Taylor ex-
pansion to be exactly valid. It should be noticed that the linearization approximation
concerns the drift vector as a function of the state vector and puts no restriction on
the magnitude of the impulse strength. In example 3-13 the stochastic response and
reliability analysis of a Duffing oscillator is performed both by Method 1 and Method
2. The Duffing oscillator is lightly damped with a medium level non-linearity param-
eter. Basically the path integration analysis is performed with a coarse and uniform
20 x 20 mesh extending four linear stationary standard deviations in the positive and
negative displacement and velocity directions. The strength of the impulses is assumed
to be zero-mean normally distributed. For Method 1 three values of v are considered
corresponding to sparse, medium, and dense impulse arrivals. For the case of sparse im-
pulse arrivals very peaked distributions occur at the origin. For this case a non-uniform
25 x 25 mesh has been applied with a four times finer spacing close to the origin. The
transition time interval At is passed through by three sub-divisions. The stationary
marginal pdf of the displacement and velocity has been obtained by iterating the tran-
sition equation of the Markov chain into stationarity. The transition intervals for the
three cases of v are At = Ty, At = Ty and At = %‘1, respectively. For the cases of
sparse and medium level impulse arrivals excellent results are obtained in comparison
with results obtained by Monte Carlo simulation even with the present relatively coarse
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meshes, both at the central part of the distributions and at the tails. However, for
the case of dense pulse arrivals path integration provides rather poor results because
the upper bound restriction on At is no longer fulfilled. Next, the first-passage time
problem for a deterministic start problem with symmetrically constant double barriers
is solved for the cases of sparse and medium level impulse arrivals. As is the case for the
corresponding white noise excitation the path integration method underestimates the
probability of failure during the first periods of exitation as a consequence of the coarse-
ness of the mesh and the large transition time interval. For the case of medium level
impulse arrivals a comparison has been made with the probability of failure obtained
by approximating the excitation process by an equivalent Gaussian white noise process.
The results obtained by Method 1 are in much better agreement with Monte Carlo
simulation results than those of the white noise excitation are. Hence a replacement of
the compound Poisson process by an equivalent Gaussian white noise is misleading in
reliability analyses with mean arrival rates of the considered magnitude. Next a single
barrier problem with stationary start in the safe domain is considered for the cases of
sparse and medium level impulse arrival rates. In neither case the staircase character of
the first-passage time probability density function is captured by the path integration.
However, the correct limiting exponential decay, corresponding to a discrete eigenvalue
spectrum of the backward or forward Kolmogorov-Feller operator with absorbing exit or
entrance boundaries, respectively, is captured by the path integration method for both
deterministic and stationary start problems. Next, Method 2 has been used for the
determination of the stationary marginal pdfs of the displacement and velocity in case
of relatively sparse mean arrival rate of impulses. The obtained results for the marginal
distributions are of the same quality as the corresponding results of Method 1. However,
the algorithm of Method 2 is significantly simpler and faster to use. The computer time
for performing the path integration analysis with Method 2 in the considered example
is 0.22% in proportion to the computer time for the simulation, which concludes that
the method offers extreme computational advantages over the Monte Carlo simulation
method. Next, Method 2 is modified for path integration of systems driven by Lévy a-
stable motions and compound Erlang processes. The modification for systems driven by
a Lévy a-stable motion merely consists of replacing the actual process by an equivalent
compound Poisson process with a-stable distributed impulse strengths. No example has
been indicated for this theory. For systems driven by Erlang renewal processes a more
involved modification of the method needs to be devised. Instead of a single mesh for
the discretized space of the structural state variables it becomes nescessary to define k
such meshes, one for each of the k Poisson events per Erlang event. For each of the
first k¥ — 1 Poisson events the probability mass at a certain node of the mesh related
to this event is convected on the same mesh according to the eigenvibrations from the
initial values. The fraction of probability mass corresponding to the probability of no
impulse arrivals in the transition interval is lumped at the terminal point of the sys-
tem, whereas the remaining probability is tranferred to the next mesh in line. If this
next mesh is the kth and final mesh the transferred probability mass is diffused in this
plane. Else it is lumped at the same terminal point on the new mesh as in the previous
one. If the system starts on the kth mesh, the probability mass on condition of one
impulse arrival is transferred to the first mesh to start a new sequence. It follows that
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the number of states of the resulting Markov chain only grows linearly with k rather
than exponentially. Hence the introduction of the auxiliary state variables, necessary
at the reduction of the Erlang process driven system into an equivalent Poisson driven
system, has relatively small influence on the computational effort of the devised path
integration scheme. In example 3-14 the method has been applied to a Duffing oscillator
with relatively high non-linearity parameter subject to a compound Erlang process with
parameter k = 2. The strength of the renewal impulses is assumed to be zero-mean
normally distributed. Three cases of mean arrival rates of Poisson events are consid-
ered, corresponding to sparse, medium level and dense renewal impulse arrivals. The
path integration is performed with two uniform 44 x 44 meshes extending five linear
stationary standard deviations in the positive and negative displacement and velocity
directions. For the case of sparse impulse arrivals excellent results are obtained for the
marginal pdfs of the displacement and the velocity in comparison to results obtained
by Monte Carlo simulation. In this case the lower and upper bounds on the allowable
interval for the transition time interval can easily be met. The importance of these
requirements is demonstrated in a study of the quality of the obtained results as a func-
tion of the length of the transition time interval. Results obtained with the very large
transition interval of 5.07p in the case of sparse impulse arrivals are useless because
the upper bound criterion has been violated in this case. The corresponding results for
the medium level pulse arrival rate are acceptable but not so good as those obtained
with sparse pulses. The transition time interval is selected as At = 0.2, to meet the
upper-bound criterion. However, this choice is also close to the acceptable lower-bound
value, as demonstrated in the performed study of the dependence on the transition in-
terval with the used value of v, where transition time intervals smaller or larger than
the selected value provide less accurate results. The path integration results for the
case of dense impulse arrivals are even worse. The path integration has been performed
with the transition time interval of At = 0.05Tp to meet the upper-bound criterion, but
the lower-bound criterion is certainly violated. Hence the observations of the example
confirm the previous results for systems exposed to compound Poisson processes that
path integration methods for pulse driven systems provide accurate results for the case
of sparse impulse arrivals with properly selected transition time interval, whereas useless
results are obtained if the transition time interval is either too small or too large.

Section 3.5 deals with the numerical solution of the reliability problem for the non-linear,
non-hysteretic time-invariant SDOF' oscillator subjected to a homogeneous stationary
compound Poisson process by means of a Petrov-Galerkin approach. Based on the
general formulation in section 3.2.2, the boundary and initial value problem for the
determination of the reliability function for a double barrier problem with constant bar-
riers is stated, and the weak counterpart of the boundary and initial problem is derived.
In the formulation a Kramer-Moyal expansion of the backward Kolmogorov-Feller op-
erator is assumed, requiring that moments of the impulse strength of arbitrary order
exists. In the displacement direction triangular shape functions are applied, and the
weight functions are obtained from these by adding a quadratic upwind differencing.
In the velocity direction the shape functions are chosen as normal probability density
functions with varying means to meet the severe requirements on differentiability. The
weight functions are obtained by adding upwind differencings chosen as the scaled first
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derivative of the shape functions. Expressions for the scaling factor of the upwind
differencing and the local Peclet number are suggested. The discretized system of cou-
pled first order differential equations for the reliability function is solved by means of a
Crank-Nicolson scheme. In example 3-15 the method has been applied to a symmetric
double barrier first-passage time problem with deterministic start in the origin for a
Duffing oscillator driven by a compound Poisson process. The damping ratio and the
non-linearity parameter of the oscillator is varied in the example to analyse their in-
fluence on the reliability function. The impulse strength is assumed to be zero-mean
normally distributed. The safe domain is divided into a uniform 30 x 30 mesh extending
five stationary standard deviations in the positive and negative velocity directions. The
stationary standard deviations are obtained from an initial Monte-Carlo simulation,
but may be obtained from the method as well. It is demonstrated that the numerical
scheme converges to the results obtained by Gaussian white noise as v — oco. The
parameter studies show that the reliability function is significantly dependent on the
non-linearity parameter, whereas is it rather insensible to the damping ratio. A study
of the dependence of the reliability function on the mean arrival rate shows that the
method with a 30 x 30 mesh renders into numerical instability for v < 1.0wp, and that
the obtained results are rather insensible to values of the mean arrival rate above this
limit. It is demonstrated that attempts to achieve numerical stability for mean arrival
rates below the indicated stability limit demand drastical reduction of the mesh width.
Hence, the Petrov-Galerkin variational approach shares the drawback of the moment
equation method for compound Poisson process driven systems that these methods are
most effective for excitation processes with large mean arrival rate of impulses.
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5. NOTATION

A() Vector of 1st order tensor components A; ().

A Cross-sectional area of beam element.

A; Cross-sectional area of beam element 1.

A;(t) 1st order tensor components in cubic expansion of drift vector.

Ai(t) Time-dependent slope in Clough-Johnston hysteretic model.

a(X(¢),t) Drift vector of compound Erlang process driven system.

a Parameter in a-stable random variable,

ag Mode participation factor.

a;; Coefficients in polynomial expansion of u(z, z).

a(t) Lower barrier level.

a; Parameter in hysteretic model for shear force between (i—1)th
and ith storey in shear building.

a; Coefficients in closure expression for Yj11(¢).

a(t) La(t).

[a, b] Closed interval from a to b.

la, ] Open interval from a to b.

Upeak Peak value of 1i4(t).

B(t) Matrix of 2nd order tensor components B, (t).

B, 2nd order tensor components in cubic expansion of drift vec-
tor.

b(t) Position vector to surface area element da;.

b(1) Lb(t).

b(X(1),t) Diffusion vector of compound Erlang driven system.

b Decay rate of intensity function of white noise excitation.

b1, ba + Coefficients in equivalent cubic expansion of constitutive equa-
tion for hysteretic beam with a single yield hinge.

b; Expansion coefficients in solution to AR difference equation
for p(N(t)).

b(t) Upper barrier level.

b(2) Lb(1).

C Covariance matrix.

(@) Linear viscous damping matrix.

(k) Local Courant number for the kth cell.
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Cl'mn

C;(t)

Cy

Cle,t+a1
br

Ciray

¢t

C]T,!-l—Al]

C,-(z,i)

c(2(t),1)
?(Z(t), 1)
ceq'g(Z(t),t)

ci(Z(t),t)
¢} (2(t), 1)
c(t | Zp, o)

é(t | 2o, to)
olk)

Cn
crzy(b(1), 1| Ep)

ciz3(b(t),t| 20, %0)

D(t)

3rd order tensor components in cubic expansion of drift vec-
tor.

Re (U;j). Auxiliary state variable at the transformation of
Erlang process driven system into equivalent Poisson process
driven system.

Event that a crossing through 85; takes place.

Event that a crossing through 85; takes place during J¢,t +
At)].

Event that an in-crossing to S; takes place.

Event that an in-crossing to S; takes place during ]t,t + At].

Event that an out-crossing from S; takes place.

Event that an out-crossing from S, takes place during |¢,¢ +
At).

Derivate moment of the 1st order of Markov vector process
{Z(t),t € [to, 0[}. (Ci(z,0) = lim A B(Zi(t+80)~Z;(1) |

Z(t) = z)).
Drift vector in Markov system.
c(Z(t),t) — E[c(Z(t), t)]. Zero-mean centralized drift vector.

ith component in equivalent polynomial expansion of drift
vector.

ith component of ¢(Z(t), t).
ith component of ¢®(Z(¢), t).

Deterministic displacement drift (eigenvibration) from initial
state zp at the time #y of single-degrees-of-freedom system.

%c(t | Z0,%p). Deterministic velocity drift (eigenvibration)
from initial state zy at the time ¢y of single-degrees-of-freedom
system.

|e(Z,t)|. Length of drift-vector at the centre of the kth cell
at the time ¢.

Coefficient in eigenfunction expansion of first-passage time
probability density function.

Probability current of Markov scalar process { Z(t), t € [to, o[}
through barrier b(t) at the time ¢ on condition of &, .

Probability current of Markov scalar process { Z(t), t € [t, o0[}
through barrier b(¢) at the time ¢ on condition of deterministic
start at zo € Sy at the time #g.

Vector of damage indicators.
Diffusion coefficient.

Damage indicator. Bilinear and Bouc-Wen hysteretic oscilla-
tors.



D;(t)

DF (1), D7 (t)

Dimnp
-DN(zn t)

D in(z,1)
d(Z(),1)
d(ilZQ,to)
do

do(t)

d) (tlz, 1)

d(2) (t|z, ti)

d(1)
dp
di,...,dy

dﬂ,z

di(t|zo,t)
dia(z(t): t)
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Damage indicator between (i — 1)th and ith storey in shear
building.

Accumulated plastic deformation at positive and negative yield-
ing between (i — 1)th and ith storey in shear building.

4th order tensor components in cubic expansion of drift vec-
tor.

Derivate moment of order N of scalar Markov process { Z(t), t€
o, 0} (Dn(e,t) = lim ZB(Z(t + AY) - 2(1)" |

Z(t) = 2]).

Derivate moment of order N of Markov vector process {Z(t),t €
[to, o[} (Dir"iN(zrt) = Altl-r-l}oo ﬁE[(Zh (t+At)_Zi1 (t)) s

(Ziy (1 + AL) = Zi (1) | Z(2) = 2]).

Diffusion vector in Markov system due to excitation by Wiener
processes,

Deterministic drift (eigenvibrations) during interval ]¢p, t] from
initial value Z(to) = zop.

Vector for scaling of external normalized Wiener vector pro-
cess {W(¢)}.

Diffusion vector in path integration of Wiener process driven
systems. Piecewise constant as a function of Z(t).

ad(t g . . "
Jg'ff’—'le. 1st order expansion vector in Taylor expansion

k
of Z(t) on condition of one impulse arrival in J¢;,].

2
pansion of Z(t) on condition of one impulse arrival in J¢;, t].

92d(tl 20 1: ; ;
LaT —aauaif%—'le. 2nd order expansion vector in Taylor ex-
k

Diffusion function.
Amplitude of white noise intensity function.

Coefficients in equivalent cubic expansion of constitutive equa-
tion for hysteretic beam with a single yield hinge.

Area element of surface 9s;.

Critical value of D(t).

ith component of d(t|zo,%0).

Component in ith row and ath column of d(Z(t), ).
Coefficient in eigenfunction expansion for Fr, ([z).
Modulus of elasticity.

Dissipated energy per unit volume of soil.
Expectation operator.

Expectations with respect to fy (v, ).

Event.
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E]tﬂ 't]
(n)

]‘0:3]

e(Z(1), 1)

€p

e?(Z(t), 1)

eq(t)
e(t)

€1,€2,€3,€4

eia(Z(t), 1)

ed (Z(1),1)
{F(t), t €]to, t1]}
{F(t), t €]to, 1]}
Fra(2), Fra(z)

Fr()
F,;J(tlv st‘n:f‘)

F,;I:J(iﬂv v Iglo)
Fp(p)

FT:l (t l Etﬁ)
Fxmnx(z;I()!t})

(1)
'T]t.t-}-At}

(n)
Ttn

(n)
Jt,t+ At

fi(t)
f:w(tl ' Ct+)

Fi(tr ] Legpe)

Event that a-subset of initial values belongs to Si,.
Event nre]to,t}sr. 3

Event that at least n out-crossings take place from the safe
domain during the interval ]¢o, ] of sample curves originating
in Sgu i

Diffusion vector in Markov system due to excitation by jump
process.

Vector for scaling of external jump vector process {V(t)}.

e(Z(t),t)— E[e(Z(t),t)]. Zero-mean centralized diffusion ma-
trix.

ath column matrix of e(t).
Diffusion function.

Parameters for specification of amplitude dy of white noise
intensity function. \

Component in ith row and ath column of e(Z(t), t).
Component in ith row and ath column of €%(Z(t),t).
Vector load process.

Scalar load process.

Quadratic upwind correction of weighting functionsin z-direction
in Petrov-Galerkin variational approach.

Probability distribution function of L.

Integral of f;‘+1_;l__+(t1 coostastngr, .o tagj, t) over
one triangle of [tn,t]? with respect to tnyj,... ,tny1.

Integral of f:_i_';++'"+(tn+j,... stat1,tn,. ..ty | &) over
one triangle of [tg,{,])’ with respect to tn4j,... ,tnt1.

Probability distribution function of P.
First-passage time probability distribution function.

Probability distribution function of X = m[ax]X('r).
TE[0,t

Event that a first-passage takes place at the time ¢.

Event that a first-passage takes place during ]¢,t + At].

Event that an nth-passage takes place at the time 1.
Event that an nth-passage takes place during Jt,t + At].

Unconditioned first order crossing rate through 85;.

First order in-crossing rate to S;, on condition of an out-
crossing from Si, tg < #; < t.

Kernel in integral equations for ij. (t — t1). Rate of in-




f1_(tﬂ+1 |Ct_1 ﬂ---l"]Ct'; nctn+2|t)

fiE ()
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FH(t | a9 NU,Le)
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FE (S v |18 VELT)
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crossings to Sg‘ on condition of an in-crossing to S;,, on
condition of an out-crossing from S; and on condition that
the sample curves are not leaving the safe domain in the in-
terval ]z, 8, to < t; <ty < t.

Kernel in integral equations for fL;; (t—tnt1 | C; N--NCy,, ).
Rate of in-crossings to Si,,, on condition of an in-crossing
to Sy, 81,81, 44, on condition of an out-crossing from
S; and on condition that the sample curves are not leaving
the safe domain in the interval [t 40,4, to < t; < - < t, <
tngr <lng2 <L

Unconditioned first order out-crossing rate from S;.
First order out-crossing rate from S; on condition of Eiy

First order out-crossing rate from S; on condition of deter-
ministic start in [X (1), X ()] = [z1,£1] at the time ¢; < ¢.

Kernel in integral equation for fr- (t —t1). Rate of out-
ty

crossings from S; on condition of C;, and on condition of a
first-passage at the time {3 €]ty ¢[.

Kernel in integral equation for fr, (¢ | &,). Rate of out-
crossings from S; on condition of £, and on condition of a
prior first-passage at the time t; €]tp,t].

Kernel in integral equation for fU (t —t1 | &) Rate of

out-crossings from S; on condition of &1, and on condition of
Uty » to <t <tz <t

Kernel in integral equation for fU+(t —t1 | £&,). Rate of
out-crossings from S;; on condition of £y, and on condition
of ugz‘

Rate of out-crossings from S; on condition &y, of sample
curves in the safe domain at instants of times 71, - | 7y,.

Kernel in integral equation for fr (¢ | £&,). Rate of out-
crossings from S; on condition of £, and on condition of a
first-passage at the time ¢; €]to,t[ of sample curves in the
safe domain at instants of times 7y, . |, 7.

Rate of out-crossing from Si, on condition of &, and on
condition of out-crossings from S, _,, -+, Sy, S, < by <
th—1 <<t <t

nct nct)

Kernel in integral equations for fr, (t» | &, ﬂC+ Nat ﬂC+ n
C}). Rate of out-crossings from S;, on condltlon of &, on
condition of a first-passage at the time ¢, 41 and on condition
of out-crossings from Sy, _;,..., 51,8, to < tng1 < tn <
th—1 < <th <t

2nd order rate of in-crossings to Sy, and S:, of sample curves
which does not leave the safe domain in Jt2, {[ on condition of
an out-crossing at the time ¢.
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fe(Qe)
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fn.g(tl,...,tn)

fn.O(tl.....tn)

fT]A(tlgtD)

o12,9(z2,t) _ u(xa,t)
o112,y (22,0) p(x2,0)"
and shear modulus.

Deterioration function for shear strength

Yield function.
Probability density function of interarrival times Iy, I3, - - -

Waiting time probability density function of first impulse ar-
rival of renewal counting process.

Probability density function of L] .

Probability density function of L{, on condition of joint out-
crossings from Sy, , ... , 51,5, o <t1 <ty +l <ty < -+ <

ts < t.

Probability density function of L}.

Probability density function of L} on condition of prior joint
in-crossings to Sy;,... , S, o <t1 < - <ty <t—-1<H.
Unconditioned nth order crossing rate through 85, ,... ,85;, .

nth order crossing rate through 85, ,...,85;, on condition

of event £.

nth order crossing rate through 6S;,,...,8S;, of samples in
event £.

nth order crossing rate through 85,,,--- ,8S;, on condition

of £, of sample curves in the safe domain at instants of times
T, ' s Tm.

nth order in-crossing rate to S;;,...,S:, on condition of an
out-crossing from Sy, g < t; < - < 1, < L.

nth order out-crossing rate from Sy,, ... ySt,4, on condition

ofeventC,‘l. to <t <t2 < - <tny1.

Kernel in integral equation for f; _ (t — t1). nth order out-
t1
crossing rate from S, ,...,S:;,5t,,5: on condition of ¢

and on condition of a first-passage at time tn41, tg < ¢; <
nt1 <iln < --- <3 <ty < L.

nth order out-crossing rate from Sy, , ... ,S;, on condition of
event £, .

Kernel in integral equation for fp, (¢ | £,). nth order out-
crossing rate from S; _,,...,5:,,5; on condition of &y and
on condition of a first-passage at the time tn, 1y < t, <
fno1 < <t < T

nth order product density of generalized renewal counting
process.

nth order product density of ordinary renewal counting pro-
cess.

First-passage time probability density function on condition



frt|&onCtnnct)

n

an(t igio)

fe(p)
fU;" (“ I 530)

fUc_l(u[&QﬂCj;ﬂn-ﬂCj; nct)

fU[F(u Ié‘to)

fu;r(uwtoﬂcf[ 0 v <VEE )

frvy(z, 1)
fiviyy(x, ¥, 1)

va(v;""':)t)

263

of initial values in & .

First-passage time probability density function on condition
of £, and on condition of later joint out-crossings from Sy, ,. ..
Si to <t <t <o < .

nth-passage time probability density function on condition of
initial values in &;.

Probability density function of P.

Probability density function of U~ on condition of Ey .

Probability density function of Uj; on condition of £, and
on condition of joint out-cressings from Sty , 81,8, 1o <
b <ti+I<t, < - <ty < 1.

Probability density function of U on condition of Eiy.

Probability density function of U on condition of &y, and on

condition of prior joint out-crossings from Stiiie. Si,, to <
B el B L L= TE L

Joint probability density of Z(t) on condition of at least one
pulse arrival.

Joint monomodal probability density function of V(t) and
auxiliary state vector Y(t).

Auxiliary monomodal joint probability density function in
two-well Duffing oscillator problem.

f{X}{X }(xl,.i-;,h ioociXn,Zn,tn | £4y) Joint nth order probability density function of vector process
fn

f{x}{i}(x1:*11tl;"’ ;xn:).(nvtn)

{X(t),t € [to,o0[} and relative normal velocity vector pro-
cess {X,(b(t)),t € [to, o[} on condition of &;. Joint con-
ditioned probability density function of stochastic variables
X(t] )sX'ﬂ-(b(tl ))1 RS ¥ ,X(tﬂ), X’ﬂ(b(tn ))

Joint unconditioned probability density function of stochastic

variables X(t1), X (1), ... , X(tn), X(tn).

f{x}{j{}{j{n}(xﬂskﬂatDSxlsilst1§'-- ;xn:én:tn)

Fixypxy (1,80, t5. . 520, &0, tn)

f{x}{)&}(mlyil:ﬁ;--- o, En,dn | Ebg)

fX)'(v(:c)d’svnt)

Joint unconditioned probability density function of stochastic
variables X (o), X(#), X(t1), Xn(b(t1)), ... s X{tn), Xn(b(tn)),
o <ty <0 < iy

Joint unconditioned nth order probability density function of

scalar processes {X(t),t € [to,00[}, {X (1), ¢ € (to,o0[}. Joint
probability density function of stochastic variables
X(t1), X(t1),...,X(tn), X(tn).

Joint nth order probability density function of scalar pro-

cesses {X(t), ¢t € [to,o0[}, {X(t),t € [to, oo} on condition of
&y . Joint conditione.d probability density function of stochas-
tic variables X (t1), X(t1),... ,X(tn), X (tn).

Auxiliary monomodal joint probability density function in
Bouc-Wen oscillator problem.
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Fer, (b(1), % | £4,)

fXLt—l(bnzat_tl)

f)'{TI(b: z,t ] 510)

foTl(baz\Q3t |‘sin)

fXUt—] (blilt_ 31 I gto)

f(Z(1),1)
fizy(z1,ts .. i 2n,tn)
f(a, B,sign(p))
faviy(v)

frzy(z. t| N(t) > 0)

Gi[.--!.k (z;"”l '5)
g

Be
(X, Q)

gim-‘-(tl:--- vtn | E1p)

Joint probability density function of first-passage time T} and
associated out-crossing velocity vector X per unit of area
of 8s; at position b(t) on condition of initial values in &;,.
Markov vector processes.

Joint probability density function of the time interval spent
in the safe domain after an in-crossing at the time ¢; and

the associated out-crossing velocity X at the time ¢ at the
constant barrier b. 2-dimensional Markov vector processes.

Joint probability density function of first-passage time 7} and
associated out-crossing velocity X at constant barrier b on
condition of initial valuesin &,. 2-dimensional Markov vector
processes.

Joint probability density function of first-passage time T} and

associated out-crossing velocity X and hysteretic component
Q at barrier b on condition of initial values in &,.

Joint probability density function of the time interval between

two succeeding out-crossings from the safe domain after an
out-crossing at the time {; and the associated out-crossing
velocity X at the time ¢ at the barrier b on condition of & .
2-dimensional Markov vector processes.

Joint probability density function of auxiliary state vector
Y(T) at the transformation of Erlang process driven system
into equivalent Poisson process driven system.

Sufficiently smooth function.

Joint unconditioned nth order probability density function
of state vector Z(t). Joint probability density function of
Z(tl):"' uz(tﬂ)'

Function for specification of jump probability intensity func-
tion of a-stable Lévy motion.

Probability density function of a-stable random variable AV (t) ~

So((alt)/ >, 3,0).

Joint probability density of Z(t) on condition of at least one
pulse arrival. Equal to fivy(z,t).

Hermite polynomial adjoint to H;, _; (z; i, K).
Global geometrical matrix.
Local geometrical matrix for plastic element e.

State dependent function specifying the development of dam-
age indicator D(t).

Nonlinear displacement dependent damping coefficient. (u(X,X) =

g(X)X + k(X)X).

Functions in formal inclusion-exclusion expansion of hr, (T |
T
0




H(z)
H(w)
Hi(z)
Hi iy (Z 4, K)
Hmn(61,€2 5 p)

(1)
H]3,1+A1]

(n)
H]t,1+At]

h
h(t)
h(t)

hmax
h’Tl (t | St[})
th (t I Eto)

Iy
I;
I
Jzy(x]z, )

J(ve} (Pay t)

K
Ko

Kpnri,
K'at[']

KE:: []

ko
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Heaviside’s unit step function.

Frequency response function.

Univariate Hermite polynomial generated by ¢(z).
Multivariate Hermite polynomial generated by o, (z; i, K).
Bivariate Hermite polynomial generated by ¢2(€1,£2; p).

Event that an out-crossing through 85; takes place during
Jt,t + At] on condition of &£y ) = Nrepeg,S7-

Event that an out-crossing through 85; takes place during
Jt,t + At] on condition of 5](:2)!1}.

Thickness of soil layer.

Impulse response function of linear time-invariant system.

%h(t]. Velocity impulse response function of linear time-
invariant system.

Maximum of h(t) for t € [0, oof.
Hazard rate on condition of & .

Hazard rate for the nth out-crossing event on condition of
s

Bending moment of inertia for yield hinge element.
Bending moment of inertia for beam element :.
Interarrival time-interval between impulses.

Jump probability intensity function for the state vector pro-
cess {Z(t),t € [to,t1]} for jump into interval ]x,x + dx] per
unit of time ¢ on condition of start in Z(t) = z at the time %.

Jump probability intensity function for the component jump
process {Va(t),t €]ta, 11]} for jump into interval |pe , pa +dpa]
per unit of time at the time ¢.

”Stiffness”-tensor in Petrov-Galerkin variational approach.
Global stiffness matrix for linear elastic structural elements.

Component of ”stiffness”-tensor K in Petrov-Galerkin varia-
tional approach.

Forward Chapman-Kolmogorov differential-integro operator
(Fokker-Planck operator). Time-invariant version: Kg[-].

Backward Chapman-Kolmogorov differential-integro operator.

Time-invariant version: KT [-].

Parameter in Gamma-distributed interarrival times I; ~ G
(k — 1,v) of Erlang renewal process.

Equal to [M?-_l]
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k(X)

M
M.(t)

My 51,0,
M(At, t, Ap, p)
M (t), Ma(t)
Ma(At,t, AP, P)

Mp(8)
My, My,i

M xy(x3 (01,02, 2o, to)

Mv(a;h,... Jin)
Mz1(8,1)
m;

mpy(z)

N{D (=)

NO(z)

{N(t), €]to, o0[}
{N= (1), €]to, o}

{N+(i),t E]to,oo[}

Nonlinear displacement dependent stiffness coefficient. (u(X, X)=
g( X)X + k(X)X).

Length of time interval spent in safe domain. Stochastic start
problem of stationary processes with time-invarient safe do-

main.

Length of time interval spent in safe domain after an in-
crossing to S;.

Length of time interval spent in safe domain before an out-
crossing from S;.

Joint event C;; ﬂre]:z,t[ST N C;".
Chord length of beam element in the deformed state.
Mass matrix.

"Mass”-tensor in Petrov-Galerkin variational approach.

Vector of member end-section moments M (t) and My(t).

Component of "mass”-tensor M in Petrov-Galerkin variatioal
approach.

Random measure specifying number of jumps (impulses) of
generating source {V/(¢), t € [to, oo[} into the interval |p,p +
Ap] during the time interval J¢,{ + At].

Member end-section moments.

Random Poisson measure for ath component of compound
Poisson vector process.

Characteristic function of impulse strength P.
Yield moment of beam. Yield moment of beam 1.

Joint characteristic function of X (t), X(¢) on condition of the

state z; = [zq, Zg] at the time tp.

Joint characteristic function of random vector VT(t) = [V(t;),... , V(ta))
Joint characteristic function of state vector Z7 (¢) = [Z1(t),... , Zn(1)].
Mass of single-degree-of-freedom oscillator.

Mass of ith storey in shear building.

Nth order moment of first-passage time T; on condition of
deterministic start in Z(t,) = z. (E[T}N | Z(to) = 2z0]).

Continuous shape function. N‘gl)(z) =0 for (z,z) € 85(1),

Continuous shape function.
Non-stationary Poisson counting process.

Counting process specifying the number of in-crossings to the
safe domain.

Counting process specifying the number of out-crossings from




N(u,0?)

N,

{N-(t), t €]to, o[}

n(b(t))

Po(t,to)
P

P(£)

P

Ps([to, 11])
Py([0,1];z)

P

P{N}(n,t|t0)

P, ,Pr
P
Ply.--,Pr
Pila
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the safe domain.

Class of normal distributed stochastic variables with mean

value p and variance o2.

Axial force along chord line of beamn member.
Renewal counting process.

Unit normal vector in outward direction to 8s, at position

b(t).
Parameter in Bouc-Wen hysteretic model.

Number of iterations until stationarity is achieved in path
integration technique.

Dimension of state vector Z(t).
Dimension of X(t).

Dimension of Q(t) and g(t).
Dimension of W(t).
Dimension of V(t).

Order notation symbol. (limy—o O(z) < Az, A being a pos-
itive constant).

Intensity of impulses of compound Poisson process,

Numerator polynomial of rational frequency response func-
tion.

Probability of no Poisson events in the interval Jtg, t].

Intensity of impulses of ath component of compound Poisson
vector process.

Probability of the event £.
Sample space of impulse strength, P.
Probability of failure in the time interval [tg, t;].

Probability of failure in the time interval [0, ] for single bar-
rier problem with variable upper barrier x.

Parameter entering modified cumulant neglect closure scheme
for bilinear oscillator.

Probability function of the first order of Poisson counting pro-
cess {N(r), 7 €]to, ]}.

Real matrices in linear output filter differential equations for
F(t).

Sample value of P.

Real constants in linear output filter differential equation for

F(t).

Coefficients in Hermite polynomial H;(z).
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Q1)
Qe(t)
Q{i)

Q(t)
Q(2)

Q°(¢)
Qi(t)

@

q(t)
qe(t)

q1,---19s

q(®)(z, )
g1 (z,t)
0

Qh--- e

Ga
qy

qy,i

g(zy (=, 2, | C)
‘F{Z}(msist | €10)

qqzy(e, 2,t | & NCE)

qz3(z,t | 2o, t0)

qi-;)} (ZJ t i Zg, iU)

Vector of generalized stresses from all plastic elements.
Vector of local generalized stresses for plastic element e.

Transition probability matrix of Markov chain during ith tran-
sition.

Hysteretic component of restoring force in single-degree-of-
freedom system.

Denominator polynomial of rational frequency response func-
tion.

Q(t) — E[Q(t)]. Zero-mean centralized hysteretic component.

Hysteretic component of shear force between (i —1)th and ith
storey in shear building.

Component in jth row and kth column of Q(¥). Probability
of transition from z; to jth cell during interval |t;, t; + At;].

Vector of generalized strains from all plastic elements.
Vector of local generalized strains for plastic element e.

Real matrices in linear input filter differential equations for

F(t).

Abbreviation for g(z}(z,% | x, ).

Abbreviation for q(z)(y,t1 | z,t).

Modal value for peaks in Bouc-Wen oscillator problem.

Real constants in linear input filter differential equation for
F(1).

Amplitude of harmonic varying shear stress.
Yield value of hysteretic restoring force component.

Yield value of hysteretic component of shear force between
(i — 1)th and ith storey in shear building.

Joint probability density function of displacement z and ve-
locity ¢ at the time t on condition of an in-crossing at the
time ¢; < t. 2-dimensional Markov processes.

Joint probability density function of displacement z and ve-
locity & at the time ¢ on condition of £t,. 2-dimensional
Markov processes.

Joint probability density function of displacement z and ve-
locity & at the time ¢ on condition of £, and on condition
of an out-crossing at the time ¢;, {5 < t; < {. 2-dimensional
Markov processes.

Joint transition probability density function of Markov vector
process {Z(t),t € [to,oo[}. Transition from state zp at the
time tp to state z at the time t.

Joint transition probability function of Markov vector process
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{Z(t),t € [to, o[} on condition of exact n pulses in [tg, t[.

Transition probability density function of Markov scalar pro-
cess {Z(t),t € [tp,o0[}. Transition from state zy at the time
to to state z at the time %.

Vector of expansion coefficients R;;(7) in Petrov-Galerkin
variational approach.

Set of real numbers.

Expansion coefficients in Petrov-Galerkin variational approach
for the solution of R(r|z).

1 — Fp, (r|z). Reliability function for first-passage time prob-
lem with deterministic start in Z(0) = z.

Correlation coefficient of point process.

Boundary value terms in variational equation (3-103). Can-
cels for adjoint operators.

nth lower bound to the first-passage time probability density
function.

Coefficient in expansion for E[Xf(t)Xm(t)Q"(t)] for bilinear
oscillator.

Im(U;). Auxiliary state variable at the transformation of Er-
lang process driven system into equivalent Poisson process
driven system.

Part of log-characteristic function of ¢z} (z,t | zo,15) in case
of compound Poisson driven system.

Auto-spectral density function of Gaussian white noise.

nth upper bound to the first-passage time probability density
function.

Safe domain at the time t.

Unsafe domain at the time t. Complement to S;.
Weighted integral of R(r,t).

Event that X(¢) attains value in S;.

Equivalent linear stiffness of hysteretic component of shear
force between (i — 1)th and ith storey in shear building.

Coefficient in expansion for E[Xr(t)){l'm{t)Q" (t)] for bilinear
oscillator.

Period of linear undamped eigenvibrations of single-degree-
of-freedom system.

First-passage time.
Shear force between (i —1)th and ith storey in shear building.

Time for maximum value of intensity function of white noise
excitation.
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Tn

tp
t
t;
tx(8)

tmax

utl’ﬂ
u(z)

u(X(t), X(t))

u(zz,t)
tig(t)
{V(),t €lto, 1]}

viD(z)
vt ()

Vis(z, )

V(t)

{V(t),t €]to, 1]}
Vi(v)

nth-passage time. Elapsed time until the nth out-crossing
from the safe domain.

Time.

Initial time of excitations.

Terminal time of excitations.

Arrival time of impulse of compound Poisson process.
Auxiliary function in analytical solution for s, k.
Time for maximum value of h(t).

Vector specifying the stiff-body motion of all global degrees-
of-freedom due to unit horizontal translation of ground sur-
face.

Potential function of two-well Duffing oscillator problem.

Auxiliary complex state variable at the transformation of Er-
lang process driven system into equivalent Poisson process
driven system.

Elapsed time interval until the next out-crossing after an out-
crossing from S;.

Elapsed time interval between an out-crossing from S; and
the previous out-crossing.

Joint event, C?; N {exactly one in-crossing in Jts, {[} N C;}.

Sufficiently smooth function of state vector in Petrov-Galerkin

variational approach. u(z) =0 forz € 6551).

Restoring force per unit mass of single-degree-of-freedom
time-invariant non-linear oscillator.

Horizontal displacement of soil.
Elongation along chord line of beam member.
Ground surface acceleration.

Vector jump process with independent increments.

Continuous and piecewise differentiable weight function.
Vi (2) = 0 for (z,2) € 8S(0,

Continuous and infinitely many times differentiable weight
function. V}z)(:i:) =0 for (z,z) € 85(2),
Weight function. Equal to V}l)(:z:)VJ(z)(z':).

Auxiliary random variable with monomodal probability den-
sity function.

Scalar jump process with independent increments.

Orthenormal polynomials of probability density function fy (v)
of V(#).
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{Va(t), t €]to, 1]}
Vi o

v(z)

{W(t),t €lto, t1]}
{W(t),t €]to, t1]}
{Wal(t),t €]to,t1}
{W(t),t €)to, 1]}
{X(t),t € [to, 1]}
{X(t), t € [to, 1]}

{X(t),t € [to, o[}
Xo

Xo

{X(t),t € [to, 0o}
{Xi(t),t € [0, 00[}
{X(t),t € [to, 00)}
XO(t)

Xa(b(t))

K

X(o0)

X (o0)

Xe

Xk
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ath component process of {V(t),t €]to,#]}.
Coeflicients in orthonormal polynomials V;(v).

Sufficiently smooth function of state vector in Petrov-Galerkin

variational approach. v(z) = 0 for z € B.S‘gu).
Vector Wiener process.

Scalar Wiener process.

ath component process of {W(t),t €]ty t1]}.
Stationary white noise process.

Vector displacement process.

Structural state vector process of compound Erlang process
driven system.

Velocity process of {X(t),t € [tg, co[}.

Initial value of displacement.

Initial value of velocity.

Scalar displacement process.

ith modal coordinate process.

Velocity process of {X(t),t € [to,oo[}.

Xti— E[X(t)] Zero-mean centralized velocity component.

Component of relative velocity vector X(t) — b(t) at failure
surface in direction of n(b(t)).

Maximum value of {X(7), 7 € [0, t]}.
Stationary displacement response as t — co.
Stationary displacement velocity as f — oo,

Vector of nodal point degrees-of-freedom z1,..., 26 of beam
element relative to local coordinates.

X(t;) = xi. Initial value at time ¢; of structural state vector
process for compound Erlang process driven system.

Modal value for peaks in two-well Duffing oscillator problem.

Nodal point degrees of beam element relative to local coordi-
nates.

Auxiliary vector of state variables of filter differential equa-
tions for F(¢).

%Y(t). Auxiliary vector of state variables of differential
equations for F({).

Auxiliary state variable of filter differential equation for F(1).

Equal to p(N(t)+j—1). Auxiliary state variable at the trans-
formation of arbitrary regular counting process {N(t), t €
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Jto, oo[} into equivalent Poisson process.

Y (o) () a‘-i-t-‘-;}’(t). Auxiliary state variable in filter differential equation
for F(t).

Z(t) Markov state vector.

{Z(t),t € [to, 1]} Markov state vector process.

Zo Initial value of Markov state vector.

{Z(1),t € [to, 1]} Scalar Markov process.

{Zi(t),t € [to,11]} ith component process.

Z0(t) Z;(t) = pi(t). Mean value centered state variable.

Zk Centre of kth cell in path integration technique.

zj Root of Q(z) = 0.

o Non-hysteretic fraction of total restoring force in single-degree-
of-freedom system.

o Parameter of a-stable random variable.

o Decay rate coefficient (a = A;/f;F).

o Upwind parameter for flow in z-direction in Petrov-Galerkin
variational approach.

o Elastic fraction of restoring force between (i — 1)th and ith
storey in shear building.

@i (©;, M;) Indicator function. Equal to 1 at yielding in yield hinge i
else 0.

i —9u

ay Fraction o

B Skewness or asymmetry parameter of a-stable random vari-
able.
Parameter in Bouc-Wen hysteretic model.
Fraction g—”—.

v

3 Upwind parameter for flow in z-direction in Petrov-Galerkin
approach.

B; Mode participation factor.

Biy iy () Zero time-lag joint quasi-moments of the order k.

1 Local Peclet number for flow in z-direction in Petrov-Galerkin
variational approach.

| i Local Peclet number for flow in z-direction in Petrov-Galerkin
variational approach.

5 Parameter in Bouc-Wen hysteretic model.

¥ Interaction parameter specifying the relative width of the up-

wind correction for the weighting functions in z-direction in
Petrov-Galerkin variational approach.
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Joint Hermite moments of the order k.
Volume of kth cell in path integration technique.

Increment N(t+At)— N~ (t) of {N~()} in the interval J¢, ¢+
At).

Increment N*t(t + At) — N*t(t) of {N+ ()} in the interval
t.t + At

Length of time-interval.
Increment V(t+At) -V (t) of {V(t)} in the interval ¢, t+ At].
Increment W (t+At)—W (t) of {W(t)} in the interval ]t,t + At].

Spacing of finite elements in z-direction in Petrov-Galerkin
variational approach.

Spacing of finite elements in Z-direction in Petrov-Galerkin
variational approach.

Time step for diffusion of impulse in Method 1 for path inte-
gration of Poisson process driven systems.

Maximum softening damage indicator.
Dirac’s delta function.
Critical level of maximum softening damage indicator.

Local softening between (i—1)th and ith storey in shear build-
ing.

Kronecker’s delta.

Failure surface at the time f{.
Accessible part of failure surface 85;.
Entrance part of failure surface 85;.

Exit part of failure surface 85;.

Non-accessible part of failure surface 45;.

Failure surface at the time ¢. Trace in displacement space of
aS;.

Nonlinearity parameter of Duffing oscillator.
Shear strain.

Ci — Ceq,i- Error vector.

Damping ratio.

Nondimensional linear viscous damping coefficient between
(i — 1)th and ith storey in shear building.

Modal damping ratio in the ith mode.

Damping ratio of 2nd order sharpening filter.
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(g Damping ratio of subsoil. Parameter in Kanai-Tajimi filter.

K Covariance vector of Gaussian stochastic vector.

k(q,Q) State dependent stiffness matrix for all plastic elements.

Ko, K1, K2 Coefficient matrices in state dependent stiffness matrix K. (@e, Me)
for yield hinge element e.

K:(9:,Qe) State dependent stiffness matrix for plastic element e.

Ke,o Elastic stiffness matrix for plastic element e.

R(X(t), Q1)) - State dependent stiffness coeflicient of hysteretic component.

Kig..ig (1) Zero time-lag joint cumulants of the order k.

kmn [ X (1), X(t) | 2o, to] Joint cumulant of order m + n of X(t) and X () at the time
t, conditioned on the state zg at the time {p.
scgmatas B Moxyxy (81,02, | 20,10) loy=,0.

ka[V(t1), ..., V(ta)] Joint nth order cumulant of random vector VT (t) = [V (t1),... ,V(ts)].

kxx(t1,t2) Auto-covariance function of {X(t),t € [tg, oo[}.

KXo X, (t1,%2) Cross-covariance function of { X4 (1), € [tp, co[} and {Xs(),t €
[ta, oo[}.

A Set of out-crossing velocity vectors with X, > 0.

A1) Covariance matrix for £ > ¢; of Gaussian stochastic vector-on

condition of Z(t;) = zy.

A Plastic potential multiplier.

A; Solution to characteristic equation.

Ay (1) E[(Zi, (t) — pi, (8) - (Zi, (8) — 13, ()], Zero time-lag joint
central moments of the order k.

A (@) E[(Vi, (0) — pf (1) - (Vi (1) = ] (1))]. Zero time-lag joint,

central moments of the order k& on condition of at least one
pulse arrival.

Ay nth eigenvalue of the forward and backward integro-differential
Chapman-Kolmogorov operator.

An(t) Fraction used for closing inclusion-exclusion series. Method
by Roberts and Kimura et al.

Xon Normalized joint conditioned cumulant of order m+n of X (t)
and X(t).

H(t) Mean value vector of Gaussian stochastic vector. Also used
as mean value vector for ¢ > t; of Gaussian stochastic vector
on condition of Z({;) = zj.

m Shift or location parameter of a-stable random variable.

pp(t) Mean value function of damage indicator D(¢).

i Mass ratio. Mass of ith storey in proportion to mass of (i — 1)th

storey in shear building.
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Mass per unit length for beam z.
E[Z;(t)]. Mean value function of ith component.
E[Z;,(t) -+ Z;,(t)]. Zero time-lag joint moments of the order k.

E[V; () --- V;, (t)]. Zero time-lag joint moments of the order
k on condition of at least one pulse arrival.

Mean value function of {X(t),t € [ta, co[}.

Mean value function of {X(t),t € [ty,00[} on condition of
initial values zgy at the time #g.

Mean value function of {X(t),t € [to,o0[} on condition of
initial value zp at the time #g.

Position and time-dependent shear modulus.
Average diffusion coefficient in Petrov-Galerkin approach for
Poisson process driven systems.

Mean arrival rate of impulses of Poisson counting process

{N(2),t €]to, o0}

Mean arrival rate of ath component Poisson counting process

{Na(t), 1 €]to, oo[}.

Sample of stochastic variable normalized to zero mean and
unit standard deviation.

-—‘-(-l-‘i’-(-lz';z__"(t)' Y0 Zero-mean centered state variable, normalized
to unit standard deviation.

Vector of state probabilities ﬂ;i).

Stationary distribution of states.
Probability of being in the jth cell at the time ¢; = iA{.

Mass density of soil.

Zero-memory transformation of Poisson counting process into
Erlang renewal process.

Auto-correlation coefficient function of the displacement pro-
cess.

Auto-correlation coefficient function of the modal coordinate
process {X;(t),t € [0, 00[}.

Auto-correlation coefficient of X(¢) and X(t) on condition of
initial values zy at the time {g.

Scale or dispersion parameter of a-stable random variable.
Parameter in Rayleigh distribution.

Shear stress.

Position and time-dependent shear strength.

Standard deviation of damage indicator D(t).
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w(n)(z)

O.(t)
@1 (t)1 e?(t)
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wo,i

Time-dependent standard deviation of end-section moment
M;(1).

Standard deviation of P.

Stationary value of standard deviation of X (¢) for linear os-
cillator.

Stationary value of standard deviation of X (t) for non-linear
oscillator.

Stationary standard deviation of response from the ith mode.

Stationary value of standard deviation of X () for linear os-
cillator.

Standard deviation of X(t) on condition of initial values zq
at the time #g.

Stationary standard deviation of ground surface acceleration.

Time-dependent standard deviation of ith state vector com-
ponent.

Time dependent standard deviation of end-section rotational
velocity Oy (t).
Distribution function of standardized normal variable,

Eigenfunction of forward integro-differential Chapman-Kol-
mogorov equation with absorption on the entrance part of
the boundary.

Non-dimensional shape function as a function of £ = E-fft
Probability density function of standardized normal variable.

Joint probability density function of bivariate normal stochas-
tic variable with correlation coefficient p, standardized to zero
mean values and unit standard deviations.

Multivariate Gaussian joint probability density function with
mean value vector 4 and covariance matrix K.

2n-dimensional joint probability density function of zero mean
normal distributed stochastic vector [X, X]T with covariance
matrix C.

Eigenfunction of backward integro-differential Chapman-Kol-
mogorov equation with absorption on the exit part of the
boundary.

Vector of member end rotations ©1(t) and ©,(t)
Member end rotations.

Circular undamped eigenfrequency of linear single-degree-of-
freedom system.

Parameter for specification of linear elastic fraction of shear
force between (i — 1)th and ith storey in shear building.
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Circular eigenfrequency of 2nd order sharpening filter.

Circular eigenfrequency of subsoil. Parameter in Kanai-Tajimi
filter.

Binomial coefficient.

Permutation operator.
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6. SUMMARY IN DANISH

I afsnit 2.1 er indledningsvis udledt identiteter mellem fgrstepassage sandsynligheds-
teethedsfunktionen under betingelse af heendelsen &, fr,(t | £, ), og sandsynligheds-
teetheds-funktionenerne fy+ (t — t1) og fu+(t —t1 | &) for henholdsvis leengden af
tidsintervallet tilbragt i det sikre omrade fra den foregaende indkrydsning til tidspunktet
t; til udkrydsningen til tidspunktet ¢, og den forlgbne tid fra den foregaende udkrydsning
til tidspunktet ¢; til udkrydsningen til tidspunktet ¢ under betingelse af haendelsen &, .
£, betegner haendelsen, at en meengde af begyndelsesveerdier tilhgrer det sikre omrade
til tiden to. Forbindelsen mellem svigtsandsynligheden Py([to,t]) og disse stgrrelser er

ligeledes anfgrt.

I afsnit 2.2 opstilles en Volterra integralligning for fr, (¢ | &, ), hvor kernefunktionen
introduceres som en ny ukendt funktion. Baseret pa denne integralligning er udledt
inclusion-exclusionraekker for fr,(t | &), og for teelleren og naevneren af kernefunk-
tionen i integralligningen, udtrykt i de simultane betingede udkrydsningsfrekvenser

ft(t1,... ,tn | &, ). Herefter formuleres en integralligning for fgrstepassage sandsyn-
lighedsteethedsfunktionen til tiden ¢ under betingelse af efterfglgende udkrydsninger til
tiderne #1,... ,tn, der er betegnet fr,(t | €, NCE N NCE), to <t <t < - < ty.

Denne stgrrelse forekommer i restleddet af inclusion-exclusionraekken for fr, (¢ | &, ).
Ideen er at bestemme en approksimativ lgsning til den pageeldende integralligning. Ved
indszetning heraf i restleddet for raekkeudviklingen af fr, (¢ | £, ) kan hurtig konvergens
herved forventes. I forbindelse hermed er tillige udledt en integralligning formuleret for
n-passage sandsynlighedsteethedsfunktionen fr,(t | &), og den tilhgrende inclusion-
exclusionraekke er udledt for denne stgrrelse og for navneren og tealleren af kerne-
funktionen. Dernaest vises, at alle de anfgrte integralligninger og tilhgrende inclusion-
exclusionrzekker alternativt kan formuleres i simultane udkrydsningsfrekvenser for rea-

lisationer, der er i det sikre omrade til diskrete tidspunkter 11, ... , 7, under betingelse
af £,. Disse er betegnet fiI *(ti,... ,tn ; S, NN Sr, | &,). Ved passende
valg af de intermedizere tidspunkter my,... ,7m opnas ngjagtigere approksimationer til

de forskellige integralligninger og hurtigere konvergens af inclusion-exclusionrakkerne.
Dernaest er formuleret en inclusion-exclusionreekke for hazard hastigheden, en stgrrelse
der er direkte anvendelig i palidelighedsproblemer, og en ikke-linezr integralligning
af Volterra typen er formuleret for denne. Et grundleeggende problem for alle de
omtalte inclusion-exclusionraekkeudviklinger er, at disse er divergent ved afrunding af
vilkarlig endelig orden, nar pavirkningstiden vokser mod uendelig. Yderligere kan kun
et steerkt begrezenset antal led normalt beregnes. I eksempel 2-1 undersgges forskel-
lige mader at afrunde disse reekker. Konklusionerne, der drages heraf, er, at alle
tilgeengelige lukningsmetoder er baseret pa svage forudssetninger og synes motiveret
primeert af deres mulighed for at udregne reekken pa sluttet form. I stedet foreslas an-
vendt integralligningsmetoder med passende approksimationer til kernefunktionen, der
involverer de samme beregningsmaessige omkostninger, men fgrer til mere rationelt be-
grundede og ngjagtige resultater. Endelig betragtes dynamiske systemer pavirket af pro-
cesser med uafhaengige tilveekster, sasom Wiener processen eller en sammensat Poisson
proces. Tilstandsvektoren sammensat af flytningskomponenter, hastighedskomponen-
ter og eventuelle hysteresekomponenter udggr da en Markov vektor. Integralligninger
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af Volterra typen er formuleret for den simultane sandsynlighedstathedsfunktion for
fgrstepassagetiden og den tilknyttede udkrydsningshastighed. Fgrstepassage sandsyn-
lighedsteethedsfunktionen opnas dernaest ved marginalisering. Kernen i disse integral-
ligninger dannes af gennemgangssandsynlighedsteethedsfunktionen for Markov vectoren,
der antages at veere kendt med tilstraekkelig ngjagtighed. Der introduceres herved ingen
ny ukendt funktion, og eksakte lgsninger kan i princippet opnas. Integralligninger er for-
muleret for enkelt- og dobbeltbarriere problemer for en ikkelinezer oscillator af 1 friheds-
grad uden hysteresevirkning, for et ikkelinesert multifrihedsgraderssystem uden hystere-
sevirkning, og for en oscillator af 1 frihedsgrad med hysteresevirkning. I eksempel 2-2 er
undersggt forskellige kerneapproximationer og gvre- og nedrevzerdilgsninger i forbindelse
med integralligninger for fr, (¢ | &,). Det betragtede system udggres af en linezer oscil-
lator af 1 frihedsgrad pavirket af gaussisk hvid stgj. Konklusionen af undersggelsen er,
at den bedste approximation til kernen opnas, hvis telleren og neevneren af denne trun-
keres efter det fgrste led. Dette skyldes, at savel teelleren som nezevneren i sa fald udggr
gvreveerdier, der til en vis grad afbalancerer hverandre. To sadanne kerneapproksima-
tioner er naermere undersggt. Den forste af disse er formuleret i simultane betingede ud-
krydsningsfrekvenser af 2. orden af typen f; * (1,12 | £, ), mens den anden er udtrykt i
de simultane ubetingede udkrydsningsfrekvenser af 2. orden, f;f*(¢1,%2). De tilsvarende

lgsninger for fgrstepassage sandsynlighedstaethedsfunktionen er betegnet ved f,}f:)(t |
&i,) 08 f(b)(t | £,). I eksempel 2-3 er formuleret gvre- og nedrevaerdier for fr, (¢ | &,)

T
udtrykt ved de simultane udkrydsningsfrekvenser f % (t1,... ,tn; S, N-- 1%, | €6
og den optimale placering af kontrolpunkterne 71,... , T, undersgges med henblik pa

at indsnaevne afstanden mellem disse greenser. Det behandlede fgrstepassage problem
udggres af et enkeltbarriere problem med stationeer start i det sikre omrade for den
linezere oscillator af 1 frihedsgrad betragtet i eksempel 2-2. Af de opnaede resultater
er konkluderet, at gvre- og nedreveerdier til fr, (¢t | &,) med optimalt placerede kon-
trolpunkter er vaesentlig skarpere end tilsvarende graenser uden kontrolpunkter. Det
er yderligere konkluderet, at optimalt placerede kontrolpunkter er begrzenset til re-
lativt sneevre intervaller bestemt af systemets dynamik. Disse kan derfor fastlegges
relativt enkelt. En approksimation til fgrstepassage sandsynlighedstaethedsfunktionen
er formuleret baseret baseret pa den 1. gvrevaerdi uden kontrolpunkter. Approksima-
tionen tager i betragtning sammenklunpningen af udkrydsninger, der forekommer for
smalbandede responsprocesser ved middel og ved lave teerskelniveauer. I eksempel 2-4 er
formuleret approksimationer til kernefunktionen af integralligningen for fr, (¢ | EtoﬂCt"l' .
Specielt er betragtet en kernefunktion, der involverer de simultane ubetingede udkryds-
ningsfrekvenser af 3. orden, fi*%(t3,1,t). Den tilhgrende lgsning for fgrstepassage

sandsynlighedstaethedsfunktionen er betegnet fi'(“{ )(t | £,). Et enkeltbarriere problem
med stokastisk start er undersggt for savel en linezr oscillator af 1 frihedsgrad som et
linesert 2 frihedsgraders system, begge pavirket af gaussisk hvid stgj. I begge tilfeelde
er opnaet vasentlig hurtigere konvergens mod resulterne bestemt ved Monte-Carlo
simulering, end for de tilsvarende lgsninger baseret pa ubetingede 2. ordens udkryds-
ningsfrekvenser. I alle de omtalte eksempler tenderer graferne for de approksima-
tive fgrstepassage sandsynlighedstaethedsfunktioner til at forlgbe parallelt med den
simulerede kurve. Fglgelig kan den sakaldte limiting decay rate af fgrstepassage sandsyn-
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lighedstaethedsfunktionen, karakteristisk for tidsinvariante Markov systemer under sta-
tionaer pavirkning og med tidsinvariante sikkert omrade, estimeres ved metoden. Denne
stgrrelse er intet andet end den laveste egenveaerdi af Kolmogorovs forud og Kolmogorovs
bagud operatorer med absorbtion pa henholdsvis indgangs- og udgangsdelen af den
tilgeengelige del af svigtfladen. I eksempel 2-5 er lgsninger opnaet for enkeltbarriere
problemet med stokastisk start for en linezer tidsinvariant oscillator af 1 frihedsgrad
pavirket af gausisk hvid stgj eller en sammensat Poisson process ved numerisk integra-
tion af integralligningen for den simultane sandsynlighedstaethedsfunktion for fgrstepas-
sagetiden og den tilhgrende hastighed ved udkrydsning af barrieren b, fr, x (5,2, | &, ).
I tilfzelde af pavirkning med gaussisk hvid stgj opnas eksakte Igsninger i et omfang fast-
lagt af ngjagtigheden af det benyttede numeriske skema. I tilfzelde af pavirkning med
en sammensat Poisson process er kun opnaet approximative resultater, fordi gennem-
gangssandsynlighedsteethedsfunktionen er approksimeret ved hjzelp af en Gram-Charlier
reekke afrundet efter 6. orden. Endelig er angivet en approksimation til fgrstepassage
sandsynlighedsteethedsfunktionen for dynamiske systemer pavirket af en sammensat
Poisson proces med meget lille middelankomstfrekvens af impulserne, baseret pa an-
tagelsen om stokastisk uafhzngighed af egensvingningerne fra to pa hinanden fglgende
impulser. Approksimationen bliver asymptotisk korrekt, nar middelankomstfrekvensen
af impulserne gar mod 0 eller den strukturelle deempning gges.

I afsnit 2.3 er formuleret en Volterra integralligning for f1+(f —t1). Pa baggrund heraf
er udledt inclusion-exclusion reekker for fy +(¢ —11) og for tzlleren og naevneren i kerne-
funktionen af den pagzeldende integralligning, alle udtrqykt ved simultane ubetingede
krydsningsfrekvenser af typen fiii""(t1,...,tn,t). Ved hjelp af relationen mellem
fr,(t | &, ) og fr(t—t1) opnas herved en alternativ inclusion-exclusion series for fr, (# |
&i,) udtrykt i de anfgrte ubetingede simultane krydsningsfrekvenser. Dernzest for-
muleres en integralligning for sandsynlighedstaethedsfunktionen for L} under betingelse
af indkrydsning til det sikre omrade til tidspunkterne ¢;,... ,t, placeret forud for ind-
krydsningen til tidspunktet ¢,4; i starten af intervallet L}. Denne stgrrelse, der er
betegnet ij.(t — tnt1 | C, N+ ﬂCt‘n), t1 < - < tp < thy1 < t, forekommer i
restleddet for inclusion-exclusion raekken for f+(t — t1). Hvis en tilnsermet lgsning
til integralligningen for denne stgrrelse kan opnés, kan hurtig konvergens forventes af
inclusion-exclusion raekken for fy+(t — t1) og dermed for fr, (¢ | &,). Identiteterne
fri(ta | &) = fiH(EiNrqu qSr | €u) 08 fr (t —t1) = ff(t0rge qS- | CF) kan
bevises. Det fremgar, at de anfgrte funktioner kun afviger med hensyn til forskel-
lig konditionering. Baseret pa denne observation er en integralligning formuleret for
f B (t—t1), identisk med den tidligere omtalte for fr, (¢ | £, ), hvor blot konditioneringen

pa haendelsen &, er erstattet med heendelsen C; i de betingede krydsningsfrekvenser.
P& basis heraf er udledt inclusion-exclusion rakker for f;-(t —¢1) og for telleren og
nzevneren af kernefunktionen til den pageeldende integralligning, alle udtrykt i simul-
tane ubetingede krydsningsfrekvenser af typen f, 5" t(#1,...,tn,t). Baseret pa den
omtalte relation mellem fy - (t —t1) og fr+(t —t1) kan en alternativ inclusion-exclusion
raekke i disse ubetingede krydsningsfrekvenser herved udledes for fr, (¢ | &,). Dernzest
betragtes enkeltbarriere problemet med stationzer start for en lineser oscillator af 1
frihedsgrad pavirket ag gaussisk hvid stgj, for hvilket flytningen og hastigheden dan-
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ner en Markov vektor. Ud fra den omtalte formelle lighed mellem integralligningerne

for fr,(t | &,) og fr-(¢ — 1) kan en integralligning umiddelbart formuleres for den

simultane sandsynlighedsteethedsfunktion fy - (b,2,t — ¢;) af udkrydsningshastighe-
L

den X til tiden t og L; ved sammenligning med den tilsvarende integralligning for
fir, (b2t | &, ). fi-(t —t1) bestemmes af den numeriske lgsning til denne integral-
ligning ved marginalisering. fL; (t — t1) og endelig fr,(t | £,) bestemmes dernaest ved
relationerne, der forbinder disse stgrrelser med f; - (t —t1). I eksempel 2-6 er undersggt
approksimationer til kernefunktionen i integralligningen for L} (¢ — ¢;). To approksi-
mationer er undersggt, hvoraf den ene er baseret pa simultane krydsningsfrekvenser af
3. orden af typen f; =7 (t1,t,t), mens den anden er baseret pa simultane krydsnings-
frekvenser af 2. orden af typen f; ~(t1,t2). De tilhgrende lgsninger for farstepassage
sandsynlighedsteethedsfunktionen er betegnet henholdsvis f(g)(t | &,) og fT‘)(t | €)-
Et enkeltbarriere problem med stationaer start er betragtet for sével en lineser oscillator
af 1 frihedsgrad som for et linesert system af 2 frihedsgrader, begge pavirket af gaussisk
hvid stgj. For begge systemer findes, at approksimationen f%)(t | £, ) giver omtrent
samme resultater som fi.(f:)(t | &, ), der ligeledes er baseret pa ubetingede krydsnings-
frekvenser af 2. orden. Dog giver approksimationen fg(ah)(t | £, ) bedre resultater i Ipbet
af de fprste perioderaf fgrstepassager. Under alle omsteendigheder er f {9) (t | &, ) bedre

end approksimationen f, (f )(t | £,), der ligeledes er baseret pa ubetmgede krydsnings-
frekvenser af 3. orden. Den overordnede konklusion, der drages af eksemplet, er, at
approk31mat10nerne f(g )(t | &) og fT )(t | £, ) er de bedste af de betragtede approksi-
mationer baseret pa henholdsvis simultane ubetingede krydsningsfrekvenser af 3. og 2.
orden. I eksempel 2-7 er angivet passende approksimative kernefunktioner til anvendelse
i integralligningen for henholdsvis fr+(t —t2 | Cf) og frr(t—tatr | C NN CF),
der forekommer i restleddet af inclusion-exclusion reekken for f;+(t —t1). Der er ikke
anfgrt noget numerisk eksempel, men disse approksimationer kan med henvisning til
konklusionen i eksempel 2-6 forventes at give de bedste tilnzrmede Igsninger baseret pa
simultane ubetingede krydsningsfrekvenser af orden n+3. Endelig er i eksempel 2-8 an-
givet en approksimativ kernefunktion til anvendelse 1 integralligningen for f L- (t —11).
Den pagzldende kerneapproksimation forventes at give resultater af samme kvalitet

som (9)(t | &), baseret pa integralligningen for fL (t — t1), omend dette ikke er

dokumenteret ved et numerisk eksempel.

I afsnit 2.4 er indledningsvist formuleret en Volterra integralligning for fU;l- (t—1t1 | &)
Pa baggrund af heraf er udledt inclusion-exclusion raekker for fU:-}-(t —t1 | &,) og for
teelleren og neevneren af kernefunktionen til den pagaeldende integralligning, alle udtrykt
i simultane betingede udkrydsningsfrekvenser af typen ff "T(1,... ,t, | &,), der ogsa
var grundlaget for reekkeudviklingen af fr,(t | £,). Med baggrund i sammenhaengen
mellem fr,(t | €,) og fy+(t —t1 | &,) kan alternative inclusion-exclusion reekker i
disse betingede udkrydsningsfrekvenser herved udledes for fr,(t | £,). Dernzest er for-
muleret en integralligning for sandsynlighedsteethedsfunktionen for U;" under betingelse
af heendelsen &, og under betingelse af udkrydsninger fra det sikre omrade til tidspunk-
terne ty,... ,tn, placeret forud for udkrydsningen i slutningen af intervallet U;}. Denne
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stgrrelse, der er betegnet ij-(t —tnt1 | ENCEN - NCH), i< <t <t—1<t,
forekommer i restleddet for inclusion-exclusion reekken for fy+(t — ¢ | &,). Hvis en
approksimativ lgsning til denne integralligning kan opnas, kan hurtig konvergens for
inclusion-exclusion reekken for fy+(t — 1 | &), og dermed for rakkeudviklingen for
fr,(t | &,), opnas ved indseetning heraf i restleddet. Dernest er formuleret en in-
tegralligning for sandsynlighedstaethedsfunktionen fy,— (¢ —#1 | &), hvor U;” beteg-
ner det forlgbne tidsinterval indtil nzeste udkrydsning, efter at en udkrydsning fra det
sikre interval har fundet sted til tidspunktet ¢. Ved hjezlp af denne integralligning er
udledt en inclusion-exclusion raekke for fy-(t —t1 | €, ) og for teelleren og naevneren
af kernefunktionen, stadig udtrykt i de simultane betingede udkrydsningsfrekvenser
fa*(t,. .., ta | &,). Baseret pa en relation mellem fy;- (t—t1 | &) og fur(t=t1 | &,)
kan en tredje inclusion-exclusion raekke bestemmes for fr,(¢t | &,), udtrykt i disse
betingede udkrydsningsfrekvenser. Heraf fglger at de tre alternative raekker i prin-
cippet repreasenterer forskellige udviklinger af restleddet af inclusion-exclusion rsekken.
Herefter betragtes igen enkeltbarriere problemet med stationaer start for en linezer oscil-
lator af 1 frihedsgrad pavirket ag gaussisk hvid stgj, for hvilket flytningen og hastigheden
danner en Markov vektor. En integralligning er formuleret for den simultane sandsyn-
lighedsteethedsfunktionen fy Ui (b,@,t —t1 | &,) af udkrydsningsfrekvensen X til tiden

t og intervallengden U; under betingelse af &,. Ud fra den numeriske bestemte
lgsning til denne ligning kan fy;- (t —t1 | &,) derneest bestemmes ved marginalise-
ring. fU-r+ (t —t1 | &,) og sluttelig fr, (¢t | &,) beregnes herefter af relationerne, der
knytter disse til fy— (t — %1 | €, ). Intet numerisk eksempel er anfgrt for teorien i afsnit

2-4.

Afslutningsvis skal det anfgres, at det veesentligste problem ved alle de preesenterede
metoder er, at anvendelsesomradet er begraenset til problemer for hvilke de ngdvendige
krydsningsfrekvenser kan beregnes. For gjeblikket betyder dette, at kun linezre og en
meget begrzenset klasse af ikkelinezere systemer kan analyseres. Yderligere, ma dimen-
sionen af den betragtede responsvektor veere lav. Selv for gaussiske vektorprocessor af
moderat dimensionalitet bliver beregningen af simultane krydsningsfrekvenser hurtigt

uoverkommelig.

Indledningsvis 1 afsnit 3.1 betragtes Wiener processer, sammensatte Poisson processer
og a-stabile Lévy motions, og der gives en kort omtale af disses veesentligste egenska-
ber. Disse stokastiske er alle karakteriseret ved at have uafhzengige tilvaekster. Det
diskuteres, hvorledes andre aktuelle stokastiske processer kan modelleres ved filtrering
af processer med uafheengige tilvackster gennem et sharpening filter. Herved er be-
tragtningen indskraenket til processer, for hvilke responset af det dynamiske system kan
beskrives ved en Markov vektor. Den generelle tilstandsvektor for savel geometrisk ikke-
linezere som fysisk ikkelinezere (i.e. systemer med hysteresevirkning) er anfgrt. Specielt
er i eksempel 3-1 formuleret zekvivalente SDOF og MDOF forskydningsmodeller med
hysteresevirkning for instrumenterede jernbetonkonstruktioner udsat for jordskzelv. Mo-
dellerne tzenkes anvendt til prediktion af stokastisk respons og palidelighed samt globale
og lokale skader i konstruktionen, baseret pa sekventiel opdatering af nogle fa system-
parameter. Ngjagtigheden af modelforudsigelserne ved sammenligning med tilgzengelige
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modelforsgg skyldes primeert en modellering af den elastiske del af tilbagefgringskraften
som en faldende funktion af skaden, svarende til en gradvis overgang fra elastisk til
plastisk response, nar stgrre og stgrre dele af konstruktionen bliver plastisk.

I afsnit 3.2 er forud og bagud Chapman-Kolmogorov integro-differentialligningen for
gennemgangssandsynlighedsteethedsfunktionen af Markov tilstandsvektoren angivet med
henblik pa senere anvendelse pa systemer pavirket af Wiener processer, sammensatte
Poisson processer og a-stabile Lévy motions. Yderligere er forstepassage problemet for-
muleret, baseret pa lgsningen af den forud eller bagud Chapman-Kolmogorov integro-
differentialligning med absorberende randbetingelser.

Afsnit 3.3 omhandler stokastisk responsanalyse af Markov systems baseret pa mo-
mentligningsmetoder. Indledningsvis er den generaliserede It6 differentiationsregel ud-
ledt, geeldende bade for diffusionssystemer og for systemer med hop. Momentligningerne
er herefter udledt ved hjzlp af denne ligning. Specielt er eksplicitte udtryk angivet for
de simultane centraliserede statistiske momenter.

I afsnit 3.3.1 er lukningsproblemet for hirarkiet af momentligninger behandlet, dvs.
specifikationen af en approksimativ simultan sandsynlighedstzthedfunktion for tilstands-
variablerne ved hjeelp af hvilken ukendte forventningsverdier kan beregnes. De frie pa-
rametre 1 lukningsantagelsen kalibreres, saledes at den pageeldende simultane sandsyn-
lighedstzethedsfunktion repreesenterer alle simultane momenter bestemt af momentlig-
ningerne. Moment neglect closure, cumulant neglect closure, quasi-moment neglect
closure and Hermite moment neglect closure omtales. Det fremhaves, at de fleste af
disse metoder kan forventes at virke for tilneermet normalfordelte systemer med simultan
sandsynlighedstaethedsfunktion af kontinuert og monomodal type. De kan alle betragtes
som rzekkeudviklinger fra Gaussiske sandsynlighedstzethedsfunktioner, hvor restleddet
1 reekkerne maler afvigelsen fra gaussianitet. Systemer med multimodal eller blandet
kontinuert-diskret sandsynlighedstaethedsfunktion mgdes ofte i stokastisk dynamik. I
disse tilfeelde vil konvergenshastigheden af raekkeudviklingerne ud fra normalfordelin-
gen veere langsom, eller konvergensen kan helt mangle. I stedet bgr man formulere
sakaldte modificerede lukningsskemaer, baseret pa fysisk indsigt 1 det konkrete pro-
blem. Et modificeret cumulant neglect closure skema er angivet for en sakaldt double-
well potential oscillator, for hvilken den simultane sandsynlighedsteethedsfunktion er
bimodal. Selv ved lukning pa covariansniveau opnas relativt ngjagtige resultater. I
modsaetning hertil er konvergenshastigheden af et seedvanligt cumulant neglect clo-
sure skema overordentligt langsom, som demonstreret i eksempel 3-7. Dernzest foreslas
en lignende modification anvendt i forbindelse med Hermite moment neglect closure
for en Bouc-Wen oscillator pavirket af gaussisk hvid stgj af hgj intensitet, i hvilket
tilfeelde den marginale sandsynlighedsteethedsfunktion for hysteresekomponenten har
dobbeltspidser. Igen opnas vasentlige forbedringer sammnelignet med det seedvanlig
Hermite moment neglect closure skema. Endelig er foreslaet anvendt et modificeret
lukningsskema for Poisson drevne systems med lav middel ankomstfrekvens, hvor der
forekommer en transient diskret sandsynlighedskomponent i den simultane sandsyn-
lighedstaethedsfunktion, repraesenterende den deterministiske drift fra begyndelsesvaer-
dierne under betingelse af, at ingen impulser endnu er ankommet. Eksplicitte udtryk for
det modificerede cumulant neglect closure skema er udledt for systemer med polynomial
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ikkelineeer drift vektor ved lukning ved orden N = 4.

I afsnit 3.3.2 er udledt momentligninger for dynamiske systemer drevet af Wiener pro-
cesser. Specielt er anfgrt udtryk for systemer med kubisk polynomial drift vektor (ek-
sempelvis ved Duffing og van der Pol oscillatorer). Endvidere fastlaegges betingelserne
for at erstatte et system med ikkeanalytisk drift vektor (f.eks. systemer med hy-
steresevirkning) med et system med polynomial ikkelineser drift vektor. Der bevises
seetningen, at eksakte simultane momenter op til orden NV + 1 opnés ved hjzelp af det
sekvivalente polynomiale system, forudsat at dette afrundes ved orden N, og forud-
sat at udviklingskoefficienterne af det zkvivalente system bestemmes ved hjzelp at et
least mean square kriterium med ubestemte forventningsvzerdier udregnet med den ek-
sakte simultane sandsynlighedstethedsfunktion. I eksempel 3-3 benyttes aekvivalent
polynomial udvikling til stokastisk analyse af en bilinizer hysterese oscillator pavirket
af gaussisk hvid stgj. Ideen er kun at erstatte den konstitutive ligning for hysterese
komponenten med en zkvivalent polynomial udvikling, medens de linezere ligninger er
uzendret. I modszetning hertil forudsatter det globale least mean square kriterium i
den anfgrte setning, at alle komponenter erstattes med skvivalente polynomiale ud-
viklinger af orden N. I det numeriske eksempel er det demonstreret, at en sadan
fremgangsmade introducerer helt ubetydelige ekstra fejl 1 analysen. Nytten af meto-
den ligger 1, at kun en marginal simultan sandsynlighedstaethedsfunktion for hastighe-
den og hysteresekomponenten behgver at blive kalibreret ved beregningen af koeffi-
cienterne 1 den akvivalente kubiske udvikling. Den pagzeldende simultane sandsyn-
lighedsteethedsfunktion veelges som en trunkeret 2 dimensional Gram-Charlier rackke
med en Minai-Suzuki modifikation for den diskrete sandsynlighed for at befinde sig
pa de plastiske grene af arbejdskurven. To ekvivalente lineariseringsstrategier un-
dersgges. Begge af disse forudsiger en stationaer veerdi for variansen af flytningen
for en ideal elastisk-plastisk oscillator (& = 0), i modseetning til den ikkestationzere
Brownian motion agtige variansvaekst, der fremgar af resultaterne opnaet ved Monte-
Carlo simulering og ved den kubiske polynomiale udvikling. Dette antyder, at vari-
ansveeksten forarsages af simultanmomenter af 4. eller hgjere orden. Den vaesentligste
afvigelse mellem resultaterne opnaet ved akvivalent kubisk udvikling og simulering
skyldes anvendelsen af et seedvanligt cumulant neglect closure skema uden modifikation
for diskrete sandsynlighedskomponenter i de globale momentligninger. Dette problem
er yderligere undersggt 1 eksempel 3-4, der tillige indeholder en palidelighedsanalyse
af den bilinizere hysterese oscillator. Palidelighedsanalysen er baseret pa observatio-
nen af en skadesindikator, der er valgt som den akkumulerede energy dissiperet af
systemet, nar dette undergar plastiske deformationer. Svigthezendelsen indtreeffer, nar
den ikkeaftagende skadesindikator foretager en fgrstepassage af et kritisk niveau, d.,.
Skadesindikatoren er indkluderet i tilstandsvektoren som en ekstra tilstandsvariabel, og
en differentialligning er formuleret, der fastleegger udviklingen i tiden af denne. Be-
lastningsprocessen pa systemet modelleres som tidsmoduleret gaussisk hvid stgj fil-
treret gennem et tidsinvariant rationalt filter af orden (r,s) = (1,2). Filterets til-
standsvariable er ligeledes indkluderet i tilstandsvektoreren sammen med flytningen,
hastigheden, hysteresekomponenten og skadesindikatoren. Kun differentialligningerne
for hysteresekomponenten og skadesindikatoren erstattes med akvivalente polynomiale
udviklinger. De konsistente udviklingerne viser sig at veere af 3. orden for hystere-
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sekomponenten og af 2. orden for skadesindikatoren. Ved udregningen af udviklingsko-
efficienter i de a&kvivalente udviklinger er anvendt et least mean square kriterium, og den
simultane sandsynlighedsteethedsfunktion til udregning af ukendte forventningsveerdier
veelges som en afrundet 2 dimensional Gram-Charlier reekke med en Minai-Suzuki mo-
difikation. Herudover er udviklet en modificeret cumulant neglect closure skema for de
globale moment ligninger, der tager de diskrete komponenter i den simultane sandsyn-
lighedstzethedsfunktion i regning. Lukningsskemaet kreever kun kendskab til samme si-
multane sandsynlighedstzaethedsfunktion af hastigheden og hysteresckomponenten, som
er anvendt i den akvivalente polynomiale udvikling af differentialligningerne for hy-
steresekomponenten og skadesindikatoren. I eksemplet sammenlignes resultater opnaet
ved hjeelp af det saedvanlige og det modificerede cumulant neglect skema med Monte
Carlo simuleringsresultater. Pa basis heraf er konkluderet, at veesentligt bedre resul-
tater opnas med det modificerede cumulant neglect skema end med det sadvanlige.
Fglgelig bgr anvendes approksimative simultane sandsynlighedsteethedsfunktioner af
samme ngjagtighed pa det lokale og pa det globale niveau. Eksempel 3-5 omhandler
stokastisk analyse af plane rammer med hysteresevirkning. Indledningsvis er anfgrt en
differentiel formulering af de konstitutive ligninger for elasto-plastiske bjzelkeelementer,
der forbinder generaliserede speendings- og tgjningshastigheder af elementet. Disse spe-
cialiceres dernaest til flydeledsmodeller, hvor de generaliserede tgjninger og spaendinger
udggres af rotationer og bgjningsmomenter ved elementets knuder. Rammen pavirkes af
et horizontalt jordskeelv, der opnas ved filtrering af moduleret gaussisk hvid stgj gennem
et Kanai-Tajimi filter. Dette er i princippet et rationalt filter af orden (r,s) = (1,2)
med filterkonstanter, der tillader fysisk fortolkning. Tilstandsvektorkomponenterne for
det integrerede dynamiske system bestar af knudeflytninger og knudehastigheder, ge-
neraliserede spzndinger fra alle plastiske elementer og filtertilstandsvariablerne. De
resulterende differentialligninger formuleret pa tilstandsvektorform udggr en genera-
lisering til multifrihedsgraderssystemer af de tilsvarende differentialligninger for den
elasto-plastiske oscillator i eksempel 3-4, hvor de generaliserede spzndinger udggr hy-
steresekomponenterne. Kun de konstitutive ligninger for de generaliserede spzendinger
(hysteresekomponenterne) erstattes med sekvivalente polynomiale udviklinger i de lokale
generaliserede spaendinger og generaliserede tgjningshastigheder. Fglgelig udfgres den
skvivalente polynomiale udvikling péa elementniveau, hvilket letter formuleringen af et
globalt sekvivalent polynomialt system vasentligt. De globale simultane momentlignin-
ger lukkes dernaest ved hjeelp af et saedvanligt cumulant neglect closure skema. Teorien
er anvendt pa en simpelt understpttet 2 etagers plan ramme med Kanai-Tajimifilteret
pavirket af en stationer gaussisk hvid stg). Vesentlige plastiske deformationer er mest
sandsynlige at forekomme i de nederste etagesgjler. Akvivalent kubisk udvikling er der-
for kun benyttet for de konstitutive ligninger for disse elementer, hvorimod zkvivalent
linearisering indfgres for de resterende elementer. De simultane forventningsveerdier af
rotationshastigheder og bgjningsmomenter 1 elementets endeknuder, der indgar i least
mean square ligningerne til bestemmelse af koefficienterne i de skvivalente polynomi-
ale udviklinger, er udregnet ved hjzlp af en Gram-Charlier udvikling af den simultane
sandsynlighedstathedsfunktion trunkeret ved orden N = 4 med en Minai-Suzuki modi-
fikation for plastiske deformationer. Pa basis af resultaterne er konkluderet, at sekviva-
lent linearisering for alle elementer med udregning af udviklingskoefficienterne ved hjeelp
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af en simultan normalfordeling (gaussisk lukning) giver resultater for flytningsrespon-
set, der hverken kvalitativt eller kvantitativt er i overenstemmelse med Monte Carlo
simuleringsresultaterne. Resultater, der kun er en ubetydelighed bedre, opnas ved et li-
neariseringsskema, hvor en Gram-Charlier udvikling til orden N = 2 med en Minai-
Suzuki modifikation for plastiske deformationer er benyttet ved udregningen af de
linezere udviklingskoefficienter. I begge tilfeclde forudsiges et stationzert varians respons
for etageflytningerne i modseetning til simuleringsresultaterne, der udviser en lignende
Brownian motion agtigt variansdrift, som beskrevet i eksempel 3-3. Den uundgaelige
konklusion synes at veere, at skvivalent linearisering ikke bgr anvendes for elasto-
plastiske konstruktioner pavirket af veesentlige stationaere pavirkninger. I stedet bgr
anvendes en analyse, der mindst indbefatter 4. ordens momenterne. I modsstning
til sekvivalent linearisering giver kubisk polonomial udvikling for de lavere etagesgjler
resultater, der er i langt bedre overensstemmelse med simuleringsresultaterne. Der re-
gistreredes ingen vesentlige forskelle i resultaterne, hvis sekvivalent linearisering for de
gvrige elementer udfgres ved hjeelp af gaussisk lukning eller ved hjalp af en Gram-
Charlier udvikling til 2. orden med en Minai-Suzuki modifikation. I eksempel 3-6 er
teorien anvendt til en palidelighedsanalyse af en vandmeettet sandaflejring pavirket af
et horizontalt forskydningsjordskzelv (SH bglger), idet likvidfaktion antages at veere
den veesentligste brudmade for jorden. Likvidfaktion antages at finde sted, nar den
akkumulerede dissiperede energy per enhedsvolumen af jorden nar et kritisk niveau. I
eksemplet er anvendeligheden af denne skadesindikator verificeret ved hjelp af triaksial-
forsgg pa forskellige sandprgver udsat for cyklisk pavirkning med variable amplituder.
Triaksialforspgene viser tillige, at den tidsafledede af mobiliseringsfaktoren, der for den
betragtede plane tgjningstilstand kan defineres som forskydningsspeendingen i forhold
til forskydningsbrudspaendingen, kan relateres til forskydningstgjningshastigheden ved
hjeelp af en Bouc-Wen hysterese model. Forskydningsbrudspzendingen er en aftagende
funktion af tiden 1 takt med poretryksopbygningen, og viser sig at sveekkes proportionalt
med sveekkelsen af forskydningsmodulet. Begge er relateret til skadesindikatoren ved
hjelp af en simpel lineser sammenheng. Et statisk tilladeligt speendingsfelt foreskrives,
ved hjelp af hvilket det kontinuerte jordlag diskretiseres til et frihedsgraders system.
Accelerationsprocessen ved oversiden af grundfjeldet opnas ved filtrering af moduleret
gaussisk hvid stg] gennem et tidsinvariant rationalt filter af orden (r,s) = (1,2). Dif-
ferentialligningen for udviklingen af skadesindikatoren bliver kubisk polynomial, hvori-
mod differentialligningen for hastigheden bliver kvadratisk. Den konstitutive ligning for
mobiliseringsfaktoren erstattes af en sekvivalent lineser udvikling med udviklingskoeffi-
cienter udregnet ved en Gram-Charlier udvikling afrundet ved orden N = 2, hvorimod
den linesre, den kvadratiske og den kubiske ligning bibeholdes uandret. Det resul-
terende globale hirarki af momentligninger er trunkeret ved orden N = 4 ved hjelp
af et seedvanligt cumulant neglect closure skema. De opnaede resultater for varians-
responset af flytningen og mobiliseringsfaktoren er darlige sammenlignet med simule-
ringsresultaterne som fglge af anvendelsen af aekvivalent linearisering pa hystereselignin-
gen. Derimod opnas gode resultater for forventningsveerdifunktionen og standard-
afvigelsen af skadesindikatoren, hvorimod skeevhedsparameteren for denne stgrrelse be-
stemmes mindre ngjagtigt. Grunden til de forbedrede resultater for de lavere statisti-
ske momenter for skadesindikatoren sammenlignet med de tilsvarende momenter for de
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gvrige tilstandsvariable skyldes primeert den eksakte kubisk polynomiale form af diffe-
rentialligningen for denne variabel. Forbedrede resultater for skeevhedsparameteren vil
krzeve anvendelse af hgjere ordens sekvivalent polynomial udvikling af den konsitutive
ligning for hysteresekomponenten og global lukning ved hgjere orden end orden N = 4.

Afsnit 3.3.3 omhandler anvendelsen af momentligninger til stokastisk analyse af syste-
mer drevet af sammensatte Poisson processer. Indledningsvis er differentialligningerne
udledt for de simultane centraliserede momenter af et dynamisk system pavirket af en
multidimensional eller skalar sammensat Poisson proces. Specielt er momentligningerne
fremheevet for systemer med kubisk polynomial drift vektor. I eksempel 3-8 er teorien
anvendt pa en Duffing oscillator. Ideen i eksemplet er at demonstrere anvendeligheden
af det modificerede cumulant neglect closure skema, udviklet for Poisson telleprocesser
med lave middelankomstsfrekvenser. Der undersgges szedvanlige cumulant neglect clo-
sure skemaer af orden N = 3, N = 4 og N = 5, og et modificeret cumulant neglect
closure skema af orden N = 4. Pavirkningsprocessen har Rayleigh fordelte impulser,
og opnéas som outputproces fra en homogen sammensat Poisson proces filtreret gen-
nem et rationalt filter af ordenen (r,s) = (0,2). For den relativt hgje middelankomst-
frekvens pa v = 0.lwg, fungerer de betragtede szedvanlige cumulant neglect closure
skemaer udmerket og giver alle acceptable resultater, omend det bedste resultat som
forventet opnas ved lukning ved ordenen N = 5. I sammenligning med szedvanlig cu-
mulant neglect closure af orden N = 4 giver det modificerede cumulant neglect closure
skema veesentligt forbedrede resultater for middelveerdifunktionerne og variansfunktio-
nerne i den tidlige del af pavirkningen, hvor modifikationen af den simultane sandsyn-
lighedsteethedsfunktion er mest betydningsfuld. Pafgringen af en pulsbelastning med
den lavere middelankomstfrekvens pa v = 0.05wy medfgrer numerisk instabilitet for det
seedvanlige cumulant neglect closure skema, hvorimod det modificerede skema stadig
frembringer ngjagtige estimater for middelveerdifunktionerne og variansfunktionerne.
Af eksemplet konkluderes derfor, at ngjagtigere og numerisk mere stabile resultater
opnas ved hjeelp af det modificerede cumulant neglect closure skema. Imidlertid vil
selv det modificerede cumulant neglect closure skema efterhanden blive numerisk insta-
bilt, nar v reduceres tilstraekkeligt. I det aktuelle eksempel sker dette for v ~ 0.01wy,
hvilket tilnzermet er en stgrrelsesorden mindre end den tilsvarende granse for det sam-
menlignelige seedvanlige cumulant neglect closure skema. I eksempel 3-9 er gennemfgrt
en palidelighedsanalyse af en Bouc-Wen oscillator pavirket af savel en ufiltreret som
en filtreret sammensat Poisson proces ved anvendelse af zkvivalent polynomial ud-
vikling. Palidelighedsanalysen er baseret pa en skadesindikator, som velges som den
akkumulerede energy dissiperet af hysteresekomponenten. Herved er den betragtede
skadesindikator kvadratisk polynomial. Kun den konstitutive ligning for hysteresekom-
ponenten erstattes af en kubisk polynomial udvikling, hvorimod de gvrige linezre eller
kvadratiske ligninger bibeholdes uzndrede. Som ved tidligere anvendelser bestemmes
udviklingskoefficienterne af den sekvivalente polynomiale udvikling ved hjelp af et least
mean square kriterium. Udregningen af de ukendte forventningsveerdier, der indgar i
mean least square kriteriet, er foretaget ved hjeelp af et quasimoment neglect closure
skema, trunkeret ved orden N = 4. Desuden er undersggt aekvivalente lineariseringer
af differentialligningen for hysteresekomponenten med udviklingskoefficienterne udreg-
net ved hjaelp af quasimoment neglect closure skemaer trunkeret ved henholdsvis or-
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denerne N = 2 og N = 4. Det fgrstnaevnte lineariseringsskema er aekvivalent med
hvid stgjspavirkning med gaussisk lukning. Hirarkiet af globale momentligninger er
lukket ved hjelp af et saedvanligt cumulant neglect closure skema ved orden N = 4,
savel for de to sekvivalente linezre udviklinger som for den @kvivalente kubiske ud-
vikling. Fgrst analyseres tilfeeldet med pavirkning af en ufiltreret sammensat Poisson
proces. To forskellige fordelinger for impulsstyrken betragtes. Den fgrste af disse er
en sadvanlig Rayleighfordeling, mens den anden er en middelveerdicentreret Rayleigh-
fordeling. En relativ hgj middelankomstfrekvens af impulserne pa v = 1.297w er benyt-
tet. For tilfaeldet med en seedvanlig Rayleigh fordeling of impulsstyrken er de opnaede
resultater for forventningsveerdifunktionerne for flytningen, hysteresekomponenten og
skadesindikatoren alle i god overensstemmelse med simuleringsresultaterne, savel for de
to sekvivalente lineariseringsskemaer som for den kubisk polynomiale udvikling, omend
den gaussiske lukningsalgoritme overestimerer middelveerdifunktionen for hysteresekom-
ponenten en smule ved store pavirkningsintervaller. Variansresponset for flytningen
underestimeres vaesentligt ved de zekvivalente lineariseringsmetoder, og disse metoder
giver helt misvisende estimater af variansresponset af skadesindikatoren. Derimod er
varianserne, der forudsiges af den ekvivalente kubisk polynomiale udviklingsmetode,
acceptable for flytnings- og hysteresekomponenten, og meget gode for skadesindika-
toren. For tilfeeldet med en middelveerdicentreret Rayleighfordeling af impulsstyrken
vises det, at middelveerdier veesentligt forskellig fra nul kan forekomme for flytnin-
gen og for hysteresekomponenten selv ved den relativt hgje middelankomstfrekvens pa
v = 1.29Twy, hvilket er en fglge af, at hgjere ordens momenter af impulsstyrken af ulige
orden er forskellig fra nul i kombination med sma verdier af den elastiske brgkdel af
den totale tilbagefgringskraft, . I modseetning hertil forudsiger det akvivalente line-
ariseringsskema med gaussisk lukning middelveerdifunktioner identisk lig nul. Fglgelig
skal erstatningen af en sammensat Poisson proces med en sammenlignelig gaussisk hvid
st@jsproces foretages med en vis forsigtighed for sadanne systemer, selv ved relativt hgje
middelankomstfrekvenser af impulserne. Det zkvivalente lineariseringsskema baseret
pa en 4. ordens quasimoment neglect reekke opfanger den kvalitative opfo rsel af mid-
delveerdifunktionerne, men de kvantitative estimater er ikke gode. Derimod er esti-
materne af den zkvivalente polynomiale udvikling i udmeerket overensstemmelse med
resultater opnaet ved Monte Carlo simulering. Begge aekvivalente lineariseringskemaer
underestimerer variansen af flytningen og hysteresekomponenten. Kun den akvivalente
polynomiale udvikling giver acceptable variansestimater, og er den eneste af metoderne,
der giver meningsfulde og ngjagtige resultater for skadesindikatoren. Derneest betragtes
tilfeeldet med pavirkning af en sammensat Poisson proces filtreret gennem et tidsinvari-
ant rationalt filter af orden (r,s) = (0,2). Kun tilfeeldet med szedvanlig Rayleighforde-
ling af impulsstyrken er betragtet, og kun lineariseringsskemaet baseret pa en 4. ordens
quasimoment neglect reekke er undersggt. En relativ hgj middelankomstfrekvens af im-
pulser pa ¥ = 1.0w er benyttet. Som det er tilfeeldet for den tilsvarende fordeling af
impulser 1 det ufiltrerede tilfeelde giver de betragtede metoder acceptable resultater for
middelveerdifunktionerne. Igen underestimerer den aekvivalente linearisering varians-
responset for flytningen og hysteresekomponenten, og giver helt misvisende resultater
for variansresponset, hvorimod den sekvivalente kubisk polynomiale udvikling giver ac-
ceptable variansestimater for alle betragtede tilstandsvariable. Af resultaterne opnaet
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i dette eksempel sluttes, at sekvivalent lineariseringsmetoder ikke er egnet til at esti-
mere variansresponset af alle tilstandsvariable. Specielt for skadesindikatoren er resul-
taterne helt misvisende. Fglgelig bgr sckvivalente lineariseringsmetoder ikke benyttes i
palideligsanalyser af oscillatorer med hysteresevirkning, hvis statistiske responsstgrrelser
udover forventningsveerdifunktionen er pakreevet. Kun sekvivalent polynomial udvikling
af mindst 3. orden i kombination med et seedvanligt cumulant neglect closure skema
giver ngjagtige estimater af middelveerdifunktion og variansfunktion af skadesindika-
toren, og synes at vare den bedst tilgengelige semianalytiske metode til analyse af
sadanne responsstgrrelser, der er til radighed. Computertiden i eksemplet er 0.88%
for de aekvivalente lineariseringsmetoder og 6% for den akvivalente kubisk polynomiale
metode 1 forhold til regnetiden for Monte Carlo simuleringen.

Afsnit 3.3.4 omhandler dynamiske systemer pavirket af sammensatte Erlang renewal-
processer. Fgrst vises, hvorledes sadanne systemer kan reduceres til skvivalente sy-
stemer drevet af sammensatte Poisson processer med omkostningen, at ekstra hjzelpe-
tilstandsvariable ma indfgres. Dernaest udledes de stokastiske differentialligninger, der
specificerer udviklingen af disse hjelpevariable. Det integrerede dynamiske system med
tilstandsvektoren sammensat af de strukturelle tilstandsvariable og hjelpetilstandsva-
riablerne udggr da et Markov system, og momentligningerne for systemer drevet af
sammensatte Poisson processer kan anvendes i lettere tillempet form. I eksempel 3-10
er anfgrt de generelle betingelser for at reducere et system drevet af en sammensat
reguleer teelleproces til et akvivalent system drevet af en sammensat Poisson proces,
og det vises, at den sammensatte Erlang proces opnas som et specialtilfeelde af den
generelle formulering. I eksempel 3-11 er analyseret det stokastiske respons af en Duff-
ing oscillator pavirket af en sammensat Erlang proces med parametrene k = 2, k = 3
og k = 4. Impulsstyrken antages at veere ssedvanlig Rayleighfordelt. For at kunne
sammenligne meningsfuldt mellem de anfgrte tilfeelde veelges middelankomstfrekvensen
af de underliggende Poisson haendelser som § = 10wg. Herved bliver det gennem-
snitlige antal renewalhzendelser pr. tidsenhed det samme i de tre tilfaelde af k, og
eventuelle forskelle 1 de beregnede statistiske momenter er forarsaget af de forskellige
interarrival tidsfordelinger. De anfgrte middelankomstfrekvenser er meget hgje, hvorfor
hirarkiet af momentligninger kan lukkes ved orden N = 4 ved hjelp af et sseedvanligt
cumulant neglect closure skema. De opnaede middelveerdifunktioner og varianser for
flytningen er i alle tilfzelde 1 udmeerket overensstemmelse med simuleringsresultaterne.
Middelveerdifunktionerne er praktisk taget identiske for de tre tilfzelde af k. Derimod
har varianserne en markant tendens til at falde med gget k. Af disse observationer kon-
kluderes, at momentligningsmetoden kan benyttes til stokastisk analyse af en klasse af
ikkelinezere systemer pavirket af en sammensat Erlang renewal proces efter reduktion til
et skvivalent system drevet af en sammensat Poisson proces. Middelverdifunktionen af
flytningsresponset anses for at veere temmelig ufplsom overfor valget af fordeling af inter-
arrival tiden, og athenger primeert af middelankomstfrekvensen af impulser. Derimod
viser variansfunktionen veesentlig afheengighed af denne fordeling. Anvendelse af sam-
mensatte Poisson processer som lastmodel for tilfeelde, hvor interarrival tidsfordelingen
er langt fra en eksponential fordeling, skal derfor foretages med forsigtighed.

Afsnit 3.4 omhandler numerisk integration af den forud Chapman-Kolmogorov integro-
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differentialligning ved hjalp af path integration. Fgrst beskrives det anvendte diskreti-
seringsskema, der reducerer den tids- og stedkontinuerte Markov vektorproces til en
ikkereducerbar, positive recurrent og ikkeperiodisk Markovkaede. I tilfeelde af stationzere
processer observeret til eekvidistante tidspunkter vises dernaest, hvorledes den stationzere
fordeling kan opnas ved lgsning af et lineert egenveaerdiproblem, for hvilket egenveerdien

A =1 er kendt.

Afsnit 3.4.1 omhandler anvendelsen af path integration for systemer pavirket af Wiener
processer. Eftersom tilstandsvektoren ikke foretager hop i dette tilfaelde, kan denne
approksimeres ved en stykkevis lineaer vektorfunktion, og diffusionsmatricen ved en
stykkevis konstant matrix. For tilstreekkeligt sma tidsintervaller opfgrer systemet sig
herved som lokalt gaussisk, og differentialligninger for udviklingen af betingede mid-
delvardifunktioner og betingede kovarianser tillige med den simultane overgangssand-
synlighedsteethedsfunktion kan umiddelbart formuleres. Fire alternative lineariserings-
strategier er anfgrt efter voksende grad af kompleksitet. Specielt running mean line-
ariseringsskemaet og det eckvivalente lineariseringsskema er lovende, eftersom meget
stgrre gennemgangstidsintervaller kan benyttes end tilladt ved de to gvrige anfgrte li-
neariseringsskemaer. Anvendelsen af de sidstnaevnte anfgrte lineariseringskemaer. An-
vendelsen af de sidstnazvnte skemaer skyldes, at simple lgsninger opnas for de betingede
middelvaerdifunktioner og de betingede kovariansfunktioner. I eksempel 3-12 er eks-
plicitte udtryk angivet for lineariseringsskemaerne for en Duffing oscillator pavirket af
gaussisk hvid stgj. Dernzest udvaelges running mean lineariseringsskemaet til nsermere
undersggelse i forbindelse med et ensformigt relativt groft 20 x 20 net, der udstrsekkes fire
linezere stationsere standardafvigelser i de positive og negative flytnings- og hastigheds-
retninger, og med et gennemgangstidsinterval pa At = l;ﬁ. Udmeaerket overensstem-
melse med simuleringsresultater er opnaet bade ved de centrale dele af de marginale
fordelinger og ved disses haler. Fgrstepassagetidsproblemet er ligeledes 1 ost for et de-
terministisk start problem med en enkelt konstant barriere. Fordelingsfunktionen for
fgrstepassagetiden opnaet ved path integration overestimerer svigtsandsynligheden en
smule under den fgrste periode sammenlignet med Monte Carlo simulering, hvilket er
en fglge af brugen af det omtalte grove net i forbindelse med det relativt store gennem-
gangstidsinterval. Af resultaterne af eksemplet konkluderes, at det stokastiske respons
kan bestemmes ved hjeelp af path integration med anvendelse af et meget grovt net
uden at pavirke ngjagtigheden vasentligt, hvorimod et noget finere net mé benyttes i

palidelighedsproblemer.

I afsnit 3.4.2 er path integration metoder udviklet for systemer pavirket af sammen-
satte Poisson processer, Lévy a-stabile bevacgelser og sammensatte Erlang processer.
Forst betragtes tilfeeldet med et dynamisk system drevet af en skalar sammensat Pois-
son proces. En asymptotisk udvikling er udledt for den simultane gennemgangssand-
synlighedsteethedsfunktion, gyldig under forudseetningen vAt <« 1, og kun involv-
erende de simultane gennemgangssandsynlighedsteethedsfunktioner under betingelse af
ankomsten af eksakt nul og en impuls i lgbet af gennemgangstidsintervallet. Den si-
multane gennemgangssandsynlighedstaethedsfunktion under betingelse af nul impulser
beskriver egensvingningerne af systemet fra begyndelsesbetingelserne, der opnas ved
numerisk integration. De forskellige path integrationsskemaer udskiller sig derefter
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ved, pa hvilken made den simultane gennemgangssandsynlighedstzethedsfunktion un-
der betingelse af en impulsankomst i Ipbet af gennemgangstidsintervallet er bestemt.
Pa grund af restriktionen pa vAt forventes path integration at virke bedst for sma
veerdier af v, hvilket er modsat forholdene ved momentmetoder. For fast v fastlaegger
restriktionen en gvreveerdi for valget af At. Pa den anden side vises det, at en ne-
dreveerdi for denne stgrrelse ogsa eksisterer, saledes at de optimale resultater opnés,
nar At er beliggende i et vist interval. To metoder praesenteres for konvektion og
diffusion af sandsynlighedsmassen under betingelse af en impulsankomst i lgbet af gen-
nemgangstidsintervallet. Metode 1 er baseret pa kendsgerningen, at ankomsttiden af
impulsen er ensformigt fordelt i gennemgangstidsintervallet for homogene Poisson pro-
cesser. Gennemgangstidsintervallet opdeles derfor i et endeligt antal underintervaller,
og konvektionen og diffusionen af sandsynlighedsmasse udfgres for hvert unterinter-
val efter tur, under betingelsen at impulsen ankommer netop i det pagseldende inter-
val. Metode 2 er baseret pa en Taylorudvikling i impulsstyrken P af tilstandsvek-
toren ved slutningen af gennemgangstidsintervallet. Koefficienterne af Taylorudviklin-
gen afhaenger kun af start- og sluttidspunktet samt af systemets position ved starten
af gennemgangen, men ikke af tidspunktet, hvor impulsen faktisk indtreeffer. Dernzest
er udledt koblede ordinzre til bestemmelse af disse udviklingskoefficienter, der lgses
numerisk. Det vises, at Taylorudviklingen for linezere systemer bliver lineaer i P. Efter-
som en udskiftning af drift vektoren med en lokal sekvivalent lineaer drift vektor altid
er mulig ved tilstraekkeligt sméa gennemgangstidsintervaller folger, at Taylorudviklingen
bliver asymptotisk linezer, nar gennemgangstidsintervallet gar mod nul. Denne obser-
vation danner baggrunden for metode 2, som antager, at en sadan linezer Taylorud-
vikling er eksakt gezeldende. Det skal her bemarkes, at lineariseringsantagelsen vedrgrer
driftvektoren som funktion af tilstandsvektoren, og at der ikke sezttes restriktioner pa
stgrrelsen af impulsstyrken. I eksempel 3-13 er foretaget en stokastisk responsanalyse
og en palidelighedsanalyse af en Duffing oscillator, bade ved hjalp af metode 1 og
metode 2. Duffing oscillatoren er let deempet med en middelstor ikkelinearitetsparame-
ter. Grundleeggende udfgres path integrationen ved hjeelp af et ensformigt grovt 20 x 20
net, der udstreaekkes fire linesere stationzere standardafvigelser i de positive og negative
flytnings- og hastighedsretninger. Styrken af impulserne antages at veere normalfordelt
med middelvaerdien nul. For metode 1 betragtes 3 forskellige veerdier af v, svarende til
lav, middel og hgj middelankomstfrekvens af impulserne. For tilfeeldet med lav middel-
ankomstfrekvens opnés fordelinger med meget markante spidser ved origo. For dette
tilfzelde er benyttet et ikkeensformigt 25 x 25 net med en fire gange finere inddeling teet
ved origo. Gennemgangstidsintervallet At er opdelt i 3 underintervaller. Den stationaere
marginale sandsynlighedstaethedsfunktion af flytningen og hastigheden er opnéaet ved at
iterere gennemgangsligningen for Markovkaden indtil stationaritet er opnaet. Gennem-
gangstidsintervallet for de tre tilfeelde af v er henholdsvis At = Ty, At = Ty og At = Lo,
For tilfzeldene med lav og middel middelankomstfrekvens er opnaet udmeerkede re-
sultater i forhold til Monte Carlo simuleringsresultater, bade ved de centrale dele af
fordelingerne og ved disses haler, selv med de anfgrte relativt grove net. Derimod giver
path integration relativt darlige resultater i tilfzeldet med hgj middelankomstfrekvens,
hvilket skyldes at gvreveerdibegraensningen pa At ikke leengere er overholdt. Derneest
er fgrstepassagetidsproblemet for et deterministisk start problem med symmetriske kon-
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stante dobbeltbarrierer lgst for tilfeldene med lav og middel middelankomstfrekvens.
Som det er tilfzeldet med den tilsvarende hvidstgjspavirkning bliver fordelingsfunktionen
for fprstepassagetiden opnaet ved path integration underestimeret i de fgrste perioder
af pavirkningen pa grund af det grove net og de store gennemgangstidsinterval. For
tilfeeldet af middel middelankomstfrekvens af impulser er foretaget en sammenligning
med svigtsandsynligheden opnaet ved at approksimere pavirkningsprocessen med en
ackvivalent gaussisk hvid stgj. Resultaterne opnaet ved hjeelp af metode 1 er i langt bedre
overensstemmelse med simuleringsresultaterne, end det er tilfeeldet for resultaterne
opnaet ved den skvivalente hvid stgj. Fglgelig fgrer en erstatning af en sammensat med
en skvivalent gaussisk hvid stg] til helt vildledende resultater i palidelighedsanalyser
med middelankomstfrekvenser af den betragtede stgrrelse. Dernzest er betragtet et
enkeltbarriere problem med stationzer start i det sikre omrade for tilfeldene med lav
og middel middelankomstfrekvens af impulserne. I intet af tilfeeldene er den trappelig-
nende karakter af sandsynlighedstaethedsfunktionen for fgrstepassagetiden opnaet ved
path integrationen. Imidlertid viser resultaterne et korrekt eksponentielt limiting de-
cay, svarende til et diskret egenvaerdispektrum af bagud eller forud Kolmogorov-Feller
operatoren med absorbtion pa henholdsvis udgangsdelene og indgagsdelene af randen,
for bade deterministisk start og stationeer start problemer. Dernzest er metode 2 an-
vendt ved bestemmelsen af de stationzere marginale sandsynlighedstaethedsfunktioner
for flytningen og hastigheden 1 tilfeelde af relativt lav middelankomstfrekvens af im-
pulserne. De opnaede resultater for de marginale fordelinger er af samme kvalitet som
de tilsvarende resultater opnaet med metode 1. Imidlertid er algoritmen i metode 2
veesentlig simplere og hurtigere at benytte. Computertiden ved anvendelse af metode 2
i sammenligning med simulering er 0.22%, hvoraf konkluderes, at metoden muligggr eks-
treme beregningsmeessige fordele sammenlignet med Monte Carlo simulering. Dernaest
er metode 2 modificeret med henblik pa anvendelse ved path integration af systemer
pavirket af Lévy a-stabile beveegelser og sammensatte Erlang processer. Modifikatio-
nen for systemet pavirket af en Lévy a-stabil bevaegelse bestar i det vaesentligste 1 at
erstatte den aktuelle proces med en akvivalent sammensat Poisson process med a-stabil
fordelte impulsstyrker. Teorien er ikke illustreret med et numerisk eksempel. For syste-
mer pavirket af sammensatte Erlangprocesser er en mere gennemgribende modifikation
af metoden ngdvendig. Istedet for et enkelt net for det diskretiserede tilstandsrum af
de strukturelle tilstandsvariable bliver det nu ngdvendigt at definere k sadanne net,
et for hver af de k Poisson heendelser, der indtraffer pr. Erlang haendelse. For hver
af de forste k — 1 Poisson heendelser konvekteres sandsynlighedsmassen ved en given
knude i det til denne haendelse tilknyttede net svarende til egensvingningerne fra be-
gyndelsesveerdierne. Brgkdelen af sandsynlighedsmassen svarende til sandsynligheden
for at ingen impulser ankommer 1 gennemgangstidsintervallet klumpes i slutpositionen
pa nettet, medens den resterende sandsynlighedsmasse overfgres til det neeste net i
reekken. Er dette net det k. og sidste udspredes sandsynlighedsmassen i dette net.
Ellers klumpes sandsynlighedsmassen ved samme slutposition i det nye net som 1 det
forrige net. Hvis systemet starter pa det k. net overfgres sandsynlighedsmassen i stedet
til det fgrste net, og en ny sekvens kan begynde. Det fglger heraf, at antallet af tilstande
af den resulterende Markovkade vokser proportionalt med k, og ikke eksponentielt som
forventet. Fglgelig har introduktionen af hjelpetilstandsvariablerne, ngdvendig for at
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reducere et Erlang proces drevet system til et zekvivalent Poisson drevet system, relativt
lille indflydelse pa de beregningsmaeessige omkostninger af det udviklede path integra-
tionsskema. I eksempel 3-14 er metoden anvendt pa en Duffing oscillator med relativt
hgj ikkelinearitetsparameter pavirket af en sammensat Erlang proces med parameter
k = 2. Styrken af renewal impulserne antages at vzere normalfordelt med middelvaerdi
nul. Tre tilfeelde af middelankomstfrekvenser af de underliggende Poisson haendelser be-
tragtes, svarende til lav, middel og hgj middelankomstfrekvens af renewal impulserne.
Path integrationen udfgres med to ensformige 44 x 44 net, der udstrackkes fem linezere
stationeere standardafvigelser i de positive og negative flytnings- og hastighedsretninger.
For tilfzldet med lav middelankomstfrekvens af impulserne opnas udmaeerkede resul-
tater for de marginale sandsynlighedsteethedsfunktioner for flytningen og hastigheden
i forhold til Monte Carlo simulering. I dette tilfeelde er der ingen problemer med
at overholde savel gvre- som nedreveerdibegraensningen for gennemgangstidsinterval-
let. Vigtigheden af disse begreensninger er demonstreret i en undersggelse af kvaliteten
af de opndede resultater som en funktion af lengden af gennemgangstidsintervallet.
Resultater opnaet med det store gennemgangstidsinterval pa 5.07p i tilfaelde af lav
middelankomstfrekvens af impulserne er ubrugelige, fordi gvreveerdikriteriet er over-
skredet 1 dette tilfzelde. De tilsvarende resultater opnaet for middel middelankomst-
frekvenser er acceptable, men ikke sa gode som resultaterne opnédet med lav middel-
ankomstfrekvens. Gennemgangstidsintervallet er valgt ti1 At = 0.27; for at overholde
gvrevaerdibegreensningen. Imidlertid er dette valg samtidigt teet pa nedreveerdigraensen,
som demonstreret i undersggelsen over afhangigheden af gennemgangstidsintervallets
stgrrelse. Det vises, at med den benyttede veerdi af v opnas darligere resultater med
intervaller mindre end eller stgrre end det anfgrte. Resultaterne opnaet ved path inte-
gration for tilfeeldet med hgj middelankomstfrekvens af impulserne er endnu darligere.
Path integrationen er her udfgrt med et gennemgangstidsinterval pa At = 0.05T; for
at overholde gvrevaerdibegraensningen, men nedreveerdibegraensningen er helt sikkert
ikke overholdt. Fglgelig bekrzefter observationerne, der er gjort i eksemplet, tidligere
resultater for systemer pavirket af sammensatte Poissonprocesser, at path integration
af pulsdrevne systemer giver ngjagtige resultater for tilfeelde med lav middelankomst-
frekvens af impulserne med passende valg af gennemgangstidsintervallet, medens uan-
vendelige resultater opnas, hvis gennemgangstidsintervallet er enten for lille eller for

stort.

Afsnit 3.5 omhandler den numeriske lgsning ved hjelp af Petrov-Galerkin variation
af palidelighedsproblemet for ikkelinezre tidsinvariante oscillatorer af 1 frihedsgrad
uden hysteresevirkning pavirket af en homogen sammensat Poisson proces. Baseret
pa den generelle formulering i afsnit 3.2.2, er rand- og begyndelsesproblemet angivet til
bestemmelsen af palidelighedsfunktionen for et dobbeltbarriere problem, og den svage
formulering af dette rand- og begyndelsesvaerdiproblem er udledt. I formuleringen
forudsaettes en Kramer-Moyal udvikling af den bagudrettede Kolmogorov-Feller ope-
rator at veere gyldig, hvilket indebeerer, at momenter af vilkarlig hgj orden antages at
eksistere for impulsstyrken. I flytningsretningen anvendes trianguleere formfunktioner,
og veegtfunktionerne opnas ved at addere et kvadratisk upwind tillaeg hertil. For at over-
holde de strenge krav til differentiabilitet veelges formfunktionerne i hastighedsretnin-
gen som normaltfordelte sandsynlighedstzethedsfunktioner med varierende middelveerdi.
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Veegtfunktionerne opnas ved at addere upwind tilleeg, der vaelges som normerede fgrste
afledede af formfunktionerne. Udtryk er foreslaet for skaleringsfaktoren pa disse tilleeg
og for de lokale Peclet tal. Det diskretiserede system af koblede fgrsteordens differen-
tialligninger er lgst ved hjzlp af et Crank-Nicolson skema. I eksempel 3-15 er metoden
anvendt pa et fgrstepassagetidsproblem med symmetriske dobbeltbarrierer og determi-
nistisk start i origo for en Duffing oscillator pavirket af en sammensat Poisson proces.
I eksemplet varieres deempningsforholdet og ikkelinearitetsparameteren af oscillatoren
for at undersgge deres indflydelse pa palidelighedsfunktionen. Impulsstyrken antages
at veere normalfordelt med middelveerdi nul. Det sikre omrade opdeles i et ensformigt
30 x 30 net, der udstreekker sig fem stationsere standardafvigelser i den positive og
negative hastighedsretning. De stationeere standardafvigelser er tilvejebragt ved Monte
Carlo simulering, men kunne ogsa vere bestemt ved metoden. Det vises, at det nu-
meriske skema konvergerer til resultaterne opnaet ved gaussisk hvid stgj, nar v — oo.
Parameterstudierne viser, at palidelighedsfunktionen afhaenger veesentligt af ikkeline-
aritetsparameteren, medens den er forholdsvis ufglsom overfor deempningsforholdet.
En undersggelse af palidelighedsfunktionens afhzengighed af middelankomstfrekvensen
viser, at metoden med det anvendte 30 x 30 net bliver numerisk instabil for v < 1.0wy,
og at de opnaede resultater er forholdsvis ufglsom overfor veerdier af middelankomst-
frekvensen over denne greense. Det vises, at forsgg pa at opna numerisk stabilitet for
middelankomstfrekvenser under den anfgrte stabilitetsgraense kraever en drastisk reduk-
tion af netvidden. Fglgelig deler Petrov-Galerkin variation mangelen ved momentlign-
ingsmetoder for systemer pavirket af sammensatte Poisson processer, at disse metoder
er mest effektive for pavirkninger med hgj middelankomstfrekvens.
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