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Abstract 

Reliability-based design of structural systems is considered. Especially systems where 
the reliability model is a series system of parallel systems are analysed. A sensitivity 
analysis for this class of problems is presented. Direct and sequential optimization 
procedures to solve the optimization problems are described. Numerical tests indicate 
that a sequential technique called the bounds iteration method (BIM) is particularly 

fast and stable. 

1. Introduction 

A realistic reliability modelling of complex structural systems, such as offshore plat­
forms and bridges, often requires that a series system of parallel systems model is used. 
It is therefore very interesting to analyse whether already developed techniques for op­

timization/design of systems where failure is related to single element failure can be 
extended to more complex systems. Element reliability based design is considered in 
Murotsu, Kishi, Okada, Yonezawa & Taguchi [12), Frangopol [4) and S0rensen [17). 

The calculation of the reliability of failure elements (modelling potential failure modes) 
by first order reliability methods (FORM) is well established in practical reliability­
based analysis and design, see e.g. Madsen, Krenk & Lind [11). An approximate 
evaluation of the reliability of series systems of parallel systems, where each parallel 
system is approximated by an equivalent c0mponent, is considered in e.g. Gollwitzer & 
Rackwitz [6] and in S0rensen & Enevoldsen [15]. 

In reliability-based systems design and optimization and other types of design it is 
important to have the possibility to estimating sensitivities with respect to the design 
parameters either for a purely numerical use or for design evaluation. 

In reliability-based optimization based on the use of non-linear optimization algorithms 
the requirement for a low calculation time and high precision of the sensitivities can be 

determining for whether it is practically ?QSsible to perform the optimization process 
or not. 

In this paper reliability-based optimization of a series system of parallel systems is 
considered. In section 2 the optimization problem is defined and the system reliability 
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methods are outlined. Semi-analytical sensitivity analyses are presented in section 3. 
In section 4 some approximations in the sensitivity calculations are discussed both for 
reliability-based optimization and less restrictive design evaluation cases. In section 5 
two sequential optimization techniques are presented and finally the paper is exemplified 
with computional aspects in sections 6 and 7. 

2. Formulation of the Optimization Problems 

The optimization problem for optimization of series systems of parallel systems can be 
formulated as 

mm W(z) (1 ) 

s.t. f3 5 (z) ~ P~in (2) 

z~ < z · < z!' 
1 - I - I 

, i=12···N , , , (3) 

where W is the objective function, z the optimization/design variables with z1 as lower 

and z'"' as upper bounds. {35 is the generalized systems reliability index with the mini­

mum requirement f3!in. In the following it is described how {3 5 can be estimated for a 
series system of parallel systems. It is assumed that the elements in the parallel systems 
are identified by a suitable technique. 

2.1 Reliability of a Series System of Parallel Systems 

Consider a series system consisting of M p parallel systems. Parallel system no. i has 

Mi elements. {35 can then be estimated by 

(4) 

-P 
where ~M is the M -dimensional normal distribution function. {3 is an Mp-vector of 

generalized reliability indices for the individual parallel systems and pp is a matrix of 
approximate correlation coefficients between the parallel systems. 

-P 
The elements in {3 are calculated by 

(5) 

where {3J is an MA-vector of element indices calculated in the joint design point u• 
(and thus not the usual FORM element rdiability index pe) where MA; is the number 

of active elements in the ith parallel system. pis the corresponding matrix of correlation 
coefficients, see next section. 
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2.2 Calculation of {3
1 

and p 

Let the uncertain quanti ties be modelled by n stochastic variables X = (X 1 , X 2 , • • · , X n) T 

m failure elements are assigned to the system each modelling a specific potential fail­
ure mode at a specific location in the structure and described by failure functions 

g;(x) = 0, i = 1, 2, ···,m. For a realization x of X the failure function divides the 

space into failure states (g;(x) :5 0) and safe states (g;(x) > 0). Further, a U -space 
of standardized and normally distributed variables is introduced by the transformation 

X= T(U). 

It is assumed that at least one of the i = 1, 2, · · · , M failure functions in the paral­

lel systems is greater than 0 in the origo of the U -space, for further explanation see 

Hohenbichler, Gollwitzer, Kruse & Rackwitz [8]. 

The so-called joint design point is then defined and determined as the solution of the 

following optimization problem 

1 
mm 1 = -uru (6) 

" 2 

s.t. 9t(u):::;: o 

g2(u):::;: o 

9M(u):::;: o 

For further explanation and more detailed calculation of the joint design point, see 

Enevoldsen & S!iSrensen [3]. 

When the joint design point u* is determined the safety margins M; = g;(T(U)) of the 
MA active constraints/failure elements (i.e. g;(u) = 0, i = 1, 2, ···,MA) are linearized 

at the joint design point 

M · - -o:FU + {3! i = 1 2 .. . MA 1- I I ! l l ' 

where a:; and !3/ are determined as 

a;= 
-Vg;(U*) 

!Vg;(u*)l 
{31 -T-• 

i = o:i u 

The elements in the correlation coefficient matrix p are determined by 

-T­
Pij = o:i O:j 

(7) 

(8) 

(9) 
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From the formulas in this section it is now possible to calculate f3r for all i = 1, 2, ···,M 

parallel systems from (5). 

2.3 Calculation of the Correlations Between the Parallel Sys­

tems{/ 

For calculation of the elements in the correlation matrix pp each of the parallel systems 
are equivalated by a linear failure element with a linear failure margin, see Gollwitzer 

& Rackwitz [6] or S~rensen & Enevoldsen [15] 

_pT- p 
MP; = -ai U + f3i , i = 1, 2, ···,M (10) 

where the vectors ar are determined such that "V u• {3p from (5) and (10) are equivalent 

and normalized for calculation of the correlations 

-P 
-P 0 i 
ai = lafl' i = 1,2,· ··,M (11) 

where the elements of ar are obtained from 

(12) 

Here, MA; is the number of active constraints in the i-th parallel system, 7JJ!, {3J~ and 
i :=bi Ji pa , p are conditional indices and correlation coefficient matrices obtained from {3 

and pi in (8) and (9), see S~rensen [17] and Johnson & Kotz [9]. 

dpkl/duj is calculated as 

(13) 
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where 

= -- T -
dlik = ( -I + Vgk Vgk) 8Vgk 
duj jv91 j jv91 13 au; 

(14) 

I is the identity matrix. The elements in the matrix of correlations between the parallel 
systems are then calculated from 

PP =apT ap 
mn m n (15) 

Now (3 5 can be estimated from ( 4 ). In a crude FORM analysis of the parallel system the 
joint point is not determined. Instead, the usual element reliability indices and a-vectors 

· obtained from the individual elements in the parallel system are used to calculate the 

generalised reliability index for the parallel system by (5). In this case a~ becomes much 

easier to calculate because dpktfduj = 0 and deii/duj = 0. FUrther, it is not necessary 

to calculate dOA:/dfi* which implies estimation of the Hessian matrix 8Vg~cf8uj. 

However, in reliability-based optimization the Hessian matrix is needed in the sensitivity 

analyses (see next section), so estimation of cfiiifduj by (14) does not give additional 

computational costs. 

3. Sensitivity Analyses 

In most structural reliability analyses response calculations are rather expensive so the 
number of failure function evaluations must be as low as possible, i.e. an efficient 
optimization algorithm must be used. Numerical tests indicates that the lowest amount 
of response calculations is obtained by using 1. order optimization methods which 
require sensitivities of the objective function and the constraints with respect to the 
optimization variables. 

Usually it is easy to calculate V z W by finite differences, whereas V z/35 will not only be 
very expensive but also in many cases inaccurate to calculate by finite differences because 
it will be necessary to calculate differences between results from iterative solutions of 

(6) and the linearizations in (10). 

Also sensitivities obtained from analytical solutions can give problems mainly because 
in general, ~M for M > 2 can only be calculated approximately. Another reason is 
that the formulas become very extensive so it can be numerically more attractive to use 
various levels of quasi-analytical methods as pointed out in the following. 

The analytical derivatives obtained from the formulas in section (2) can be written as 
follows 
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From (4) 

where 

-P =P 
M Mp ({3 'p ) = ({3f)~ (-{3P. =P·) 

8{3r <p • Mp-1 ,p 
(17) 

and 

(18) 

where {3P., {3Pb and =pP•, ppb are again conditional indices and correlation coefficient 

matrices obtained from {3P and pp, see SSZ~rensen [17] and Johnson & Kotz [9]. 

Sensitivities For Parallel Systems 

d{3r fdz~c in (16) is obtained on the basis of (5). The following formulas are for one 

parallel system, i.e. the index i is suppressed, see also Madsen [10]. 

8li!M ... (-{3 1 ,p)f8{3j and 8ll!M ... (-P1
,p)f8pjp are calculated as in (17) and (18) 

df3f / dz~c is calculated from (8) 

If the auxiliary quantity 

df3f era;-· -rdii* -=-u +a·­
dz~c dz~c J dz~c 

- dVgj 8\lgj = dii* 
d'\lg· = -- = -+~g ·-) dz~c azk J dz~c 

where {~gj}lm = 82 g;f8u,8um is introduced, then da;/dz~c is calculated from (8) 

(20) 

(21) 
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- - - T-
daj -dVgi Vgid"Vg1· Vgi - = +___::.........__~~ 

dz~c IV9il IV9il3 
(22) 

dU* f dz~c is calculated using of the Kuhn-Tucker conditions of the joint design point 

optimization problem in (6) 

M 
• '"" \. dgj 0 - 1 2 

u9 + L- Aj du• = ' q- ' ' ... 'n 
j=l 9 

(23) 

9i(u*) ~ 0 , j = 1,2, · · ·,M (24) 

.\jgi(u*) = 0 , .\j ~ 0 , j = 1,2, ··· ,M (25) 

where X* is the vector of Lagrange multipliers. It is then required that the Kuhn-Tucker 
conditions must remain valid when a small change in z~c is introduced 

du; ~ d.\j dgj • {)2gj ~ fPgj duj )) _ _ 
-d + L-( -d d • + .\i(a •a +L-a •a • d - 0 ' q- 1, 2,· · · ,n 

Zk j=l Zk u9 u 9 Zk l=l u 9 Ul Zk 

(26) 

ag j + ~ ag i duj < 0 1· - 1 2 · · · M 
- L--- ' - ' ' ' az" au; dz" -

1=1 

(27) 

d.\j ( *) *( agj Ln agj duj) 0 \ • 0 . 2 M -g· ti+.\ · -+ --= /\, • > )=1 ... 
d ' 'a a *d ' '- ' '' ' Zlc Z/c U1 Zlc 

1=1 

(28) 

If it is assumed that the active set of constraints remain active after the perturbation 

the following system of equations is obtained from (26) to (28) 

[
I+ E~~ .\j~9i D] [l11!.fdz~cl = [ -EX* l 

DT 0 d,\ jdz~c -{Tgjaz~c 
(29) 

where D = {V u91, V •92, ... 'V u9MA} 'E = { av .gtfaz", av •92/az~c, .. . 'av u9MA/az~c} 
and X* is the vector of Lagrange multipliers of the active constraints. 
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The last term in (19) is calculated from (9) 

(30) 

where the derivatives of the a-vectors are calculated from (22). 

From the equations in this section it is now possible to obtain the sensitivities of the 

parallel systems. 

Now return to (16) where the explanation of dp~ldzk remains. From (11) to (15) it 

is seen that to carry on with analytical sensitivities will cause a very large swelling of 
the formulas, where especially the derivatives of the conditional indices and correlation 
coefficients make problems. Instead, a semi-numerical solution with parts calculated by 

numerical differentiation is suggested. If pp is written 

(31) 

then 

d p M MAp d p d(3J q-1 d p 
Pij = L L { PJ _Jj_ + 2 L __!jj_ dppqr } 

dz~; df3pq dz~; dppqr dz~; 
p=l q=l r=l 

(32) 

the parts dp~ldf3jq and dp~ldppqr are calculated by numerical differences, whereas the 

two other parts in (32) are already known from the sensitivity analysis of the parallel 
systems. It is seen that this formula requires no additional response calculations and 

structural analyses. 

As mentioned in section 2 the second order derivatives of g with respect to u, '\! g 

is evaluated in order to determine d(3P laz, namely in (29). The same second order 
derivatives can thus be used to determine the equ!valent linear element in (12) without 

any additional computional costs. 

4. Approximations 

For small and moderate correlation coefficients the last part in both (16) and (19) 
containing the derivatives of the correlations usually, only contribute insignificantly to 

d(35 I dZ and df3P I dZ, respectively. Furthermore, they are very computer time consuming 

to estimate( especially the numerical calculation of£{! laz in (32)). 

A natural approximation is then to neglect the derivatives of the correlations and to 
use the two following formulas in the optimization instead 
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df3S 1 Mp 8~Mp(i3p,pp) df3f 

dzk = <p(f3S) ~ 8f3f dzk 

df3P 1 M,. a~ M,. c -PJ, fi) df3f 

dzk = <p(f3P) ~ 8f3j dzk 

From (34) it is seen that calculation of au• faz from (29) is still necessary. 

5. Sequential Optimization Methods 

9 

(33) 

(34) 

Reliability-based optimization of series systems of parallel systems can be performed 

directly by using the sensitivities of the systems reliability index f3s. A directly for­
mulated optimization problem can, however, cause problems and give instabilities, see 

section 7. 

In the following, two optimization methods using another so-called sequential strategy 

are presented. Instead of the direct formulation in (1)- (3) with a requirement for f3s, 
a problem with requirements for each of the Mp parallel systems indices is introduced. 
These requirements are then adjusted in a sequence until the underlying requirement 

for the f3s is finally fulfilled. 

For both methods the reliability-based optimization problem in (1)- (3) is solved by a 

sequence of parallel system reliability based problems denoted k = 1, 2, · · · 

min W(z) 

s.t. f3r(z) ~ f3f'', i = 1, 2, · · ·, Mp 

z: :5 Zi :5 zi , i = 1,2,··· ,N 

where f3(', i = 1, 2, · · ·, Mp is a sequence of lower bounds determined as 

-p•+t -P" -P" 
f3 = f3 + 6/3 

(35) 

(36) 

(37) 

(38) 

Initially, for k = 1, f3f 0 = f3!in' i = 1, 2, · · ·, Mp and all the elements in 6.Ppo are 

selected as a good guess of the difference between f3!in and the lowest final f3f, i = 
po - Cif_ f f3s 1, 2, · · ·, Mp, for example 6/3i - 5 10 o min· 

The difference between the two sequential techniques lies in the requirements for and 

-P" 
the calculation of 6./3 . 
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5.1 Sequential Method 1: Constant Objective Function Method 

(COFM) 

In this method (see also S0rensen [18]) D.{3p• is calculated as 

-P• -
D.{3 = c d (39) 

where c and the unit vector dare determined on the basis of a lineariation of {3s 

das• T • • 
as,..... as• + fJ D.aP = as• + ciT D.aP =as. 
fJ "' fJ -P• fJ fJ /3 fJ /Jman 

d{3 

(40) 

where the auxiliary quantity a~ is introduced. c is calculated by 

s s• _,.T-
c = (f3min - f3 )/ap d (41) 

c is the step length in the d direction which is obtained by maximizing a linear approxi­

mation of the systems reliability index {3s subject to the requirement that W(z) is kept 

approximately constant 

mtn {3s• _,.Td - - ap (42) 

s.t. 
-A:T-
awd=O (43) 

dTd= 1 (44) 

where 

A: _ ~ dW(zA:) dzi 
aw; - L.....J dz · df3!' 

j=l J • 

(45) 

The first constraint ( 43) signifies that the objective function is held approximately 
constant while the linear approximat_ion of the system reliability index is maximized. 

The second constraint ( 44) is a normalization of the search direction. 

From the Kuhn-Tucker conditions of the optimization problem ( 42) - ( 44) the following 

solution can be obtained 

- 'f 
d=~, -T-'Y "( 

(46) 

Hereby c can be calculated from ( 41) the new bounds from (39) and the problem in 

(35) - (37) is again solved for k = k + 1. 
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The iteration is stopped when 

1.8
511 

(z")- .B!inl ~ ft (47) 

where € 1 is the desired requirement for the accuracy. 

5.2 Sequential Method II: Bounds Iteration Method (BIM) 

In this method it is not required that W(z) is kept approximately constant but instead 

that ,85 (fjp
11

, pp) = f3!in in the calculation of tl.PP ... Further, only the bounds on the 

active constraints from the solution of (35) - (37) are changed. The elements in tl.PP
11 

are calculated as in (39) but d = {1, 1, · · ·, 1, 0, 0, · · · , 0}, and c is an unknown coefficient. 
The constraints in (35) - (37) are rearranged so the N A active constraints are the first 

constraints, i.e. 1 in d corresponds to an active constraint, whereas 0 corresponds to an 

inactive constraint. 

The following problem is then solved for with respect to the variable c for each of the k 
-P 

sequences for fixed p 

s' -1 -P .. , -P .. , :P - s 
,8 = -~1 (1- ~Mp(,B + f:l.,B ,p )) - .Bmin (48) 

c can e.g. be determined by using Newton's method for a given sequence number k as 

iterations I = 1, 2, · · · with 

s s' c' - .Bmin - ,8 
- L:~A1 d,BS' I d,Bf' 

(49) 

This Newton sub-iteration is stopped when 

s s' I.Bmin - ,8 I ~ €2 (50) 

where €2 is the desired accuracy of the bounds problem. when l::i{3P
11 

is determined (35) 

- (37) can be solved with new bounds fork= k + 1. The optimization is again stopped 

when 

s .. -" s I 1,8 (z ) - .Bmin ~ ft (51) 

where again e1 is the desired requirement for the accuracy. 

The Newton sub-problem is very easy and fast to solve because only work on the active 
constraints is performed. From a stability convergence point of view it is required that 

€2 < €}. 
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6. Computional Aspects 

6.1 Optimization procedures 

The optimization problems in (1)- (3) and (35) - (37) can in principle be solved using 
any general non-linear optimization algorithm. In this paper the VMCWD algorithm 
is used, see Powell [13]. 

The VMCWD algorithm is based on the sequential quadratic optimization method by 
Han, Powell and Wilson, see Gill, Murray & Wright [5]. Generally it is a very effective 
method where each iteration consists of two steps. The first step is determination of 
the search direction by solving a quadratic optimization problem formed by a quadratic 
approximation of the Lagrange function of the non-linear optimization problem and 
a linearization of the constraints at the current design point. The second step is a 
line search with an augmented Lagrangian merit function using the so-called Watchdog 
technique by Chamberlain, Lemarechal, Petersen & Powell [2] . 

6.2 Calculation of the Joint Design Point u• 

The joint design point can be calculated by any general non-linear optimization algo­
rithm applied to the optimization problem in (6). However, the special structure of this 
optimization problem implies that optimality criteria based algorithms can be used. 
In Enevoldsen and S0rensen [3] such a method with a strong active set technique is 
described. The algorithm is in general more stable and fast than e.g. VMCWD. 

6.3 Calculation of ~M 

Except for special cases the multi-dimensional normal distribution function ~M must be 
calculated by an approximation, e.g. Hohenbichler's approximation, see Hohenbichler 

[7]. This is a source of errors in the reliability-based optimization. From a numerical 
point of view the most stable optimization is obtained by using the derivatives belonging 
to the approximation of~ M and not to the actual problem. By a careful implementation 
of Hohenbichler's approximation the errors can be significantly reduced. 

Another possibility is to use the average correlation coefficient approximation method, 
see S0rensen [17] and Johnson & Kotz [9], which, even though it is a coarser approxima­
tion of the system probability of failure, gives more consistent sensitivity coefficients. 

By this method ~M is calculated as 

(52) 
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where Pav is the average correlation coefficient of the correlation coefficients in the 

correlation matrix p corresponding to /3. 

6.4 Solution of the Optimization Problem in (1) - (3) 

In this section two algorithms are presented to solve the general optimization problem 

(1) - (3). The first algorithm solves the optimization problem directly and the second 

algorithm uses a sequential technique. 

Model Algorithm 1: Direct Solution of Optimization Problem 

In the following a model algorithm is presented which solves the optimization problem 

in (1) - (3) directly 

Step 0 (Initialization) 
Set the overall iteration number j = 1 and the parallel system number i = 1 

Input zO 

Step 1 (Calculation of f3f) 
- -J 

Calculate uj (6), ai (8), Pi (9) and {3i {8) 

Calculate f3f (5) 

Step 2 (Calculation of df3f I dZ) 
Calculate diJt laz by assembling and solution of (29) 

- -J -
Calculate diii/az (22), d{3i laz (20) and apifaz (30) 

Calculate df3f laz (19) 

Step 3 (Calculation of equivalent linear failure element) 

Calculate diildtii {14) and JPidiij (13) 

Calculate ar (11) 
IF i < Mp set i = i + 1 and GOTO Step 1 

Step 4 (Calculation of [35 ) 

:P 
Calculate p (15) 

Calculate f35 ( 4) 

Step 5 (Calculation of d{35 I az) 

Calculate o:pP ldZ (32) and d{35 laz (16) 

Step 6 (New point and Convergence test) 
Calculate new point zi+l with VMCWD 

IF zi+t Optimal EXIT 
ELSE j = j + 1 ,i = 1 and GOTO Step 1 
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Model Algorithm 2: Sequential Solution of Optimization Problem 

In the following a model algorithm is presented which solves the optimization problem 
in (1) - (3) sequentially by the formulation in (35) - (37) and the bounds iteration 

technique (BIM). 

Step 0 (Initialization) 
Set the iteration number j = 1, the sequence number k = 1, the parallel system 

number i = 1 and f3t = 1.05 · f3!in' i = 1, · · · Mp. Input zO 

Step 1 (Calculation of f3f) 
- -J 

Calculate U: (6), ai (8), Pi (9) and Pi (8) 

Calculate f3f (5) 

Step 2 (Calculation of df3f / dZ) 
Calculate dtii /dZ by assembling and solution of (29) 

- -1 -
Calculate aaifaz (22), d{3i /az (20) and apJaz (30) 

Calculate df3f jdZ (19) IF i < Mp set i = i + 1 and GOTO Step 1 

Step 3 (New point and convergence test of sub-problem) 

Calculate new point :zi+l with VMCWD 

IF :zi+I Optimal for sub-problem GOTO Step 4 
ELSE j = j + 1 ,i = 1 and GOTO Step 1 

Step 4 (Calculation of equivalent linear failure element) 
for j = 1, · · ·, Mp 
Calculate aa/dfij (14), tfi/dfij (13) and ar (11) 

Step 5 (Calculation of [35
' ) 

:P 
Calculate p (15) 

Calculate {3 5 ' ( 4) 

Step 6 (Convergence test of total problem) 
IF :zi+I satisfies the total convergence criteria (51) EXIT 

Step 7 (Adjust bounds by BIM) 
-p•+t 

Calculate c (49)- (50) and {3 (38) 
Set j = j + 1, k = k + 1, i = 1 and GOTO Step 1 

1 
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7. Example 

Optimization of a Series System of 6 Parallel Systems 

Consider a system of 3 elements where failure is defined as failure of all 3 elements. 
Each of the possible failure paths is then modelled in a parallel system which again is 
placed in a series system modelling the total system. With 3 elements 6 possible failure 
paths can be found. The model is then a series system consisting of 6 parallel systems 
each with 3 failure elements described by a failure function 

9i = Stzi- ruP6
, 'i = 1, 2, 3 (53) 

where Sf and P6 can be considered as the strength of element i and the load on the 

parallel system, respectively. Zi is an optimization variable which can be considered as 
the area of element i. '7i is a load division parameter for a brittle system for a given 
failure path 

Zj 

'7i = "'3 . z . 
LJj=• J 

(54) 

The strengths of the 3 elements are modelled as 3 independent log-normally distributed 
stochastic variables Si, i = 1, 2, 3 raised to the power of a= 2.5. The load on the system 
is modelled as a normally distributed stochastic variable raised to the power of b = 1.2. 
The expected values of the strengths are Ji. = {25, 27, 30} and of the load J.lp=2700, all 
with 0.1 as the coefficient of variation. 

The problem is to optimize the series system of parallel systems described above. The 
optimization problem is formulated as, see (1) to (3) 

mm 

s.t. 

W(z) = z~ + l.2z~ + 1.3z~ 
/35 ~ 3.5 

z! ~ Zi ~ zi 

The optimization problem is solved by 4 different methods: 

I Directly by using the sensitivity techniques described in section 3. 

(55) 

(56) 

(57) 

11 Directly by using the approximate sensitivity techniques described in section 4. 

Ill Sequentially by using COFM described in section 5. 

IV Sequentially by using BIM described in section 5. 

The starting point is selected as zO = {2.0, 2.5, 3.5} with ±0.5 as simple bounds. The 
-P _pt S 

elements in the bounds on /3 in f3 are selected as /3min + 5% = 3.675 and the overall 
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convergence parameter is set as e1 = 0.0005. The sub-iteration convergence parameter 
in BIM is chosen as e2 = 0.1e1• The optimization problems are solved by VMCWD [13] 
and the joint design point problems are solved by the algorithm described in Enevoldsen 
& S~rensen [3] . 

Solution Characteristics 

It was possible to solve the optimization problem by solution methods I, Ill and IV, 
whereas method II broke down in the line searches which is probably due to that the 
sensitivities are not precise enough. The solution is found as z• = {1. 74, 2.62, 3. 73} with 
W(z*) = 29.3. Further, the following table 1 of solution characteristics can be outlined. 

Method Ng Tv I, Fe Cpu 

I 24080 2107 13 14 36.6 
Ill 37440 16 9 21 2.1 
IV 15986 7 3 9 0.8 

Table 1: Solution Characteristics. 

N 9 is the number of failure function calculations (all derivatives of failure functions are 

calculated by numerical differences), Tv the CPU-time in seconds on a VAX8700 used 

for calculation of d/35 fdZ in (16) for method I and d/3P /dZ in {19) for methods I, Ill 
and IV, respectively. I, is the number of iterations which fo1· method Ill and IV is the 
number of sequential solutions of (35)- (37). Fe is the number of functional calls which 
implies a calculation of the objective function, the constraints and their derivatives. Cpu 

is the total CPU calculation time in minutes on the VAX8700. 

The two most important figures are N9 and Tv. In this example it is seen from Tv 
that the sensitivity calculation in method I is very time consuming compared to the two 

other methods which is due to the numerical calculation of JPP fdZ in (32). It is also 
seen that nearly all CP .. -time in method I is used for sensitivity calculations. 

In this example the calculation of the failure function in (53) is relatively cheap. In 
a more realistic model, e.g. using finite element methods, the time for calculating the 
failure functions will dominate the calculation time totally. Therefore, the selection 
of method must be made from two considerations, 1) the number of failure function 
evaluations and 2) stability of the methods. N6 is clearly lowest for method IV with 

a very fast convergence. The stability of methods Ill and IV is nearly the same but 

method Ill is more slowly converging and will be dependt:nt on the initial guess of ~fjpo 
in (38), whereas method IV adjusts the bounds in the first Newton iteration in ( 49). 
The stability of the methods Ill and IV is much better than for method I where the 
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starting point and the simple bounds on z are very important because large zig-zagging 
in the optimization variables gives stability problems. 

Furthermore, it must be expected that dfjp I az is more precise than df35 I az. Hohen­

bichler's approximation of~ M is used at two levels when estimating {35 and equivalent 

linear failure elements are introduced in the calculation of {35 . 

Finally, it must be mentioned that there is no guarantee that methods I, Ill and IV 
always find the same solution of the problem but all methods will find allowable solu­
tions. 

Sensitivity Analyses 

In optimization the requirements for the precision of the gradients are very high. When 
the topic is to use sensitivities for design evaluation the order and mutual size of the 
sensitivities are often of more interest. In Table 2 the differences between the sensitivities 
calculated by methods I and II are shown (calculated for the sensitivities at the starting 

point zO and the optimum point z*) 

Method 6..en•i(%) C11u (sec.) 
11 5- 12 5 
dPP laz in_(32) neglected 3- 5 8 

- -

'J;'able 2: Sensitivities compared to sensitivities calculated from (16) and calculation 
times. 

In method 11 all derivatives of correlations are neglected. In the second row df35 I az are 

calculated by neglecting ~ ldZ in (32), whereas the sensitivities of the correlations in 
(12) and {19) are still taken into account. c,. is CPU-seconds on the VAX8700 for one 

calculation of df38 ldZ. The times must be compared with 148 CPU- seconds in method 
I. 6..en•i is the range of differences in% between the sensitivities calculated by method I 
and the two other methods. It is seen that neglecting the derivatives of the correlations 
is satisfactory for most practical design evaluations. 
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8. Conclusions 

Reliability-based optimization problems of series systems of parallel systems is formu­
lated and sensitivity analyses are presented. It is discussed whether it is possible to 
neglect derivatives in sensitivity analysis and it is concluded that this is possible when 
the sensitivities are used for design evaluation.However, this is not possible when the 
sensitivities are used in optimization. 

Among the suggested direct optimization method and two sequential methods, especially 
the sequential method called the bounds iteration method (BIM), which adjusts the 
bounds in each sub-optimization problem, seems fast and stable. 
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