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Abstract

Optimal planning of crack detection tests is considered. The tests are used to up-
date the information on the reliability of inspection techniques modelled by prob-
ability of detection (P.0.D.) curves. It is shown how cost-optimal and reliability-
based test plans can be obtained using First Order Reliability Methods in com-
bination with life-cycle cost-optimal inspection and maintenance planning. The
methodology is based on preposterior analyses from Bayesian decision theory. An
illustrative example is shown.

1. Introduction

Modern reliability methods, see Madsen et al. [1], have shown large applicability
as decision support tools in engineering problems. Examples are optimal structu-
ral design, inspection and maintenance planning, requalification and experiment
planning. One of the main advantages of reliability-based decision tools is that the
result of the analysis can reflect the actual knowledge. Thereby the uncertainty
(or certainty) associated with a specific problem, such as parameter values, models
for the structural behaviour etc. can directly influence the decision. Furthermore,
given that a probabilistic model for the uncertainties has been defined, reliability
based decision tools make it possible, in a consistent way, to incorporate any ad-
ditional information about the uncertainties in the problem. Modern methods for
inspection and maintenance planning for offshore structures are to some extent
based on estimated expected life cycle costs and/or the structural reliability. It is
well known to the operators of offshore structures that one of the most uncertain,
and at the same time, also one of the most influential parameters in connection
with inspection and maintenance planning is the reliability of the sub-sea inspe-
ctions. This is in particular the case with the uncertainty associated with crack
detections. Therefore it is of utmost importance to include this uncertainty in the
inspection and maintenance planning analysis.

In recent studies, see e.g. Madsen [2], the uncertainty in crack detection, 1.e.
the reliability of the inspection methods, has been included using the so-called
probability of detection curves (P.O.D. curves). These P.O.D. curves are estimated
from experimental inspection trials under controlled conditions. The experiments
are conducted under quasi realistic sub-sea conditions by sending divers down
in water filled tanks. The divers then inspect submerged structural details with
defects of known size. By counting the number of detections and no-detections for
given defect sizes a P.O.D. curve is determined see e.g. Thomson & Chimenti [3].




ISOPE-95, The Hague, 1995

The quality of an inspection method is usually characterized by the crack lengtH
which corresponds to a probability of detection of 90 % where the probability of
detection curve used is the lower 95 % confidence limit obtained on the basis of
the experiments. Therefore the experiments are planned such that this point can
be determined as cheap and accurate as possible. This implies that the quality of
the P.O.D. curve is highest around this 90/95 % point. However, when the P.0.D.
curve is used in a reliability analysis it is important that the whole P.O.D. curve is
accurate, i.e. the experimental points have to cover the whole crack length range.

The experiments are rather expensive and it thus becomes an important issue to
plan the experiments carefully. Such an experiment plan cannot be performed
without taking into account the effect of the P.O.D. curve on the structural life
cycle costs. The present paper addresses the problem of optimal planning of expe-
rimental inspection trials for a given inspection technique taking into account the
structural life cycle costs. This is done by combining recently developed desision
theoretical based methods for inspection and maintenance planning and experi-
ment planning, see Kroon [4] and Sgrensen et al. [5]. An illustrative example of
crack detection experiment planning is presented.

2. Optimal Experiment and Inspection Planning

The basis for determination of the cost optimal experiment and inspection strategy
1s preposterior analyses from classical decision theory, see e. g. Raiffa & Schlaifer

[6] and Benjamin & Cornell [7].

The decision variables defining the crack detection experiment can be the num-
ber of crack detection experiments Nsampte and the actual crack lengths of the
specimens to be inspected in the experiment a¢ = (5 ...,a‘;\,”mple), conveniently
collected in the experiment vector e = (Nsampte,a®). The outcome of the experi-
ments in terms of rates of success (detection / no detection) for given specimen
crack lengths are modelled by binominally distributed random variables 7. In
the most general case the parameters defining the inspection plan are the number
of inspections N;, the time intervals between inspections At = (Aty, -+, Aty,)
and the inspection qualities q = (¢;,--- , ¢ N;). These parameters are conveniently
collected in the inspection vector i = (NV;, At, q). The outcome of an inspection is
assumed to be modelled by a random variable S. S typically models a measured
crack length or depth. A decision rule d must then be applied to the outcome
of the inspection to decide whether or not a repair should be performed. The
different uncertain parameters (stochastic variables) modelling the state of nature

are collected in a vector X.

A rational experiment and inspection plan can then be obtained using Bayesian
decision analysis, see Raiffa & Schlaifer [6]. The decision tree is shown in figure 1.
It is assumed that the decision maker chooses the strategy e, i, d which maximizes
the expected utility

u* = max Eyc[max max Eg|i,Z[E3’([S,Z[u(ea Z,i,5,d(5), X)) (1)
where Ez)e is the prior expectation based on the prior statistical model for Z.

2



ISOPE-95, The Hague, 1995

Eg[i,z is the posterior expectation with respect to S based on the outcome z of Z,
i.e. S is updated on behalf on the outcome of the crack detection experiment z
and ES'{[S,Z is the posterior expectation of the state of nature X given the outcome
s of the inspection which again is updated on the basis of the outcome z of the
crack detection experiment.

Figure 1. Decision tree.

2.1 Cost optimal inspection planning

If the' utility function is related to the total costs and the benefits are neglected
(1) can be written

cC* = mein Ez[e[CExp(e) + C’*(e, Z)] (2)

where Cpx p(e) is the cost related to the crack detection experiment and C*(e, z)
is the minimum expected inspection, maintenance and failure costs given an ex-
periment plan e and test result z. If the costs C(e,z) are divided into inspection,
repair and failure costs and a constraint related to a minimum level of reliability
is added then C*(e, z) can be determined from the optimization problem

C*(e,z) = midn C*(e,z,i,d) = Cin(e,z,i,d) + Cr(e,2,1,d) + Cr(e, z,i,d)(3)
st B(Ty,e,2,i,d) > fuin )

C*(e,z,1,d) is the total expected inspection and maintenance cost in the design
lifetime (Tyy; = T1). Crn is the expected inspection cost, Cg is the expected
cost of repair and Cp is the expected failure cost. :

B(T,e,z,1,d) is the generalized reliability index defined by
B(T,e,z,i,d) = —37(Pp(T,e,z2,i,d)) (5)

where ® is the standardized normal distribution function and Pp(T,e,z,1,d) is
the probability of failure in the time interval [0, 7] given experiment plan e, result
z, inspection strategi i and repair decision d.

The constraint on the minimum reliability (4) is somewhat unnecessary since the
reliability is already incorporated in the objective function through the expected

3
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cost of the failure term but it is included to take account of future prefixed codé
demands set up by the authorities.

Other constraints, e.g. on the maximum of the individual costs or direct bounds
on the optimization variables can be included in the problem, if necessary.

In (3) the expected inspection, repair and failure costs must be modelled as func-
tions of the decision variables.

The total capitalized expected inspection costs are modelled by

1

O

N;
Cin(e,2,i,d) = Y Crn,(q)(1 — Pp(Ti, e,2,1,d))
=1

The ith term represents the capitalized inspection costs at the ith inspection when -
failure has not occurred earlier. Here it is assumed that if failure occurs then
the component cannot be repaired. Cjp,(q) is the inspection cost of the ith
inspection, Py(T;,e,z,1,d) is the probability of failure in the time interval [0, T3]
given experiment plan e and result z. r is the real rate of interest.

|

T &

N;
CR(e, Z, i,d) = Z CR,-PR{(ea z, i7 d)
=1

i

is the total capitalized expected repair costs. The ith term represents the capital-
ized expected repair costs at the ith inspection. CRr, is the cost of a repair at the
1th inspection and Pk, (e, 2,1, d) is the probability of performing a repair after the
ith inspection given experiment plan e and result z when failure has not occurred
earlier.

The total capitalized expected costs due to failure are estimated from

N;+1

. . . 1
Cr(e,2z,1,d) = Z Cr(T;)(Pp(T;,e,2,i,d) — Pp(T;—1,e,z, 1,d))m (8)
i=1

Cr(T) is the cost of failure at the time 7.

2.2 Simplified optimal inspection planning

Sometimes it can be difficult to obtain the data to model the costs needed in a cost
optimal inspection planning as described above. Instead a simplified inspection
planning can be performed using a minimum reliability level (eventually code
specified) and estimates of the reliability as function of time taking inspections
into account, see e.g. [5] and [8]. In figure 2 the generalised reliability index 8 =
—®~(Pp(T)) is shown as a function of time. When B(t) decreases to the minimum
reliability level Bnin, an inspection has to be performed. The next inspection time
is determined assuming that no defects are found by the inspection. Based on
this assumption and taking into account the inspection uncertainty modelled by
Aqg the next inspection time is found as the time T, where the updated reliability
index decreases to fmin. In this way an inspection plan can be determined.

4
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( B(t)

time

Figure 2. Simplified inspection planning.

In order to decide if experiments should be performed to update the p.o.d. curve
the costs of the experiment could be compared with potential savings in inspection
costs for the platforms operated by the experiment planner and inspected with
the actual inspection method considered in the experiment. If experiments are
performed then the generalised reliability index can be updated, see figure 3, where
" = —® 1 (P}(T)), see (5), indicates the reliability index updated on the basis
of the results of the experiments and on no-find of defects at the inspection times.
Based on the updated reliability index the inspection plan can be updated and
the potential savings can be compared with the experiment costs. In figure 3 two
inspections has to be performed at times 7] and T if experiments are performed
and three inspections has to be performed at T;,T; and T3 if no experiments are
performed. However, it should be noted that although it can be expected that in
general the number of inspections is descreased if experiments are performed, it
can also happen that more inspections have to be performed if the crack detection

)
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experiments show that the p.o.d. is more uncertain than expected a priori.

| (1), B(t)

ﬁmin
_time
0
Figure 3. Updated simplified inspection planning. —- : f(¢) and - - - : 8"(¢).
I
3. Reliability Modelling
branch
2 1
] 2
0
s .
1 oo o0 :
0
2
1
0 3"
: : : T
0 I T

Figure 4. Repair realizations.

The failure and repair probabilities necessary for calculation of the expected costs
can be expressed in terms of intersections of the events of inspection, repair and
failure. All branches of the repair event tree at the N; inspection times according
to the chosen maintenance strategy must be taken into account when calculating

the probabilities.

6
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If repair is assumed to be performed when a defect is detected and has a measured
size a larger than a critical level a, then the total number of repair realizations
(branches) is 3V¢, see figure 4, where 0, 1 and 2 signify that no defect has been
detected (no repair), defect has been detected, but is too small to be repaired and
repair has been performed, respectively.

The probability of failure in the time interval [0,T;] is for 0 < T < T :
Pr(T) = P(Mp(0) >0N Mp(T) <0) (9)

where Mp(T) is the safety margin modelling failure at the time T'.
For T1 <T S T2 .

Py(T) = Pp(Ty) + P(MFp(0) > 0N BN Mp(T) <0)
+ P(Mp(0) > 0N BN ME(T) < 0) + P(Mp(0) >0n B>*N Mz(T) <0)
(10)
where B°, B! and B? are the events corresponding to no detection, detection and
no repair and detection and repair at the first inspection, respectively:

B° = {MF(Tl) > OnMD(Tl) > 0}
, B! = {Mp(Ty) > 0N Mp(Ty) < 0N Mg(Ty) > 0} (11)
B? = {Mp(Ty) > 0N Mp(Ty) < 0N Mg(Ty) <0}

Mp(T)) is the safety margin modelling detection of a defect and Mg(71) is the
safety margin modelling repair. M%(T') and M%(T') are safety margins with respect
to failure at the time T > T corresponding to no repair and repair at the first
inspection. Similar expressions are obtained for T' > T5.

The probability of repair at the time T; is determined in a similar manner.

The safety margin Mp(T) modelling failure at time T can typically be written
Mp(T)=a.—a(X,T) (12)

where a, 1s the critical crack length and a is the crack length at time T'. a is a
function of the stochastic variables X. The failure criteria can alternatively be
related to the crack depth, see the example in section 5.

The safety margin M p(T) modelling detection of a crack at time T' can be written
Mp(T)=As—oX,T) (13)

where A, is the smallest detectable crack size. Ay is modelled as a stochastic
variable with a distribution function Fl4,(a4) equal to the P.O.D. (probability
of detection) curve. The probability of failures in (9)-(10) are estimated using
updated distribution functions F (asle,z) of A4. The updatings are based on
the experiments e and results z. In section 4 it is shown how F7; can be obtained.
The safety margin Mp(T) modelling possible repair at time T can typically be
written

Mp(T) = ar — a(X,T) — ¢ (14)

7
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where a, is a repair crack length and e is a zero mean stochastic variable modelling
the crack measurement error.

4. Probabilistic Modeling of the Detectable Crack Size

As seen from section 3 the detectable crack size plays an important role in expected
costs and reliability based inspection and maintenance planning. Therefore the
prababilistic modeling of the size of detectable cracks must be performed carefully
using all available information (in the form of available experimental inspection
results and subjective information from similar conditions) and formulated such
that future additional inspection trials can be used to update the probabilistic
models. The detectable crack size A4 is assumed to be modelled by a distribution
function F4,(as) equal to the P.O.D. curve. The P.0O.D. curve must represent -
the experimental knowledge about A, as accurately as possible both in terms of
the actual observations (detection/no detection) and in terms of the experimental
sample size.

In the following it is first shown how a statistical model of the P.Q.D. curve can
be obtained on the basis of detection/no detection observations from experiments.
Next it is discussed how other types of available information on the P.O.D. curve
can be modelled statistically. Finally it is shown how the probabilistic model of
the P.0.D. curve can be updated on the basis of new experiments.

It is assumed that an appropriate family of distribution functions for the P.O.D.
curve has been identified and are denoted as F4 (a4, p') where p’ are statistical
parameters to be determined. The problem is to fit the distribution function to
the experimental inspection trials with observations of the type : detection / no
detection. The maximum likelihood method (see e.g. Lindley [9]) is used since it
not only gives the distribution parameters p’ but also the joint distribution fer(p')
of p’ modelling the statistical uncertainty. Since the outcomes of the experimental
inspection trials are of the type detection / no detection the likelihood function
L(p') has the following form, corresponding to Ngample experimental inspection
trials performed with crack sizes a¢,: =1, -- s N swmple

sample

N
Lp)= ] P (15)
where

F;

(p') = { Fp,(af|p') = P(Aq < af|p") if detection (16)

11— Fy,(ai|p') = P(A4 > af|p") if no detection

The maximum likelihood estimates p’* are obtained by solving the optimization

problem
rr}l)i/n —L(p") (17)

For large sample sizes (Nsampte > 20, see e.g. Lindley [9]) the joint distribution of
p' tends to be Normal distributed with expected values pp = p'* and covariance

8
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matrix Cprp - L( /*)
nL\p

3pi0, (18)

C,o = H ! where Hyi 5= —

P'p
To evaluate the goodness of fit of the selected family of distribution functions the
robustness of the estimates p'* should be examined. As the maximum likelihood
estimates are statistically robust the estimates p'* should at least be insensitive to
augmenting the experimental inspection trial sample with one additional sample.
If this is not the case, the selected distribution function is not suitable. Otherwise
the distribution function F4, (a4|p’) can now be used for reliability analysis and/or
inspection and maintenance planning.

Next the problem to model available information which can not directly be exp-
ressed as a number of experiment trials corresponding to the above Nyomple €x-
periments. This information can e.g. be subjective information about the P.O.D.
curve. Often this information can be expressed by 95 % confidence intervals of the

P.O.D. curve.

It is assumed that the information can be modelled by the family of distributions

Fy,(ag,p') mentioned above. A calibration of the available information to this

model can be performed as follows:

a. The available information is modelled by Ny 'fictive’ experiments with crack
sizes aj and with the results zo modelling detection / no detection of the
experiments.

b. The parameters pj are estimated by the maximum likelihood method as de-
scribed above. The joint normal distribution function of the estimate pj is
denoted fp.

c. 95 % confidence intervals of the P.O.D. curve corresponding to the model in
step a are estimated as [u(ay) — 20(aq); p(aq) + 20(agq)] where

u(ag) = / / Fa, (aalph = P)for (p)dD (19)
o*(aa) = / / (Fa,(aalph = p) — #(aa))* foy (P)dp (20)

are determined numerically.
d. If the 95 % confidence intervals are not in a satisfactory agreement with the
initial knowledge then the model in step a is adjusted and step b-c are repeated.
If there is a satisfactory agreement then the ’fictive’ experiments in step a are
used together with the Nyqmpie real experiments.
It should be noted that special care is needed if the number of fictive experiments
Ny is smaller than 20. Alternatively the initial subjective information can be
modelled using Bayesian statistics.

Finally, the situation is considered where it is investigated if new extra trial expe-
riments should be performed.
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If Npew new experimental inspection trials are obtained the distribution Fu,(aq |p’}
must be updated. This is done by performing a new maximum likelihood method
based fitting with the following likelihood function

N0+Nsu.mple+Nnew

L(p") = IT Pi(p") (21)

=1

where
Fu,(aip") if detection

22
1—Fy,(a|p") if no detection (22}

Pi(p") = {

Again by maximizing the likelihood function the updated joint distribution of
distribution parameters for the detectable crack size distribution ferr(pP") can be
obtained.

As the probabilistic model of the detectable crack size has now been described
implementation of the experiment planning for crack detection tests can be con-
sidered in relation to the two different schemes of performing inspection and ma-
intenance planning outlined in section 2. Starting with the expected total cost
based inspection and maintenance planning the task is to estimate the expected
value in equation (2)

EZ[e[CEXP(e) + C*(ea Z)] (23)

where e describes the planned new crack detection experiments in terms of number
of experiments and crack geometries. The experimental outcomes in terms of
detection and no detection are modelled by the random variables Z. Hence the
probability of detection and no detection at the ith planned experiment can be
written as

P(Z; = detection) = Fu, (al|p’)

24

P(Z; = no detection) = 1 — Fy, (af|p’) (24)
where the parameters p' are random variables with prior distribution function
Fo(p'). For a given experiment outcome z; = (2k1, 2k2, -, 2k, )T the distribu-
tion function Fy, (aq|p') can be updated as explained above yielding the distribu-
tion function Fp, (aq[p"). Using this distribution function the optimal inspection
plan i; and the corresponding costs C*(e, ) can be determined by equation (3)
and (4). Since there are 2»ew possible different outcomes of the crack detection
experiment equation (3) - (4) must be solved for all these combinations. The
expectation in equation (2) can then be estimated by

2NVnew

Ezie[Cuxp(e)+ C*(e,Z)] = Y (Crxple) + C*(e,Z = 2;))P(Z = z;) (25)
k=i

10
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where

Nn&w
P(Z =z) = // H P(Z; = zpi(detection/no detection)|p’ = p)fp(P)dp
i=1

Nnew det ncw,nu det
/ / H Fap(aylp'=p) [ (1 =Fay(ai;lp' =p))fe(p)dp
Jj=1
(26)
Niuew = Nnew,dei + Nnewno det Where Nocw det 18 the number of detections and

Nrew,no det is the number of tests leading to no detection in the new experiments.

The probabilities in (26) can be estimated by numerical integration if the dimen-
sion of p’ is less than 3-4. Alternatively, the probabilities can be evaluated using
FORM with the limit state function

g=U~®""Ps(p) (27)

where

Nnew,dcl new no det

Pip)= [] (Faplaislp’=p) (1= Fap(ag;lp' =p)))  (28)

=1 Jj=1

and U is an auxilary standard normal variable.

For the reliability index based inspection and maintenance planning scheme the
procedure is simpler. As described in section 2.2 the updated reliability index cur-
ves are calculated based on assumed detections in the planned experiments. The
distribution function for the detectable crack size is estimated using F4,, (aq|p")
which is determined using the likelihood function given in equation (21). The
updated reliability index 8" (t) is estimated by

2Nnew

p(t) = Z BLOP(Z =) (29)

where 3}/ (t) is the updated reliability index at time ¢ assuming no detection at the
inspections and assuming that the outcome of the crack detection experiment is
Z.

5. Example

To illustrate the application of cost optimal experiment planning for P.O.D. curves
in combination with optimal inspection and maintenance planning an example
from the offshore industry is presented in the following. An offshore structure of
the jacket type with tubular structural steel members connected in welded joints
is considered. The planning of the P.O.D. tests is performed in relation to a
crititical, but representative joint. It is assumed that a spectral stress analysis
has been performed and that the results of this analysis are given in terms of

11




ISOPE-95, The Hague, 1995

a weighted average fatigue stress range (WASR), see [10], and a corresponding
expected number of fatigue load cycles. In order to describe the events of failure,
repair and inspection observations it is necessary to model the crack growth. For
this purpose the software module FACTS [10] is used. A tow-dimensional crack
growth model is used. If an observed crack depth at an inspection is smaller than
10 % of the chord thickness repair by grinding will be used. Otherwise the crack
will be repaired by welding.

The probabilistic model of the variables used in the inspection and maintenance
planning is shown in table 1. All dimensions are in [mm] and [N]. € refers to the
stochastic variable modelling the measuring uncertainty in (14). All stochastic
variables in table 1 are assumed to be independent.

variable distribution 7 o

Initial chord thickness Weibull 38.9 0.583
Initial crack depth Weibull 2.0 0.2
Initial crack length Weibull 8.0 0.02

i Chord thickness after grinding Weibull 35.0 0.583
Crack depth after grinding Weibull 1.0 0.5
Crack length after grinding Weibull 4.0 0.1
Chord thickness after welding Weibull 38.9 0.583
Crack depth after welding Weibull 2.0 1.0
Crack length after welding Weibull 8.0 2.0
Initial Paris C Log-Normal 5.0-10~12 5.0-10712

Initial Paris m Deterministic 3.1

Paris C after welding Log-Normal 5.0-10~12 5.0-10-12
Paris m after welding Deterministic 3.1

Weigh. Aver. Str. Range (W ASR) Normal 15.0 1.0

POD Weibull P} P

€ Normal 0.0 0.25
Design lifetime T, Deterministic 36 years

Stress cycles per year Deterministic 6 - 108

Real rate of interest r Deterministic 0.02

Table 1. Statistical models for crack growth parameters (all dimensions in m and
MPa). p : expected value and o : standard deviation.

The inspection method is assumed to correspond to a MPI technique. The prior
parameters pj and pj model the size and shape parameters in the Weibull distribu-
ted P.O.D. curve. The size parameter is assumed to be normal distributed and the
shape parameter to be deterministic. The parameters are estimated as described
in section 4. It is assumed that the Ngampte = 29 test results in table 2 are known
and that the statistical parameters of p| and p} are estimated from these using

(15)-(18).

12
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a’ Nietection Nro detection
0.3 1 )
1.0 2 4
2.0 4 2
5.0 ) 0
10.0 6 0

Table 2. Available test results. Nyetectiog and Nno getection: number of detections
and no detections with this crack size. Grack sizes 1n f[mm .

A simplified approach for inspection and maintenance planning is used where only
the next inspection time and repair strategy are optimized. It is assumed that
inspections can be performed in one weather window each year. The following
discretized inspection times (in years from the inspection planning time) are con-
sidered : Ty = 2, 4, 6, 8,...,32, 34.

The following cost models are used, see (6)-(8):

1
‘ C]N(T],E,z,d) :CINo(l—PF(Tl,e7z7d))(1+T)Tl
1

CF(T],E,Z,d) :CFO(PF(Tl’e’Z’ d) - PF(O7e7 z’d))(l + T)Tl +

1
CF’D(PF(TLae’z7d) - PF(Tl’e’z’d))_(l——l—_T)TL

1 1
CR(Tlaeazvd) :CR1PR1 (Tl)(l 4 T’)T1 + CRZPR2(T])(1 + T)Tl

where Pg, and Pp, are the probabilities that repair is performed by grinding and
welding, respectively. Two cost models A and B are used, see cost coefficients in
table 3.

cost, model A cost, model B
Cing MPI Inspection 0.1-10° 0.1-10°
Cr, Grind repair 0.25- 108 0.25 - 108
Cr, Weld Repair 5.0-10° 5.0 - 10°
Cr, Failure 100.0 - 10° 500.0 - 108

Table 3. Costs (in ECU) of inspection, repair and failure.

The optimal inspection and maintenance plan for the considered joint is selected
as the repair option and the time instant between 2 and 34 years which results
in the smallest expected total costs. For given results z* of the crack detection
tests the statistical parameters p} and p) in the P.O.D. curve are updated and the
updated optimal inspection and maintenance plan are estimated using PREDICT
[11].
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The following three experiment plans for crack detection tests are investigated:
Experiment 1: €1 : Npey = 4, a°= (0.3, 0.3, 0.3, 0.3) [mm] ~ 10 % fractile
Experiment 2: e3 : Npeo =4, a°= (1.3, 1.3, 1.3, 1.3) [mm] ~ 50 % fractile
Experiment 3: e3 : Npeo = 4, a°= (3.3, 3.3, 3.3, 3.3) [mm] ~ 90 % fractile

For the three experiment plans, table 4, 5 and 6 show the minimum expected
costs of inspection, maintenance and failure both for the different combinations
of possible test results and for the total expected value Ezo[C*(e,Z)]. Table 7
shows the minimum expected costs of inspection, maintenance and failure in case
of no crack detection tests. The differences in costs between no extra tests and
the experiment plans 1, 2 and 3 and are shown in table 8. It is seen that for cost
model A it is not economically to perform extra crack detection tests. For model
B experiment plan 2 is optimal. For this plan the expected costs of inspection,
maintenance and failure are 32 900 ECU smaller if experiments are performed.

This number should then be compared with the costs of the experiments.

, experiments P(Z = z¥) C% Cg
II11 1.33 107 3994 10° 11 695 103
I110 9.48 10~* 3967 103 11 782 103
1100 6.84 102 3935 108 11 908 103
1000 3.05 1071 3 897 103 12 076 103
0000 6.16 1071 3 853 10° 12 232 103
Ez1[C* (e, Z)] 3872 10° 12 155 10°

Table 4. Expected costs of inspection, maintenance and failure for experiment 1.
I and O indicate detection and no detections, res

expected costs corresponding to cost model A and B.

pectively. C% and C} are the

experiments P(Z = zF) C Ch

IT11 1.01 107! 3963 103 11 793 10°
II10 2.58 1071 3921 103 11 962 103
I1I00O 3.31 107! 3874 108 12 139 103
I000 2.32 1071 3 822 10° 12 342 10°
0000 7.05 1072 3767 103 12 609 10°
Ez1[C* (e, Z)] 3 876 10° 12 134 10°

Table 5. Expected costs of inspection, maintenance and failure for experiment 2.
I and O indicate detection and no detections
expected costs corresponding to cost model A

14
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experiments P(Z = z*) C% Cgs
II1I 6.46 1071 3911 103 12 006 10°
1110 2.72 107! 3827 103 12 310 10°
1100 7.08 10~2 3 745 103 12 658 10°
1000 1.07 1072 3671 103 12 959 10°
0000 7.29 1074 3 609 10° 13 211 103
Ez1[C*(e, Z)] 3873 103 12 144 103

Table 6. Expected costs of inspection, maintenance and failure for experiment 3.
I and O indicate detection and no detections, respectively. C% and Cp are the

expected costs corresponding to cost model A and B.

Ca

Cp

3871 10°

12 167 103

Table 7. Ex*pected costs of inspection, maintenance and failure for no extra expe-
riments. C% and Cj are the expected costs corresponding to cost model A and

B.

i

Difference - A Difference - B
Experiment 1 -1.1 108 11.5 103
Experiment 2 -4.3 10° 32.9 10°
Experiment 3 -1.7 103 22.5 103

Table 8. Expected costs of inspection, maintenance and failure if no tests are
performed minus expected costs of inspection, maintenance and failure if crack
detection tests are performed.

6. Conclusion

A new methodology for reliability-based optimal planning for crack detection expe-
riments is presented. The theoretical basis and the coupling with reliability-based
optimal inspection and maintenance planning are described.

An example is presented illustrating the proposed technique for optimal planning
of crack detection experiments applied for a tubular joint in a jacket type offshore
structure. In the example different test plans and cost models are considered. It is
seen that the cost models as expected have a large influence on the economically
optimal decision on performing extra crack detection tests.
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