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Abstract This paper is concerned with modelling and simulation of near-source earthquake 
ground motion. Recent studies have revealed that these motions show heavy non-stat ionary 
behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling 
and simulation of this behaviour is of crucial importance in t he design of flexible structures and 
other applications. This paper examines three approaches for the modeling and simulation of non­
stationary near-source ground accelerograms: The first one makes use of ARMA models combined 
with frequency and variance "stabilization". The second is based upon inherently nonstationary 
Time-dependent ARMA (TARMA) models, the parameters and variance of which are allowed to be 
explicit functions of time. The third approach is based on Neural Networks. The three approaches 
are used for the modeling and simulation of an accelerogram characterized by an epicentral distance 
of 16 km and measured during the 1979 Imperial Valley earthquake in California (U.S.A.). The 
results of the study indicate that while all three approaches can succesfully predict near-source 
ground motions, the Neural Network based one gives somewhat poorer simulation results. 

Keywords: Earthquake, Near-Source Areas, Non-stationary signals , Stochastic signals. 

Nomenclature 
(j Standard deviation. Zt Non-stationary ground motion signal. 

cP AR parameter. () MA parameter. 
at Innovations ( uncorrelated )sequence. G Subspace basis function. 
w Weighting matrix. .\ Exponential weighting factor . 
<!) Non-linear activation function. t Time. 
T Duration of strong motion. N Number of discretized signal samples. 
p TARMA subspace dimensionality. B Backshift operator. 
A(-) AR polynomial. C(-) MA polynomial. 



1 Introduction 

The damage incurred in structures during an earthquake highly depends upon both the nature 
of the structure and the characteristics of the ground motions. In 1987 Ellis et al. [6] studied a 
large sample of earthquake ground motions recorded in Taiwan, Mexico and California (U.S.A.), 
and established a method for generating site dependent time histories. Relationships between the 
considered site, epicenter distance, soil type and other properties, on one hand, and the parameters 
of the model, on the other, were also established. Nevertheless, this method seems to fail in near­
source areas, where very low frequency components have been observed to dominate the recorded 
accelerograms. This observation contradicts the prevailing impression that the high frequency 
content of the signals drops with increased source distance. 

Since seismic waves are initiated by irregular faulting and then travel through complex ground for­
mations with random properties, resulting in many reflections, refractions and attenuations before 
reaching the recording station, a stochastic approach has been generally adopted for accelerogram 
modeling and simulation. The application of AutoRegressive Moving Average (ARMA) models 
in this respect has proven effective in numerous studies,including those of Jennings et al. [10] 
and Chang et al. [5]. The difficulty in modelling accelerograms using ARMA models is in the 
non-stationarity in the variance and frequency content of the signal. This behaviour is evident 
in the El Centro near-source accelerogram, characterized by an epicenter distance of 16km and 
recorded during the 1979 Imperial Valley Earthquake (California, U.S.A.)(Figure 1). 
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Figure 1: Horizontal component of the acceleration time series measured at El Centro, Imperial 
Valley, CA (U.S .A.) 1979. 

The "classical" way of handling this difficulty is by applying frequency and variance stabilizing 
transformations using appropriate envelope functions before proceeding with conventional ARMA 
modelling (Ellis et al. [6] and Ellis and Qakmak [7]). The drawback of this approach is that it 
is, by conception, an approximate procedure, and that the selection of the appropriate envelope 
functions may be subjective and difficult. 

The goal of this paper is the introduction and assessment of two alternative approaches to near­
source earthquake ground motion modelling and simulation. The first approach postulates direct 
non-stationary modelling via Time-dependent ARMA (TARMA) models , that is ARMA models 
whose parameters and innovations variance are explicit functions of time. Such representations 
have been found to be capable of modelling a wide variety of non-stationary phenomena [4, 12]. 
The second approach postulates Neural Network based modelling [8] , where the non-linear behav­
ior of the signal is modelled directly by the network. 

The specific objectives of the paper may be outlined as follows: 



1. Assessment of the capability of TARMA models to model and simulate near-source earth­
quake ground motion. 

2. Assessment of the capability of Neural Networks to model and simulate near-source earth­
quake ground motion. 

3. Comparison of the TARMA and Neural Network approaches with the classical stationary 
ARMA approach using envelope function based stabilization. 

The rest of the paper is organized as follows: The classical stationary ARMA approach using 
envelope functions is briefly reviewed in Section 2. The non-stationary TARMA approach is 
presented in Section 3, and the Neural Network based approach in Section 4. Ground-motion 
modelling and simulation results by all three approaches for the El Centro accelerogram are 
presented in Section 5. The conclusions of the study are finally summarized in Section 5. 

2 Stationary ARMA Modeling Using Envelope Functions 

2.1 Stabilization of Earthquake Time Series 

In the case where stationary ARMA modelling is employed, t he measured signal should be nor­
malized with respect to both frequency content and variance (amplitude). In the following the 
procedure used by Ellis et al. [6] is briefly reviewed. 

2.1.1 Estimation of the Standard Deviation Envelope 

The empirical standard deviation envelope is calculated from the running average of the squared 
acceleration. Ellis et al. [6] suggested the use of an equally weighted two second time-window. In 
that case the variance envelope is computed as: 

(1) 

In the above Zt represents the time series to be modelled, n the number of points within the 
window, and 2ilt the window length. llt = 1 s has been shown to be the smallest window size 
to estimate a resonably smooth variance envelope [6]. The standard deviation envelope is then 
calculated as the square root of the variance. By dividing the shortened accelerogram by the 
standard deviation envelope, a time series with unity variance is obtained. 

In their effort to relate the standard deviation envelope to physical variables , Ellis et al. [6] fitted 
a smooth function crz(t) of the form: 

(2) 

to the empirically obtained standard deviation envelope. The maximum intensity of the strong 
shaking is measured by a. The standard deviation of the weak shaking k1 is estimated as t he 
average of the standard deviation envelope during the final1/3 of the record. Finally the duration 
of the strong shaking 7 is estimated such that the energy, as measured by the empirical standard 
deviation function, is equal to the energy of the function fitted to it in Eq. (2). 



2.1.2 Estimation of the Frequency Envelope 

Because of the time lag between the different types of waves in an earthquake, the variance­
stabilized series still has a non-stationary frequency content. Most signals recorded more than 
50km away from the source normally have an initially high predominant frequency content from 
P-waves, which quickly decreases with time as the S-waves arrive. One measure of the frequency 
content of the signal is the number of zero axis crossings per second Fc(t). Like in the variance 
envelope, the frequency envelope can be calculated using an equally weighted 2 s window as follows: 

F ( ) 
= No of zero axis crossings in t ± .6.t 

c t 2.6.t (3) 

T he following smooth function is then fitted to the zero axis crossings: 

(4) 

in which k2 is the zero axis crossings of the weak shaking, determined as the average value during 
the last 1/3 of the record. eo and bare found by a least-squares fit. 

The variance stabilized series is then frequency stabilized using the smooth function F~(t) to 
change the time increment to: 

where .6.t is the original time increment. 

The transformed record is reduced to the same duration as the initial record as follows: 

.6.t"(t) = .6.t'(t). Duration of the original record 
Duration of the trans'd record 

and digitized to the original .6.t intervals by using linear interpolation. 

2.2 Modelling of the Stabilized Series 

(5) 

(6) 

With the variance and frequency content stabilized, the ground motion time series may be now 
fitted to a stationary ARMA model. The general form of the stationary ARMA-model of orders 
(n, m) is: 

A(B) · z; = C(B) · at (7) 

with t denoting discrete time, z; the stationary signal modeled, and at a stationary normalized 
innovations ( uncorrelated) sequence with zero mean and unit variance. B represents the backshift 

operator (B · Zt ~ Zt- 1 ) , and A(B), C(B) the time-independent n - th order AutoRegressive 
(AR) and m- th order Moving Average (MA) polynomials, respectively, which are of the forms: 

(8) 

(9) 

The autoregressive and moving average parameters <Pi and Bj, respectively, are estimated by min­
imizing the variance of the model's one-step-ahead prediction error sequence. 



2.3 Simulation of the Stabilized Series 

Independent realizations of the stabilized series can be simulated by generating stationary nor­
malized innovations sequences with zero mean and unit variance at and driving them through the 
estimated ARMA model. In the simulations, all unknown initial conditions are set to zero. To 
avoid the effects of this arbitrary choice, the time series is simulated for a period longer than that 
of the original record and its initial part is then discharged. 

In order to introduce the frequency and variance variability, the stabilization procedure from 
section 2.1 is now reversed. Using the parameters determined in the variance and frequency 
envelopes [Eqs. (2) and ( 4)], the ground motion time series can be reconstructed by multiplying 
the simulated stabilized series by the standard deviation envelope and shifting the time increment 
as: 

1 (~t) 
~ts(t) = F~(t) 

where ~t is the original time increment (normally ~t = 0.02 s). 

The transformed record is reduced to the same duration as the original by: 

" "( ) _ " ( )' . Duration of the org. record ut
5 

t - ut8 t 
Duration of the trans. record 

and digitized to the original ~t using linear interpolation. 

3 Non-Stationary TARMA Modelling 

(10) 

(11) 

In this case a class of non-stationary ARMA models, known as Time-dependent ARMA (TARMA) 
models, is used for earthquake ground motion modelling. The TARMA model class is an attractive 
choice as it is capable of capturing strong non-stationarities through a parsimonious representation 
and offers a "global" signal description. 

TARMA models are conceptually derived from stationary ARMA models by allowing their pa­
rameters to be explicit functions of time. Yet, they form a particularly wide class expected to be 
capable of representing a wide variety of non-stationary phenomena [4, 12). 

A TARMA model is of the form: 

A(B, t). Zt = C(B, t). Wt (12) 

(13) 

with t 0 denoting the initial t ime, Zt the non-stationary signal modelled, Wt a non-stationary inno­
vations (uncorrelated) sequence with zero mean and variance a~(t), and at a stationary normalized 
innovations sequence with zero mean and unit variance. B represents the backshift operator, and 
A(B, t), C(B, t) the time-dependent n -th order AutoRegressive (AR) and m- th order Moving 
Average (MA) polynomials, respectively, which are of the forms: 

A(B, t) g 1 + </>1(t)B + ... + </>n(t)Bn 
</>n(t) -:/= 0 for some t ~ to 



C(B, t) ~ 1 + fJ1(t)B + .. . + Bm(t)Bm 

Bm(t) =f. 0 for some t 2 to 

The class of TARMA models considered in this work constitutes a generalization of that of Ben 
Mrad [2] and Ben Mrad et al. [3], as the innovations sequence Wt is, in the present case, allowed 
to be non-stationary in the variance [Eq.(13)]. 

In the TARMA model form the time-dependent AR/MA parameters are assumed to belong to a 
subspace, of dimensionality p, spanned by a set of orthogonal functions, {G1 (t), G2(t), ... Gp(t)} 
(subspace basis functions) 1 that is: 

~ p 
c/Yi(t) = L ai,j · Gj(t) (1~i~n) t 2 to (13a) 

j=l 

p 
()i(t) ~ L Ci,j . Gj(t) (1 ~ i ~m) t 2 to (13b) 

j=l 

with ai,j and ci,j denoting the AR and MA, respectively, coefficients of projection. 

TARMA modelling is based upon the modelling framework of Ben Mrad et al. [4], which accounts 
for projection subspace dimensionality, basis function, and model order selection. TARMA pa­
rameter estimation is accomplished through the Polynomial-Algebraic (P-A) approach [3]. Once 
the model parameters are estimated, the variance O'!(t) of the non-stationary innovation sequence 
is obtained using the model's residual (one-step-ahead prediction error) sequence et = Wt and a 
sliding window of length 2K + 1, that is: 

~ 2 ( ) 1 
O'w t = I:~-K ,\lil 

K 

2::: (14) 
i=-K 

where A represents an exponential weighting factor. 

Model validation is based upon verification of the uncorrelatedness hypothesis for the obt ained 
model residuals. Model-based earthquake ground motion simulation is performed via Eqs.(12)-(13) 
using computer-generated i.i.d. N(O, 1) realizations of normalized innovations (at) sequences. 

4 Neural Network Modelling 
Artificial neural networks are computational models inspired by the neuron architecture and the 
operation of the human brain. The pioneering work in this field is usually attributed to McCulloch 
and Pitts [11], who developed the simplified model of a neuron. The brain is composed of neurons 
of many different types. For a more detailed description of neural networks see Hertz et al. [8] 
and Hush and Horne [9]. 

Since McCulloch and Pitts [11], many studies of mathematical models of neural networks have 
been undertaken, and many different types of neural networks have been proposed. These are 
based on various network topologies, node characteristics, as well as learning procedures. The 
most frequently used network is based on the Multi Layer Perceptron (MLP ) structure. 

An MLP is made up of one or more hidden layers placed between the input and output layers. 
Each layer consists of a number of nodes connected in the structure of a layered network. The 
typical architecture is fully interconnected, that is each node in a lower level is connected to every 



node in the higher level. Output units cannot receive signals directly from the input layer. During 
the training phase, activation flows are only allowed in one direction, a feed-forward process from 
the input layer to the output layer through the hidden layers. The input vector feeds each one of 
the first layer nodes, the outputs of this layer feed into each one of the second layer nodes, and 
so on. Associated with each connection between node i in the preceding layer and node j in the 
following layer is a numerical value which is the strength or the weight of the connection. At the 
start of the training process these weights are initialized by small random values. For the MLP 
network with n layers the signal is passed through the network and the input vector u is linked 
to the output vector Zt by means of the equation: 

(15) 

where Wi is the weight matrix associated with the i-th layer,the bi's indicate threshold or bias 
values associated with each node in the ith layer, and ci>i is a non-linear operator or activation 
function associated with the i-th layer. The function ci>i is assumed to be differentiable and to 
have a strictly positive first derivative. For the nodes in the hidden layers, the activation function 
is often chosen to be a so-called sigmoidal function: 

(16) 

The activation function for the nodes in the input and output layers is often chosen as linear. It 
is, however, by no means necessary for the number of inputs to be equal to the number of outputs. 
In fact, this is usually not the case. Also, it is more usual for the number of nodes in the hidden 
layer to be greater than that of the either the input or output layers. In the present paper an 
MLP neural network is used to model the earthquake ground motion by a model of the form: 

(17) 

where Zt is the non-stationary signal to be modelled, at a stationary sequence with zero mean and 
unit variance, and g(·) a non-linear function. 

5 Ground Motion Modelling and Simulation 

In this section the classical ARMA, the non-stationary TARMA, and Neural Network approaches 
are used for the modeling and simulation of near-source earthquake ground motion. For this 
purpose the El Centro accelerogram of Figure 1 is used. Signal estimation is, in all cases, based 
upon the complete data record [N = 1139 samples, sampling period !:J..t = 0.02 s]. 

5.1 Stationary ARMA Models 

Using the methods described in Section 2, the signal variance and frequency envelopes are com­
puted (Figures 2 and 3, respectively), and used for accelerogram stabilization. The stabilized 
accelerogram is shown in Figure 4. 
In accordance with previous studies [6], a stationary ARMA(3,1) model is fitted to the signal. 
Model-based one-step ahead predictions are contrasted to the actual accelerogram in Figure 5. 
An example of model-based ground motion simulation is depicted in Figure 6. 
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Figure 2: Estimated variance envelope. 
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Figure 3: Estimated frequency envelope. 

5.2 Non-Stationary TARMA Models 

5.2.1 TARMA modeling 

In this case pure TAR models of various orders, with functional subspaces of various types (spanned 
by Chebychev II polynomials, cosine, sine, and Haar functions [1]) and dimensions ranging from 
p = 2 up top= 14, are examined. 

Model selection is based upon minimization of the model's Residual Sum of Squares (RSS), ex­
pressing one-step-ahead predictive ability, and the Akaike Informat ion Criterion (AIC), expressing 
a compromise between one-step-ahead predictive ability and parametric complexity. In the search 
for an appropriate model a T AR(10)p model structure characterized by various functional sub­
space types and dimensionalities p, is investigated. It is found that a number of these models 
are close to optimality, with the T AR(10)p=t4 model, with subspace spanned by Haar functions, 
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Figure 4: Stabilized accelerogram. 
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Figure 5: Stationary ARMA(3,1) one-step-ahead predictions versus the stabilized accelerogram 
( +: one-step-ahead predictions; - -: actual accelerogram; part of the El Centro ground motion). 
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Figure 6: Stationary ARMA(3,1) simulated accelerogram using envelope functions. 

found to be best from both the RSS and AIC points of view. The model residuals are confirmed 
to be strongly non-stationary, and their variance is non-parametrically estimated according to the 
procedure of Section 3 (K = 35; A = 0.980). 

5.2.2 TARMA Prediction and Simulation 

Figure 7 presents, for part of the data record, the Haar-based T AR(10)p=14 one-step-ahead pre­
dictions contrasted to the actual El Centro accelerogram. The achieved prediction accuracy is 
judged as quite good. 

A simulated realization of aT AR(10)p=14 model-based accelerogram is presented in Figure 8. The 
realized time series characteristics resemble those of the actual El Centro accelerogram. 

5.3 N eural Networks 

Important points in the selection of a suitable network topology are: (a) The number of layers of 
neurons/nodes, and (b) the number of neurons/nodes per layer. These issues are related directly 
to the model structure selection problem in system identification, the aim being to choose the 
"best" structure in order to obtain a high degree of accuracy. By trial and error it is found that a 
network with 72 input nodes (na =36, nb=36), 5 nodes in a hidden layer, and one output node, is 
giving the best representation when the RSS is considered. The residual autocorrelation function 
is also indicating whiteness, implying that a proper model is selected. 

Figure 9 presents, for part of the data record, the Neural Network based one-step ahead predictions. 
The predictions correspond to the actual El Centro accelerogram fairly well. A Neural Network 



600~------~------r-------.-------.-------~------. 

400 

i 
~ 0...,.--........., 

~ -200 

-400 

-600L-------L-------~------~------~------~----~ 

4 4.2 4.4 4.6 4.8 5 5.2 
Time[s] 

Figure 7: Haar-based T AR(10)p=I4 one-step-ahead predictions versus the actual accelerogram ( +: 
one-step-ahead predictions; - -: actual accelerogram; part of the El Centro ground motion). 
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Figure 8: Haar-based T AR(10)p=l4 simulated accelerogram. 

based simulated realization is shown in Figure 10. It is evident that the considered type of Neural 
Network does not simulate the earthquake ground motion as well as the ARMA and TARMA 
models. This does not, however, mean that a different type of Neural Network is not capable of 
achieving better simulation performance. 

600.-------,-------,-------,-------,-------,-------, 

400 

~ 200 
~ 
.£ 

8-200 ro 

-400 

-600L-------~------L-------L-------~------~----~ 
4 4.2 4.4 4.6 4.8 5 5.2 

Time[s) 

Figure 9: Neural Network one-step-ahead predictions versus t he actual accelerogram ( +: one­
step-ahead predictions; --: actual accelerogram; part of the El Centro ground mot ion). 

5.4 Remarks 

The Residual Sum of Squares (RSS) of the considered approaches, computed based upon samples 
100 to 1,139 of the accelerogram, are: RSSARMA = 16.4, RSSTARMA=7.55 x 103 and RSSNN = 
12.4 x 103

. From these figures the superiority of the TARMA model over t he considered Neural 
Network is also evident. Note that the RSS of the ARMA model is not directly comparable to t he 
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Figure 10: Neural Network simulated accelerogram. 

other two, as it, like its one-step-ahead predictions, refers to the stabilized signal with normalized 
vanance. 

6 Conclusions 
In this paper two approaches for the non-stationary modelling and simulation of near-source 
earthquake ground motion were presented: The first one is based upon inherently non-stationary 
Time-dependent ARMA (TARMA) models and the second on Neural Networks. 

The modeling and simulation effectiveness of each approach was examined, and comparisons with 
the classical approach which combines stationary ARMA modeling with signal variance and fre­
quency stabilization were performed. The results of the study suggest that the TARMA approach 
is capable of modelling and simulating such highly non-stationary signals as the near-source earth­
quake accelerograms. The stationary ARMA approach with variance and frequency stabilization 
seems to be also suitable for both modelling and simulation. The Neural Network approach was, 
however, found to give somewhat poorer simulations, although it worked reasonably well in mod­
elling the earthquake ground motions. Future research should be devoted to the investigation of 
the relationships between the considered location (soil type, epicenter distance, fault geometry 
and so on) and the TARMA model parameters. 
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