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Aalborg University, Denmark.

S.R. Ibrahim

Department of Mechanical Engineering, Old Dominion University,
Virginia, USA.
ABSTRACT

During the last years several papers utilizing the Random Decrement transform as a basis for extraction
of modal parameters from the response of linear systems subjected to unknown ambient loads have been
presented. Although the Random Decrement technique was developed in a decade starting from the
introduction in 1968 the technique seems still to be attractive. This is probably due to the simplicity and
the speed of the algorithm and the fact that the theory of the technique has been extended by introducing
statistical measures such as correlation functions or spectral densities. The purpose of this paper is to
present a state-of-the-art description of the Random Decrement technique where the statistical theory
is outlined and ezamples are given. But also new results such as estimation of frequency response
functions and quality assessment are introduced. Special attention is gwen to the theoretical background
for the application of the Random Decrement transform to ambient measurements.

1. INTRODUCTION

During the last few years several papers concerning application and theory of the Random Decrement
(RD) transform have been presented at conferences and appeared as reviewed papers in journals, see
references [59-79]. Especially the application of the RD transform to ambient data or the response of
linear systems to unknown and unmeasurable forces has been studied and developed. The reason is
probably that the RD transform is easily implemented and is a very fast technique to transform data
into a form, which immediately can be interpreted by the user. In spite of this not much attention has
been given to this transform since its introduction in 1968 compared to e.g. Fourier transformation.
Prior to this work the authors could only find about 79 papers, reports, theses etc. concerning both
application and theoretical aspects of the RD technique. Most of these papers interprets the results
of an RD transform as either free decays or correlation functions. This contradiction is cleared up by
showing that the correlation functions have the same shape as free decays.

The purpose of this paper is to give an overview of the RD transform. Special attention is given to the
theoretical background for the RD transform applied to ambient measurements. The relation between
the RD functions and the free decays of the structures is shown by means of correlation functions and
Gaussian processes. These relations are the basis for new methods to formulate an appropriate RD
transform and to assess the results of the RD transform. An example of the application of this new
method is given by the analysis of ambient measurements of a bridge.

Section 2 gives a short background of the historical development of the RD transform. Both theoreti-
cal and application work are considered. In section 3 the RD functions are defined and the estimation




algorithm is discussed. The different triggering conditions are described and an example of the ap-
plication of the RD transform to sinusoidals is given. A new approach for estimation of frequency
response functions (FRF) based on the RD transform of the measured input and output is shown
together with an example in section 4. The theoretical background for the RD technique applied to
ambient measurements is discussed in section 5 by studying linear systems loaded by filtered white
noise. In section 6 a new concept, Quality assessment, is introduced. The theoretical results of sections
5 and 6 are applied to ambient measurements of a bridge in section 7. Section 8 describes a recently
developed vector formulation of the RD transform. The paper is finished with a conclusion.

2. DEVELOPMENT OF THE RD TECHNIQUE

The RD transform was introduced by H.A. Cole in 1968, Cole [1] and further developed in Cole [2] -
[4]. Cole was working with identification of damping and natural frequencies of aerospace structures
loaded by unmeasureable flutter. He found that the estimates of the damping ratios by the half-power
bandwidth of the spectral densities resulted in too uncertain estimates. Further, he did not have any
standard method to detect non-linearities from the spectral densities. Instead Le was looking for a
method to transform the ambient responses into a form meaningful to the observer, Cole [1].

Cole stated that the stochastic response of a structure at the time #g + ¢ is composed of three parts:
1) The step response from the initial displacements at the time #y. 2) The impulse response from the
initial velocity at the time tp. 3) A stochastic part which is due to the load applied to the structure in
the period g to g +t. What would happen if a time segment was picked out every time the stochastic
response, x(t), has an initial displacement, say z(¢)=a, and these time segments were averaged? This

algorithm was implemented as

N
Dxx(r) = %Zm(ti)l'(ti +)e(t)=a, 720 (1)

where Dy x is denoted the RD function. As the number of averages N increase the stochastic part
due to the random load will eventually average out and be negligible. Furthermore, the sign of the
initial velocity is expected to vary randomly with time so the resulting initial velocity will be zero.
The only part left is the free decay response from the initial displacement, a.

Cole also introduced another formulation. The time segments are picked out if the stochastic response
crosses the zero-line with positive slope. The resulting RD functions were interpreted as an impulse

response function.

N
2 1 :
Dxx(7) = I x(t; + 7)|2(t) =0,2(;) >0, 72>0 (2)
i=1
The triggering conditions in equations (1) and (2) are denoted leve] crossing and zero crossing. The
motivation is that the condition is implemented so that a triggering point is detected if the measure-
ment crosses the triggering level and not if it is identical to the triggering level.

The approach Cole used was based on SDOF systems, so the data were filtered prior to the application
of the RD algorithm. Cole also used the technique for damage detection in references [3] and [4]. The
RD technique was especially applied to flight flutter testing in the following years, see references [5] -

[15].

In 1977 the theory of the RD technique was extended to deal with multiple measurements and multiple
modes, see Ibrahim [16] and [17]. Firstly, the concept of auto and cross RD functions was introduced
and secondly the Ibrahim Time Domain algorithm was used to extract modal parameters from the
RD functions equivalent to free decays. The auto, Dy x(7), and cross, Dy x(7), RD functions were
defined as



N
Dxx(r) = %—Za:(ti—l— mlz(t;) =a  Dyx(r) = %Zy(ti‘FTﬂI(ti) =a (3)
i=1 =1

The cross RD were interpreted as free decays with unknown initial conditions, but with contribution
from the loads averaged out with an increasing number of averages. For e.g. n measurements the
RD technique could transform the measurements into free decays from which multiple modes could
be estimated using ITD. Examples of the application to the linear systems loaded by processes with
different spectral densities are given in Ibrahim [21,22].

Although the RD technique worked well due to the theoretical extension described above and was
applied to several problems, e.g. damage detection, see references [18,19,23,24,30,32-34,38-40], and
real data, see references [25,26,35-37,41,42], a disadvantage of the technique was the lack of a statistical
background. This would make the technique comparable with the results of Fourier transformation
applied to ambient data. Furthermore, there was no description of what would happen if the time
segments were also picked out for negative time lags. The answer to this problem was solved in 1982
by Vandiver et al. [27]. They proved that if X(t)is a zero mean Gaussian distributed ergodic process,
the RD function obtained using level crossing of the process would be proportional to the correlation
function of X (t).

Rxx(7)

a2 8 (4)
X

Dy X(T) =
By assuming that the time segments in the averaging process were uncorrelated the variance of the
estimate of the RD functions could be predicted as

Var(Dx x(7)) = 1 (1 _ ( 23(;)) ) -

T 2
N T%

This result is important, although it does not change the algorithms directly. Firstly, negative time
lags can be understood theoretically and used, and secondly, due to the Wiener-Khintchine relations,
there is a direct relation for the results of the RD technique and the results of the FFT algorithm in
the form of spectral densities.

This result will be the starting point of this paper. The idea introduced by Vandiver has been used
for further development and investigation, see references [46-53,56,60,62-65,67,69,70,72,74-80]. In the
following two sections the auto and cross RD functions will be defined using conditional mean values
and linked to the correlation functions of Gaussian processes.

3. DEFINITION AND ESTIMATION OF RD FUNCTIONS

Consider two variables X(#) and Y'(¢). At this stage it is not necessary to assume anything about
the statistical nature of the variables, such as e.g. stationarity, ergodicity or probability distribution.
X (t) and Y (¢) could even be deterministic or non-stationary. The auto, Dx x(7), Dyy(7), and cross,
Dyxy(7), Dyx(7), RD functions are defined as

DXX(T) ny(T) :‘ _ E[X(t—f—TNTX(t)] E[X(t—}—T)ITy(t)] (6)
Dyx(’/"> DYY(T) E[Y'(IL 4 T) TX(t)] E[Y(f + T)ITY(t)] s

The time variable 7 can be both positive and negative corresponding to the time variable in correlation
functions of stationary processes. As seen the number of RD functions for a series of variables. say n
corresponds to the number of correlation functions, n?. The conditions T'x (i) and Ty-(4) are denoted
triggering conditions. The different RD functions in the RD matrix are linked together columnwise

by the triggering condition.

The RD matrix is estimated as the empirical mean value



Dxx(r) Dxy(r)| _ | S a(t + T To(es) ']\}—y Zf\iyl e(ti + )| Ty(w) (7)
- 1 N :
o it

Dyx(r) Dyy(r) 519+ I ey w; SNyt + ) Tyen)

If X(t)and Y'(t) are ergodic stochastic processes the above equations provide unbiased estimates of
the RD functions. The number of triggering points N, and N, are determined by the length of x(z)
and y(t) and the triggering conditions T’y and Ty ().

From equations (6) and (7) it becomes clear that the main advantages of the RD transform is the
simplicity of the implementation of the estimation algorithm and the speed, since only detection of
triggering points and averaging of time segments are necessary. In general the main problem in the
application of the RD transform is the formulation of the triggering condition, since the formulation
for a given length of the realizations is decisive for the number of triggering points.

3.1. TRIGGERING CONDITIONS

Several different formulations of the triggering conditions have been applied. The four most well-
known triggering conditions are level crossing, TL, local extremum, 7%, banded positive, 7T, and
zero crossing with positive slope, TZ. The different triggering conditions can be formulated as

Tk = {(X()=a}  TFy = {ar < X(1) < ag, X (1) = 0}

(8)

[l

THy = {an < X(t)<as} Ty = {X(1)=0,X(t)>0}

Figure 1 shows a time series where the triggering points selected by the above triggering conditions
are shown together with the size of the window in the averaging process used for the first triggering

point.
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Figure 1: / different triggering conditions applied to a continuous time series. The X indicates the
triggering points and the dotted box indicates the evtent of the time segment (7). The dashed line
indicates the triggering level(s).

The major differences between the results of the triggering conditions are the shape of the RD functions
and the number of triggering points. The most versatile of the four triggering conditions is the banded
positive condition, since in the limit a; & as the level crossing triggering condition is obtained.

To illustrate the differences in the number of triggering points an SDOF system loaded by white noise
is considered. The natural frequency is 1 Hz, the damping ratio is 1 % and the process is sampled at



10 Hz. The response becomes Gaussian distributed and therefore the expected number of triggering
points can be calculated using Rice’s formula for the number of level crossings. The expected number
of triggering points for the 4 different triggering conditions are shown in figure 2. The upper triggering
levels ay are taken as oo and the lower triggering level, a; is varied from 0 to co. For the level crossing
triggering condition a; = a. Notice that only the number of triggering points for the banded positive
condition is dependent on the sampling rate.

Expected number of triggering points per unit time

451 Banded Positive
asfk

2.5F

5 Level Crossing

Zero Crossing

1
0.5 Local Extremum \

0 0.5 1 1.5 2 25 3
Lower triggering level

Figure 2: Ezpected number of triggering points for 4 triggering conditions for the response of a low-
damped SDOF system loaded by white noise and sampled at 10 - f.

As seen the expected number of triggering points is highly dependent on the choice of triggering
levels. In order to generalize the RD technique a general applied triggering condition, 74 has been
introduced.

T)C&’;(lt) 2 day & X(t) < ag,bsX(t) < by} (9)

The advantage of this condition is that all known particular triggering conditions can be formulated
from the above condition. As an example, the level crossing triggering condition can be formulated
by a1 = a, a3 = a + Aa, Aa — 0 and [by by] = [-co co]. The triggering levels should have equal sign.

In application of the RD technique it is common to use opposite triggering conditions in order to
obtain more triggering points. For e.g. the level crossing condition the following two conditions can

be applied.

T-%(t) = T_%(t) = —a (10)

The two resulting RD functions are subtracted in order to obtain an average estimate of the RD
functions.

3.2. EXAMPLE: UNDAMPED AND DAMPED SINUSOIDALS

Consider two sinusoidals. An undamped with frequency 1 Hz and a damped with frequency 1 Hz
and damping ratio 2%, see the left-hand part of figure 3. The level crossing triggering condition is
applied to both time series with a=0.1 and 7 € [—5;5] s. The resulting RD functions are shown in the
right-hand part of figure 3.

(W4
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Figure 3: RD functions of undamped and damped sinusoidals applying level crossing triggering.

As seen the frequency of the sinusoidals are preserved together with the damping ratio of the damped
sinusoidal. The amplitudes have changed and the phase is shifted. This has been proven mathemati-
cally in Natke [53].

4. ESTIMATION OF FREQUENCY RESPONSE FUNCTIONS

Two ergodic stochastic processes X (1) and Y(t) are considered. These processes describe the input
and output of a linear system. The response of the system is given by the convolution integral

Y@= [ - X (11)

-0
where the influence of the initial conditions has been neglected. Substituting variables, ¢t = ¢ + 7 and
n=E¢+1t, eq. (11) can be rewritten as

Yitr) = [ Mr-eX(+ e (12)
Taking the conditional mean value of equation (12) yields
BY(+ ITEA0) = [ bir = OBLX 1+ OITF (1) (13)
or -
BY (4 DITE0) = [ (- OBIX(+ OIT(1)de (14
Using the definition of the RD functions introduced in section 3 equations (13) and (14) become
Drxir) = [ hr—&Dyx(ride  Dyy(r) = |- 1Dy (e (15)

Equation (15) establishes relations for estimating the impulse response function. The original processes
are transformed into the RD functions, but the input-output relation is preserved. The advantage
is that noise has been averaged out in the estimation process of the RD functions. Also, the size of
the problem has been reduced, since RD functions contain a considerably smaller number of points
corresponding to the original time series. If the response of a structure was measured at several points
the relation in equation (15) could be extended to cross RD functions only. By introducing the Fourier
transform of an RD function as Zxy(w) defined as




. 1 oo . .
Z,\’y(w) £ -——/ E—WTD,\;y(T)dT (16)
21 Joo ’
equation (15) can be transformed into the frequency domain as

Zy_,‘((w) = H(w)ZXX(w) Zyy(w) = H(w)ZXy(w;) (17)

These two equations constitute a basis for estimating H(w) corresponding to e.g. Hy and H; estima-
tors.

N _ pRD _ Zyx(w) _ gRD _ Zyy(w)
H(w) = H = ——————ZXX(LU) Hw) = H; = ———Z‘\'y(w:) (18)

A coherence function for the results of the RD transform can be defined in the frequency domain as
72 _ H{%D _ ny(w)Zy_,\f(w) (19)
o HfD Zxx(w)Zyy(w)

Equation (19) is only based on two different estimates in the frequency domain. The averaging process
is performed in time domain. Alternatively the coherence function for the estimates based on the RD
technique could be based on several RD functions estimated with different triggering levels.

It will now be assumed that the load is Gaussian white noise. This means that the response will also
be Gaussian distributed. It also means that the RD functions will be proportional to the correlation
functions of the processes. Since Ryx(r), Rxy(7), Ryy(r) and Ryxx(7) all satisfy R — 0 for
|| = oo it follows that all RD functions in equation (15) dissipate towards zero with increasing time
distance from zero. The result of this relation is that the bounds in the Fourier transformation do
not have to be —co and co which opens an opportunity to remove leakage errors. This assumes that
R(+Tmax) = 0, where Tpay is the maximum time lag in the RD function.

Assume that the input to the system is measured by a noise process, U(t), added. The noise process
is assumed to be Gaussian distributed and uncorrelated with the measured output, which is free of
noise. Subscript M denotes the measured realizations of the different processes

yv = y(t), am = a(t) + u(?) (20)
The RD functions are proportional to the correlation functions, since the processes are (Gaussian
distributed

Ryyvy(T) = Elym(t+7)ym(t)] = Ryy(7) (21)

Ry, vy = Elym(t+ 7)zm(t)] = Rxv(r)+ Ruy(r) = Rxv(7) (22)

In this situation the estimation of the FRF should be based on HlRD. Correspondingly if a Gaussian
distributed noise process is added to the output of the system and the measured input is noise free

the estimation of the FRF should be based on H5*P.

Two main advantages are expected using the RD based method for estimation of FRF compared to
the traditional method based on pure FFT. The computational time is expected to decrease, since
the estimation of RD functions only involved averaging, whereas the estimation using pure FFT
involves multiplication. In general this question cannot be answered since the estimation time for
the RD technique depends on the statistical description of the processes. RD functions are estimated
unbiased and dissipate towards zero for increasing absolute time lags. This is an advantage since no

leakage errors are introduced.

This new approach could be used in e.g. testing of linear structures using a shaker. The RD functions of
the input and output could be sampled continuously. When the RD functions have decayed-sufficiently,
the experiment is stopped and the FRF/IRF can be estimated.

-~




4.1. EXAMPLE - SDOF LOADED BY WHITE NOISE

Consider an SDOF system with an eigenfrequency f = 1 Hz and a low damping ratio of ( = 0.6%.
The system is loaded by Gaussian white noise. The measurements consist of 40000 points sampled
at 5.8 Hz. The FRF is calculated using the traditional method based on the FFT algorithm and
the H; estimator. 1024 points are used in each time segment for each Fourier transformation and
each time segment is multiplied by the Hanning window. The FRF is also estimated using the H{*P
estimator. The positive point triggering condition is used with 1024 points in each RD function and
the triggering bounds are chosen as [a; a3] = [0.50x o0]. From the FRFs the IRFs are calculated
using inverse FFT. The eigenfrequencies and the damping ratios are estimated from the IRFs using
the Ibrahim Time Domain algorithm. In order only to have bias errors the modal parameters are
estimated using the two approaches from 100 independent simulations of the Gaussian white noise
load and the corresponding response. Figure 4 shows a typical auto and cross RD function for the

Gaussian white noise load, Dx x(7), and the response, Dy x (7).
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Figure 4: Typical estimates of the RD functions and zoom of absolute value of the FRFs. [—]:
Theoretical. [- - - - ]: FFT Hanning window, Hy. [ -+ J: RD-FFT, No windowing, HIRD.
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The RD functions dissipate towards zero with increasing time lags. At this stage it might be an
advantage to apply an exponential window to the measurements in order to suppress the influence of
noise. The right hand part of figure 4 shows a zoom of the FRFs around the resonant frequency.

The increase of the record length has increased the accuracy of the H{*P estimate, but the H; estimate
is still biased (an increase in the length of the time segments from 1024 to 2048 would decrease the

bias, but increases the random errors).

The estimation of the FRFs using the 5 different approaches is performed 100 times. The mean values
and the standard deviations are shown in table 1.

[ [Hz] B %) | o¢
FFT - 40000 pts. | 1.000 | 0.53-10~* | 0.67 | 0.0026
RD - 40000 pts. 1.000 | 2.69-10=* | 0.60 | 0.0032

Table 1: Average values of the modal parameters and the corresponding standard deviations based on
100 simulations. The theoretical values are f =1 Hz and (=0.6 %.

The results show that all approaches provide unbiased estimates of the eigenfrequencies, but the FFT
approach provides biased estimates of the damping ratio. On the other hand, the standard deviation
of the estimates using the RD technique is higher than the estimates using the FFT approach. If
no window function is applied and the system has low damping the ragged spectral densities will
result in modal parameters affected by high random errors. The high standard deviations of the
modal parameters estimated based on the RD technique is a result of the difficulties which arise in
the Fourier transformation of the RD functions.



5. APPLICATION TO LINEAR SYSTEMS LOADED BY WHITE NOISE

In modal analysis the structures are assumed to be linear. If such structures are excited by Gaussian
forces the response will also be Gaussian distributed. If the RD transform is applied to Gaussian
processes a unique relationship between the RD functions and the correlation functions exist. Consider
the general applied triggering condition, see equation (9). If this condition is applied to two jointly
distributed Gaussian processes X (¢) and Y'(¢) the following relation can be proven, see [79,71,55,27].

Ryy . R < . -
DXX(T):_{F)i'a_“—X‘i'b DX}/'(T):R"?}, -d_h

b
Tx o% oe ol
(23)
Ryx _ Rj - Ryy Ry =
Dyx(r)= =5 d-—=%.F  Dyy(r)= 2L a- X5
a g, T+ gz
X X Y v
(24)
i and b are given by
B :2 zpx(z)dz - ’2 &p 5 (£)dE )
a = LJCT_—CT“ = é’z;“f—— (25)
Ja) px(2)dz Jy2 psl@)ds

where px(z) and py(2) are the density functions for X and X, respectively. At the second column of
equation (23) the variables in equation (25) should be replaced by Y and Y. As seen equation (23)
establishes a unique relation between the RD transform af Gaussian distributed stochastic processes
and their correlation functions.

A linear system with the following governing differential equation is considered

MX(t) + CX(t) + KX(t) = F(t) (26)

where M, C and K are the n x n mass, damping and stiffness matrices and F(t) is the force. Tradi-
tionally the force is modelled as a white noise vector process. This can be generalized by introducing
a shaping filter characterized by its impulse response function h'(¢1).

F(t) = /j W' (t — T)W(7)dr h(t) = ®pe’*Fmzlo% (27)

where ®r is the mode shapes of the filter, Ar is the eigenvalues of the filter and mp is a scaling
matrix corresponding to modal masses. Using this generalized modelling of the loads it can be shown,
see Asmussen [72], that the ith column of the correlation matrix of the response become

Rxx(t) = @eATrh_lci , 720 Rxx(T) :R§X(—T) (28)

where @, A and m contain mode shapes, eigenvalues and modal masses of the filter and the structure.
The concept of the shaping filter was first introduced in Ibrahim [62]. As seen the correlation functions
become identical to free decays and thereby can modal parameters be extracted from the correlation
functions or RD functions using methods like Ibrahim Time Domain, Polyreference Time Domain,
Auto-Regressive Vector models etc. This result was also presented in references [81,82].

The results show a unique relation between the RD transform of Gaussian processes and the modal
parameters of a linear system loaded by a generalized white noise driven Gaussian excitation.




6. QUALITY ASSESSMENT

In application of the RD transform the main problem is to select the triggering condition, triggering
levels and the size of the time segments, Tipax — Tmin Prior to the estimation process. After the
estimation process the main question is how to validate the quality of the estimates as a function of
different triggering levels and also as a function of the time variable, 7. Two different tests, shape
invariance and symmetry test, which can be used to answer the above questions, are suggested. In
section 7 the tests are applied to real data.

6.1. SHAPE INVARIANCE TEST

Testing the shape invariance of RD functions is based on several different estimations of a correlation
function using different triggering levels for the same triggering condition

_ Dyx(r) 5 _ Dyx(7) ,

L, Belil= gl . 29
Ay 7x yalr) 9 X (22)

Ry y(7)
where superscript 1,2,... refers to the different choice of triggering levels. If different estimates of a
correlation function are calculated two different approaches exist to evaluate the shape invariance of
the RD functions. First a plot of the different correlation functions is usually sufficient to validate the
different estimates of the correlation functions. If a single estimate differs significantly from the rest,
the corresponding triggering levels should not be used. If all estimates differ significantly the data
should be analysed carefully using the RD technique. So the shape invariance test can also be used

in a pre-analysis to select proper triggering levels for a full analysis.

If more than e.g. 5 or 6 different RD functions are estimated it might be difficult to assess the different
triggering levels graphically. Instead it is suggested to calculate the correlation between the different
RD functions, which will be denoted Shape Invariance Criteria (SIC).

__ (ORL RYx(K)RY y (k))?
R R, = "N pi N o7 (30)
yATYX (Xiz1 By x (5)*)(Zh=1) By x (K)?
The result of calculating the SIC values between all different estimates of the correlation functions is a
matrix with unity in the diagonals. The off-diagonal elements all have values between 0 and 1. If the
value is 1 the RD functions are fully correlated and if the value is 0 the RD functions are uncorrelated.
Investigation of the shape invariance of RD functions could also lead to the detection of non-linearities
or even the identification of non-linear systems, Ibrahim [31], [43] and Haddara [55].

SIC

6.2. SYMMETRY TEST

The second approach to quality assessment of the RD functions is based on the symmetry relations
for correlation functions of stationary stochastic processes. This approach generally assumes that all
possible RD functions are estimated, corresponding to estimating the full correlation matrix of the
measurements at each time step. The symmetry relation is

Ry}{(’i‘) = R_}{y(—T) (315)

If the estimated RD functions are scaled to be equal to the correlation functions (normalized with the
triggering levels) then an error and an average function can be defined as

P Ryx(7) = Rxyy(-t S verad Byy(7) + Ryy(-T

R)e}j\ruv — YA (_’ ) : A} ( ) R}LIZAE’ a.JE(T) — Y X (’ ) 5 X)) ( ) (32)
If the above procedure is applied the number of RD functions is still the same, but there is only
an estimate for the positive time lags and the corresponding error function. The quality of the RD
functions can now be evaluated by plotting the final RD functions versus the error function. This

procedure can also be used to choose the number of points used in the estimation of modal parameters.

6.2. CHOICE OF TRIGGERING LEVELS
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One of the difficulties in applications of the RD technique is how to choose the triggering levels [aq as]
for a given tvll'iggering condition. From a user point of view it is important to know how to choose
a proper triggering level and to know how sensitive the results are to the choice of triggering level.
The optimal choice of triggering level is defined as the choice which minimizes the variance of the RD
functions normalized with the triggering level.

111111(Va1‘[2§—g—(72]) — [ay as] (33)
For the level triggering condition eq. (33) has been solved. The solution is a triggering level of
@ = +/20x. This result was derived by Hummelshgj et al. [51]. The assumptions are that the
processes are stationary zero mean Gaussian distributed and that the time segments used in the
averaging process are independent. The latter assumption is of course violated in some sense. However,
the above result is considered to be a good basis for selecting the triggering level for the level crossing
triggering condition. The result has been supported by a simulation study, see Brincker et al. [46].

For the local extremum triggering condition an equivalent study can be performed. The variance of
the estimated RD functions using the local extremum triggering condition can be approximated by,

see Asmussen [72]

2 . 2 / 2 B o 2
VarDxx(r)] = £ (1 (M—)> . (M—)) T (M> (34

N 0% OxXOy oy
The constant k% is a function of the triggering levels.

5l atpx@)de([2 apx(e)de)’
o px()de J2? px(z)da

In order to calculate the expected number of triggering points an SDOF' system is considered. The
system is loaded by white noise. The natural eigenfrequency and the damping ratio are f=1 Hz
and (=1%. The expected number of triggering points can be calculated using Rice’s formula, see
Asmussen [72]. The variance of different combinations of the triggering levels [a1 a] is calculated for
each time lag of the correlation functions. The triggering levels which minimize eq. (33) are taken
as the optimal choice. The left-hand part of figure 5 shows the optimal upper triggering level and
the optimal lower triggering level as a function of the time lag. The theoretical prediction does not
take the correlation between the time segments in the averaging process into account. In order to
check the above result a simulation study is performed. 500 responses of the SDOF system loaded
by Gaussian white noise are simulated. Fach time series contains 5000 points and is sampled with 15
Hz. Estimates of the correlation function are calculated for each response using the local extremum
triggering condition with different triggering levels. The triggering levels are chosen as all possible
combinations of a; = [0,0.2,...,3]-0x, a2 = [0,0.2,...,3]-0x under the constraint that ay > a;. The
maximum upper level is chosen as 3oy, since it is very unlikely to find realizations of the response
beyond 3cx. A higher maximum upper level would demand simulation of extremely long time series.
A similar argument is used to select the resolution of the triggering levels to 0.2. A higher resolution
would also demand simulation of extremely long time series. The optimal triggering levels are chosen
as the levels with minimum error calculated as the sum of the absolute values of the difference between
the simulated and theoretical correlation functions. The result of the simulation study is shown in the

right hand part of figure 5.

(35)

The results of fig. 5 show good agreement with the theoretical predictions in fig. 5. It is recommended
that the triggering levels for the local extremum triggering condition should be chosen around [a; as] =
[cx oo0]. The best way to select the optimal triggering levels is to perform a sensitivity study. The
lower triggering level could be chosen as e.g. [0 0.5 1 1.5]-0x and the upper triggering level as infinity
and the RD functions with lowest errors calculated using the symmetry relations should decide which

triggering levels are optimal.
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Figure 5: Theoretically predicted (left-hand part) and simulated (right-hand part) optimal lower and

upper triggering level (x ) for an SDOF system using local extremum triggering and the corresponding

correlation function.

A simulation study corresponding to the above is performed using the positive point triggering condi-
tion. The aim is to investigate how the triggering levels should be chosen. A theoretical prediction can
be calculated, but the assumption of uncorrelated time segments is highly violated so the prediction
is excluded. The results in fig. 6 indicates that the triggering levels for the positive point triggering
condition should be chosen as about [ay as] = [ox o0].

Optimal triggering levels

L L L ' L
0 2 4 6 8 10 12

Figure 6: Optimal triggering levels for positive point triggering for an SDOF system estimated by
simulation together with the corresponding correlation function.

During this section new information how to select the triggering levels for the different triggering
conditions is obtained. It is shown that it can be appropriate to exclude the triggering points between
0 and ox. Although this is only a guideline it is important new information. The reason is that the
accuracy of the estimates is increased and at the same time the estimation time is decreased since
triggering points are excluded.

7. EXAMPLE - AMBIENT TESTING OF BRIDGES

In order to illustrate the application of the theory presented in section 5 and suggested in section 6
an analysis of ambient bridge data is performed. The bridge has three spans with 90 m overpass. The
deck is a 185 mm thick polypropylene fibre reinforced concrete slab with tension slabs but without any
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internal steel reinforcement. The bridge and the data collection equipment is described in Ventura et
al. [83]. Figure 7 illustrates the bridge and the measurement locations on the bridge.
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Figure 7: Outline diagram of the University Drive/Crowchild Trail Bridge.

The data were sampled at 100 Hz with 65536 points in each measurement. 12 setups each with 8
measurements were collected. In order to limit the number of modes the data are lowpass filtered
digitally at 6.25 Hz. It is expected that approximately 6 or seven structural modes are present in the
interval 0-6.25 Hz.

Figure 8 shows time and frequency domain plot of the data.
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Figure 8: Time and frequency domain plot of measurement 2 (left) and & (right) from setup 2.

The next step is to perform a pre-analysis or quality assessment of the data for the selection of proper
triggering levels and function length. It is chosen to use the banded positive triggering condition.
Setup 2 measurement 2 is considered and the function length is chosen to be -10 Hz - 10 Hz. Two
different triggering levels are considered: [a; as] = [0 oo] and [a; ap] = [0.50x 00]. The two different
RD function are shown in the left-hand side of figure 9. The right hand side of figure 9 shows the
average (full line) and error (dotted line - multiplied by 10) of the normalized RD functions.
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Figure 9: Full RD functions (left-hand side) and average (full line) and error (dotted line) RD functions
(right-hand side).

Tt seems that the length of the RD functions is chosen properly. The RD function has decayed and 1000
points are sufficient for modal parameter extraction. Figure 10 shows the shape invariance criteria
for setup 4. The lower triggering level is chosen as a; = [0 0.25 0.5 0.75 1.00 1.25 1.5] and the upper
level is always as = co. In general there is a high correlation between the different RD functions. If
the lower triggering level is chosen in between 0 and 0.750 it seems that there is nearly always full
correlation. This indicates that the lower triggering level should be chosen in between 0 and 0.750x.
In this area shape invariance is preserved.

Measurement 1 Measurement 2 Measurement 5 Measurement 6

Measurement 4 Measurement 7 Measurement 8

Figure 10: Shape Invariance criteria for measurements 1-8 from setup 4.

The symmetry test is considered. The auto RD functions are calculated from all measurements in
all setups with al varying as [0 0.25 0.5 0.75 1 1.25 1.25]ox and ay = oo. The length of the RD
function is 7 € [—10;10] Hz. The error measure defined as the RMS of the error function divided

by the RMS of the average function (see equation (32)) is calculated. Figure 11 shows the mean

value of all error measures for auto RD functions for each setup as a function of the lower triggering
level. The overall conclusion of this investigation is that the lower triggering level should be chosen
in between [0.50% ox]. In order to minimize the number of triggering points the triggering is chosen
as [a1 ay] = [ox o0]. To extract maximum information [a; ag] = [~ox — 0] is also applied. Using
these triggering levels the full RD matrix is calculated for all 12 setups.
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Figure 11: Mean value of the quality measure for the different setups.

To have an idea about the number of modes present in the RD functions an average spectral density
function is calculated. All RD functions are Fourier transformed and averaged. The absolute value
of this function is seen in fig. 12. The spikes indicate structural modes. As indicated there could be
structural modes at the following frequencies [1.85 2.78 3.13 3.76 4.05 4.17 4.64 5.18] Hz.

RD - Average spectral density

° 1 : Frequaency [Hz] ) ° °
Figure 12: Average spectral density calculated from estimated RD functions and expected structural

modes.

The Polyreference Time Domain (PTD) technique is applied to the averaged RD functions from each
setup. Figure 13 show the results from all setups where 30 and 35 modes and 500 and 600 points are
used as input to PTD for each setup.

The following modes could be estimated for all setups

F[Hz] [ 2.75]3.00 | 3.72 | 4.65 | 5.15
C[%] [ 0.85]0.93]1.80 | 1.24 | 2.08

As seen there is also a mode present at 4.05 Hz at several of the setups.
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Figure 13: Stabilization diagram.

The mode shapes corresponding to the 4 lowest modes are shown in fig. 14
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Figure 14: Mode shape estimates from the 4 lowest modes of the bridge.

8. VECTOR TRIGGERING RANDOM DECREMENT

The Vector Random Decrement (VRD) technique was introduced as an efficient alternative to the

traditional RD technique. If e.g. 8 or 16 measurement are collected simultaneously, it can be tedious
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to estimate all 64 or 256 RD functions. Instead only a few columns of the RD matrix are estimated,
which limits the information available. The problem is how to choose these columns. These problems
motivated the development of the VRD technique, see references [69,70,73,79].

Consider a stationary stochastic vector process X(t) = [X(¢) Xa(t) Xa(t) ... Xi(t) Xpgr(1) ... Xu(2)
Xiea(t) .. Xn('t)]T. The VRD functions are defined as

Dxx,(7) = E[X(¢ + T)lT,“Lék,l(t-i-At)] (36)

where the vector triggering condition is given by

U — v [
TXk,z(f+At) - TXk(t‘*'Atk)ka-{-l(t+Atk+1):-~-Xl(t+Ail) , 2Sk<isn

(37)
c= {ak < Xp(t+ Atg) < bgy ooy < Xg(t4 Af) < by}

Using this vector condition and assuming that X(t) is Gaussian distributed, it can be proven, see
Asmussen [72,79], that the resulting VRD functions are given by

D%(7) = Rx, (71— Atg)-ar + Rx, (7 — Algyr) - a1 + .. + Ry, (71— At) - a (38)

where the constants a; depend on the covariance matrix of X(t) and the triggering levels in equation
(37). Ry, (7 — Aty) is the kth column of the correlation matrix of X(t) at time lag 7 — Atj. As
seen from the results of equation (38) the advantage of the VRD technique is that information from
the full correlation matrix can be obtained from a single estimation. This is not possible for the RD
technique or an algorithm based on FFT. Several examples on the VRD technique applied to real and
simulated data are given in references [69,70,73,79].

9. CONCLUSIONS

The RD transform has been described from its introduction to the most recent developments. To
support the brief review a detailed bibiliography is given. The RD functions are defined as conditional
mean values and can be unbiased estimated provided that the considered processes are ergodic. A new
approach to estimate the frequency response functions of linear systems based on the RD technique
is suggested and a simple example is given. Using a generalized condition a relation between the RD
functions and the correlation functions of jointly distributed Gaussian processes is described. From
this relation a new approach for quality assessment is suggested. The purpose is to have a standardized
method to select the triggering levels and function length of the RD functions. This issue is illustrated
by the analysis of ambient bridge data. The paper is finished with a short description of the most
recent development, the vector RD technique.
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