

Aalborg Universitet

Grundlæggende klimateknik og bygningsfysik

	Hvldgaard.	Carl Erik:	Funch, E	::: Steen-The	øde, Mogens
--	------------	------------	----------	---------------	-------------

Publication date:

Document Version Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):

Hyldgaard, C. E., Funch, E., & Steen-Thøde, M. (1997). *Grundlæggende klimateknik og bygningsfysik*. Institut for Bygningsteknik, Aalborg Universitet. U/ Nr. U9714

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Grundlæggende Klimateknik og Bygningsfysik

Aalborg Universitet Instituttet for Bygningsteknik

Grundlæggende Klimateknik og Bygningsfysik

Aalborg Universitet
Instituttet for Bygningsteknik
December 1997
ISSN 1395-8232 U9714

FORORD

Formålet med denne bog er at give en grundlæggende fremstilling af klimateknik og bygningsfysik beregnet for Aalborg Universitets 4. semester studerende på B-sektoren. Der er derfor lagt vægt på at give en overskuelig og kortfattet fremstilling af den grundlæggende teori kombineret med praktiske eksempler. Der er ikke i bogen anført gældende regler og love for byggeri, idet disse regler og love m.fl. forudsættes at være til rådighed ved siden af denne bog.

Bogen er revideret i 1995 og 1997. Forfattere for de pågældende afsnit er følgende:

Varme- og fugttransport af Carl Erik Hyldgård Udeklima, fugtig luft af E.J. Funch Bygningers varmebalance af M. Steen-Thøde Indeklima af M. Steen-Thøde

En stor tak skal rettes til Poul Skørbæk for scanning af tegninger og til Bodil Jensen og Tove Jensen for skrivning af manuskriptet.

En særlig tak til Bodil Jensen for total revision af manuskriptet pr. 1. august 1995 og 1. december 1997.

Aalborg Universitet

December 1997

En mindre revision er foretaget i januar 2001.

INDHOLDSFORTEGNELSE

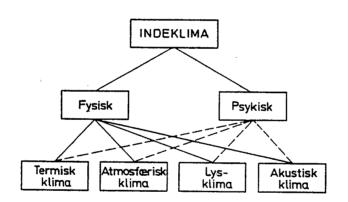
1.	IN	DEKLIM	${f A}$	Side
	1.1	Indledning		1
	1.2	Termisk k 1.2.1 1.2.2 1.2.3 1.2.4	dima, fysiologisk grundlag Legemets varmeproduktion og varmeregulering Varmeafgivelse Varmebalance Grænserne for reguleringsområdet	2 2 3 5
	1.3	Termisk k 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.3.7 1.3.8 1.3.9	Klimafaktorer Klimafaktorer Varmeproduktion Beklædning Betingelser for termisk komfort Komfortligningen Lokale termiske påvirkninger Betydning af alder, køn, tilvænning m.v. Komfortindeks Måling af termiske klimaparametre	8 8 9 10 11 13 19 23 23 26
	1.4	Atmosfæri 1.4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6 1.4.7	isk klima Ventilationsforløbet Behovet for ventilation Luftfugtighed Mikroorganismer Luftens indhold af partikler, gasser og dampe Lugt Atmosfærisk elektricitet	27 27 30 31 32 33 37 42
	1.5	Litteratur		44
2.	UD	EKLIMA		45
	2.1	De udeklir 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8 2.1.9	Natiske påvirkninger Vejr og klima Jordatmosfæren Solstrålingen Lufttemperatur Luftfugtighed Vind Vejrdata Luftforureningens indflydelse på klimaet Prognoser om klimaændringer	45 45 46 47 50 53 55 56 57
	2.2	Litteratur		60

3. VA	RMETRANSPORT	61	_
3.1	Varmeledning	61	
	3.1.1 Stationær, endimensional varmeledning	64	
	3.1.2 Varmeledningsevne	68	
	3.1.3 Varmeovergang	70	_
	3.1.4 Cylindertilfældet	72	
	3.1.5 Stationær, todimensional varmeledning	75	
	3.1.6 Tilnærmelsesmetoder for stationær todimensional varmeled	ning 81	
	3.1.7 Instationær varmeledning	84	
3.2	Konvektion	87	
	3.2.1 Differentialligninger for strømning og varmeovergang	87	
	3.2.2 Modelloven for varmeovergang	90	
	3.2.3 Beregning af varmeovergangstal	92	
	3.2.4 Anvendelige formler	93	
3.3	Varmestråling	98	
	3.3.1 Emission	99	
	3.3.2 Love og definitioner	100	
	3.3.3 Strålingsudveksling mellem faste legemer	102	
	3.3.4 Solstråling	108	
	3.3.5 Varmestråling til himmelrummet	109	
3.4	Luftlags isolans	109	
3.5	Litteratur	111	
4. FUC	GT	113	_
4.1	Fugtig luft	113	
	4.1.1 Fysiske forhold	113	
	4.1.2 Relativ fugtighed φ	115	
	4.1.3 Vandindhold x	115	
	4.1.4 Luftens entalpi	117	
	4.1.5 Molliers i,x-diagram	118	
	4.1.6 Luft i tågeområdet	122	
	4.1.7 Retningsmålestokken	123	
4.2	Tilstandsændringer for fugtig luft	124	
	4.2.1 Blanding af luftmængder	124	
	4.2.2 Opvarmning ved konstant vandindhold	125	
	4.2.3 Tør køling	126	
	4.2.4 Befugtning med vand	126	
	4.2.5 Befugtning med damp	128	
	4.2.6 Våd køling	129	
	4.2.7 Affugtning ved ad- eller absorption	130	
4.3	Fugttransport	131	
	4.3.1 Byggematerialers fugtindhold	131	
	4.3.2 Kondens på overflader	133	
	4 3 3 Indvendig kondensation	135	

		4.3.4 4.3.5 4.3.6	Grundfugt Slagregn Byggefugt	148 150 151
	4.4	Litteratur		154
5.	. VAJ	RME- OG	FUGTBALANCE	155
	5.1	Indledning		155
	5.2	Rums stati 5.2.1 5.2.2	onære varme- og vanddampbalance Varmetabsberegning Beregning af varmeforbrug	155 158 160
	5.3	Termiske t 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5	Delastninger Udetemperaturen Solindfald Solafskærmning af vinduer Varmetilførsel fra belysning og elektriske maskiner Varmeafgivelse fra personer	164 165 165 167 170 171
		Varmebala 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7 5.4.8 5.4.9 5.4.10	Beregningsprincippet Beregningsmodellen Rumluftens varmebalance Overfladernes varmebalance De varmeakkumulerende lags varmebalance Beregningsformler Varmebalancens anvendelse Eksempel. Beregning af temperaturerne i et kontorrum under ikke-stationære forhold Løsning af varmebalanceligningerne ved periodestationære tilstande Eksempel. Beregning af periodestationær løsning for et rum ved to konstruktionsalternativer	171 172 174 175 176 177 178 182 182 196 201
Al	PPEN	DIX		
A	Sym	boler og enh	neder	207
В	Omr	egningsfakto	orer	210
C	Tabe	ller m.v.		212
D	Fang	ers komfort	ligninger	219
ST	IKO	RDSREG	ISTER	221

Kapitel 1

INDEKLIMA


Mogens Steen-Thøde

1.1 Indledning

I erkendelse af, at mennesker i et moderne samfund tilbringer størstedelen af deres tid indendørs, er det klart, at opretholdelsen af et fysiologisk og hygiejnisk tilfredsstillende indeklima er af vital betydning.

Indeklima

Indeklima (rumklima) defineres her som det samlede hele af alle fysiske størrelser, der har indflydelse på legemets fysiologiske vekselvirkning med de indendørs omgivelser. De fysiske faktorer, der opbygger den del af indeklimaet, som teknikeren har indflydelse på, kan sammenfattes i nedenstående diagram:

Figur 1.1 Indeklimafaktorer

Som antydet i figur 1.1 indeholder indeklimaet også faktorer af psykisk art, forstået på den måde, at det samme fysiske klima undertiden bedømmes forskelligt, afhængig af menneskets psykiske tilstand, og at vores psykiske tilstand kan påvirkes af det fysiske klima.

Indeklimaet er således et meget sammensat fænomen, som må tillægges stor betydning for menneskets trivsel og velbefindende i de indendørs omgivelser.

Hvor man skaber kunstige klimaer til ophold for mennesker, må de fysiske indeklimafaktorer søges afpasset således, at de ligger inden for de såkaldte komfortgrænser eller behagelighedsområder, inden for hvilke menneskets tilpasning til indeklimaet sker ubevidst og ubesværet. Motiveringen for at skabe komfort er først og fremmest at tilfredsstille menneskets ønske om at befinde sig godt i indeklimatisk henseende på linie med behagelighed på andre områder. Klimakomfort kan imidlertid også motiveres ud fra et effektivitetssynspunkt, idet menneskets præstationsevner i almindelighed synes at være højst, når det udtrykker komfort.

Af praktiske grunde behandles de enkelte indeklimafaktorer hver for sig, men den endelige bedømmelse af klimaet må ske på grundlag af en helhedsbetragtning, idet der for at opnå en god effekt i en henseende ikke samtidigt kan tolereres alt for store afvigelser i andre henseender.

1.2 Termisk klima, fysiologisk grundlag

1.2.1 Legemets varmeproduktion og varmeregulering

Mennesket har en ret konstant indre temperatur, ca. 37 C, der ikke påvirkes selv af store variationer i omgivelsernes temperatur. Betingelsen for, at den indre temperatur kan holdes konstant, er, at der til enhver tid er ligevægt mellem den varme, der produceres i organismen og den varme, der afgives til omgivelserne. Hos de varmblodede dyr, hvortil mennesket hører, er kontrollen af varmebalancen knyttet til visse strukturer i et område i bunden af mellemhjernen (hypothalamus). Ødelægges disse strukturer mister man evnen til at regulere legemstemperaturen, som derfor falder til nær omgivelsernes temperatur.

De nævnte strukturer i hjernens temperaturcenter virker som en termostat - når legemstemperaturen har tendens til at stige, aktiveres varmeafgivelsescentret, og mere varme bliver afgivet til omgivelserne, mens omvendt et temperaturfald bevirker en reduktion af varmeafgivelsen samt eventuelt, at varmeproduktionen sættes i vejret.

Denne regulering forudsætter, at temperaturcentret modtager oplysninger om temperaturforholdene i legemet. Temperaturfølsomme sanseorganer, termoreceptorer, findes dels i selve temperaturcentret i hjernen og dels i stort antal i huden, hvorfra man blandt andet får udløst de bevidste temperaturfornemmelser. I det temperaturinterval, som de normalt er udsat for, er nogle specielt følsomme for varme, og deres aktivitet vokser ved temperaturstigning, der kræves dog en temperaturændring på 0,001 C/s for at aktivere dem. Andre termoreceptorer virker ved noget lavere temperatur og øger deres impulsudsendelse ved temperaturfald i deres normale temperaturområde, tærskelværdien er her 0,004 C/s.

Termoreceptorer

De funktioner, som temperaturcentret griber ind i og anvender ved denne regulering, er dels kredsløbet i huden og dels svedkirtlernes aktivitet. Desuden kan de varmeproducerende processer i organismen reguleres.

Varmeproduktionen i den levende organisme foregår hele tiden, idet kemisk energi ved stofskifteprocesserne omdannes til varme. Denne varmeproduktion er af størrelsen ca. 1 W pr. kg legemsvægt (standardstofskiftet), hvis den måles i hvile under visse standardbetingelser. Ved afvigelser fra standardbetingelserne stiger stofskiftet og varmeproduktionen.

Stofskifte

I kolde omgivelser udløses via varmeproduktionscentret spændinger i musklerne, hvis stofskifte og varmeproduktion herved stiger. Disse muskelspændinger går ved kraftigere køling over i kulderystelser. På denne måde kan varmeproduktionen stige 2-3 gange den basale. Desuden bevirker en kraftig køling en aktivering af skjoldbruskkirtlerne og binyrerne, hvis hormoner griber ind og forøger stofskifteprocesserne i alle organismens celler.

Kuldepåvirkning

De største ændringer i varmeproduktionen fremkommer imidlertid ved muskelarbejde. Herved kan varmeproduktionen stige til ca. 10 gange basalproduktionen.

Arbejde

1.2.2 Varmeafgivelse

Menneskets varmeafgivelse fra huden til omgivelserne sker ved:

1. Konvektion til den omgivende luft,

$$\phi_k = k_1(t_{\text{bud}}-t_{\text{buf}})$$

hvor k, afhænger af lufthastigheden langs med huden.

2. Stråling til de faste omgivelser,

$$\phi_{\rm s} = k_2(t_{\rm hud}-t_{\rm omg})$$

hvor k2 afhænger af de faste omgivelsers temperatur.

3. Fordampning fra hudoverfladen,

$$\phi_{\rm f} = k_3(p_{\rm hud}-p_{\rm luft})$$

hvor k₃ afhænger af lufthastigheden langs med huden (p angiver vanddamptrykket).

 Ledning til faste genstande, der er i direkte berøring med huden,

$$\phi_1 = \mathbf{k}_4(\mathbf{t}_{\text{hud}} - \mathbf{t}_{\text{gen}})$$

denne varmemængde er normalt af underordnet betydning.

Ved åndedrættet (respirationen) udveksles der varme både ved konvektion og fordampning ϕ_r . Da den udåndede luft kan regnes for 100% mættet med vand ved ca. 35 C, vil vandtabet gennem lungerne hovedsageligt afhænge af vanddampindholdet i indåndingsluften og af lungeventilationen.

Klimapåvirkning

Varmeafgivelsen bliver således afhængig af den omgivende lufts temperatur, luftbevægelsen i omgivelserne, temperaturen af faste legemer i omgivelserne (stråleflader) samt af luftfugtigheden. Derudover vil varmeafgivelsen afhænge af hudoverfladens temperatur og den mængde vand, der fordamper. Mennesket har fysiologiske mekanismer til ændring af de to sidstnævnte faktorer.

Varmeregulering

Hudoverfladens temperatur bestemmes af de varmemængder, der tilføres indefra ved ledning gennem vævene fra den varme kropskærne og ved blodstrømmen i huden. I kulde medfører påvirkningen af hudens kuldereceptorer, at varmeafgivelsescentrets aktivitet hæmmes. Nerveimpulser, der medfører karkontraktion, udsendes, hvorved blodstrømmen og varmetilførslen til huden falder. Når alle blodkar er maksimalt lukkede,

sker der dog stadig et varmetab ved ledning gennem huden til omgivelserne. Størrelsen af dette er et udtryk for hudens varmeisolerende egenskaber, og det afhænger af tykkelsen af fedtlaget i huden.

I varme omgivelser er hudens temperatur høj, og temperaturgradienten fra kroppens indre til hudoverfladen er lille, hvorfor varmetransporten ved ledning fra den indre kærne til overfladen bliver lille. Men i varme omgivelser stiger hudens blodgennemstrømning meget stærkt, idet hudkarrene udvides. Herved kan den varme, der produceres, transporteres med blodet til hudoverfladen, hvorfra den under disse forhold især afgives ved fordampning af sved. Blodstrømmen i forskellige hudområder varierer ikke ens, især er variationerne i hænders og fødders kredsløb store. Den finere regulering af varmeafgivelsen, der finder sted hos påklædte mennesker ved normale indendørs temperaturforhold, sker delvis ved hjælp af ændringer af blodstrømmen i hænderne.

Reguleringen af varmeafgivelsen ved fordampning sker ved sekretion af vand fra svedkirtlerne. Der sker hele tiden en vis ureguleret vandfordampning ved diffusion af vand gennem huden. Desuden indeholder den luft, vi indånder, normalt mindre vanddamp end den luft, vi ånder ud. Det vil sige, at vi hele tiden afgiver nogen varme ved fordampning fra luftvejene proportionalt med lungeventilationen. Den minimale fordampning, ca. 40-45 g vand/h, svarer til et varmetab på ca. 30 W.

Ved en forøgelse af legemets aktivitet forøges svedproduktionen også. Svedkirtlerne kan producere op til 2-3 l vand pr. time, hvor hvert kg (1), der fordampes, fjerner en varmemængde på ca. 2430 kJ fra hudens overflade. Svedproduktionen reguleres ligesom hudens kredsløb fra varmeafgivelsescentret i hypothalamus.

1.2.3 Varmebalance

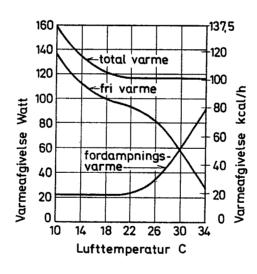
Som tidligere nævnt er legemets konstante indre temperatur betinget af, at der er ligevægt mellem varmeproduktion og varmeafgivelse. Denne varmebalance kan udtrykkes i følgende ligning: Fordampning

1.1

$$\phi_{t} = \phi_{s} + \phi_{k} + \phi_{l} + \phi_{f} + \phi_{r}$$

hvor ϕ_t er legemets totale varmeproduktion,

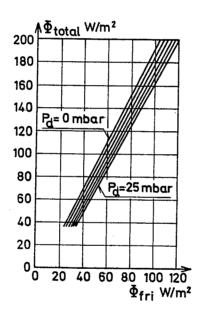
- $\phi_{\rm s}$ varmeafgivelsen ved stråling,
- ϕ_k varmeafgivelsen ved konvektion,
- ϕ_1 varmeafgivelsen ved ledning,
- $\phi_{\rm f}$ varmeafgivelsen ved fordampning og
- $\phi_{\rm r}$ varmeafgivelsen ved respiration.


Fri og latent varme

Sædvanligvis sammenfattes legemets totale varmeafgivelse i følgende bidrag:

- $\phi_{\rm fri}=$ den fri varme afgivet ved stråling, ledning og konvektion fra legemets overflade samt udåndingsluften (altså størrelserne $\phi_{\rm s}, \ \phi_{\rm l}, \ \phi_{\rm k}$ samt delvis $\phi_{\rm r}$), og
- $\phi_{\text{lat}} = \text{den latente (bundne) varme afgivet ved fordampning fra}$ legemets overflade og vandindholdet i udåndingsluften (bidragene ϕ_f og delvis ϕ_r).

Vi har derfor: $\phi_t = \phi_{fri} + \phi_{lat}$


Figur 1.2 Varmebalance for en stillesiddende normalt klædt person

Figur 1.2 viser varmebalancen for en stillesiddende, normalt klædt person. Personen har fra 20 C og opefter en konstant total varmeproduktion på $\phi_t=115$ W. Under 20 C stiger varmeproduktionen for at kunne opretholde legemstemperaturen i de køligere omgivelser. Ved stigende omgivelsestemperatur viser figuren den tidligere omtalte sammenhæng mellem øget blodgennemstrømning i huden og svedsekretionen. Denne kobling bevirker, at svedproduktionen får en størrelser, der svarer til den totale varmeproduktion minus den ved stråling og konvektion afgivne varmestrøm:

$$\phi_{\mathrm{lat}} = \phi_{\mathrm{t}} - \phi_{\mathrm{fri}}$$

Ved stigende aktivitet, d.v.s en større total varmeafgivelse, udgør den latente varmeafgivelse procentvis en stadig større del af den totale varmeafgivelse som vist på figur 1.3.

Figur 1.3

1.2

En persons totale varmeafgivelse pr m² hudoverflade som funktion af den fri varmeafgivelse (pr. m²) samt luftens partielle vanddamptryk

1.2.4 Grænserne for reguleringsområdet

Den dybe legemstemperatur holdes konstant inden for vide intervaller af ydertemperaturer, men da organismens kapacitet dels for varmeproduktion og dels for svedproduktion er begrænsede, er der en øvre og nedre grænse for opretholdelsen af varmeligevægten. Hvis ydertemperaturen stiger over den øvre grænse for reguleringsområdet, vil der akkumuleres varme i kroppen, så legenstemperaturen stiger. Herved lettes varmetransporten fra kroppens indre til omgivelserne, så der eventuelt opnås en ny temperaturligevægt på et højere niveau. Men hvis de ydre forhold er for varme, vil legemstemperaturen vedblivende stige, eventuelt til sidst til dødelige niveauer (ca. 42-43 C).

Tilsvarende vil omgivelser, der er så kolde, at der trods maksimal karlukning i huden mistes mere varme, end der produceres, bevirke, at legemstemperaturen falder under den normale regulerede værdi. Ved ca. 33 C ophører varmeregulationen (kulderystelserne), og ved endnu lavere temperatur opstår bevistløshed, og en legemstemperatur på ca. 25 C er dødelig.

1.3. Termisk komfort

1.3.1 Klimafaktorer

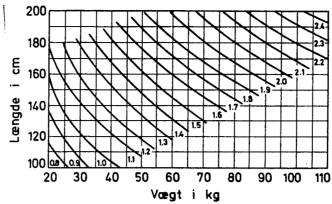
Ud fra kendskabet til menneskets varmebalance kan følgende variable af væsentlig betydning for komforttilstanden anføres:

- 1. Aktivitetsniveauet (den interne varmeproduktion i legemet)
- 2. Beklædningens varmeledningsmodstand
- 3. Lufttemperaturen
- 4. Middelstrålingstemperaturen.
- 5. Den relative lufthastighed
- 6. Luftens vanddamppartialtryk.

De to første variable knytter sig til det pågældende rums anvendelse, medens de fire sidstnævnte danner det termiske indeklima, som for givet aktivitetsniveau og beklædning skal afpasses, således at optimal komfort opnås (herved forstås, at den størst mulige procentdel af en gruppe personer, der opholder sig i rummet, er i termisk komfort).

1.3.2 Varmeproduktion

Eksempler på legemets varmeproduktion ved forskellige almindeligt forekommende aktiviteter er angivet i nedenstående tabel:


Tabel 1.1 Varmeafgivelse, aktivitetsniveau

Aktivitet	$\frac{M}{A_{Du}}$			
	W/m²	met		
Sovende	46	0,8		
Stillesiddende	58	1,0		
Maskinskrivning	70	1,2		
Stående	80	1,4		
Alm. stående arbejde i bu-				
tik, laboratorium, køkken	90-120	1,5-2,0		
Langsom gang 3 km/h	115	2,0		
Alm. gang 5 km/h	150	2,6		
Hurtig gang 7 km/h	230	4,0		
Alm. tømrer- og murerar-				
bejde	175	3,0		
Løb 10 km/h	460	7,9		

Undertiden anvendes enheden 1 met = 58,15 W/m² (met ~ metabolie rate).

Det ses, at varmeproduktionen er angivet pr. m^2 af personens overflade, A_{Du} . For at kunne beregne den totale varmeproduktion, der afgives i et rum, hvor der opholder sig en gruppe personer, må man derfor have kendskab til det gennemsnitlige overfladeareal. Det totale, udvendige areal af en nøgen person er af Du Bois fundet at stå i ret nøje relation til personens højde og vægt. Figur 1.4 viser i diagramform afhængigheden mellem nøgent kropsareal, højde og vægt.

Figur 1.4 Kropsareal som funktion af højde og vægt

En gennemsnitsperson har et areal på 1,8 m².

1.3.3 Beklædning

Beklædningens varmemodstand, der angives i den specielle enhed clo (1 clo = 0,155 m² C/W) er i tabel 1.2 anført for forskellige beklædninger. Ved angivelse af clo-værdier må man være opmærksom på, at den pågældende beklædning isoleringsmæssigt tænkes jævnt fordelt over hele legemsoverfladen. En beklædning med clo-værdien I_{cl} forøger derfor den totale hudoverflades varmemodstand til omgivelserne med bidraget 0,155 I_{cl} (m² C/W).

Tabel 1.2 Beklædningens varmemodstand

Beklædning	I₀ clo
Nøgen	0
Shorts, T-shirts, underbukser, lette sokker, sandaler	0,30
Let kjole m. ærmer, underkjole, trusser, strømpebuk-	
ser, sandaler	0,45
Lette bukser, skjorte m. korte ærmer, lette sokker, sko	0,50
Nederdel, skjorte m. korte ærmer, trusser, strømpe-	
bukser, sandaler	0,55
Lette bukser, skjorte, underbukser, sokker, sko	0,60
Nederdel, skjorte, underkjole, trusser, tykke knæ-	
strømper, sko	0,80
Bukser, sweater, skjorte, underbukser, undertrøje m.	
korte ærmer, sokker, sko	0,95
Nederdel, jakke, vest, skjorte, trusser, sokker, sko	1,00
Bukser, jakke, veste, skjorte, underbukser, undertrøje	
m. korte ærmer, sokker, sko	1,15
Frakke/dunjakke øger isolansen med ca.	0,60

1.3.4 Betingelser for termisk komfort

Som hovedbetingelse for, at en person udtrykker termisk komfort, kræves varmebalance for legemet.

Varmebalancen kan opstilles under kendskab til de fysiske love for varmetransport, der her (forenklet) kan udtrykkes ved

$$\phi = \frac{\Delta t}{m}$$
 (analog med Ohms lov), hvor

 ϕ er varmestrømmen pr. m² overflade,

Δt er temperaturforskellen, og

m er varmeledningsmodstanden.

Den tidligere opstillede varmebalance for legemet omskrives på følgende måde:

1. betingelse: varmebalance

$$\phi_t - \phi_r - \phi_f = \phi_{cl} = \phi_s + \phi_k$$

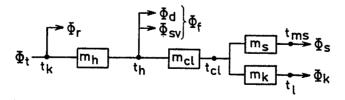
-2 -1 -1 -ct -8 -1

hvor

 ϕ_t er det menneskelige legemes interne varmeproduktion (aktivitetsniveau),

 $\phi_{\rm r}$ varmetabet ved respiration,

 ϕ_f varmetabet ved fordampning fra huden,


 ϕ_{cl} varmetransmission fra hud gennem klæder,

 ϕ_s varmetabet ved stråling fra klædernes ydre overflade, og

 ϕ_k varmetabet ved konvektion fra klædernes ydre overflade.

Ligningen udtrykker således, at den interne varmeproduktion ϕ_t minus varmetabet fra respirationen ϕ_r og fordampning fra huden ϕ_f er lig den varmestrøm ϕ_{ei} , der ledes gennem klæderne, og som derefter afgives fra klædernes ydre overflade ved stråling og konvektion $\phi_s + \phi_k$.

Indføres temperaturer og modstande for de enkelte lag, varmestrømmen skal passere, kan varmebalancen anskueliggøres som vist i figur 1.5.

Figur 1.5

1.3

Heri er

- ϕ_d varmetabet ved vanddampdiffusion gennem huden (ureguleret),
- ϕ_{sv} varmetabet ved svedsekretion (regulerbart),
- t_k indre kropstemperatur,
- th hudens overfladetemperatur,
- t_{cl} beklædningens ydre overfladetemperatur,
- t_{ms} omgivelsernes middelstrålingstemperatur
- t_i den omgivende lufts temperatur, og
- m varmemodstanden.

Middelstrålingstemperatur

Ved middelstrålingstemperaturen t_{ms} i forhold til en person forstås den ensartede temperatur af absolut sorte omgivelser, der vil give samme strålingsvarmeafgivelse fra personen, som i de aktuelle (evt. uensartede) omgivelser, der betragtes.

Middelstrålingstemperaturen kan beregnes af

$$t_{ms} = \sum_{j} \psi_{P-oj} t_{oj}$$

1.4

hvor ψ_{P-oj} er vinkelforholdet mellem person og overflade j, t_{oj} overfladetemperaturen af flade j.

Vinkelforholdet mellem en person og en overflade angiver forholdet mellem den strålingsenergi, personen modtager fra fladen, og hele den strålingsenergi fladen udsender til omgivelserne. Se i øvrigt kap. 3.3 Varmestråling angående vinkelforhold.

Da hudens varmeledningsmodstand m_h (og dermed t_h) og svedsekretionen ϕ_{sv} automatisk kan reguleres, kan der opnås varmebalance inden for vide grænser af de seks hovedvariable nævnt under 1.3.1. Varmebalance for legemet kan derfor ikke være tilstrækkelig betingelse for at sikre termisk komfort.

Der må yderligere betingelser til, og det viser sig her, at komfortopfattelsen er snævert knyttet til hudtemperaturen og svedsekretionen, idet denne sammenhæng dog afhænger af aktivitetsniveauet. Jo højere aktivitet desto lavere hudtemperatur, og højere svedsekretion kræves der for at være i termisk komfort.

På basis af omfattende undersøgelser, Fanger [1], er der fundet følgende funktionelle sammenhæng:

$$t_h = 35,7 - 0,028 \frac{M}{A_{Du}}$$
 (C)

$$\phi_{SV} = 0.42 A_{Du} (\frac{M}{A_{Du}} - 58)$$
 (W)

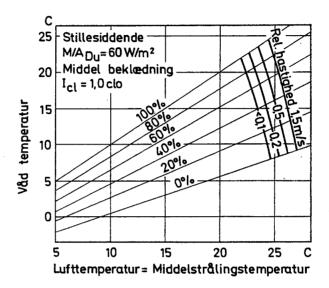
1.6

Disse udtryk indsættes som 2. og 3. komfortbetingelse i varmebalanceligningen, og sammen med indsatte data for varmeudvekslingen mellem legeme og omgivelser, fremkommer den såkaldte betingelsesligning for termisk komfort. Komfortligningen i sin helhed kan bestemmes på grundlag af angivelser i DS/ISO 7730, [5], se appendix D.

1.3.5 Komfortligningen

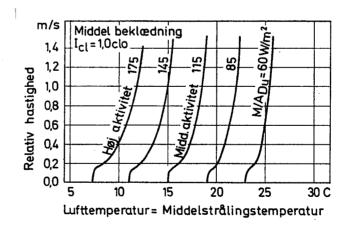
Ud fra komfortligningen kan man for et vilkårligt aktivitetsniveau beregne samtlige kombinationer af lufttemperatur, middelstrålingstemperatur, vanddamppartialtryk og relativ lufthastighed, der vil skabe termisk komfort.

For at forenkle beskrivelsen af de termiske omgivelser, hvor der ofte er forskellig luft- og middelstrålingstemperatur, indføres den operative temperatur t_{op} gennem følgende definition: den operative temperatur er den fiktive, ensartede temperatur af luft og omgivende flader, som vil medføre det samme tørre varmetab for en person, som de faktiske temperaturer af luft og omgivende flader resulterer i.

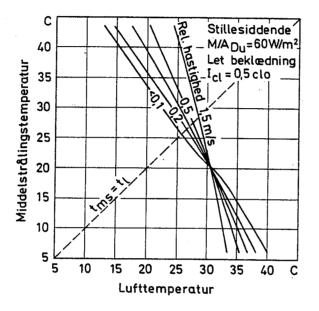

Operativ temperatur

I normale rum, hvor den relative lufthastighed er < 0.2 m/s og forskellen mellem luft- og middelstrålingstemperatur er < 4 C, kan den operative temperatur beregnes som middelværdien af lufttemperaturen og middelstrålingstemperaturen.

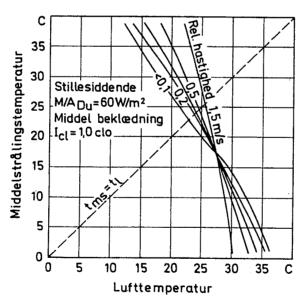
På grundlag af komfortligningen er der i det følgende angivet en række diagrammer (fig. 1.6-1.9), hvor de enkelte klimaparametres indflydelse på den termiske komfort vises.


Kurverne i figur 1.6-1.9 er komfortkurver, d.v.s. kurver gennem punkter (tilstande), der tilfredsstiller komfortligningen, og hvor der kan forventes optimal termisk komfort.

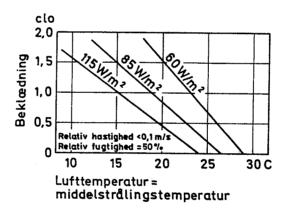
Figur 1.6 Fugtighedens indflydelse på komforttilstanden



Som vist på figur 1.6 har luftens relative fugtighed en meget moderat indvirkning på komforttilstanden. En ændring fra absolut tør til mættet luft nødvendiggør en sænkning af den operative temperatur på 2-3 C.


Figur 1.7 Lufthastighedens indflydelse på komforttilstanden

Figur 1.7 viser lufthastighedens indflydelse ved forskellige aktivitetsniveauer, når beklædningen er på 1,0 clo og den relative fugtighed på 50%. Komfortlinierne har lodret tangent ved v \sim 0 m/s (termisk konvektion) og vendetangent ved v = ca. 0,2 m/s. Forsøges hastigheden fra 0,1 til 0,3 m/s kan dette kompenseres ved at forøge lufttemperaturen 2-3 C.



Figur 1.8 Strålingens indflydelse på komforttilstanden

Figur 1.8 viser strålingens indflydelse. For stillesiddende aktivitet og to værdier af beklædning er der i diagrammerne indtegnet komfortlinier svarende til forskellige lufthastigheder ved 50% relativ fugtighed. Komfortlinierne skærer hinanden, hvor lufttemperaturen er lig med den udvendige temperatur af den beklædte person, da den konvektive varmeafgivelse her vil være nul, uafhængig af hastigheden. Til venstre for skæringspunktet er den udvendige temperatur af den beklædte person højere end lufttemperaturen, og en forøgelse af den relative hastighed vil derfor nødvendiggøre en forøgelse af lufttemperaturen (og/eller middelstrålingstemperaturen). Til højre for skæringspunktet er det modsatte tilfældet, d.v.s. en forøgelse af lufthastigheden vil nødvendiggøre en sænkning af lufttemperaturen, da der sker en konvektiv varmetilførsel til legemet i dette tilfælde. Af diagrammet ses desuden, at middelstrålingstemperaturen omtrent har samme betydning som lufttemperaturen. Det skal understreges, at det i komfortmæssig henseende er ligegyldigt, om varmen afgives ved stråling eller ved konvektion, da det kun er den samlede påvirkning, der kan registreres af personen,

Figur 1.9 Beklædningens indflydelse på komforttilstanden

I tabel 1.3 er angivet komforttilstande samt varme- og vanddampafgivelse fra det menneskelige legeme ved en relativ fugtighed på 50% ved forskellige beklædninger og aktivitetsniveauer. Bestem komforttemperaturen ($t_{ms} = t_v$) for stillesiddende tilskuere (1 clo) i en svømmehal, hvor den relative lufthastighed og luftfugtighed er henholdsvis < 0,1 m/s og 80%

Eksempel 1.1

Figur 1.7 giver $t_{op} = 22.5 \, C$.

Hvilken temperatur vil en stillesiddende badegæst foretrække under samme betingelser?

Tabel 1.3 giver $t_{op} = 28.0 \text{ C}$.

Komforttemperaturen ønskes bestemt for personalet i en forretning, idet middelaktiviteten svarer til gang med hastigheden 1,5 km/h (aktivitetsniveau 85 W/m² (tabel 1.1) relativ hastighed v=1500/3600=0.4 m/s) og beklædningen 1,0 clo. Relativ fugtighed 50%.

Eksempel 1.2

Af figur 1.7 findes $t_{op} = 21 C$.

I et lagerrum skal der af hensyn til de oplagrede varer holdes en lufttemperatur på 14 C og en relativ fugtighed på 50%. Den relative lufthastighed er 0,2 m/s.

Eksempel 1.3

En person med beklædning på 1 clo er beskæftige med stillesiddende arbejde.

For at skabe komfort for personen installeres et infrarød strålelegeme over arbejdspladsen. Bestem den nødvendige middelstrålingstemperatur for komfort.

Af figur 1.8 findes $t_{ms} = 38 C$.

I en industrivirksomhed måles middelstrålingstemperaturen ved en arbejdsplads til 50 C og lufttemperaturen til 25 C (relativ fugtighed 50%). Arbejderen er let påklædt (0,5 clo) og aktivitetsniveauet er 60 W/m^2 .

Eksempel 1.4

Ved en opstilling af en strålingsskærm er det muligt at nedbringe middelstrålingstemperaturen til 36 C. Yderligere foreslås det at installere en ventilator, der øger lufthastigheden omkring personen. Hvor stor skal lufthastigheden være for komfort? Fra figur 1.8 findes 0,6 m/s.

Aktivitet	Beklæd- ning	Relativ luft- hastighed	Kom- forttem-	Δt	Varmeafgivelse fra normalperson (middelstrålingstemp. = lufttemperatur)			ur)	
			peratur		Kon- vektion	Stråling	Forda	mpning	Ialt ca.
		m/s	С	С	W	w	g/h	w	W W
Stillesiddende	Nøgen	< 0,1	28,0	1,0	36	38	40	27	
1,,	0,5 clo	0,3	29,5 25,5	0,6	47 36	29 37	42	20	
$\frac{M}{A_{Du}} = 60 W/m^2$	0,5 00	0,1	27,0	1,6 0,6	47	28	42	28	102
A Du	1,0	< 0,1	23,0	1,0	36	35	44	30	102
	1,0	0,3	24,5	0,6	45	27		30	
= 1 met	1,5 clo	< 0,1	20,5	0,0	36	34	46	31	
	1,5 610	0,3	22,0	0,6	45	26	40	31	
	Nøgen	< 0,1	26,5	1,0	48	52	78	52	
М от пи2	j	0,3	28,0	0,6	60	41			
$\frac{M}{A_{Du}} = 85 W/m^2$	0,5 clo	< 0,1	22,5	1,0	49	50	81	55	
,		0,3	26,0	0,6	60	38			153
= 1,5 met	1,0 clo	< 0,1	19,0	0,9	48	48	84	57	
.,.		0,3	20,5	0,6	60	36		ŀ	
	1,5 clo	< 0,1	15,5	0,9	49	45	86	58	
		0,3	17,0	0,5	60	35	·		
Middelaktivitet	Nøgen	< 0,1	24,0	1,0	59	65			
•		0,3	26,0	0,7	76	51	115	77	
M _ 115 HU-2		0,5	27,0	0,5	83	44	115	''	
$\frac{M}{A_{Du}} = 115 W/m^2$		1,0	28,0	0,4	93	35			
	0,5 clo	< 0,1	19,5	1,0	60	63			
= 2 met		0,3	21,5	0,6	76	48	120	80	
		0,5	22,5	0,5	83	41	120	80	
		1,0	23,5	0,4	92	33			
	1,0 clo	< 0,1	15,0	0,9	60	59			204
		0,3	17,0	0,6	76	45	123	83	
İ		0,5	18,0	0,5	83	38	125	0.5	
		1,0	18,5	0,3	91	30			
	1,5 clo	< 0,1	10,5	0,9	62	57			
		0,3	12,5	0,5	77	43	126	84	
		0,5	13,5	0,4	83	36			
		1,0	14,0	0,3	91	29			
Høj aktivitet	Nøgen	0,3	22,5	0,6	107	67			
		0,5	23,5	0,5	117	60	192	129	
$\frac{M}{A_{Du}} = 175 W/m^2$		1,0	25,0	0,4	130	48			
A_{Du}	1,5 clo	0,3	15,5	0,6	108	64		400	
		0,5	17,0	0,5	119	55	198	133	
= 3 met	1.0 4-	1,0	18,0	0,4	130	44			200
	1,0 cło	0,3	9,0	0,6	110	59	202	125	306
]	0,5	10,5	0,5	120	51	202	135	
	1,5 clo	1,0 0,3	12,5	0,3	131	40 56			
	1,5 010		3,0	0,5	113	56	205	127	
		0,5 1,0	4,0 5,0	0,4 0,3	122 131	47 37	205	137	
	L	1,0	٠,٠	0,3	121	اد			

Tabel 1.3. Skema for termisk komfort samt varme- og vanddampafgivelsen fra det menneskelige legeme ved en relativ luftfugtighed på 50%. For kvinder kan regnes med en varme- og vanddampafgivelse på 80% af den angivne og for børn 60%. Δt angiver hvor meget luft-temperaturen skal sænkes for at kompensere en forøgelse af strålingstemperaturen på 1 C.

1.3.6 Lokale termiske påvirkninger

I det foregående er udelukkende diskuteret den kombinerede effekt af de omgivende termiske klimaparametre på kroppen som helhed. Selv om disse parametre er kombineret på en sådan måde, at personen er i termisk neutralitet, d.v.s. at der hverken ønskes generelt koldere eller varmere omgivelser, er dette ikke altid tilstrækkeligt til at sikre, at man har det behageligt i termisk henseende. Lokale termiske påvirkninger kan medføre et ubehag, selv om kroppen som helhed er i termisk neutralitet.

Lokale påvirkninger fra omgivelserne kan hidrøre fra asymmetriske strålingsfelter og partiel afkøling af legemet forårsaget af en høj lufthastighed (træk).

I et rum med store forskelle mellem overfladetemperaturerne udsættes mennesket for ensidig varmeafgivelse eller tilførsel ved strålingsudveksling med overfladerne. Specielt vil høje temperaturer på loftsflader og lave temperaturer på vægflader (vinduer) give anledning til ubehag.

Til bedømmelse af den asymmetriske strålingspåvirkning, en person udsættes for, anvendes strålingstemperaturasymmetrien Δt_{ps} , der udtrykker forskellen mellen plan strålingstemperatur på to sider af et lille plant fladeelement. Den plane strålingstemperatur t_{ps} er den fiktive ensartede temperatur af omgivende flader, der medfører samme strålingsudveksling med en lille plan flade som de aktuelle omgivelser. Den plane strålingstemperatur beregnes efter (1.4), idet der indsættes vinkelforholdet mellem det lille plane fladeelement og omgivende overflader.

Strålingstemperaturasymmetrien bør være mindre end 5 C i relation til et varmt loft og mindre end 10 C ved kolde lodrette flader. Begge grænser vil være acceptable for 95% af en stor gruppe personer, d.v.s der må forventes mindre end 5% utilfredse, hvis grænserne overholdes.

Selv om ret store temperaturforskelle i omgivelserne ikke synes at medføre ubehag, tyder undersøgelser imidlertid på, at ensidig strålingsafkøling gennem længere tid kan medføre sundhedsStrålingsfelter

Strålingstemperaturasymmetri

Plan strålingstemperatur

mæssige virkninger (ømhed i muskler, fortykkelse af hud).

Temperaturgradient

En forskel i vertikal lufttemperatur mindre end 3 C mellem ankel- og hovedhøjde (0,1 m og 1,1 m over gulv) forventes højst at give 5% utilfredse.

Træk

Træk defineres ofte som en uønsket, lokal konvektiv afkøling af en person. Relativ lufthastighed synes normalt ikke i sig selv at medføre ubehag, blot temperaturen afpasses, svarende til komfortdiagrammerne, så personen er i generel, termisk komfort. Men hastighedsændringer i intervallet 0,1-0,3 m/s kræver ret betydelige temperaturændringer, og hastigheder i dette interval i opholdszonen vil derfor let kunne medføre trækklager på grund af generel diskomfort.

For at opnå ensartede termiske påvirkninger i opholdszonen, tilstræber man normalt at holde lufthastigheden under 0,15 m/s, hvor den konvektive varmeafgivelse er uafhængig af lufthastigheden. Lokale påvirkninger ved nakke og ankler kan dog medføre diskomfort, selv om personen føler sig neutral.

Trækfornemmelser synes til en vis grad at være en funktion af kroppens generelle termiske tilstand. Hvis en person føler omgivelserne lidt for varme, vil en lokal konvektiv afkøling føles behagelig, medens den samme påvirkning vil føles ubehagelig, d.v.s. føles som træk, hvis personen føler omgivelserne for kolde.

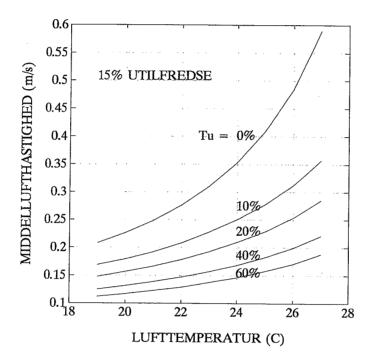
Ubehaget forårsaget af lufthastigheder kan for stillesiddende personer udtrykkes ved [7]

$$PD = (34-t_1)(v-0.05)^{0.62} (0.37v \cdot T_u + 3.14)$$

hvor PD er antal utilfredse som følge af træk (%)

t₁ er lufttemperaturen (C)

v er middellufthastigheden (m/s)


T_u er turbulensintensiteten (%)

Turbulensintensiteten, der er defineret som forholdet mellem standardafgivelsen og middelværdien af lufthastigheden, er et

1.7

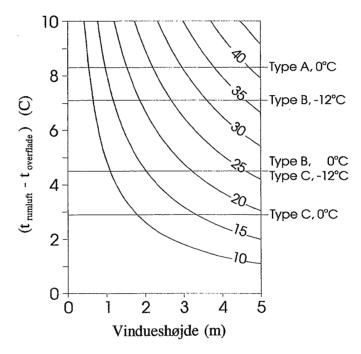
mål for fluktuationerne af lufthastigheden. Turbulensintensiteten er lavest i rum uden mekanisk ventilation, og der kan være stor forskel fra sted til sted i de enkelte rum. I rum ventileret efter opblandingsprincippet er turbulensintensiteten typisk ca. 40%.

I figur 1.10 angives den sammenhæng mellem lufttemperatur, middelhastighed og turbulensintensitet, hvor det kan forventes, at 15% er utilfredse, fordi de oplevere træk lokalt på en del af kroppen.

Figur 1.10 Lufthastighed som funktion af temperatur og turbulensintensitet ved 15% utilfredse

Trækproblemer opstår ofte i forbindelse med kuldenedfald fra væg- eller vinduesoverflader. Kuldenedfald er den termisk generende strømning, der opstår ved en lodret, kold flade, hvor luften i umiddelbar nærhed af fladen bliver afkølet, og på grund af den forøgede massefylde strømmer ned langs fladen. Luftlaget, inden for hvilket strømningen foregår, kaldes grænselaget og såvel strømningens maksimale hastighed som grænselagets tykkelse vokser i strømningens retning. Når kuldenedfaldet når gulvet, vil det afbøjes og strømme ind i opholdszonen. Hastighed og temperatur i den afbøjede stråle langs gulvet afhænger

Kuldenedfald


af den kolde flades højde, temperaturforskellen mellem fladen og rumluften samt den vandrette afstand til fladen.

Risikoen for trækgener ved kuldenedfald fra et vindue kan vurderes ud fra figur 1.11 [8], der viser utilfredshedsprocenten (PD) for en siddende person 0,6 m fra vinduesoverfladen som funktion af vindueshøjden og temperaturforskellen mellem vinduesoverfladen og rumluften ved en lufttemperatur på 22 C. I figuren er temperaturforskellen mellem vinduesoverfladen og rumluften markeret for typiske rudetyper ved udetemperaturer på henholdsvis 0 C og -12 C.

Figur 1.11 Utilfredshedsprocent (PD) 0,6 m fra vindue ved lufttemperaturen 22 C.

A = 2-lags termorude
 B = 2-lags energirude
 med argonfyldning og et lag
 lavemissionsglas
 C = 3-lags energirude
 med argonfyld-

med argonfyldning og 2 lag lavemissionsglas

Virkningen fra kuldenedfaldet kan dæmpes ved at placere en varmekilde under den kolde flade, fx en radiator under et vindue, men det er vigtigt, at den varme flade strækker sig over hele den bredde, hvor kuldenedfaldet finder sted, således at der kan ske en god opblanding mellem den opadgående varme luftstrøm og den nedadgående kolde. I velisolerede bygninger vil der ofte være perioder med så stor intern varmetilførsel, at rummets varmetab dækkes uden brug af radiatorerne, og i denne situation vil der ikke være nogen dæmpning af kuldenedfaldet.

Problemer med træk kan da imødegås ved et rigtigt valg af rudetype. For et standardvindue med en højde på 1,2 m kræver det anvendelse af en 2-lags energirude, og for en facade med et vindue på 2,5 m i højden kræver det anvendelse af en 3-lags energirude, se figur 1.11.

Foruden lokal diskomfort på grund af træk kan der også være risiko for lokal diskomfort på grund af asymmetrisk stråling, hvilket i det enkelte tilfælde må vurderes som angivet under strålingstemperaturasymmetri. For rum med normale vinduesstørrelser og rudetyper som angivet i figur 1.11 vil utilfredshedsprocenten på grund af strålingstemperaturasymmetri dog være mindre end 5%.

1.3.7 Betydning af alder, køn, tilvænning m.v.

Ud over de i 1.3.1 nævnte seks komfortparametre hævdes det ofte, at en række andre faktorer også influerer på, hvilke omgivelser mennesker foretrækker. Det er en almindelig opfattelse, at ældre mennesker gerne vil have det lidt varmere end yngre, at kvinder foretrækker varmere omgivelser end mænd, og at mennesker fra troperne er vænnet til at foretrække et betydeligt varmere indeklima end mennesker fra de tempererede zoner. Endvidere hævdes det ofte, at legemsbygning, døgnrytme, menstruel cyklus og etniske forskelle skulle have indflydelse på de termiske komfortbetingelser.

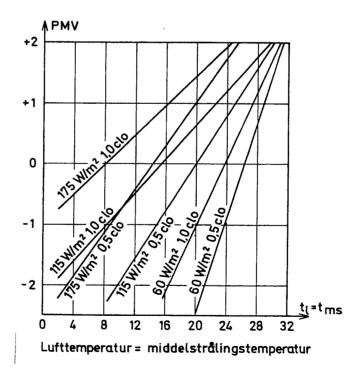
Omfattende undersøgelser synes at vise, at der næppe er nogen af de nævnte faktorer, der har en indflydelse, der er af nogen større praktisk betydning. D.v.s. komfortligningen synes at kunne anvendes uafhængigt af disse faktorer.

1.3.8 Komfortindeks

Er de termiske omgivelser afpasset således, at komfortligningen er opfyldt, vil der være optimal termisk komfort. Gennemsnittet af et stort antal personers subjektive udsagn om, hvordan de befinder sig i termisk henseende vil derfor være: neutral eller 0 efter nedenstående psykofysiske skala.

Figur 1.12 Skala til bedømmelse af termisk indeklima

- 3 koldt
- 2 køligt
- 1 let køligt
 - 0 neutralt
- + 1 let varmt
- + 2 varmt
- + 3 hedt

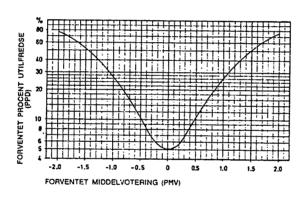

Afviger omgivelsestilstandene fra de optimale, kan der på grund af organismens varmeregulering opnås varmebalance, men ikke komfort. Graden af termisk diskomfort er større, jo mere varmebalancen afviger fra komforttilstanden.

På dette grundlag er der udledt et termisk indeks (Fanger), der knytter ovenstående skala sammen med komfortligningen. Dette indeks angiver den forventede middelbedømmelse, PMV (Predicted Mean Vote), for en stor gruppe personer som funktion af aktivitet, beklædning og de fire klimaparametre.

Figur 1.13 viser nogle eksempler på PMV-værdier beregnet (tilnærmet) efter Fangers definition af PMV. Tabel 1.4 viser ændringen i PMV pr. grad, middelstrålingstemperaturen afviger fra lufttemperaturen.

Figur 1.13

Den forventede grad af diskomfort som funktion af temperaturen


PMV

Tabel 1.4

Ændring i PMV pr. grad, t_{ms} afviger fra t_i.

		$\frac{\delta PMV}{\delta t_{ms}}$	
I_{ct}	60 W/m ²	115 W/m ²	175 W/m²
0,5	0,16	0,08	0,06
1,0	0,12	0,06	0,04

Den forventede middelbedømmelse af et givet klima udtrykker nok den generelle grad af diskomfort for en stor gruppe mennesker, men ikke noget om, hvor mange der er direkte "termisk utilfredse". På grundlag af et stort antal forsøg, er der fundet en sammenhæng mellem PMV og den forventede procent utilfredse, PPD (Predicted Percentage of Dissatisfied) som vist på figur 1.14. En beregningsmæssig bestemmelse af PMV- og PPD-indeks kan ske på grundlag af DS/ISO 7730 [5].

Figur 1.14
Den forventede procentdel termiske utilfredse

Minimumsværdien er 5% og svarer til optimal termisk komfort, fastlagt ved komfortligningen. Det bedste, man kan håbe på at opnå, er således, at kun 5% af personerne i en stor gruppe er utilfredse med det termiske klima. Selv små afvigelser fra det optimale medfører en drastisk stigning i antallet af utilfredse (PPD-værdien).

I almindelighed må det kræves, at de termiske forhold i et

1.8

1.9

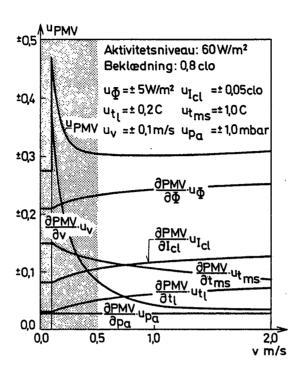
opholdsrum afpasses på en sådan måde, at -0,5 < PMV < 0,5, således at højst 10% forventes at være utilfredse med det termiske klima under forudsætning af, at der ikke yderligere forekommer generende lokale termiske påvirninger. Detaljerede krav til indeklimaet er opstillet i DS474 "Norm for specifikation af termisk indeklima" [9].

1.3.9 Måling af termiske klimaparametre

Ved måling af de termiske klimaparametre tilstræbes traditionelt den største målenøjagtighed på hver enkelt, ofte uden nogen klar viden om, hvor meget denne nøjagtighed betyder for det endelige resultat. Ved hjælp af PMV-indekset kan der foretages en bedømmelse af, hvor nøjagtigt det er nødvendigt og tilstrækkeligt at måle de enkelte parametre, når man ønsker at kende graden af termisk diskomfort med en given nøjagtighed.

PMV-værdien kan udtrykkes som:

$$PMV = f(\phi_t, I_{cl}, t_l, t_{ms}, v, p)$$


Ifølge den klassiske måleteori kan ubestemtheden på PMV (u_{PMV}) findes af følgende udtryk:

$$u_{PMV} = \sqrt{\sum \left(\frac{\delta PMV}{\delta x} u_{x}\right)^{2}}$$

hvor x og u_x er henholdsvis den enkelte parameter og ubestemtheden på denne.

På figur 1.15 er vist de enkelte parametres relative indflydelse for et typisk indeklimatilfælde, nemlig et aktivitetsniveau på 60 W/m^2 og en beklædning på 0.8 clo.

Det ses, at med de her skønnede ubestemtheder (se figur) har aktivitetsniveauet og lufthastigheden størst indflydelse ved de lave lufthastigheder, som er normale. Dernæst kommer middelstrålingstemperatur og beklædning og med mindst indflydelse lufttemperatur og luftfugtighed.

Figur 1.15
De enkelte klimaparametres relative betydning ved måling af termisk komfort

Det skal sluttelig nævnes, at foruden måleinstrumenter til måling af de enkelte klimaparametre findes der instrumenter til måling af termisk komfort udtrykt ved PMV- OG PPD-indeks.

1.4 Atmosfærisk klima

Det atmosfæriske klima er det samlede hele af komponenter i atmosfærisk luft med indvirkning på menneskets overflader, først og fremmest luftvejene. Komponenter, der i dag tillægges praktisk betydning, er luftens indhold af vanddamp, mikroorganismer, partikler, gasser og dampe, lugtstoffer samt atmosfærisk elektricitet, der vil blive omtalt i det følgende, medens luftens temperatur og hastighed er behandlet under termisk klima.

1.4.1 Ventilationsforløbet

Ved ventilation opnås en fortynding af den forurenede luft med friskluft. Forureningskoncentrationen kan beregnes ved opstilling af en stofbalanceligning, hvori udtrykkes, at den ændring, der sker i mængden af forurening i luften, er lig med den mængde, der tilføres, minus den mængde, der bortføres med den udsugede

ventilationsluft. Dette gælder, hvad enten forureningen er varme, fugtighed, støv, gasser eller bakterier, og stofbalanceligningen lyder:

1.10 Stofbalanceligningen

$$Vdc = qd\tau + nVc_i d\tau - nVc d\tau$$

hvor V er rummets volumen i m³

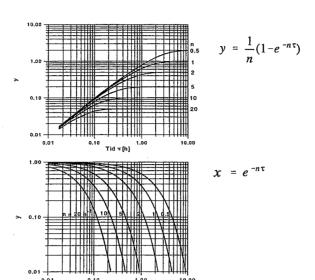
- c koncentrationen af forureningen i rummet i m³/m³, der forudsættes ideel opblanding, således at den udsugede luft også har denne koncentration,
- q tilført mængde af forurening i m³/h,
- τ tiden i timer,
- n luftskiftet i antal gange pr. time, og
- c_i koncentrationen af forureningen i den indblæste luft i m_3/m_3 .

Integreres denne ligning og sættes til tiden $\tau=0$, koncentrationen $c=c_0$, fås det almengyldige udtryk:

1.11 "Fortyndingsligningen"

$$c = \frac{q}{nV}(1 - e^{-n\tau}) + (c_o - c_i)e^{-n\tau} + c_i$$

eller


1.12

$$c = \frac{q}{V}y + (c_o - c_i)x + c_i$$

hvor x og y er afbildet i figur 1.16.

Ofte vil den indblæste luft være helt ren, hvorfor $c_i=0$, ligesom begyndelseskoncentrationen ofte vil være $c_o=0$, herved reduceres 1.12 til

$$c = \frac{q}{nV}(1 - e^{-n\tau}) = \frac{q}{V}y$$

Figur 1.16 Ventilationsforløb i rum

Ligning 1.13 og den øvre del af figur 1.16 angiver således, hvilken koncentration af forureningen, der er i rummet en vis tid, efter at forureningen er begyndt, når ventilationen har kørt hele tiden. Af diagrammet kan umiddelbart aflæses, hvornår den stationære tilstand er nået (ligevægtskoncentrationen). Med et luftskifte på n = 5 opnås ligevægt i løbet af 1 time. Ligevægtskoncentrationen findes af 1.11 ved at lade $\tau \rightarrow \infty$, hvilket giver

$$c = \frac{q}{nV} + c_i$$

1.14 Ligevægtskoncentrationen

Forløbet under udluftningen af et rum fås af 1.11 ved at sætte q (og c_i) lig 0, idet der kun udsuges og ikke tilføres forurening, herved fås

$$c = c_o e^{-n\tau} = c_o x$$

1.15

som vises på nederste del af fig 1.16. Dette udtryk anvendes bl.a. ved beregning af luftskiftet i et rum på grundlag af koncentrations-

1.16

målinger af en sporgas. Er der til tiderne τ_1, τ_2 o.s.v. målt koncentrationerne c_1, c_2 o.s.v., fås af 1.15

$$n = \frac{\ln \frac{c_1}{c_2}}{\tau_2 - \tau_1} = 2,3 \quad \frac{\log \frac{c_1}{c_2}}{\tau_2 - \tau_1}$$

1.4.2 Behovet for ventilation

De menneskelige livsprocesser er betinget af tilførslen af ilt, fra den omgivende luft, til forbrænding af den optagne næring og den dermed forbundne energiomdannelse i legemet.

Luften indeholder ca. 21 vol.% O_2 , 78 vol.% N_2 , 0,03 vol.% CO_2 og mindre mængde af andre luftarter.

Ved åndingen optages en iltmængde svarende til ca. 5 vol.% af den indåndede luft. Efter den biokemiske "forbrænding" i cellerne afgives CO₂ (ca. 4 vol.%) og vanddamp med udåndings- luften.

Lungeventilationen er ca. $0.5 \text{ m}^3/\text{h}$ $(1.4\cdot10^4 \text{ m}^3/\text{s})$ ved stillesiddende aktivitet, stigende til ca. $3.5 \text{ m}^3/\text{h}$ $(9.8\cdot10^4 \text{ m}^3/\text{s})$ ved høj aktivitet. Iltoptagelsen i disse to tilfælde er $0.025 \text{ m}^3/\text{h}$ og $0.175 \text{ m}^3/\text{h}$, medens CO_2 -afgivelsen er $0.02 \text{ m}^3/\text{h}$ og $0.14 \text{ m}^3/\text{h}$.

En stigning af indåndingsluftens (rumluftens) $\rm CO_2$ -indhold fra friskluftens 0,03 vol.% til 0,5 vol.% medfører stigende subjektiv ubehagsfornemmelse, og et $\rm CO_2$ -indhold på 3-5 vol.% giver åndedrætsbesvær. Luftens iltindhold kan falde til 14-15 vol.%, før det giver åndedrætsbesvær for raske mennesker.

For at undgå en stigning af rumluftens CO₂-indhold over 0,5 vol.% må der tilføres en friskluftmængde på henholdsvis

$$\frac{0.02}{0.005 - 0.0003} = 4.3m^3/h \ pr. \ person$$

ved stillesiddende aktivitet og 30 m 3 /h pr. person ved høj aktivitet. Ved komfortventilation skal CO $_2$ -indholdet være betydeligt lavere end 0,5 vol.%.

De nødvendige friskluftmængder til opfyldelse af åndedrætskriteriet vil, bortset fra specielle tilfælde (beskyttelsesrum og andre særligt tætte rum), normalt tilføres en bygnings rum gennem utætheder i bygningskonstruktionen, hovedsageligt ved fuger omkring vinduer og døre. Et egentligt ventilationsanlæg er derfor ikke motiveret ud fra dette krav, men andre forhold kan nødvendiggøre tilførsel af væsentlig større friskluftmængder og dermed anvendelse af mekaniske ventilationssystemer.

1.4.3 Luftfugtighed

Mennesket har ingen sanseorganer, der direkte registrerer luftens fugtighed. Men fysiologisk har luftens fugtighed indflydelse på varmebalancen, som tidligere omtalt, og udtørring af normalt fugtige slimhinder. Dette gælder særligt slimhinderne på læberne, i næsen og øjnene. De øvre luftvejes normale rensningsfunktion er også betinget af tilstedeværelsen af en vis mængde vanddamp i indåndingsluften. Som fysiologisk nedre grænse for luftfugtigheden anbefales et vanddampindhold svarende til 30% relativ fugtighed ved normal rumtemperatur.

For mennesker med sunde luftveje er der ikke fysiologiskhygiejnisk baggrund for i stuetemperaturområdet at anbefale relative fugtigheder større end 60%.

Den til luften afgivne vanddampmængde kan kun fjernes ved ventilation. Overskydende fugttilførsel forbliver i rummet i form af øget luftfugtighed og eventuelt absorption i bygningsmaterialer og inventar eller kondensation på kolde bygningsflader.

Ud fra hygiejniske og økonomiske synspunkter er fugtkondensering på kolde bygningsflader en alvorlig sag. I fugtskadede bygningskonstruktioner forekommer mug- og svampevækst med materialeødelæggelse, dårlig lugt og ofte allergiske reaktioner hos beboerne til følge.

Disse fugtproblemer var tidligere særdeles hyppige i boliger. Med bedre boligudformning i forbindelse med en højere byggestandard (anvendelse af bedre vægisolering og dobbeltvinduer) samt en bedre forståelse for betydningen af og større anvendelse af udluftning har bevirket, at fugtproblemet er stærkt aftagende, således at man nu ofte hører, at indeklimaet i moderne bygninger er for tørt. Med det i Danmark under

normale vejrforhold forekommende vanddampindhold i udeluften og med kendskab til størrelsen af vanddamptilførslen fra tilstedeværende personer og deres gøremål (madlavning, vask m.v.), synes det dog ikke rimeligt at antage, at der for mennesker med sunde luftveje skulle være behov for kunstig befugtning af luften.

Luftens partikelindhold påvirkes af vanddampindholdet, idet hygroskopiske partikler vil tiltage i størrelse ved stigende vanddampindhold og dermed opnå en forøget sedimentationshastighed. Visse iagttagelser kunne tyde på, at luftens højere støvindhold ved lave luftfugtigheder er af betydning for den tørhedsfornemmelse, der kan opleves under sådanne forhold.

1.4.4 Mikroorganismer

Mikroorganismer, levende stof som pollen, sporer, bakterier, virus m.v. spredes i luften på mange måder og fra mange kilder. Da indånding af ganske få levedygtige celler kan resultere i infektioner, kan tilstedeværelse i luften af adskillige arter af mikroorganismer selv i meget små koncentrationer være af epidemiologisk betydning. Blandt de sygdomme, hvor luftbåren transport af smitstoffet er af betydning, kan især nævnes allergier, tuberkulose og virusinfektioner i de øvre luftveje.

For at en sygdom skal kunne overføres via luften som smittevej, må smitstoffet (fx bakterier eller virus) afgives fra smittekilden til luften og her kunne overleve indtil optagelse i et modtageligt individ. Normalt er smittekilden andre mennesker, fra hvilke smitstof tilføres luften fx ved nysen eller hoste, eller ved ophvirvling af støv fra beklædning, sengetøj eller andre tekstiler.

Ved hoste og nysen og i mindre grad ved tale bliver lufthastigheden i luftvejene så høje, at der fra det væskelag, der dækker slimhinderne, afrives dråber indeholdende bakterier og virus, som derved slynges ud i luften. De største af disse er så tunge, at de hurtigt sedimenterer og binder sig til overflader eller støv, hvorved mikroorganismerne opnår mulighed for at overleve i lange perioder, medens der fra mindre dråber på grund af den relativt større overflade vil ske en kraftig vandfordampning og dermed koncentrering af de i dråben opløste stoffer, indtil den

omgivende lufts damptryk er nået. Denne fordampning foregår meget hurtigt, og selv om fugtig luft bevirker en forsinkelse af denne proces og dermed hurtigere sedimentation, synes dette dog ikke at være af en størrelsesorden, der kan være af praktisk betydning i smittebekæmpelse.

De indtørrede dråber sedimenteres så langsomt, at man i praksis kan regne med, at de følger luftens bevægelser, og at de har mulighed for at overleve i hvert fald de første timer efter udspredningen. Den afgørende faktor for mængden af mikroorganismer i luften bliver derfor ventilationens størrelse. Af komfortmæssige hensyn er det ikke muligt at øge ventilationen i en sådan udstrækning, at luftbåren infektion kan kontrolleres. En formindskelse af smitterisikoen opstår først ved luftskifter på 20-50 gange pr. time. Det er derfor kun på steder med meget strenge hygiejniske krav fx operationsstuer, at kraftig ventilation, evt. i forbindelse af ultraviolet bestråling af luften i rummet, anvendes til formindskelse af bakteriekoncentrationen.

Det skal sluttelig nævnes, at jo ikke alle bakterier er smittefarlige, og at risikoen for at blive smittet med luftbåren smitstofalmindeligvis er lille i forhold til smittefaren ved direkte eller indirekte legemlig kontakt.

1.4.5 Luftens indhold af partikler, gasser og dampe

Indeluftens forurening med partikler, gasser eller dampe kan have direkte fysiologisk indvirkning ved deres "giftighed", hvor virkningen kan være kvælende (fx kulilte), bedøvende (fx en del organiske opløsningsmidler (æter)) eller direkte organbeskadigende, hertil kommer stoffer med mulig kræftfremkaldende eller genbeskadigende effekt. Forureningen kan lede til irritation af væv, specielt slimhinder i luftveje og øjne, og æstetisk kan forureningen have betydning ved generende lugt eller tåge samt synlig aflejring af støv. Endelig kan gasser, dampe og støv i visse koncentrationer antændes, ofte ved gnisttænding som følge af statisk opladning, og forbrænde eksplosionsagtigt.

Det meget vigtige spørgsmål om, hvor store forureningskoncentrationer, der kan tolereres ud fra hensynet til menneskers helbred og almenbefindende, er helt overvejende undersøgt og vurderet under rene arbejdshygiejniske aspekter. Forholdene i vore boliger er endnu ikke taget op til systematisk vurdering, selv om der næppe er tvivl om, at luftforureningen her fremviser særlige forhold som følge af den aktivitet, der udfoldes i boligen, den længere eksponeringstid, samt at forureningen rammer mindre modstandsdygtige befolkningsgrupper som fx syge og børn. Problemet forstærkes af den stigende anvendelse af byggematerialer og inventar, der afgiver gasser.

Dansk Indeklima Mærkning I et forsøg på at begrænse belastningen fra stoffer, der afgasses fra de materialer, der indgår i en bygning, indføres fra 1994 en frivilling ordning om mærkning af byggevarers indeklimaegenskaber (Dansk Indeklima Mærkning). Det er valgt, som en start på ordningen, at den sundhedsmæssige vurdering afgrænses til kun at omfatte lugt- og slimhindeirriterende effekter fra kemiske stoffer, der afgasser fra byggevarer.

Grænseværdier

Ved vurdering af den potentielle risiko ved forekomst af luftforureninger har ikke alene den egentlige "giftighed" (såvel akut som kronisk) interesse, men også spørgsmål om, hvorledes stoffet optages, fordeles og udskilles i legemet. Det er i sagens natur vanskeligt at opstille entydige retningslinier for, hvad der kan anses for "forsvarlige" koncentrationer af luftforureninger. Arbejdstilsynet udgiver anvisningen "Grænseværdier for stoffer og materialer", der angiver den største gennemsnitlige koncentration af et stof, som en person uden helbredsmæssig risiko kan indånde i årevis ved en 8 timers arbejdsdag. Grænseværdilisten omfatter flere hundrede stoffer.

c < GV for 'et stof $\frac{c_1}{GV_1} + \frac{c_2}{GV_2} + \dots +$ $\frac{c_n}{GV_n} < 1$

for flere stoffer samtidigt Det må udtrykkeligt fremhæves, at sådanne grænseværdier ikke må betragtes som skarpe grænser mellem farlige og ufarlige koncentrationer. Særlig problematisk er begrebet grænseværdier, når luften som det overordentligt ofte er tilfældet - samtidig er forurenet af flere forskellige stoffer, idet man her må tage hensyn til stoffernes samlede fysiologisk-toksiologiske virkning, og i forbindelse med, at grænseværdierne ofte skal opfattes som gennemsnitsværdier (undertiden dog som absolutte grænser) må gøres opmærksom på, at dette ikke betyder, at sådanne koncentrationer kan tillades overskredet vilkårligt meget i kortere tidsrum.

I tabel 1.5 er givet nogle eksempler på grænseværdier (GV). I stedet for enheden cm³/m³ anvendes ofte betegnelsen ppm (parts per million, d.v.s. volumenmængde pr. 1 million volumenenheder).

GV-værdierne revideres til stadighed, og i konkrete tilfælde må oplysninger indhentes fra Direktoratet for Arbejdstilsynet. Endelig skal nævnes, at Miljøbeskyttelsesloven bl.a. indeholder bestemmelser om begrænsning af luftforurening fra virksomheder.

I et fabrikslokale med rumindhold $V = 1000 \text{ m}^3$ tilføres under driften m = 2,5 kg/h acetonedamp. Bestem det nødvendige friskluftskifte for at overholde grænseværdien.

I tabel 1.5 ses, at GV for acetonedamp er 250 ppm = $250 \cdot 10^{-6} \text{ m}^3/\text{m}^3$.

Idet molekylvægten for acetonedamp (CH₃COCH₃) er M = 3.23+6.1+1.16 = 58, og temperaturen sættes til 25 C, er den tilførte volumenstrøm af forurening

$$q = \frac{m}{M} 22,4 \frac{T}{273} = \frac{2,5}{58} 22,4 \frac{298}{273} = 1,05 m^3/h$$

Ligning 1.14 giver med $c_i = 0$

$$n = \frac{q}{c_s V} = \frac{1,05}{250 \cdot 10^{-6} \cdot 1000} = 4.2h^{-1}$$

Ved udluftning, efter at forureningen er standset, ses af figur 1.16 nederste del, at det tager ca. 1 time, inden koncentrationen er aftaget til 1/100 af begyndelsesværdien (y = 0.01) ved et luftskifte på $n = 5 h^{-1}$, medens det vil tage næsten 10 timer at opnå samme reduktion, hvis lokalet udluftes med et naturligt luftskifte på $n = 0.5 h^{-1}$.

Eksempel 1.5 Nødvendig ventilationsluftmængde

Tabel 1.5 Grænseværdier GV

	GV (Anm.	
	$\frac{cm^3}{m^3}$, ppm	mg stof m³luft	
NH ₃	25	18	ľ
COCI	0,05	0,2	L
Cl ₂	0,5	1,5	
HCl	5	7	L
CO ₂	5000	9000	
co	25	29	
O ₃	0,1	0,2	
H₂S	10	15	
SO ₂	0,5	1,3	
СН,СОСН,	250	600	
C ₆ H ₆	0,5	1,6	H,K
HCN	5	5	Н
(C ₂ H ₅) ₂ O	100	303	
нсно	0,3	0,4	L,K
CHCl ₃	2	10	
CH ₃ OH	200	260	н
CH ₂ Cl ₂	50	105	
CS ₂	5	15	Н
	25	145	
CCL ₂ :CCl ₂	10	70	H,K
CCl ₄	1	6,3	H,K
CHCl:CCl₂	10	55	K
		5	
		3	
		2	
	1 fiber/cm ³		к
	COCl ₂ Cl ₂ HCl CO ₂ CO O ₃ H ₂ S SO ₂ CH ₃ COCH ₃ C ₆ H ₆ HCN (C ₂ H ₆) ₂ O HCHO CHCl ₃ CH ₃ OH CH ₂ Cl ₂ CS ₂ CCl ₂ :CCl ₄ CCl ₄	NH ₃ 25 COCl ₂ 0,05 Cl ₂ 0,5 HCl 5 CO ₂ 5000 CO 25 O ₃ 0,1 H ₄ S 10 SO ₂ 0,5 CH ₃ COCH ₃ 250 C ₆ H ₆ 0,5 HCN 5 (C ₁ H ₃) ₂ O 100 HCHO 0,3 CHCl ₃ 2 CH ₃ OH 200 CH ₄ Cl ₂ 50 CS ₂ 5 CCl ₂ :CCl ₂ 10 CCl ₄ 1 CHCl:CCl ₂ 10	NH ₃ 25 18 COCl ₂ 0,05 0,2 Cl ₂ 0,5 1,5 HCl 5 7 CO ₂ 5000 9000 CO 25 29 O ₃ 0,1 0,2 H ₄ S 10 15 SO ₂ 0,5 1,3 CH ₃ COCH ₃ 250 600 C ₆ H ₆ 0,5 1,6 HCN 5 5 (C ₂ H ₉) ₂ O 100 303 HCHO 0,3 0,4 CHCl ₁ 2 10 CH ₃ COCH ₃ 250 260 CH ₄ Cl ₂ 50 105 CS ₂ 5 15 CCL ₂ :CCl ₂ 10 70 CCl ₄ 1 6,3 CHCl:CCl ₂ 10 55

Koncentrationerne er angivet ved 25 C og 1,013 bar.

- H stoffet kan optages gennem huden,
- L loftsværdi, må ikke på noget tidspunkt overskrides,
- K stoffet har vist sig at have kræftfremkaldende virkning.

1.4.6 Lugt

Begrebet "dårlig lugt" lader sig ikke udtrykke ved nogen bestemt fysiologisk eller fysisk definition. Det er blot en kendsgerning, at samme lugtstof i samme koncentration på samme tid kan opfattes forskelligt af forskellige personer og forskelligt af samme person til forskellige tider. Det er imidlertid klart, at det ikke blot er et endeligt antal bestemte lugtstoffer, der alene er i stand til at fremkalde besværseffekter ved tilstedeværelse i de atmosfæriske omgiver, også almindeligt forekommende lugtstoffer vil for gennemsnitspersonen kunne fremkalde besværsreaktioner, hvis koncentration, ekspositionstid og -frekvens forøges ud over visse grænser. "Dårlig lugt" kan derfor i mangel af bedre defineres som "al uvedkommende lugt".

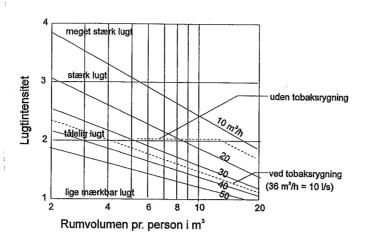
Lugtstofkoncentrationen i et givet rum afhænger af fordampningen af de potentielle lugtkilder, og der kan her skelnes mellem dels en hvilende og dels en bevægelig belastning, idet der ved den førstnævnte forstås fordampningen fra inventar og bygningsdele (gulvbelægninger, klæbestoffer) m.v., og hvor der ved den sidstnævnte forstås lugtafgivelsen fra personers tilstedeværelse og fra anden brugsbelastning af det pågældende rum.

Lugtstofafgivelsen fra den hvilende belastning er ikke nødvendigvis af konstant størrelse hele tiden, men kan tænkes at variere med temperatur, fugtighed og ændringer i overfladehindernes struktur i forbindelse med fordampningsprocesserne (ældning).

Lugtstofafgivelsen fra tilstedeværende personer i et rum kan være stærkt varierende i afhængighed af de pågældende personers aktivitetsniveau, påklædning og personlige hygiejne. Endvidere belastets rumluften kraftigt ved tobaksrygning.

I en blanding af mange lugte har hver af disse ikke samme dominans, idet der virker en indbyrdes maskeringseffekt (parfume), således at den samlede effekt ikke kan bestemmes som summen af deleffekterne. Da yderligere lugtfølsomheden over for visse lugte langt overstiger følsomheden af, hvad den kemiske analyse i dag kan præstere, er objektiv måling af lugttærsklen ikke altid mulig. Erfaringen viser, at lugttærskelen

Bioeffluenter


\

forskydes mod højere værdier, når opholdet i rummet forlænges, d.v.s. at man vænner sig til lugten.

Mange lugtstoffer er højst instabile, det gælder dog ikke tobaksrøg, der er meget stabil og bliver "hængende" i lokalet, og dekomponeres oven i købet til mange ildelugtende stoffer. Tilsvarende forhold synes også at gælde for de naturlige kropslugte. Når man erfaringsmæssigt synes, at lugtintensiteten forøges med stigende temperatur, skyldes dette hovedsageligt, at lugtproduktionen stiger med temperaturen, medes luftfugtigheden i almindelighed ikke har større indflydelse på lugtintensiteten.

Ud fra et miljø-æstetisk synspunkt må rumventilationen være af en sådan størrelsesorden, at rumluften for en person, der træder ind i rummet, i rimelig grad forekommer ren og frisk. På grund af førnævnte omstændigheder kan vurdering af ventilationskravet efter lugtkriteriet kun ske på grundlag af en subjektiv bedømmelse.

I diagrammet, figur 1.17, er angivet den friskluftmængde pr. person (efter Yaglou, 1936), der er nødvendig for at opnå en given lugtintensitet ved ventilation af opholdsrum, hvori der opholder sig voksne personer i hvile. Lugtintensiteten er baseret på første indtryk. Nyere forskningsresultater viser imidlertid, at friskluftbehovet ikke er afhængig af persontætheden i lokalet. Til sammenligning er indtegnet de værdier for friskluftmængder (punkteret), der er vejledende i DIF's Norm for Ventilationsanlæg, DS477 [10].

Figur 1.17 Friskluftmængder

For at kvantificere luftforureningens kildestyrke og den oplevede luftkvalitet har Fanger [11] indført enhederne "olf" og "pol".

Oplevet luftkvalitet

Enheden olf angiver styrken af en forureningskilde. En olf (forkortelse af olfaction) defineres som luftforureningen (bioeffluenter) fra en stillesiddende, standardperson i termisk komfort. Enhver anden lugtende forureningskilde kvantificeres ved antallet af stillesiddende personer (olf), der ville forårsage samme utilfredshed med luftkvaliteten som den aktuelle forureningskilde.

Enheden pol angiver luftkvaliteten (koncentrationen) som oplevet af mennesker. En pol (forkortelse af pollution) er den oplevede luftforurening fra en forureningskilde på 1 olf ventileret med 1 l/s uforurenet luft. Af praktiske grunde anvendes enheden decipol (= 1/10 pol), således at

1 decipol = 0.1 olf/(1/s)

Olf- og decipol-enhederne gør det muligt at anvende forureningsbalancen 1.14 for luften i et rum til bedømmelse af den oplevede luftkvalitet, når kildestyrken og ventilationsluftstrømmen er kendt, 1.17

$$c = 10 \frac{q}{V_l} + c_i$$

hvor c er den oplevede luftkvalitet i rummet (decipol)

c_i er den oplevede luftkvalitet i udeluften (decipol)

q er forureningskildestyrken ialt i rum og ventilationssystem (olf)

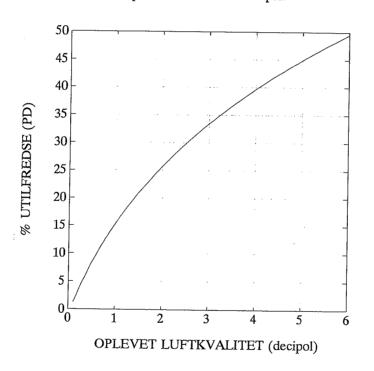
V₁ er den tilførte udeluftsstrøm (l/s).

Forureningsbelastningen kan overslagsmæssigt fastlægges efter tabel 1.6 og den oplevede luftkvalitet i udeluft efter tabel 1.7.

Tabel 1.6 Forureningsbelastning

Olf-værdier for forureningskilder									
Stillesiddende person, 1 met	1 olf								
Aktiv person, 4 met	5								
Aktiv person, 6 met	11								
Ryger, under rygning	25								
Ryger, i gennemsnit	6								
Olf-værdier i kontorer pr. m² gulva	real								
Personer (en person pr. 10 m²)									
Bioeffluenter	0,1 olf/m ²								
Yderligere belastning fra 20% rygere	0,1								
40% rygere	0,2								
60% rygere	0,3								
Materialer og ventilationssystem									
Gennemsnit i eksisterende bygninger	0,4								
Lav-olf bygninger	0,1								
Total belastning i kontorbygninger Gennemsnit i eksist.									
bygninger 40% rygere	0,7								
Lav-olf bygninger ingen rygning	0,2								

Tabel 1.7
Oplevet udeluftkvalitet


Under smog	1 decipol
I byer med moderat luftforurening	0,05-0,3
I bjerge eller på havet	0,01

Antallet af personer udtrykt i procent, der kan forventes at finde luften uacceptabel, når de træder ind i et rum med en given luftforurening udtrykt i decipol er bestemt ved 1.18, der er afbildet i figur 1.18.

$$PD = 395 \cdot \exp(-3.25 \cdot c^{-0.25})$$
 for $c \le 31.3$ decipol $PD = 100\%$ for $c > 31.3$ decipol

1.18

hvor PD er antal utilfredse i % c er den oplevede luftkvalitet i decipol.

Figur 1.18 Procent utilfredse som funktion af den oplevede luftkvalitet i decipol

1.4.7 Atmosfærisk elektricitet

Til en fuldstændig beskrivelse af en lokalitets klima hører en angivelse af luftens elektriske tilstand. De vigtigste luftelektriske klimaparametre er luftens indhold af bevægelige ladningsbærere - ioner - og tilstedeværelsen af elektriske felter. Både udendørs og indendørs gør disse foreteelser sig gældende.

Ioner, der kan være positivt eller negativt ladede, dannes ved sammenslutning af elektromagnetisk bestrålede molekyler. Indendørs sker denne ionisering ved stråling fra radioaktivt stof i luften (fortrinsvis radon og thoron) og i bygningsmaterialerne. Elektriske felter kan stamme fra elektrostatisk opladning af først og fremmest højisolerende gulvbelægninger og vægbeklædninger. Disse opladninger kan opstå ved almindelig færdsel i rummet.

En person, der færdes på et isolerende gulv, oplades også. Er opladningen særlig kraftig, kan der ske udladning (gnist) mellem personen og en jordledende genstand. Dette vil normalt kun give anledning til et vist ubehag, men ikke rumme nogen egentlig risiko.

En opladet person vil være omgivet af et elektrisk felt, der delvis vil filtrere hans indåndingsluft for ioner. Hvis personen er opladet til høje spændinger, kan den resulterende nedsættelse i indåndingsluftens iontæthed blive meget stor.

Den fysiologisk-hygiejniske betydning af det luftelektriske klima er ikke afklaret. Der foreligger dog indtil nu så mange oplysninger, at man kan sige, at de luftelektriske forhold kan udøve en biologisk virkning. De normalt forekommende variationer i luftionkoncentrationen synes ikke at have nogen indflydelse på raske personer, men kan muligvis være af betydning for mennesker med visse sygdomme. På grundlag af den foreliggende litteratur er det ikke muligt at udsige noget om virkningsmekanismen for luftioner, ligesom der ikke foreligger materiale om entydig biologisk virkning.

Ved anvendelse af iongeneratorer kan man i nogen grad forøge den indendørs lufts ionindhold, men store ændringer er normalt ikke praktisk muligt, og kan ikke motiveres ud fra den i dag tilgængelige viden.

Elektrostatiske opladninger bør holdes nede på et sådant niveau, at de ikke udgør nogen gene. Opladningen kan modvirkes ved høj relativ luftfugtighed ($\sim 60\%$) eller fjernes gennem jordforbindelse eller behandling med antistatiske additiver.

1.5 Litteratur

- [1] P.O. Fanger, Therman Comfort, Analysis and Applications in Environmental Engineering, Copenhagen 1970.
- [2] Termisk og atmosfærisk indeklima, redigeret af N. Jonassen, København 1970.
- [3] L. Friberg och H.E. Ronge, Hygien, Stockholm 1967.
- [4] P. Becher, Varme og Ventilation, bind 1-3, København 1971.
- [5] DS/ISO 7730, Termisk miljø. Moderate omgivelser. Bestemmelse af PMV- og PPD-indeks og betingelserne for termisk komfort. Dansk Standardiseringsråd, 1986.
- [6] Indoor Climate, eds. P.O. Fanger, O. Valdbjørn, Danish Building Research Institute, Copenhagen 1979.
- [7] P.O. Fanger, A.K. Melikov, H. Han awa og J. Ring, Air Turbulence and Sensation of Draught, Energy and Buildings, 12, 1988.
- [8] P. Heiselberg, Kuldenedfald og træk, VVS, nr. 9, 1994.
- [9] DS 474, Norm for specifikation af termisk indeklima, Dansk Standard, 1993.
- [10] DS 477, DIF Norm for ventilationsanlæg, 1981.
- [11] P.O. Fanger, Introduction of the olf and the decipol Units to Quantify Air Pollution Percieved by Humans Indoors and Outdoors, Energy and Buildings, 12, 1988.

Kapitel 2

UDEKLIMA

E. J. Funch

2.1 De udeklimatiske påvirkninger

For at kunne skabe det rette indeklima er det nødvendigt at ken-

de de udeklimatiske påvirkninger og tage dem med i beregningerne. Med kendskab til klimaet er det muligt at opstille et dimensioneringsgrundlag for klimatekniske beregninger.

Det er ligeledes muligt på grundlag af middelværdier at beregne energiforbrug og driftsudgifter for et givet anlæg. Endelig har de udeklimatiske påvirkninger betydning for kravene til og udformningen af den klimaskærm, som skal sikre en bygnings brugbarhed.

Dimensioneringsgrundlag Energiforbrug og driftsomkostninger Klimaskærm

2.1.1 Vejr og klima

Der må skelnes mellem begreberne vejr og klima. Forholdene kan udtrykkes ved følgende definitioner:

Vejret er udtryk for atmosfærens forhold på et givet sted til et givet tidspunkt.

Vejr

Klimaet er beskrivelsen af de typiske træk ved atmosfærens forhold på et givet sted eller område, således som de vil fremgå af en række observationer over en årrække.

Klima

De elementer, der indgår i klimaet, er solstråling, lufttemperatur, vindstyrke, lufttryk og nedbør, men det er varmebalancen mellem atmosfæren og jordens overflade, der først og fremmest er bestemmende for klimaet.

Byklima kan betragtes som et særligt fænomen, idet den stærke koncentration af opvarmede bygninger og den større forurening af luften har indflydelse på temperatur- og vindforhold, skydække og nedbør. Som helhed kan det siges, at der i større bysamfund (over 100.000 indb.) er konstateret højere temperatur,

Byklima

mere nedbør og færre solskinstimer end i det omkringliggende land.

Mikroklima

Endelig skal begrebet mikroklima nævnes. Dette betegner klimaet i et meget begrænset område påvirket af rent lokale faktorer. Mikroklima findes fx omkring et bygningskompleks, inde i en kornmark, i en skovbund eller lignende.

2.1.2 Jordatmosfæren

Jorden er som bekendt omgivet af et luftlag, som ved jordoverfladen har følgende normale sammensætning:

Tabel 2.1 Luftens sammensætning

	Vol. %	Vægt %
Kvælstof N ₂	Ca. 78	Ca. 76
Ilt O ₂	- 21	- 23
Argon Ar	- 1	- 1
Kuldioxyd CO ₂	- 0,03	- 0,01
Brint H ₂	- 0,01	- 0,001

Spor af Neon, Krypton og Xenon

I det højere luftlag falder indholdet af kvælstof og iltmængden øges, så der i ca. 200 km's højde er ca. 50% af hver. Endnu højere forsvinder kvælstof og afløses af ilt, som igen successivt afløses af helium og brint.

Vanddamp

De nærmest jorden liggende luftlag indeholder desuden en ikke ubetydelig mængde vanddamp samt urenheder af forskellig art, støv, røg og lugt.

Støv

Støv kan være af naturlig art fx blomsterstøv og sandskorn eller forurening skabt at mennesker, fx støvudslip fra bygge- og fabrikationsvirksomhed, afslidning fra kørebaner og bildæk m.v.

Røg

Røg indeholder dels faste partikler, sod og flyveaske og dels luftformige forbrændingsprodukter som kulilter og vanddamp.

Lugtgener i luften kan opstå ved forrådnelsesprocesser i naturen eller ved afgivelse af lugtstoffer fra industrien.

Lugt

De vejrfænomener, som registreres ved jordoverfladen, foregår i det lag, der kaldes troposfæren. I dette lag er der under normale rolige forhold et temperaturfald på ca. 0,6 C pr. 100 m opefter.

Troposfæren

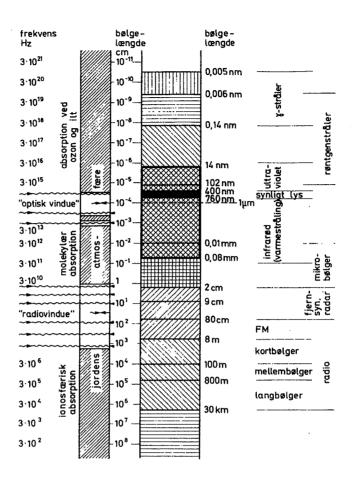
Troposfæren afsluttes i et overgangslag, tropopausen, der er karakteriseret ved, at temperaturfaldet opefter ændres til en konstant temperatur i den nederste del af stratosfæren.

Tropopausen

Tropopausen ligger ved polerne gennemsnitligt i 8 km's højde og ved ækvator i 16-18 km's højde. På vore breddegrader er gennemsnitshøjden 10 km, men den kan variere stærkt fra sted til sted og fra et tidspunkt til et andet.

Stratosfæren

Stratosfæren strækker sig ud i en afstand af 60-80 km fra jordoverfladen. I stratosfærens inderste lag er temperaturen konstand ca. -50 C. Herefter stiger den til ca. +50 C som følge af absorption af ultraviolet stråling i ozonlag, hvorefter temperaturen igen falder, så den ved overgangen fra stratosfæren til jonosfæren er ca. -100 C. Lagene uden for stratosfæren benævnes jonosfæren ud til ca. 1000 km fra jordoverfladen og exosfæren, som ikke har nogen egentlig begrænsning udefter. I jonosfæren sker der en kraftig temperaturstigning, inden temperaturen igen falder mod det ydre rums temperatur.

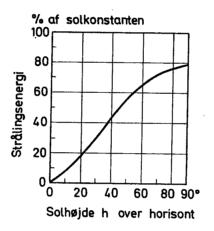

2.1.3 Solstrålingen

Solen kan betragtes som en glødende kugle med en diameter på ca. 10⁶ km og en overfladetemperatur på 6000 K. Den udsender elektromagnetiske bølger af alle bølgelængder i alle retninger i verdensrummet. Heraf rammes jorden af højst en milliarddel af den fra den mod jorden vendende side udstrålede energimængde.

Ved jordatmosfærens yderside udgør solstrålingen på en normalflade gennemsnitligt 1,34 kW/m². Denne størrelse benævnes solkonstanten. På grund af, at jordens afstand fra solen varierer i løbet af året, er solstrålingen ikke konstant.

Solkonstanten

Figur 2.1 Solstråling



Gennem jordens atmosfære sker der en filtrering af solstrålingen, idet joniserede lag af brint i exosfæren og jonosfæren, samt atmosfærens indhold af Ozon, CO₂ og vanddamp hver især tilbageholder stråling af bestemte bølgelængder. Den stråling, der når ned til den faste jordoverflade, fordeler sig stort set på 2 bølgelængdeområder som vist på figur 2.1. De to områder kaldes henholdsvis radiovinduet og det optiske vindue, og det er kun det sidste, der har interesse her, idet dette indeholder den energirige stråling spændende fra infrarød (mørk varmestråling) over synligt lys til den mest langbølgede ultraviolette stråling.

Direkte stråling E_D Diffus stråling E_d Solstrålingen rammer jorden, dels som direkte stråling E_D W/m^2 , og dels som diffus stråling fra himmelrummet E_d W/m^2 .

Den samlede indstråling på vandret benævnes globalstrålingen (E_D+E_d) . Denne ret kortbølgende stråling opfanges af jordoverfladen, hvor der dels sker en refleksison og dels en absorption. Den absorberede stråling opvarmer overfladen, som derefter optræder som strålingskilde. Denne jordstråling består væsentligst af mørke varmestråler, som tilbageholdes af luftens vand- og CO_2 -indhold og delvis tilbagekastes til jorden (drivhuseffekt). I klare, skyløse nætter sker der således en kraftig udstråling fra jorden, hvorved der opstår en stærk afkøling af jordoverfladen.

Intensiteten af den strålingsenergi, som et givet sted når jordoverfladen, er afhængig af solhøjden og vejlængden gennem atmosfæren. Figur 2.2 viser, hvor stor en procentdel af solkonstanten der vil kunne nå jordoverfladen ved forskellige solhøjder.

Figur 2.2 Solintensitet ved jordoverfladen ved forskellige solhøjder

Globalstråling

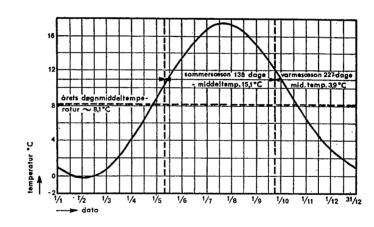
Luftens forureningsgrad har også indflydelse på den resulterende strålingsintensitet. Større byer og industriområder vil give anledning til forøget vanddamp- og støvindhold i luften, hvorved spredning og refleksion af solstrålingen vil forøges. Med det ret blæsende klima i Danmark er større forureninger af luften normalt af kortere varighed og kan derfor ikke indgå som en konstant faktor i klimaberegninger.

I SBI-rapport nr. 135: "Vejrdata for VVS og energi. Dansk referenceår TRY", [2], er anført globalstrålingen på en vandret

flade i Wh/m^2 dag, således som den kan forventes over et års forløb.

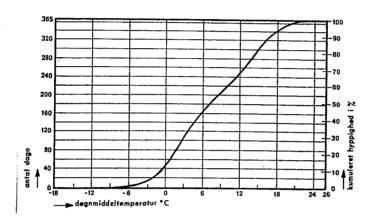
Solstrålingens indflydelse på indeklimaet vil senere blive behandlet i kapitel 5.

Den med solstrålingen tilførte varmeenergi er afgørende for alle øvrige meteorologiske fænomener. Den forskel i varmeabsorption og varmekapacitet, som er mellem land- og havområderne, jordens rotation og strålingsintensitetsforskellen mellem ækvator og polerne, er de væsentligste klimaskabende faktorer.


2.1.4. Lufttemperatur

I Danmark foretager de meteorologiske stationer flere gange daglig en temperaturmåling ved hjælp af kviksølvtermometer, der er anbragt i en fritstående tremmekasse 2,0 m over jorden. Desuden måles døgnets maksimums- og minimumstemperatur. Meteorologisk Institut udsender ugemeddelelser, månedsrapporter og årbøger om de foretagne observationer.

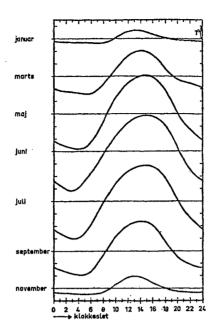
Døgnmiddeltemperatur


På basis af temperaturmålingerne beregnes en døgnmiddeltemperatur. Figur 2.3 viser døgnmiddeltemperaturens variation i København som gennemsnit for årene 1901-1940.

Figur 2.3 Døgnmiddeltemperatur i København som gennemsnit for årene 1901-1940

Der er her foretaget en afgrænsning af en varmesæson, der starter, når udetemperaturens døgnmiddel den 24.9. falder under +12 C, og slutter, når temperaturen om foråret den 8.5. passerer +10 C. I måleperioden 1901-1940 svarer det til en varmesæson på 227 dage med en middeltemperatur på +3,9 C og en sommersæson på 138 dage med en middeltemperatur på 15,1 C. Men år for år kan disse grænser forskydes væsentligt.

Figur 2.4 viser, hvor hyppigt døgnmiddeltemperaturerne optræder. Et punkt på kurven viser hvor mange procent af dagene temperaturen har været under den til punktet svarende.


Figur 2.4 Kumuleret hyppighed af døgnmiddeltemperaturen i København i årene 1901-1940

På figur 2.5 ses døgnvariationen i udetemperaturen for forskellige måneder målt i København over en længere årrække.

Udsvingene i temperatur kan dog blive betydeligt større end her angivet. I tidsrummet fra 1874 til 1942 var den laveste målte temperatur -31 C og den højeste +36 C. Sådanne udsving er imidlertid så sjældne, at man ikke kan tage hensyn til dem ved dimensionering af varme- og luftkonditioneringsanlæg.

Døgnvariation

Figur 2.5 Døgnvariation i udetemperatur i København

Dimensionerende udetemperatur

I de af Dansk Ingeniørforening udarbejdede "Regler for beregning af bygningers varmetab", DS 418, er fastlagt -12 C som dimensionerende udetemperatur. Kun gennemsnitligt hvert 3. år vil der forekomme dage med lavere gennemsnitstemperatur.

For bygninger med kølebehov i sommerperioden må den dimensionerende udetemperatur fastsættes efter de opstillede indeklimakrav. Normalt vil en maksimal udetemperatur på +25 C give passende dækning, se figur 2.4.

Graddage

Som mål for en fyringssæsons varmebehov anvendes begrebet graddage, der er udtrykt som $\Sigma (t_i - t_u)$ over hver dag i varmesæsonen. Indendørstemperaturen t_i sættes til en gennemsnitsværdi 17 C. Den anførte værdi gælder for skygge, og der beregnes ligeledes et gradagstal korrigeret for sol efter formlen:

$$\Sigma (t_i - t_u - 0.58z - 0.02z^2)$$

2.1

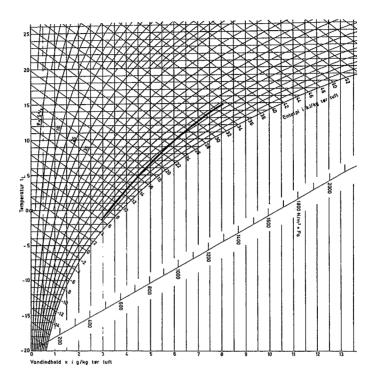
hvor z er antallet af solskinstimer udover 0,5 timer i hvert enkelt døgn.

I tabel 2.2 er måned for måned anført graddagstallene som gennemsnitsværdier for perioderne 1901-40, 1941-80 og 1959-1973. Denne sidste periode er grundlaget for referenceårets udvalgte måneder, hvis graddagstal er anført i de sidste kolonner.

Tabel 2.2 Graddagstal som gennemsnit for forskellige perioder

Periode		1901-1940			1941-1980			1959-1973			Referenceår TRY		
	Skygge	Sol	%	Skygge	Sol	%	Skygge	Sol	%	Skygge	Sol	%	
Januar	512	505	18,0	525	506	18,1	557	544	18,0	546	539	18,7	
Februar	473	452	16,3	480	460	16,5	49t	464	15,9	507	474	17,5	
Marts	459	406	15,3	460	387	15,9	467	400	15,1	446	403	15,3	
April	329	234	9,9	302	200	10,4	321	228	10,4	312	210	10,6	
Мај	63	26	1,6	79	44	2,7	104	52	3,4	45	16	1,5	
Juni	0	0	0,0	1	0	0,0	3	1	0,0	3	0	0,0	
Juli	0	0	0,0	0	0	0,0	2	2	0,0	0	0	0,0	
August	0	0	0,0	0	0	0,0	0	۱۰	0,0	0	٥	0,0	
September	39	19	1,0	36	18	1,2	41	20	1,3	8	0	0,3	
Oktober	259	213	8,3	219	172	7,5	228	182	7,4	208	172	7,1	
November	373	359	13,0	349	328	12,0	374	356	12,2	360	350	12,3	
December	471	465	16,6	455	442	15,7	503	495	16.3	476	460	16,3	
Hele året	2978	2679	100,0	2906	2557	100,0	3091	2744	100,0	2911	2624	100,0	

2.1.5 Luftfugtighed


Kendskab til luftens indhold af vanddamp har betydning i ventilationsteknikken til bestemmelse af friskluftens varmeindhold og beregning af de tilstandsændringer, der ønskes udført af hensyn til indeklimakravene. Den fugtige lufts forhold er behandlet i næste afsnit, og her skal eksempelvis angives en oversigt over fugtighedsforholdene i Odense.

Tabel 2.3
Den relative fugtigheds daglige variation
(Odense) % RF

Tidspunkt	Jan.	Febr.	Marts	April	Maj	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dec.
KI. 08.00	91	90	89	84	77	77	81	85	89	91	92	91
KI, 14.00	88	83	π	69	62	64	66	68	72	77	86	89
KI. 21.00	91	90	89	86	81	83	85	89	90	91	91	92

De sammenhørende værdier af lufttemperaturer og luftfugtighed angiver til enhver tid udeluftens tilstand i ventilationsteknisk henseende som omtalt i kap. 4.1. På figur 2.6 er vist en kurve over den gennemsnitlige døgnmiddeltilstand på basis af 15 års observationer i Kastrup Lufthavn.

Figur 2.6 Gennemsnitlig døgnmiddeltilstand for udeluft

2.1.6 Vind

Vindens styrke og hyppighed har betydning for bygningers konvektive varmeudveksling med omgivelserne. Endvidere har det indflydelse på, i hvor stor udstrækning utætheder ved vinduer og døre giver anledning til naturlig ventilation og dermed varmetab.

Betegnelse Hastighed Bemærkninger forts skala Stille 0 0,0-0,5 Røg stiger lige op. Røgen fra flere skorstene går i 1 Svag luftning 0,6-1,7 samme retning. En vimpel rører sig næppe. { brise vind En vimpel løftes. Et flag hæn-Svag 1,8-3,3 ger slapt ned. 3 Kviste bevæger sig. En vimpel strækkes. Et flag løftes. brise Let 3,4-5,2 4 Grene bevæger sig. Et flag 5,3-7,4 Jævn strækkes. Store grene på træerne bevæger brise { vind Frisk 7,5-9,8 sig. Mindre træer og store grene 6 Kuling eller blæst 9,9-12,4 bevæger sig stærkt. kuling Selv store træstammer bevæger 7 Stiv 12,5-15,2 sig. Nogle blade blæser af. blæst Svage kviste knækkes. kuling Man standser af og til, når man 8 Hård 15,3-18,2 blæst går mod vinden. Man standser ofte, når man går Storm 18,3-21,5 mod vinden. Besværligt at stå Man kan ikke stå uden af og til 10 Svær storm 21,6-25,1 at måtte flytte benene. For at stå må man holde sig 11 Orkanagtig storm 25,2-29,0 Voldsomme ødelæggende vir-Orkan > 29,0 ninger.

Vindstyrken angives oftest efter Beauforts vindskala, der går fra 0 ved vindstille til 12 ved orkan. I tabel 2.4 er vindskalaen angivet sammen med angivelse af tilsvarende vindhastigheder i

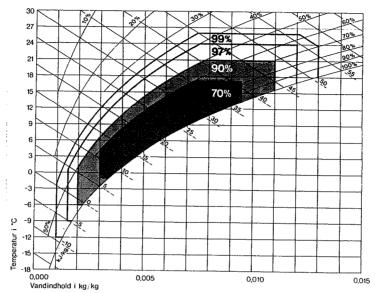
Tabel 2.4
Beauforts vindskala

Beauforts vindskala

m/s og karakteristiske træk for virkningerne af de forskellige vindstyrker.

I tabel 2.5 er middelvindstyrken for de enkelte måneder og hele året anført for 3 lokaliteter i landet.

Tabel 2.5 Middelvindstyrke (Beaufort-tal)


Sted	Jan.	Feb.	Mar.	Apr.	Maj	Juni	Juli	Aug	Sep.	Okt.	Nov	Dec.	Hele året
Herning	2,8	2,5	3,1	2,3	2,1	2,4	1,8	2,0	1,9	2,1	2,2	2,3	2,3
Randers	2,3	2,2	2,2	2,2	2,0	2,2	1,8	1,8	1,8	1,9	2,0	2,1	2,0
Hammershus	3,2	2,9	2,7	2,5	2,2	2,5	2,3	2,4	2,8	3,0	3,3	3,3	2,8

2.1.7 Vejrdata

Statens Byggeforskningsinstitut har i samarbejde med Meteorologisk Institut m.fl. udgivet SBI-rapport 135: "Vejrdata for VVS og energi. Dansk referenceår TRY", 1982. Denne rapport indeholder en samling af vejrdata for et referenceår. Året er fastlagt ved at vælge repræsentative måneder ud af 15-årsperioden fra 1959-1973. Der er angivet månedsmiddelværdier af ialt 21 vejrparametre, døgnmiddelværdier af lufttemperatur, maksimumtemperatur, globalstråling og dugpunkttemperatur samt en række diagrammer over lufttilstande m.m.

Fra rapporten gengives figur 2.7, der i et ix-diagram viser, inden for hvilke områder henholdsvis 70, 90, 97 og 99% af de målte udelufttilstande er beliggende. Områdernes grænser er lagt således, at der både for den absolutte fugtighed og lufttemperaturen er lige mange timer under den laveste grænsekurve og over den højeste grænsekurve, [2].

Referenceårets vejrdata er indkodet på edb og omfatter her samtlige målinger time for time. Referenceåret kan anvendes til beregninger af temperatur og fugtighedsforløb, der er afhængige af de ydre forhold, forventet energiforbrug i bygninger m.v.

Figur 2.7 ix-diagram visende områder, i hvilke 70%, 90%, 97% og 99% af et års vejrobservationer optræder

2.1.8 Luftforureningens indflydelse på klimaet

Er det muligt for menneskeheden at påvirke det globale klima gennem sine aktiviteter? Er det biologiske system sammen med jord-luft-hav-is-systemet så robust, at det kan modstå alle de påvirkninger, der kommer fra menneskeskabte forureninger? Hvilke klimaændringer må forudses at indtræffe i den kommende tid?

Disse spørgsmål er rejst af meteorologer og klimatologer gennem de seneste tiår, og der er gjort mange forsøg på at besvare dem, men helt klare forudsigelser om klimaudviklingen er det meget vanskeligt at fremsætte, idet de forskellige påvirkninger trækker hver sin vej.

Den gennem det sidste århundrede stærkt forøgede afbrænding af fossile brændstoffer kul og olie har tilført atmosfæren store mængder af forbrændingsprodukterne svovldioxyd og kuldioxyd.

 CO_2

Kuldioxyd CO₂ tilføres atmosfæren og indgår i det biologiske system, idet det optages af planter ved fotosyntese og anvendes i stofomsætningen med afgivelse af ilt fra planterne som resultat. Imidlertid har målinger vist, at CO₂-indholdet i atmosfæren er steget fra ca. 295 ppm i 1880 til ca. 330 ppm i 1980 og med stærkt forøget stigningstakt i sidste halvdel af dette århundrede. Forøgelsen accelereres bl.a. af, at der i disse årtier sker en kraftig hugst og afbrænding af større tropiske skovområder for at skaffe mere agerland til den stærkt stigende befolkning.

Da CO_2 ligesom vanddamp absorberer den infrarøde stråling, vil den påviste forøgelse af CO_2 -indholdet give en væsentlig større drivhuseffekt og give anledning til temperaturstigning ved jordoverfladen.

 SO_2

I modsætning til CO₂ vil SO₂-indholdet udvaskes af luften, idet der sker en kemisk omdannelse til svovlsyrling og svovlsyre, der med regnen falder til jordoverfladen. Denne sure regn optræder især med vinden fra de store europæiske industriområder, og der er ved målinger konstateret et kraftigt fald i pH-værdien i de sidste 30 år.

Virkningen af dette SO_2 nedfald er størst i områder med kalkfattig jordbund, og der er i store dele af Skandinavien og Mellemeuropa iagttaget alvorlige virkninger på nåletræsskovene, som visner og har vanskeligt ved at gendannes. Indirekte har SO_2 -forureningen således indflydelse på stigningen i CO_2 -indholdet i atmosfæren.

Freon

I det seneste tiår har man diskuteret virkningen på ozonlagene i stratosfæren af opadstigende forurening fra køle- og spraydrivmidlet Freon og fra kvælstofilter (NO_{X}) fra højtgående flyvemaskiners forbrændingsprodukter. Begge virker som katalysatorer til omdannelse af ozon til ilt og derved mistes evnen til at absorbere ultraviolet stråling fra solen. Denne stråling regnes

for stærkt kræftfremkaldende og vil med sit energiindhold medvirke til opvarmning af jordoverfladen. For tiden mener man, at der op mod år 2000 vil være sket en reduktion af ozonmængden på ca. 10%.

2.1.9 Prognoser om klimaændringer

I det foregående afsnit er der omtalt nogle af de kraftigst virkende menneskeskabte forureninger, men det er ikke dem alene, der har indflydelse på det fremtidige klima. En række naturlige faktorer spiller også ind.

Der er i de seneste år kommet forskningsresultater frem, som antyder, at solstrålingen varierer i forskellige perioder med forskellig virkning. Således havde man i 1600-årene en meget kold periode - den lille istid - og i første halvdel af 1900-tallet var gennemsnitstemperaturen stigende op til 1940'erne og derefter igen faldende. Dette sidste har bl.a. givet sig udslag i, at torsken kom til de grønlandske farvande i 1930'erne, og der i USA var en tørkeperiode omkring 1934.

Anden naturlig påvirkning kommer fra vulkansk aktivitet, der giver en kraftig forøgelse af støvmængden i atmosfæren, og dermed reducerer den mængde af solenergi, som når ned til jordoverfladen.

Under forudsætning af, der ikke sker en væsentlig forøget vulkansk aktivitet i den nærmeste tid og som følge af de føromtalte virkninger af CO_2 -, SO_2 - og NO_x -udslip til atmosfæren, påregnes der som følge af sammenfald med øget solstråling at komme en gennemsnitstemperaturstigning på jorden.

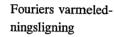
Nogle egne på jorden vil sandsynligvis have gavn af denne temperaturstigning, men som helhed vil ulemperne sikkert være større, idet det må påregnes, at de nuværende ørkenområder vil forøges kraftigt, og der vil kunne opstå nye ørkener, især hvor landbruget arbejder efter primitive metoder.

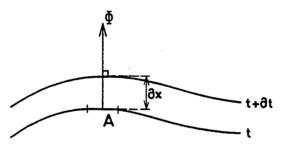
Hvilken betydning disse formodede ændringer vil få for det danske klima er ikke til at sige, men der vil formentlig være tendens til stigende gennemsnitstemperatur og mindre nedbør.

2.2 Litteratur

- H. Reinders: Mensch und Klima, VDI-Verlag, Düsseldorf 1969
- [2] SBI: Vejrdata for VVS og energi. Dansk referenceår TRY. SBI-rapport 135. København 1982.
- [3] The Atmosphere. Endangered and endangering. Kongresrapport udgivet af Margaret Mead og William E. Kellogg. Castle House Publication Ltd. London 1980.

Kapitel 3


VARMETRANSPORT


Carl Erik Hyldgård

3.1 Varmeledning

Varmeledning gennem faste stoffer er af væsentlig betydning for energiforbruget i en bygning. Varmeledning forekommer også gennem stillestående luftarter og væsker.

I 1822 opstillede Fourier den grundlæggende varmeledningsligning, der udelukkende er en erfaringsligning, et empirisk udtryk.

Figur 3.1 Varmeledning gennem faste stoffer

Fouriers ligning forudsætter, at varmeledningen altid foregår i retningen vinkelret på isotermerne og mod faldende temperatur. Varmemængdens størrelse fås af ligningen

$$\Phi = -\lambda \frac{\partial t}{\partial x} A$$

3.1

hvor A er areal i tangentplan til isotermfladen i m²

- Φ er varmestrømmen i W
- λ er varmeledningsevnen i W/mC
- t er temperaturen i C
- x er længde i varmestrømmens retning vinkelret på isotermerne målt i m


Minustegnet angiver, at varmestrøm altid regnes positiv i retning af faldende temperatur, d.v.s. at $\partial t < 0$.

I første omgang vil Fouriers ligning her blive anvendt til at finde alment gyldige regler for temperaturfordeling ved varmeledning. Senere benyttes disse regler så i en række særtilfælde.

Det forudsættes, at der i et fast stof f.eks. en væg er temperaturer, der varierer både med hensyn til tid og sted. Der skæres nu et infinitesimalt prisme ud af denne væg, et prisme med sidelængderne dx, dy og dz som vist på figur 3.2 og med koordinaterne (x, y, z) i hjørnepunktet. Til et bestemt tidspunkt antages, at temperaturen i hjørnet (x, y, z) er t. Temperaturen i hjørnet (x + dx, y, z) kan da tilnærmelsesvis udtrykkes som $t + \frac{\partial t}{\partial x} dx$. Tilsvarende vil temperaturerne i de andre hjørner

kunne udtrykkes som angivet på figuren, idet de led, der er små af anden eller højere orden i TAYLOR-formlen, er udeladt.

Figur 3.2 Prismeudsnit af væg

For at finde effektstrømmen Φ_x , der tilføres prismet gennem venstre sideflade, anvendes Fouriers ligning, som giver:

$$\phi_{(x)} = -\lambda \frac{\partial t}{\partial x} dy dz$$

tilsvarende fås

$$\Phi_{(x+dx)} = -\lambda \left(\frac{\partial t}{\partial x} + \frac{\partial^2 t}{\partial x^2} dx \right) dy dz$$
3.3

Den resulterende effektstrøm, der tilføres prismet i x-aksens retning, bliver da:

$$\Phi_{(x)} - \Phi_{(x+dx)} = \lambda \frac{\delta^2 t}{\delta x^2} dx dy dz$$
3.4

Her er temperaturerne i punkterne (x, y, z) og (x+dx, y, z) taget som repræsentanter for henholdsvis venstre og højre sideflade af prismet, skønt det rettere burde være sidefladernes middeltemperatur, der blev anvendt. Men da temperaturspringet fra et hjørne i venstre sideflade til det tilsvarende hjørne i højre sideflade, når man går i x-aksens retning, altid er = $\frac{\partial t}{\partial x} dx$ bortset fra de led, der er små af ≥ 2 . orden, så vil også forskellen mellem fladernes middeltemperatur være $\frac{\partial t}{\partial x} dx$ og den resulterende varmemængde i 3.3 være rigtig.

For de to andre retninger fås tilsvarende:

$$\Phi_{(y)} - \Phi_{(y+dy)} = \lambda \frac{\partial^2 t}{\partial y^2} dx dy dz$$

$$\Phi_{(z)} - \Phi_{(z+dz)} = \lambda \frac{\partial^2 t}{\partial z^2} dx dy dz$$

Den samlede effektstrøm, der netto tilføres prismet gennem sidefladerne, bliver derfor:

$$\Phi = \lambda \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right) dx dy dz$$
 3.5

Denne effekt, der tilføres prismet, giver anledning til en temperaturstigning fra temperaturen t til temperaturen $t+\frac{\partial t}{\partial \tau} d\tau$, idet der akkumuleres en varmemængde svarende til effekttilførslen Φ udtrykt ved

$$\Phi = dx \cdot dy \cdot dz \cdot \rho \cdot c \frac{\partial t}{\partial \tau}$$
3.6

hvor ρ er stoffets massefylde (kg/m³) og c er dets varmefylde (J/kg·C), τ er tid i s.

De to ligninger 3.5 og 3.6 giver da potentialligningen:

3.7
$$\frac{\partial t}{\partial \tau} = \frac{\lambda}{c \cdot \rho} \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right)$$

Den konstante størrelse $\frac{\lambda}{c \cdot \rho}$ kaldes temperaturledningstallet a (m²/s) så at:

3.8 Potentialligningen
$$\frac{\partial t}{\partial \tau} = a \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right)$$

I det følgende behandles en række særtilfælde af varmeledning, først de simpleste, senere de lidt mere vanskelige.

3.1.1 Stationær, endimensional varmeledning

At en tilstand er stationær vil i denne forbindelse sige, at temperaturerne ikke ændres med tiden, altså er $\frac{\partial t}{\partial \tau} = 0$.

Endimensional varmeledning vil kunne forekomme ved en uendelig stor væg, således at der kun er varmestrøm vinkelret på væggen i f.eks. x-aksens retning.

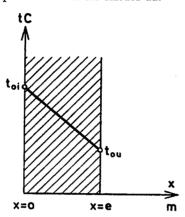
Af 3.8 fås da:

$$a \frac{\partial^2 t}{\partial x^2} = 0$$
, d.v.s. da λ , c og ρ ikke kan være 0:

$$\frac{\partial^2 t}{\partial x^2} = 0$$
 ved to integrationer fås:

$$t = c_1 x + c_2$$

Kaldes væggens tykkelse e og de to overfladetemperaturer t_{oi} og t_{ou} kan følgende randbetingelser anvendes:


$$x = 0$$
 $t = t_{oi}$

$$x = e$$
 $t = t_{out}$

hvorved fås: $c_2 = t_{oi} \ og \ c_1 = \frac{t_{ou} - t_{oi}}{e}$ altså:

$$t = t_{oi} - \frac{t_{oi} - t_{ou}}{e} x$$

Denne ligning fremstiller en ret linie i et t-x koordinatsystem, d.v.s. at temperaturforløbet ser således ud:

Figur 3.3
Temperaturfordeling i væg af ét homogent materiale ved endimensional, stationær varmeledning

3.9

af ligning 3.9 fås:

$$\frac{dt}{dx} = -\frac{t_{oi} - t_{ou}}{e}$$

Indføres dette i ligning 3.2 samtidig med, at arealet dy \cdot dz sættes = A fås:

$$\Phi = \frac{\lambda}{e} (t_{oi} - t_{ou}) A$$

hvor

Φ er varmestrømmen i W

λ varmeledningsevnen i W/m · C

e væggens tykkelse i m

 t_{oi} og t_{ou} væggens overfladetemperaturer i C

A det betragtede areal i m²

Størrelsen $R_m = \frac{e}{\lambda}$ kaldes lagets isolans og har enheden $m^2 \cdot C/W$. Ligning 3.10 kan da også skrives på formen:

3.10

Formel for endimensional, stationær varmestrøm gennem væg af ét materiale

$$\Phi = \frac{t_{oi} - t_{ou}}{R_m} \cdot A$$

Væg med flere lag

Såfremt en væg består af to lag, vil der under forudsætning af, at de to lag er i tæt kontakt, være en fælles temperatur t i skillefladen. Er der stationær varmestrøm og kaldes de to materialelags isolans for R_{ml} og R_{m2} giver 3.11:

$$\Phi = \frac{t_{oi} - t}{R_{m_1}} \cdot A = \frac{t - t_{ou}}{R_{m_2}} \cdot A$$

Heraf fås:

$$R_{m_{2}}(t_{oi} - t) = R_{m_{1}}(t - t_{ou})$$

$$t(R_{m_{1}} + R_{m_{2}}) = R_{m_{2}} \cdot t_{oi} + R_{m_{1}} \cdot t_{ou}$$

$$t = \frac{R_{m_{2}} \cdot t_{oi} + R_{m_{1}} \cdot t_{ou}}{R_{m_{1}} + R_{m_{2}}} \quad \text{indføres i 3.12}$$

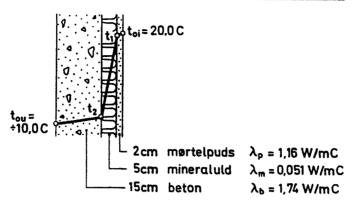
$$\phi = \left(\frac{t_{oi}}{R_{m_{1}}} - \frac{R_{m_{2}} \cdot t_{oi} + R_{m_{1}} \cdot t_{ou}}{R_{m_{1}}(R_{m_{1}} + R_{m_{2}})}\right) A$$

$$\phi = \frac{R_{m_1}t_{oi} + R_{m_2}t_{oi} - R_{m_2}t_{oi} - R_{m_1}t_{ou}}{R_{m_1}(R_{m_1} + R_{m_2})} \cdot A$$

Altså fås for en væg med flere forskellige lag:

3.13

Formel for stationær, endimensional varmestrøm gennem væg af flere materialer


$$\phi = \frac{t_{oi} - t_{ou}}{R_{m_1} + R_{m_2} + \dots} \cdot A$$

hvor $\Phi = varmestrømmen i W$

 t_{oi} og t_{ou} er væggens overfladetemperaturer i C R_{ml} .. er isolansen for de forskellige materialelag e.

$$= \frac{e_1}{\lambda_1} \dots \text{ målt i } m^2 \cdot C/W$$

A = det betragtede areal af væggen i m^2 .

Eksempel 3.1 Eksempel på temperaturfordeling i væg

En ydervæg består af de på skitsen viste materialer. Find varmestrømmen pr. m^2 gennem væggen, når overfladetemperaturerne er målt til henholdsvis - 10,0 C og 20,0 C, og beregn temperaturerne t_1 og t_2 i skillefladerne.

Løsning

Isolansen for de forskellige lag bliver:

$$R_{m_b} = \frac{e_b}{\lambda_b} = \frac{0.15 \, m}{1.74 \, W/mC} = 0.086 \, m^2 C/W$$

$$R_{m_m} = \frac{e_m}{\lambda_m} = \frac{0.05 \, m}{0.051 \, W/mC} = 0.980 \, m^2 C/W$$

$$R_{m_p} = \frac{e_p}{\lambda_p} = \frac{0.02 \, m}{1.16 \, W/mC} = 0.017 \, m^2 C/W$$

Af formel 3.13 fås da:

$$\frac{\Phi}{A} = \frac{t_{oi} - t_{ou}}{R_{m_b} + R_{m_m} + R_{m_p}} = \frac{20,0 + 10,0}{0,086 + 0,980 + 0,017}$$

$$\frac{\Phi}{A} = 27,7 \text{ W/m}^2$$

Af ligning 3.12 fås:

$$\frac{\Phi}{A} = \frac{t_{oi} - t_1}{R_{m_p}} eller$$

$$\underline{t_1} = t_{oi} - \frac{\Phi}{A} \cdot R_{m_p} = 20.0 - 27.7 \cdot 0.017 = \underline{19.5 C}$$

$$t_2 = t_1 - \frac{\phi}{A} \cdot R_{m_m} = 19,5 - 27,7 \cdot 0,980 = -7,6 C$$

Kontrol:

$$t_{ou} = t_2 - \frac{\phi}{A} \cdot R_{m_b} = -7.6 - 27.7 \cdot 0.086 = -10.0 C$$

3.1.2 Varmeledningsevne

Varmeledningsevnen λ , der er defineret i Fouriers varmeledningsligning 3.1, er en konstant, der er karakteristisk for hvert enkelt stof. Men varmeledningsevnen er konstant med modifikationer. For nogle materialer vil den afhænge af temperaturen, for nogle af vandindholdet og for nogle vil λ være afhængig af massefylden.

I tabel 3.1 er anført temperaturafhængige λ -værdier for nogle metaller og metallegeringer.

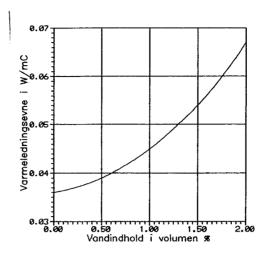
Tabel 3.1 Varmeledningsevne λ for metaller

	λi W/mC ved C							
Metal	0	20	100	200	300	500		
Aluminium	209	209	217	225	220			
Bly	34	34	34	34	34	17		
Jern	88	71	67	63	55	42		
Støbejern		56-64						
Stål	45	45	45	44	43	37		
Rustfri stål		35	36	37				
Kobber	394	394	394	387	380	376		
Bronze		82						
Rødgods		60	71					
Messing		109	146	144	·			
Magnesium	117							

Luft, som spiller en væsentlig rolle for isolering af bygninger, har også en stærkt temperaturafhængig varmeledningsevne. For stillestående luftlag gælder de i tabel 3.2 angivne varmeled ningstal. Det ses af værdierne at luft er et udmærket isoleringsmateriale ved lave temperaturer, men at det er mindre godt til isolering af industriovne m.v.

Tabel 3.2 Varmeledningsevne λ for luft

Temp. C	Varmeledningsevne λ W/mC
0	0,0240
100	0,0305
200	0,0362
300	0,0418
400	0,0469
500	0,0516


Vand og is, der jo også kan indgå i byggematerialer, har ligeledes en meget temperaturafhængig varmeledningsevne. Tabel 3.3 angiver nogle værdier.

Tabel 3.3 Varmeledningsevne for is, sne og vand

Densitet kg/m³	Temperatur C	Varmelednings- evne λ W/mC		
900	0	2,2		
300	0	0,23		
100	0	0,05		
999,8	0	0,557		
995,8	30	0,609		
974,6	75	0,671		
958,1	100	0,681		
	900 300 100 999,8 995,8 974,6	kg/m³ C 900 0 300 0 100 0 999,8 0 995,8 30 974,6 75		

Da vand har en høj varmeledningsevne i forhold til de fleste byggematerialer, vil varmeledningsevnen stige med stigende fugtindhold. I figur 3.4 er vist et eksempel på hvordan isoleringsmaterialers varmeledningsevne kan variere med vandindholdet.

Figur 3.4 Varmeledningsevne for et isoleringsmateriale som funktion af vandindholdet

I Dansk Ingeniørforenings "Regler for beregning af bygningers varmetab", DS 418, er λ -værdier angivet for de forskellige byggematerialer med et vandindhold, som det gennemsnitligt vil forekomme i praksis.

3.1.3 Varmeovergang

Er lufttemperaturen på den ene side af en væg = t_i og på den anden side = t_u antages at:

$$\phi = \alpha_i(t_i - t_{oi})A = \frac{\lambda}{e}(t_{oi} - t_{ou})A = \alpha_u(t_{ou} - t_u)A$$

hvor α_i og α_u er de såkaldte varmeovergangstal målt i W/m²C. Disse varmeovergangstal afhænger af konvektion og stråling ved overfladerne, og en nærmere beskrivelse må derfor ses i afsnittene for konvektion og stråling. Ligning 3.14 udtrykker da, at i det stationære tilfælde må den varmestrøm, der passerer den indvendige overgang fra luft til overflade = varmestrømmen gennem væggen = varmestrømmen, der passerer den udvendige overgang.

Af 3.14 fås:

$$t_{ou} = \frac{\Phi}{\alpha_u \cdot A} + t_u \quad og \quad t_{oi} = t_i - \frac{\Phi}{\alpha_i \cdot A}$$

Indsættes disse værdier i 3.14 haves

$$\Phi = \frac{\lambda \cdot A}{e} \left[t_i - \frac{\Phi}{\alpha_i \cdot A} - \frac{\Phi}{\alpha_u \cdot A} - t_u \right]$$

3.14

$$\frac{e}{\lambda} \cdot \phi = A(t_i - t_u) - \phi \left(\frac{1}{\alpha_i} + \frac{1}{\alpha_u} \right)$$

$$\Phi = \frac{(t_i - t_u)A}{\frac{1}{\alpha_i} + \frac{e}{\lambda} + \frac{1}{\alpha_u}}$$

For en væg med flere lag fås:

$$\Phi = \frac{(t_i - t_u)A}{\frac{1}{\alpha_i} + \frac{e_1}{\lambda_1} + \frac{e_2}{\lambda_2} + \frac{1}{\alpha_u}} = \frac{(t_i - t_u)A}{R_i + R_{m_1} + R_{m_2} + \dots + R_u}$$

3.15
Formel for stationær, endimensional varmetransmission fra rum "i" til rum "u"

hvor Φ er varmestrømmen i W

 t_1 og t_u er (luft) temperaturerne uden for væggen i C A er det betragtede areal i m^2

 R_{m1} , R_{m2} ... er isolansen for de forskellige materialelag =

$$\frac{e_1}{\lambda_1}, \frac{e_2}{\lambda_2}$$
 målt i m² · C/W

R_i og R_u er indvendig og udvendig

overgangsisolans =
$$\frac{1}{\alpha_i}$$
 henholdsvis $\frac{1}{\alpha_u}$ målt i m² · C/W

Indføres det såkaldte transmissionstal U(W/m²·C) ved:

$$U = \frac{1}{\frac{1}{\alpha_i} + \frac{e_1}{\lambda_1} + \frac{e_2}{\lambda_2} + \dots + \frac{1}{\alpha_u}} = \frac{1}{R_i + R_{m_1} + R_{m_2} + R_u}$$

3.16

fås:

$$\Phi = U(t_i - t_u)A$$

3.17

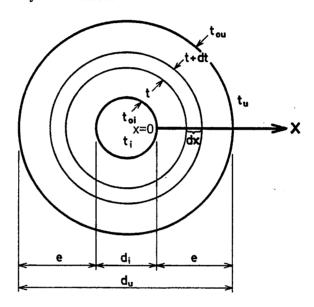
Hvad er indetemperaturen t_i og udetemperaturen t_u i eksempel 3.1, når $R_i = 0.13 \text{ m}^2 \text{ C/W og } R_u = 0.04 \text{ m}^2 \text{ C/W}$?

Eksempel 3.2
Eksempel på temperaturspring ved vægover-flader

Løsning

Af formel 3.14 fås:

$$t_{i} = t_{oi} + \frac{\phi}{\alpha_{i} \cdot A} = 20,0 C + 27,7 W/m^{2} \cdot 0,13 m^{2} C/W$$


$$= 23,6 C$$

$$t_{u} = t_{ou} - \frac{\phi}{\alpha_{u} \cdot A} = -10,0 C - 27,7 W/m^{2} \cdot 0,04 m^{2} C/W$$

Ved overfladerne sker der altså et brat temperaturspring.

3.1.4 Cylindertilfældet

Figur 3.5 Tykvægget rør

Fouriers varmeledningsligning kan anvendes og løses eksakt i endnu et tilfælde, nemlig cylindertilfældet. Hvis et rør, som det på figur 3.5 viste, inden for en længdeenhed af rørets længde har en udvendig overfladetemperatur overalt = t_{oi} , og en indvendig overfladetemperatur overalt = t_{oi} , må varmestrømmen være ens i alle radiære retninger. Kaldes den indvendige diameter = d_i , godstykkelsen = e og den udvendige diameter = d_u giver Fouriers ligning:

$$\phi = -\lambda \frac{\partial t}{\partial x} \cdot A$$

følgende for varmestrømmen gennem den indtegnede ring med radius $\frac{d_i}{2}$ + x og længden L:

$$\Phi = -\lambda \frac{dt}{dx} \cdot \pi (d_i + 2x) \cdot L$$

Adskilles de variable fås:

 $\Phi \cdot \frac{dx}{d_i + 2x} = -\lambda \cdot \pi \cdot L \cdot dt$ Integration mellem grænserne giver:

$$\Phi \int_0^e \frac{dx}{d_i + 2x} = -\lambda \cdot \pi \cdot L \int_{t_{oi}}^{t_{ou}} dt$$

$$\frac{1}{2} \oint \int_{0}^{e} \frac{d(d_{i}+2x)}{d_{i}+2x} = -\lambda \cdot \pi \cdot L \cdot \int_{t_{oi}}^{t_{oi}} dt$$

$$\frac{\Phi}{2} \ln \frac{d_u}{d_i} = -\lambda \cdot \pi \cdot L (t_{ou} - t_{oi})$$

der af hensyn til det følgende omformes til:

$$\Phi = \frac{\pi \left(t_{oi} - t_{ou}\right) \cdot L}{\frac{1}{2\lambda} \ln \frac{d_u}{d_i}}$$
3.18

Indføres også i cylindertilfældet overgangstallene α_i og α_u ved overfladerne fås:

$$\Phi = \alpha_{i} (t_{i} - t_{oi}) \pi d_{i} \cdot L = \alpha_{u} (t_{ou} - t_{u}) \pi d_{u} \cdot L$$

hvoraf:

$$t_{oi} = t_i - \frac{\Phi}{\alpha_i \pi d_i \cdot L}$$
 og $t_{ou} = t_u + \frac{\Phi}{\alpha_u \cdot \pi \cdot d_u \cdot L}$

Disse værdier indsættes i 3.18:

$$\frac{1}{2\lambda} \ln \frac{d_u}{d_i} \cdot \phi = \pi L(t_i - t_u) - \phi \left(\frac{1}{\alpha_i d_i} + \frac{1}{\alpha_u d_u} \right)$$

$$\Phi = \frac{\pi (t_i - t_u) L}{\frac{1}{\alpha_i d_i} + \frac{1}{2\lambda} \ln \frac{d_u}{d_i} + \frac{1}{\alpha_u d_u}}$$
3.19

Består rørvæggen af flere forskellige lag fås blot flere led af typen $\frac{1}{2\lambda} \ln \frac{d_2}{d_1}$, så at:

3.20 Formel for varmetransmission i cylindertil-fældet

$$\phi = \frac{\pi (t_i - t_u) L}{\frac{1}{\alpha_i d_i} + \sum \left(\frac{1}{2\lambda} \cdot \ln \frac{d_2}{d_1}\right) + \frac{1}{\alpha_u d_u}}$$

hvor Φ = varmestrømmen gennem rørvæggen i W

 t_i = temperaturen i mediet, der strømmer gennem røret i C

t_u = temperaturen for rørets omgivelser i C

L = rørlængden i m

 $\begin{array}{ll} \alpha_i &= \text{varmeovergangstallet ved den indvendige rørvæg} \\ &\quad i \ W/m^2 C \end{array}$

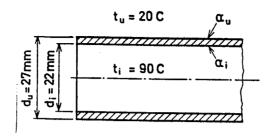
 $\alpha_u = \text{varmeovergangstallet}$ ved rørets udvendige overflade i W/m²C

 d_i = rørets indvendige diameter i m

 $\frac{d_2}{d_1}$ = forholdet ud-/indv. diameter for de pågældende lag

d_u = rørets udvendige diameter i m

λ = varmeledningstal for de forskellige lag målt i W/mC


Indføres transmissionstallet $U_{rør}$ (W/mC) ved:

$$U_{rer} = \frac{\pi}{\frac{1}{\alpha_i d_i} + \sum_{i=1}^{n} \ln \frac{d_2}{d_1} + \frac{1}{\alpha_u d_u}}$$

fåc.

$$\varphi = U_{r \theta r} (t_i - t_u) \cdot L$$

Eksempel 3.3 Eksempel på varmetab fra rør Et M20 stålrør med mål som vist på skitsen gennemstrømmes af vand med temperaturen $t_i=90$ C. Udregn varmetabet pr. m rør, såvel for det uisolerede rør som for røret isoleret med 2 cm mineraluld ($\lambda_m=0.044$ W/mC), når α_u i begge tilfælde = 10.0 W/m² · C, $\lambda_{stål}=58$ W/mC og $\alpha_i=1000$ W/m²/C.

Løsning

Isoleret rør:

$$\begin{split} U_{r\theta r} &= \frac{\pi}{\frac{1}{\alpha_i \cdot d_i} + \frac{1}{2\lambda_{stdl}} \ln \frac{d_u}{d_i} + \frac{1}{2\lambda_m} \ln \frac{d_u + 40mm}{d_u} + \frac{1}{\alpha_u (d_u + 40mm)}} \\ U_{r\theta r} &= \frac{\pi}{\frac{1}{1000 \cdot 0,022} + \frac{1}{2 \cdot 58} \ln \frac{27}{22} + \frac{1}{2 \cdot 0,044} \ln \frac{67}{27} + \frac{1}{10,0 \cdot 0,067}} \\ U_{r\theta r} &= \frac{\pi}{0,05 + 0,00 + 10,33 + 1,49} = 0,265 \ \textit{W/mC} \\ \frac{\Phi}{L} &= U_{r\theta r} (t_i - t_u) = 0,265(90 - 20) = 18,6 \ \textit{W/m} \end{split}$$

Uisoleret rør:

$$U_{r \theta r} = \frac{\pi}{\frac{1}{1000 \cdot 0,022} + \frac{1}{2 \cdot 58} \ln \frac{27}{22} + \frac{1}{10,0 \cdot 0.027}}$$

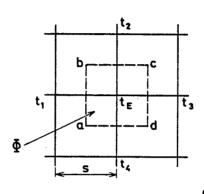
$$U_{r \phi r} = \frac{\pi}{0,05 + 0,00 + 3,70} = 0,84 \text{ W/mC}$$

$$\frac{\Phi}{L} = U_{r \theta r} (t_i - t_u) = 0,84 (90 - 20) = 58,8 \text{ W/m}$$

Af eksemplet ses, at overgangsisolansen mellem vand og rør ligesom ståls isolans er så små størrelser i begge tilfælde, at man roligt kan se bort fra dem.

3.1.5 Stationær, todimensional varmeledning

Såfremt der f.eks. ikke er nogen varmestrøm i z-aksens retning, giver potentialligningen 3.8:


$$\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} = 0$$

Men denne ligning kan desværre ikke løses eksakt, hvorfor der må anvendes tilnærmelsesmetoder. En af disse er relaxationsmetoden.

Relaxationsmetoden

Metoden går ud på, at det tværsnit, man vil undersøge, opdeles af et kvadratnet af passende finhed for at finde knudepunkt-stemperaturerne. Lad en del af et sådant kvadratnet se ud som vist på fig. 3.6.

Figur 3.6 Udsnit af væg

Indlægges kontrolfladen abcd med længden én vinkelret på papiret, kan varmestrømmen $\Delta\Phi$, der passerer kontrolfladen i retning indad mod punkt E findes. Fouriers ligning:

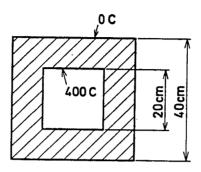
$$\phi = -\lambda \frac{\partial t}{\partial \mathbf{r}} A$$
 omskrives til differensligningen

$$\Phi = -\lambda \frac{\Delta t}{\Delta x} A$$

der anvendes successivt, indtil ønsket nøjagtighed opnås. Anvendes ligningen for de fire flader a-b, b-c, c-d og d-a, fås:

$$\sum \Phi = \lambda \cdot s \cdot 1 \cdot \frac{1}{s} [(t_1 - t_E) + (t_2 - t_E) + (t_3 - t_E) + (t_4 - t_E)]$$

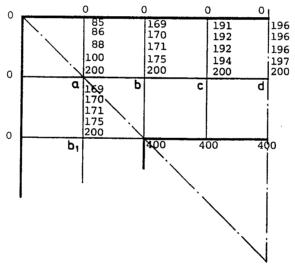
Men forudsættes stationære forhold må temperaturen i punkt E ikke ændre sig med tiden, hvorfor $\Sigma \Phi = 0$, altså:


$$t_E = \frac{t_1 + t_2 + t_3 + t_4}{4}$$
 for ens λ

3.24

3.23

En kvadratisk skorsten som vist på skitsen har overalt en indvendig overfladetemperatur på 400C og overalt udvendig en overfladetemperatur på 0C. Find temperaturerne midt i vangen og beregn skorstenens varmetab pr. m.


Eksempel 3.4 Eksempel på todimensional stationær varmestrøm i skorstensvange

Løsning

Først indtegnes alle de mulige symmetrilinier for at klargøre, at det kun er nødvendigt at undersøge 1/8 af tværsnittet.

Derefter indlægges et kvadratnet, der her gøres groft for ikke at miste overskueligheden.

Næste trin er at gætte på en temperatur i knudepunkterne, her gættes på

 $\frac{0+400}{2}$ = 200C, der er skrevet på figuren ud for hvert knude-

punkt. Derefter anvendes formel 3.24 for hvert knudepunkt for

at kontrollere, om gættet er rigtigt, og det er altid klogt at begynde i et punkt, hvor man har mistanke om, at gættet er mest ved siden af. Begyndes derfor med punkt a fås:

$$t_a = \frac{0 + 0 + 200 + 200}{4} = 100 C$$

Denne værdi skrives over det første gæt i punkt a. For punkt b fås nu:

$$t_b = \frac{0 + 200 + 400 + 100}{4} = 175 \, C$$

I punkt b_I kan der af symmetrigrunde nu også skrives 175, hvorefter punkt c behandles o.s.v. Iterationen fortsættes til den ønskede nøjagtighed er opnået.

Varmetabet kan nu beregnes ved hjælp af ligning 3.23, idet varmestrømmen fra den indvendige overflade til midterfladen er:

$$\frac{\Phi}{L} = \frac{4 \cdot \lambda \cdot s \cdot 1}{s} [(400 - 169) + (400 - 191) + (400 - 196) + (400 - 191) + (400 - 169)]$$

$$\frac{\Phi}{L}$$
 = 4336 · λ pr. m skorsten

fra midterfladen til yderfladen fås:

$$\frac{\Phi}{L} = \frac{4 \cdot \lambda \cdot s \cdot 1}{s} [85 + 169 + 191 + 196 + 191 + 169 + 85]$$

$$\frac{\Phi}{L}$$
 = 4344 · λ pr. m skorsten

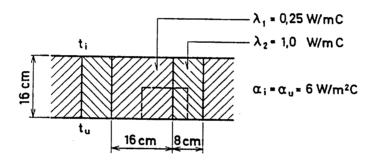
Tages middelværdien af disse to varmestrømme fås:

$$\frac{\Phi}{L} = 4340 \cdot \lambda$$

Det er klart, at den anvendte metodes nøjagtighed forøges med stigende antal inddelinger, og at det dermed forbundne regnearbejde mindskes, når begyndelsestemperaturerne i knudepunkterne skønnes så realistisk som muligt.

Gøres netinddelingen i dette eksempel halv så stor fås følgende temperaturer:

$$t_a = 86$$
 $t_b = 165$ $t_c = 193$ $t_d = 198$

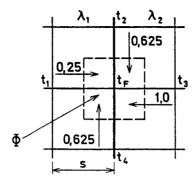

og varmestrømmen
$$\frac{\Phi}{L} = 4300 \cdot \lambda$$

Til sammenligning ville en rund skorsten med $d_i = 20$ cm og $d_u = 40$ cm få:

$$\frac{\Phi}{L} = \frac{\pi (t_{oi} - t_{ou})}{\frac{1}{2\lambda} \ln \frac{d_u}{d_i}} = \frac{\pi (400 - 0)}{\frac{1}{2\lambda} \ln \frac{40}{20}} = 3626 \cdot \lambda$$

Såfremt en væg består af to materialer som vist på skitsen med forskellige varmeledningstal vil der også opstå todimensionale varmestrømme.

Eksempel 3.5
Eksempel på relaxationsmetodens anvendelse ved væg af flere materialer



Ved symmetribetragtning indses, at det kun er nødvendigt at undersøge det med punkteret linie indrammede areal. Dette areal dækkes af et kvadratnet med passende sidelængde, hvorved der opstår tre former for knudepunkter.

- a. Knudepunkt E, der ligger helt i et materiale. Et sådant knudepunkt er behandlet på side 81.
- b. Skillepunkt F, der ligger på grænsen mellem de to materialer.

Knudepunkt E

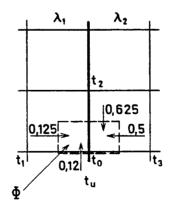
Skillepunkt F

Anvendes
$$\phi = -\lambda \frac{\Delta t}{\Delta r} A f$$
as:

$$0 = \lambda_1 \frac{t_1 - t_F}{s} \cdot s \cdot 1 + (\lambda_1 + \lambda_2) \frac{t_2 - t_F}{s} \cdot \frac{s}{2} \cdot 1 + \lambda_2 \frac{t_3 - t_F}{s} \cdot s \cdot 1 + (\lambda_1 + \lambda_2) \frac{t_4 - t_F}{s} \frac{s}{2} \cdot 1$$

der giver

$$t_{F} = \frac{\lambda_{1} \cdot t_{1} + \frac{1}{2}(\lambda_{1} + \lambda_{2})t_{2} + \lambda_{2} \cdot t_{3} + \frac{1}{2}(\lambda_{1} + \lambda_{2})t_{4}}{2(\lambda_{1} + \lambda_{2})}$$


Indføres værdierne for λ_1 og λ_2 fås:

$$t_F = \frac{0,25 \cdot t_1 + 0,625 \cdot t_2 + 1 \cdot t_3 + 0,625 \cdot t_4}{2,5}$$

 $t_{\rm F}$ kan således betragtes som et vejet gennemsnit af de omliggende knudepunktstemperaturer med vægte som anført på skitsen.

Overfladepunkt o

c. Overfladepunkt o, der ligger på overfladen og samtidig på skillefladen mellem de to materialer.

Anvendes $\phi = -\lambda \frac{\Delta t}{\Delta x}$ A på den punkterede kontrolflade og

kaldes varmeovergangstallet ved overfladen α_n fås:

$$0 = \lambda_1 \frac{t_1 - t_o}{s} \cdot \frac{s}{2} \cdot 1 + \frac{1}{2} (\lambda_1 + \lambda_2) \frac{t_2 - t_o}{s} \cdot s \cdot 1 + \lambda_2 \frac{t_3 - t_o}{s} \cdot \frac{s}{2} \cdot 1 + \alpha_u (t_u - t_o) s \cdot 1$$

$$t_o = \frac{\frac{1}{2}\lambda_1 \cdot t_1 + \frac{1}{2}(\lambda_1 + \lambda_2)t_2 + \frac{1}{2}\lambda_2 t_3 + \alpha_u \cdot t_u \cdot s \cdot 1}{\lambda_1 + \lambda_2 + \alpha_u \cdot s \cdot 1}$$

Er f.eks. $\alpha_u = 6 \text{ W/m}^2\text{C}$, s = 0.02 m, $\lambda_1 = 0.25 \text{ W/m}\text{C}$ og $\lambda_2 = 1.0 \text{ W/m}\text{C}$ fås:

$$t_o = \frac{0,125 \cdot t_1 + 0,625 \cdot t_2 + 0,5 \cdot t_3 + 0,12 \cdot t_u}{1,37}$$

t_o kan altså betragtes som et vejet gennemsnit af de omliggende knudepunktstemperaturer med vægte som anført på skitsen.

Et overfladepunkt, der ikke ligger på skillefladen kan let behandles ved samme formel blot ved at sætte $\lambda_1 = \lambda_2$.

Varmestrømmen gennem væggen findes lettest ved at summere produktet $(t_u - t_o) \alpha_u$ over det ønskede overfladeareal.

3.1.6 Tilnærmelsesmetoder for stationær todimensional varmeledning

Som det fremgår af ovenstående, er relaxationsmetoden temmelig besværlig. Den anvendes derfor kun, når man ønsker at beregne en varmestrøm med stor nøjagtighed. Til almindeligt brug f.eks. når man blot ønsker at finde varmetabet fra et hus for at dimensionere opvarmningsanlægget hertil, findes der to tilnærmelsesmetoder, der udmærket kan anvendes til varmetabsberegninger. De benævnes øvre og nedre grænseværdi [7] (til beregning af kuldebroer benyttes andre metoder).

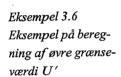
Ved beregning af den øvre grænseværdi U' opdeles bygningsdelen langsgående i homogene og inhomogene lag, og en tilnærmet varmeledningsevne for disse sidste beregnes ved legeringsmetoden, d.v.s. som en vejet middelværdi af varmeledningsevnerne for lagets forskellige partier, λ ':

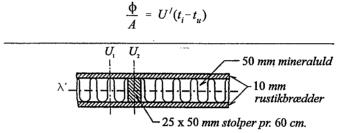
Øvre grænseværdi U' til beregning af todimensional, stationær varmestrøm

$$\lambda' = \frac{A_a \cdot \lambda_a + A_b \cdot \lambda_b + \dots}{A_a + A_b + \dots}$$

$$\frac{1}{U'} = R_i + R_u + \Sigma R_h + \Sigma \frac{e}{\lambda'}$$

hvor R_h er isolansen af homogene lag i m² C/W


e er lagtykkelsen i m


 λ' er vejet middelværdi af inhomogent lags varmeledningsevne (legering)

 A_a , A_b ... er arealer af de inhomogene lag

 λ_a λ_b ... er de tilsvarende varmeledningsevner i W/m C

3.27

For en let skillevæg opbygget som vist på skitsen haves følgende værdier:

$$\frac{1}{\alpha_i} = \frac{1}{\alpha_u} = 0.13 \ m^2 C/W$$

$$\lambda_{stolper} = \lambda_{rustik} = 0.14 \text{ W/mC}$$

$$\lambda_{mineraluld} = 0.044 \ W/mC$$

$$\lambda' = \frac{2,5 \cdot 0,14 + (60 - 2,5)0,044}{60} = 0,048 \ \textit{W/mC}$$

(for laget med mineraluld og stolper)

$$U' = \frac{1}{\frac{1}{\alpha_i} + 2 \cdot \frac{e_r}{\lambda_r} + \frac{e}{\lambda'} + \frac{1}{\alpha_u}}$$

$$U' = \frac{1}{0,13 + 2 \cdot \frac{0,01}{0,14} + \frac{0,05}{0,048} + 0,13} = 0,69 \ W/m^2 C$$

Ved beregning af nedre grænseværdi $U^{\prime\prime}$ opdeles bygningsdelen i sektioner, der hver for sig alene indeholder homogene lag, og hver sektion beregnes ud fra det endimensionale tilfælde (tænkte varmetætte skilleflader mellem sektionerne).

Nedre grænseværdi U'' til beregning af todimensional, stationær varmestrøm

$$U_1 = \frac{1}{\frac{1}{\alpha_i} + \frac{e}{\lambda_1} + \frac{1}{\alpha_u}} \quad og \quad U_2 = \frac{1}{\frac{1}{\alpha_i} + \frac{e}{\lambda_2} + \frac{1}{\alpha_u}}$$

$$U'' = \frac{A_1 U_1 + A_2 U_2 + \dots}{A_1 + A_2 + \dots}$$

3.29

hvor A_1 og A_2 er arealerne af sektionerne i m²

 $U_1,\,U_2\,\dots\,$ er de tilsvarende transmissionskoefficienter i W/m²C

og varmestrømmen pr. m²:

$$\frac{\Phi}{A} = U''(t_i - t_u)$$

3.30

For den samme lette skillevæg som i eksempel 3.6 fås:

$$U_{I} = \frac{1}{\frac{1}{\alpha_{i}} + 2 \cdot \frac{e_{r}}{\lambda_{r}} + \frac{e_{m}}{\lambda_{m}} + \frac{1}{\alpha_{u}}} = \frac{1}{0.13 + 2 \cdot \frac{0.01}{0.14} + \frac{0.05}{0.044} + 0.13}$$

$$U_1 = 0.65 \text{ W/m}^2 \text{C}$$

$$U_{2} = \frac{1}{\frac{1}{\alpha_{i}} + 2 \cdot \frac{e_{r}}{\lambda_{r}} + \frac{e_{s}}{\lambda_{s}} + \frac{1}{\alpha_{u}}} = \frac{1}{0.13 + 2 \cdot \frac{0.01}{0.14} + \frac{0.05}{0.14} + 0.13}$$

$$U_2 = 1.32 \ W/m^2 C$$

$$U'' = \frac{(60-2.5)U_1 + 2.5 \cdot U_2}{60} = \frac{57.5 \cdot 0.65 + 2.5 \cdot 1.32}{60}$$

$$U'' = 0.68 \text{ W/m}^2 \text{C}$$

Som det fremgår af de to eksempler ligger resultaterne af de to metoder ikke langt fra hinanden ved denne konstruktion. Men hvis der indgår en "kuldebro" i form af en stålbjælke eller lignende, kan de to metoder give noget forskellige resultater. Derfor anvendes udtrykket:

$$U = \frac{2U'U''}{U' + U''}$$

til den endelige fastsættelse af varmestrømmen, idet dette har vist sig at give en passende vægtet middelværdi (middelværdien af isolanserne for øvre og nedre grænseværdi).

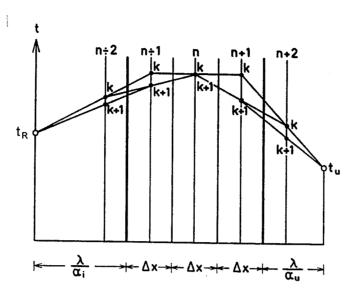
3.1.7 Instationær varmeledning

I tilfældet instationær varmeledning ændres varmestrømmen både med hensyn til tid og sted. Her er derfor størrelsen

$$\frac{\partial t}{\partial \tau} \neq 0$$
 i ligningen 3.8:

$$\frac{\partial t}{\partial \tau} = a \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial Y^2} + \frac{\partial^2 t}{\partial z^2} \right)$$

En matematisk eksakt løsning af denne ligning er imidlertid meget vanskelig og kun mulig under forudsætninger, der ikke er til stede i praksis. Derfor må der anvendes tilnærmelsesmetoder og af disse skal her blot anføres én, nemlig: Schmidts metode.


Schmidts metode

Ved instationære, endimensionale varmestrømme, giver ligning 3.8

$$\frac{\partial t}{\partial \tau} = a \frac{\partial^2 t}{\partial x^2}$$

Denne ligning omskrives til differensligningen:

$$\frac{\Delta t}{\Delta \tau} = a \frac{\Delta^2 t}{\Delta x^2}$$

Figur 3.7 Schmidts metode for væg

3.32

Metoden går nu ud på, at væggen indeles i lag af tykkelsen Δx som vist på figur 3.7, og at temperaturen for disse lag opfattes som en temperatur midt i laget. Lagene har på figuren fået numrene n-1, n og n+1. Tiden inddeles i intervaller af længden $\Delta \tau$, og det antages, at temperaturerne til tidspunktet k er som vist. ligning 3.31 kan da skrives således:

$$\frac{t_{n,k+1} - t_{n,k}}{\Delta \tau} = \frac{a[(t_{n+1,k} - t_{n,k}) - (t_{n,k} - t_{n-1,k})]}{\Delta x^2}$$

$$t_{n,k+1} = t_{n,k} + \frac{a \cdot \Delta \tau}{\Delta x^2} [t_{n+1,k} - 2t_{n,k} + t_{n-1,k}]$$

Såfremt valget af $\Delta \tau$ og Δx foretages så snildt, at størrelsen

$$\frac{a \cdot \Delta \tau}{\Delta x^2} = \frac{1}{2} \text{ fås:}$$

$$t_{n,k+1} = \frac{1}{2} (t_{n+1,k} + t_{n-1,k})$$
 3.33

der udtrykker, at den nye temperatur i et lag skal findes som middeltallet mellem de gamle temperaturer i de to nabolag. Grafisk ligger således temperaturen til tidspunktet k+1 på forbindelseslinien mellem de to nabopunkter til tidspunktet k, som figur 3.7 viser.

Randbetingelser

Ved vægoverfladerne må der foretages en substitution, idet man erstatter overgangsisolansen $1/\alpha_i$ med et fiktivt materialelag med samme λ -værdi som væggen og med tykkelsen λ/α_i , således at:

$$1/\alpha_i = e_{rand}/\lambda \Rightarrow e_{rand} = \frac{\lambda}{\alpha_i}$$

Dette lags overfladetemperatur sættes lig med rumtemperaturen t_R . Der må da gælde følgende henholdsvis for det fiktive lag og de virkelige forhold:

3.34

$$\Phi = -\lambda \left(\frac{\partial t}{\partial x}\right)_{rand} \cdot A = -\alpha (t_o - t_R)A$$

hvor $\left(\frac{\partial t}{\partial x}\right)_{rand}$ er temperaturliniens hældning i det tænkte stof,

mens α er varmeovergangstallet ved overfladen, t_o = overfladetemperaturen og t_R = omgivelsestemperaturen.

3.34 giver:

3.35

$$\left(\frac{\partial t}{\partial x}\right)_{rand} = \frac{t_o - t_R}{\frac{\lambda}{\alpha}}$$

d.v.s., at alle tangenter til temperaturkurven ved overfladen går gennem punktet $\left(-\frac{\lambda}{\alpha}, t_R\right)$. På figur 3.7 er konstruktionen indtegnet.

Overfladetemperaturen t_{o} findes blot hvor temperaturlinierne skærer overfladen. Varmestrømmen i delperioderne kan da findes som:

3.36

$$\Phi = \alpha \cdot A (t_o - t_R)$$

3.2. Konvektion

I dette afsnit vil varmeveksling mellem en flade og det omgivende luftformige eller flydende medium blive behandlet. Denne varmeveksling finder sted ved, at væggen optager varme fra eller afgiver varme til det forbistrømmende medium, hvilken form for varmeovergang kaldes konvektion. Mediets strømning kan være væsken eller gassen påtvunget, eller den kan fremkomme ved temperaturforskellen mellem flade og medium, som f.eks. varmeafgivelsen fra en radiators overflade til rummets luft. Er strømningen påtvunget, benævnes varmevekslingen: varmeovergang ved tvungen konvektion. Er strømningen forårsaget alene af en temperaturforskel, benævnes den: varmeovergang ved fri konvektion eller varmeovergang ved termisk konvektion.

I begge tilfælde finder varmevekslingen sted i et tyndt lag af mediet ved legemets overflade, og dens størrelse er afhængig af varmeledningsevnen og den konvektive transport, der finder sted i dette grænselag. Det opnåede varmeovergangstal α_k er derfor bestemt af grænselagets tykkelse og den art af strømning, der hersker langs overfladen. I tabel 3.4 er angivet størrelsesorden for α_k i forskellige tilfælde.

Tabel 3.4 Størrelsesorden for varmeovergangstallet α_k

	Fri konvektion α _k W/m² C	Tvungen konvektion α _k W/m² C
Gasser Vand	3 - 20 100 - 600	10 - 100 500 - 10.000
Kogende vand Træge væsker	1.000 - 20.000	50 - 500

3.2.1 Differentialligninger for strømning og varmeovergang

Helt alment lader varme- og stoftransporten sig beskrive ved de tre følgende ligninger. Udledelse af ligningerne forudsættes bekendt fra strømningsteori, og det vil her føre for vidt at gentage dem. Bevægelsesmængdeligningen, der er en anvendelse af Newtons 2. lov $F = m \cdot a$ for et væskeelement med den kinematiske viscositet υ , er her angivet for strømningen i x-retningen. Sidste led repræsenterer opdriftens virkning, hvor t_{ref} er en referencetemperatur.

3.37 Bevægelsesmængdeligningen

$$v_{x} \frac{\partial v_{x}}{\partial x} + v_{y} \frac{\partial v_{x}}{\partial y} + v_{z} \frac{\partial v_{x}}{\partial z} =$$

$$-\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^{2} v_{x}}{\partial x^{2}} + \frac{\partial^{2} v_{x}}{\partial y^{2}} + \frac{\partial^{2} v_{x}}{\partial z^{2}} \right) - g \beta (t - t_{ref})$$

Energiligningen eller varmebalancen udtrykker, at den ved strømningen forårsagede varmetransport = varmeledningen:

3.38 Energiligningen

$$v_x \frac{\partial t}{\partial x} + v_y \frac{\partial t}{\partial y} + v_z \frac{\partial t}{\partial z} = a \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right)$$

For varmestrømmen umiddelbart ved vægoverfladen gælder:

3.39 Differentialligningen

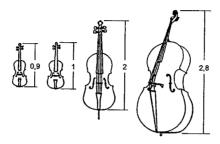
$$\alpha_k (t_o - t_m) = -\lambda \left(\frac{\partial t}{\partial x}\right)_{overfl.}$$

hvor t_o - t_m er temperaturforskellen mellem overfladen og mediet, og x er retningen vinkelret på overfladen.

Ligningssystemet er ret kompliceret og indeholder mange variable, derfor er det kun muligt at løse det i nogle få og simple tilfælde. Men det er muligt at løse det ved hjælp af modellovene.

Modeller

Grundtanken bag modellovene er følgende:


Når man ikke kan integrere og løse det opstillede ligningssystem, lader man naturen udføre integrationen, idet man foretager målinger over et aktuelt problem på en model og derefter overfører resultaterne til alle med modellen geometrisk og fysisk ligedannede systemer. Før metoden anvendes på de opstillede ligninger, skal den her belyses ved et eksempel.

Et eksempel på fysisk ligedannede systemer er strygeinstrumenterne:

violin, bratsch, cello og kontrabas som vist på figur 3.8.

Eksempel 3.8 Modelloven for strygeinstrumenter

Figur 3.8 Modeller

Den geometriske ligedannelse ses ved første blik. Den fysiske ligedannelse beskrives i det følgende.

Total Relativ Tone for Frekvens længde længde højeste Ηz cm streng e^{II} Violin 35,5 0,9 660 Bratsch 40 1 a^{I} 440 79 Cello 2 220 а Kontrabas 110 2.8 G98

* ifølge Stradivarius

Antages nu f.eks., at kun bratshen, hvis højeste streng er a¹, 440 Hz, var opfundet. Man kunne da, for at få mere fyldig musik, ønske instrumenter med samme klangfarve, men med dybere toner. For at opnå dette, kunne strengspændingen på bratschen mindskes, men herved ville strengene sandsynligvis blive for slappe at spille på, og desuden ville instrumentets klangbund være for lille til de dybe toner. Men bygges et instrument, der er dobbelt så stort (cello), vil svingningsfrekvensen forudsat samme strengmateriale og samme strengspænding blive halveret (højeste streng a, 220 Hz), og dermed bliver tonehøjden en oktav dybere. Klangbunden er nu tilpasset toneomfanget.

Kontrabassen skal igen være større end celloen for at nå endnu dybere toner, og violinen med sine høje toner mindre end bratschen. Den fysiske ligedannelse bestemmes af strengmateria-

Tabel 3.5 Karakteristika for strygeinstrumenter

lets massefylde ρ , strengspændingen σ og svingningsfrekvensen f. Disse størrelser skal derfor optræde i en modelligning for strygeinstrumenter, og denne skal give en for alle strygeinstrumenter af denne art ens talstørrelse. Den søgte talstørrelse fås af differentialligningen for svingende strenge:

$$\frac{\partial^2 \omega}{\partial \tau^2} = \frac{\sigma}{\rho} \cdot \frac{\partial^2 \omega}{\partial x^2}$$

der ved hjælp af modelloven (se senere) giver:

$$\frac{\iota^2 \cdot \rho \cdot f^2}{\sigma} = konstant$$

hvor l er strenglængden.

For alle strygeinstrumenter er konstanten = 0,2. Omvendt betyder dette kendetal en arbejdsforskrift for instrumentbyggeren, som han nødvendigvis må overholde.

3.2.2 Modelloven for varmeovergang

Og nu tilbage til de opstillede ligninger for varmeovergang, hvor det var meningen at måle på en model for derved at finde en partikulær løsning til de opstillede differentialligninger. For at kunne overføre denne løsning til et med modellen ligedannet system, må der mellem de fysiske størrelser, der indgår i differentialligningerne, herske samme forhold f. Betegnes model med index m og det andet system uden index bliver:

For længde L (x,y,z)	$f_L = L_m/L$
for hastighed (v _x ,v _y ,v _z)	$f_v = v_m/v$
for tryk p	$f_{_{p}}=p_{_{m}}\!/p$
for massefylde ρ	$f_{ ho} = \rho_{m}/\rho$
for kinematisk viscositet v	$f_v = v_m/v$
for temperatur t	$f_t = t_m/t$
for temperaturledningstal a	$f_a = a_m/a$
for varmeovergangstal α_k	$f_{\alpha} = \alpha_{km}/\alpha_{k}$
for varmeledningstal λ	$f_{\lambda} = \lambda_m/\lambda$

Opskrives nu energiligningen 3.38 for modellen, idet der indføres

$$v_{x,m} = f_v \cdot v_x$$
, $t_m = f_t \cdot t$ o.s.v. fås:

$$\frac{\mathbf{f}_{\mathbf{v}} \cdot \mathbf{f}_{\mathbf{t}}}{\mathbf{f}_{\mathbf{L}}} \left(\mathbf{v}_{\mathbf{x}} \frac{\partial t}{\partial x} + \mathbf{v}_{\mathbf{y}} \frac{\partial t}{\partial y} + \mathbf{v}_{\mathbf{z}} \frac{\partial t}{\partial z} \right) = \frac{\mathbf{f}_{\mathbf{a}} \cdot \mathbf{f}_{\mathbf{t}}}{\mathbf{f}_{\mathbf{t}}^{2}} \cdot a \left(\frac{\partial^{2} t}{\partial x^{2}} + \frac{\partial^{2} t}{\partial y^{2}} + \frac{\partial^{2} t}{\partial z^{2}} \right)$$
3.40

idet
$$\frac{\partial (f_t \cdot t)}{\partial (f_L \cdot x)} = \frac{f_t}{f_L} \cdot \frac{\partial t}{\partial x}$$
 og

$$\frac{\partial^2 t_m}{\partial x_m^2} = \frac{\partial \left(\frac{\mathbf{f_t}}{\mathbf{f_L}} \cdot \frac{\partial t}{\partial x}\right)}{\mathbf{f_L} \cdot \partial x} = \frac{\mathbf{f_t}}{\mathbf{f_L^2}} \cdot \frac{\partial^2 t}{\partial x^2}$$

Skal nu de to systemer være ligedannede, må ligning 3.38 for det virkelige system være identisk med ligning 3.40 for modellen, d.v.s. at den ene ligning skal kunne fremkomme af den anden ved multiplikation. Herved fås:

$$\frac{f_{v} \cdot f_{t}}{f_{L}} = \frac{f_{a} \cdot f_{t}}{f_{L}^{2}} \text{ eller}$$

$$f_v = \frac{f_a}{f_L} \text{ d.v.s.}$$

$$\frac{\mathbf{v}_{\mathbf{m}}}{\mathbf{v}} = \frac{a_{\mathbf{m}} \cdot L}{a \cdot L_{\mathbf{m}}} \text{ eller}$$

$$\frac{\mathbf{v_m} \cdot L_m}{a_m} = \frac{\mathbf{v} \cdot L}{a} = konstant = Pe$$

3.41 Peclets tal

Tilsvarende fås af bevægelsesmængdeligningen 3.37:

$$\frac{f_{v}^{2}}{f_{L}} = \frac{f_{p}}{f_{\rho} \cdot f_{L}} = \frac{f_{v} \cdot f_{v}}{f_{L}^{2}} \text{ der giver:}$$

$$\frac{f_{v}^{2}}{f_{L}} = \frac{f_{v} \cdot f_{v}}{f_{L}^{2}} \rightarrow$$

$$f_{v} = \frac{f_{v}}{f_{L}} d.v.s.: \frac{v_{m}}{v} = \frac{v_{m} \cdot L}{v \cdot L_{m}}$$

$$\frac{\mathbf{v_m} \cdot L_m}{\mathbf{v_m}} = \frac{\mathbf{v} \cdot L}{\mathbf{v}} = konstant = Re$$

3.42 Reynolds tal

og differentialligningen 3.39 giver:

$$f_{\alpha} \cdot f_{t} = \frac{f_{\lambda} \cdot f_{t}}{f_{L}}$$
 eller $f_{\alpha} = \frac{f_{\lambda}}{f_{L}}$

$$\frac{\alpha_{km}}{\alpha_k} = \frac{\dot{\lambda}_m \cdot L}{\lambda \cdot L_m} \rightarrow$$

3.43 Nussells tal

$$\frac{\alpha_{km} \cdot L_m}{\lambda_m} = \frac{\alpha_k \cdot L}{\lambda} = konstant = Nu$$

I stedet for disse tre talgrupper kan vælges funktioner af disse. Normalt anvendes i stedet for Peclets tal Prandtls tal, der fås af:

3.44 Prandtls tal

$$Pr = \frac{Pe}{Re} = \frac{v}{a}$$

Foruden disse størrelser kan der ved en dimensionsanalyse findes endnu en, der skal være konstant nemlig:

3.45 Grashofs tal

$$Gr = \frac{g \cdot \beta \cdot \Delta t \cdot L^3}{v^2}$$

hvor g er tyngdeaccelerationen (m/s²)

β mediets rumudvidelseskoefficient (C⁻¹)

 Δt temperaturforskellen mellem overflade og det uforstyrrede medium (C).

- L den for strømningen karakteristiske længde (m)
- υ kinematisk viskositet (m²/s)

3.2.3 Beregning af varmeovergangstal

Alment gældende for tvungen og termisk konvektion vil forsøgsresultaterne inden for visse gyldighedsområder kunne opstilles som funktioner mellem modeltallene: Re, Pr, Gr og Nu.

Da Nusselts tal er det eneste modeltal, der indeholder varmeovergangstallet α_k , må denne talgruppe altid indgå i beregninger af konvektiv varmeovergang. Reynolds tal er det eneste modeltal, der indeholder hastigheden v ved tvungen konvektion, og indgår

derfor altid i beregning af dette tilfælde, hvorimod Re udgår ved fri konvektion.

Ved fri stationær strømning vil tyngden have indflydelse, så at Gr må indgå, men derimod ikke Re, hvorfor varmeovergangen kan beskrives ved:

Fri konvektion

Nu = f(Gr, Pr)

Ved tvungen stationær strømning kan der ses bort fra den termiske udvidelse og dermed tyngdens indflydelse, hvorfor: Nu = g(Re, Pr)

Tvungen konvektion

3.2.4 Anvendelige formler

Stofværdier for vand

Tem- pera- tur	Tryk	Masse- fylde	Varm	efylde	Varmeledningsevne		Kinema- Udvi- tisk vis- delses- kositet koeff.		Fordamp- ningsvarme		Prandti's tal
1	P	ę	c	p	ا		v·10 ⁸	β-10 ³	,		Pr
°C	ata	kg/m ³	kJ/kg-°C	kcal/kg·°C	W/m·°C	kcal/h·m·°C	m²/s	1/°C	kJ/kg	kcal/kg	
0	1	999,8	4,2180	1,0074	0,552	0,475	1,792	-0.07	2501	597,3	13,67
10	1	999,7	4,1924	1,0013	0,578	0,497	1,304	0,088	2477	591.7	9,47
20	1 1	998,2	4,1820	0,9988	0,598	0,514	1,004	0,207	2454	586.0	7,01
30	1	995,7	4,1786	0,9980	0,614	0,528	0,801	0,303	2430	580.4	5,43
40	1	992,2	4,1786	0,9980	0,628	0,540	0,658	0,385	2406	574,7	4,34
50	1	988,0	4,1807	0,9985	0.641	0,551	0.553	0,457	2382	569,0	3,56
60	1	983,2	4,1845	0,9994	0,651	0,560	0,474	0,523	2358	563.2	2,99
70	1	977,8	4,1899	1,0007	0,661	0,568	0,413	0,585	2333	557.3	2,56
80	1	971,8	4,1966	1,0023	0,669	0,575	0,365	0,643	2308	551,3	2,23
90	1	965,3	4,2054	1,0044	0,676	0,581	0,326	0,698	2283	545,2	1,96
100	1,033	958,4	4,2163	1,0070	0,682	0,586	0.295	0,752	2257	539.0	
120	2,025	943,1	4.2456	1,014	0.685	0,589	0.249	0,860	2203		1,75
140	3,685	926,1	4.2875	1,024	0,684	0,588	0,215	0,975	2145	526,1 512,3	1,45
160	6,302	907,4	4,3419	1,037	0,682	0,586	0,189	1,098	2083	497,4	1,25
180	10,23	886,9	4,4089	1,053	0,676	0,581	0,170	1,233	2015	481,3	1,09
200	15.86	864.7	4,4968	1.074	0,665		- 1			- 1	0,98
220	23,66	840,3	4,6476	1,101	0,652	0,572 0,561	0,158	1,392	1941	463,5	0,92
240	34,14	813.6	4,7606	1,137	0,635	0,546	0,149	1,597	1858	443,7	0,88
260	47.87	784,0	4,9783	1,189	0,612	0,526	0,142	1,862	1766	421,7	0,87
280	65,46	750,7	5,3091	1,268	0,580	0,526	0,137	2,21	1661	396,8	0,87
				-,-30	0,500	0,199	0,133	2,70	1543	368,5	0,91

Tabel 3.6 Stofværdier for luft og vand

Stofværdier for luft (ved 1013 mbar)

Tempe- ratur	Masse- fylde	Varmefylde		Varmeledningsevne		Kinematisk viskositet	Udvidelses- koefficient	Prandtl'i
f .	6		p	ı		r·10 ⁶	β·10 ³	P_r
°C	kg/m³	kJ/kg·°C	kcal/kg·°C	W/m·°C	kcai/h·m·°C	m²/s	1/°C	
-150	2,793	1,026	0,245	0,0116	0,0100	3,08	8,21	0,76
-100	1,980	1,009	0,241	0,0160	0,0138	5,95	5,82	0,74
-50	1,534	1,005	0,240	0,0204	0,0175	9,55	4,51	0,725
0	1,293	1,005	0,240	0,0243	0,0209	13,30	3,67	0,715
20	1,205	1,005	0,240	0,0257	0,0221	15,11	3,43	0,713
40	1,127	1,005	0,240	0,0271	0,0233	16,97	3,20	0,711
60	1,060	1,009	0,241	0,0285	0,0245	18,90	3,00	0,709
80	1,000	1,009	0,241	0,0299	0,0257	20,94	2,83	0,708
100	0,946	1,009	0,241	0.0314	0,0270	23,06	2,68	0,703
120	0,898	1,013	0,242	0,0328	0,0282	25,23	2,55	
140	0,854	1,013	0,242	0,0343	0,0295	27,55	2,43	0,70 0,695
160	0,815	1,017	0,243	0,0358	0,0308	29,85	2,32	0,695
180	0,779	1,022	0,244	0,0372	0,0320	32,29	2,21	0,69
200	0,746	1,026	0,245	0,0386	0,0332	34,63		
250	0,675	1,034	0,247	0,0421	0,0362	41,17	2,11 1,91	0,685
300	0,616	1,047	0,250	0,0454	0,0390	47,85		0,68
350	0,566	1,055	0,252	0,0485	0,0417	55,05	1,75 1,61	0,68
400	0,524	1,068	0,255	0,0515	0,0417	62,53	1,49	0,6B 0,68

I det følgende skal nævnes nogle af de hyppigst forekommende eksempler på varmeovergang ved konvektion. De anførte formler er resultater af utallige modelforsøg udført af forskellige mennesker i dette århundrede. Der skal gøres opmærksom på, at hver af de angivne formler har et vist gyldighedsområde eller er begrænsede til kun at gælde for visse strømmende medier.

Ekstrapolering ud over gyldighedsområdet kan ikke foretages med nogen rimelig nøjagtighed. Man skal desuden være opmærksom på, ved hvilken temperatur de forskellige temperaturafhængige stofværdier for det strømmende medium skal indsættes, om det f.eks. er ved vægtemperatur eller ved mediets middeltemperatur. Disse oplysninger er angivet ved formlerne. I tabel 3.6 er anført stofværdier for luft og vand.

Fri og laminar strømning langs lodret flade

$$Nu = \frac{\alpha_k \cdot L}{\lambda} = 0.48 \, Gr^{\frac{1}{4}} \, \text{eller}$$

3.46

$$\alpha_k = \frac{0.48 \cdot \lambda}{L} \cdot Gr^{\frac{1}{4}}$$
 hvor

L = fladens længde i strømningsretningen (m)

 λ = varmeledningstallet for det strømmende medium (W/mC)

 α_k = varmeovergangstallet (W/m²C)

Stofværdier: β indsættes ved det uforstyrrede mediums temperatur. Alle andre stofværdier indsættes ved fladens

temperatur.

Gyldigheds- Formlen gælder kun for luft. Gr·Pr < 108 til 109.

område: Formlen gælder for brede plader og vægge samt for

lodrette rør, der ikke er alt for slanke.

Fri og turbulent strømning langs lodret flade

$$Nu = 0.129 (Gr \cdot Pr)^{\frac{1}{3}} = \frac{\alpha_k \cdot L}{\lambda}$$
 eller

$$\alpha_k = \frac{0.129 \cdot \lambda}{L} \left(Gr \cdot Pr \right)^{\frac{1}{3}}$$

Symboler og stofværdier som i formel 3.46

Gyldigheds- Gr.Pr > 108 til 109. Formlen gælder også område for strømning om vandret cylinder, når der for L indsættes rørets ydre diameter.

$$Nu = 0.40(Gr \cdot Pr)^{\frac{1}{4}} = \frac{\alpha_k \cdot L}{\lambda}$$
 eller

Fri og laminar strømning om vandret cylinder

$$\alpha_k = \frac{0.40 \cdot \lambda}{L} (Gr \cdot Pr)^{\frac{1}{4}}$$

3.48

For L indsættes rørets ydre diameter (m)

 λ = varmeledningstallet for det strømmende medium (W/mC)

 α_k = varmeovergangstallet (W/m²C)

Stofværdier: Som i formel 3.46.

Gyldigheds-Gr Pr $< 10^8 \text{ til } 10^9$.

område:

$$Nu = 0.664 \cdot Pr^{\frac{1}{3}} \cdot Re^{\frac{1}{2}} = \frac{\alpha_k \cdot L}{\lambda}$$
 eller

Tvungen og laminar strømning langs plan flade

$$\alpha_k = \frac{0.664 \cdot \lambda}{L} \cdot Pr^{\frac{1}{3}} \cdot Re^{\frac{1}{2}}$$

3.49

L = fladens længde (m) i strømningsretningen

varmeledningstallet for det strømmende medium (W/mC)

varmeovergangstallet (W/m²C)

Stofværdier:Indsættes ved middeltemperaturen mellem flade og uforstyrret medium.

Gyldigheds-

$$Re = \frac{v \cdot L}{v} < 10^5$$

0,1 < Pr < 1000

område:

Glatte flader i en rolig strøm

$$Nu = 0.057 (Re \cdot Pr)^{0.78} = \frac{\alpha_k \cdot L}{\lambda}$$
 eller

Tvungen og turbulent strømning langs plan flade

$$\alpha_k = \frac{0.057 \,\lambda}{L} \, (Re \cdot Pr)^{0.78}$$

Symboler og stofværdier som i formel 3.49.

Gyldighedsområde:
$$Re = \frac{v \cdot L}{v} > 5 \cdot 10^5$$

Tvungen og laminar strømning i rør 3.51

$$Nu = \left[3,65 + \frac{0,0668 \cdot \frac{Re \cdot Pr \cdot d}{L}}{1 + 0,045 \left(\frac{Re \cdot Pr \cdot d}{L}\right)^{\frac{2}{3}}}\right] \left(\frac{v_m}{v_{vag}}\right)^{0,14} = \frac{\alpha_k \cdot d}{\lambda}$$

d = rørets indvendige diameter i m

L = rørets længde i m

 λ = varmeledningstal for det strømmende medium (W/mC)

 α_k = varmeovergangstallet (W/m²C)

Stofværdier: $\upsilon_{væg}$ er den kinematiske viskositet for det strømmende medium ved den indvendige overflade (svarende til rørets indvendige overfladetemperatur). Alle andre stofværdier incl. υ_m indsættes ved mediets middeltemperatur.

Gyldighedsområde:
$$Re = \frac{v \cdot d}{v_m} < 2320$$

$$10^{-4} < \frac{L}{Re \cdot Pr \cdot d} < 10$$

Tvungen og turbulent strømning i rør 3.52

$$Nu = 0.116 \left(Re^{\frac{2}{3}} - 125\right) Pr^{\frac{1}{3}} \left[1 + \left(\frac{d}{L}\right)^{\frac{2}{3}} \right] \left(\frac{v_m}{v_{veg}}\right)^{0.14} = \frac{\alpha_k \cdot d}{\lambda}$$

Symboler og stofværdier som i formel 3.51.

Gyldighedsområde: L > d

$$2320 < \frac{v \cdot d}{v_m} < 10^6$$

Ved udetemperaturen $t_u = 3C$ er der i et kontor målt en indetemperatur $t_i = 24C$ og en indvendig overfladetempertur på ydervæggen $t_{oi} = 20C$.

Beregn det indvendige, konvektive varmeovergangstal α_{ik} ved ydervæggen, der har højden 2,5m.

Eksempel 3.9
Eksempel på beregning
af konvektivt varmeovergangstal

Løsning

Stofværdier ved 20 C:
$$\begin{cases} \lambda = 0.0257 \ W/mC \\ v = 15.11 \cdot 10^{-6} \ m^2/s \\ Pr = 0.713 \end{cases}$$

Stofværdi ved 24C: $\beta = 3.38 \cdot 10^{-3} C^{-1}$

$$Gr = \frac{g \cdot \beta \cdot \Delta t \cdot L^3}{v^2} = \frac{9,81 \cdot 3,38 \cdot 10^{-3} (24 - 20)2,5^3}{15,11^2 \cdot 10^{-12}}$$

$$Gr = 9.07 \cdot 10^9$$

$$Gr Pr = 9.07 \cdot 10^9 \, 0.713 = 6.47 \cdot 10^9 > 10^8 - 10^9$$

altså turbulent strømning, d.v.s. at formel 3.47 skal anvendes.

$$\alpha_{ik} = \frac{0.129 \cdot \lambda}{L} (Gr \cdot Pr)^{\frac{1}{3}} = \frac{0.129 \cdot 0.0257}{2.5} (6.47 \cdot 10^9)^{\frac{1}{3}}$$

$$\alpha_{ik} = 2,47 W/m^2 C$$

I dette kapitel er der kun nævnt nogle få tilfælde af konvektion. For tilfælde, der ikke er beskrevet her, må der søges formler i den meget omfattende litteratur inden for området, bl.a. den litteratur der er nævnt i litteraturlisten. Er det aktuelle tilfælde ikke behandlet i litteraturen, må man selv iværksætte modelforsøg.

Den varmestrøm, der overføres ved konvektion, fås af:

$$\Phi = \alpha_k(t_0 - t) \cdot A \text{ hvor}$$

3.53

hvor Φ er varmestrømmen (W)

 α_k = det konvektive varmeovergangstal (W/m²C)

t_o = overfladetemperaturen (C)

t = det frie mediums temperatur (C)

A = det betragtede areal (m²)

3.3 Varmestråling

Faste og flydende stoffer og for øvrigt også en række luftarter udsender energi i form af stråling. Denne stråling kan opfattes som elektromagnetiske bølger, og der skelnes groft mellem følgende former for stråling:

Strålingsinddeling

Strålingsbenævnelse	Bølgelængde i m
Kosmisk stråling	ca. 5·10 ⁻¹⁴
Gamma stråling	5.10-14 - 10-11
Røntgen stråling	10-12 - 2-10-8
Ultraviolet stråling	2·10 ⁻⁸ - 4·10 ⁻⁷
Synligt lys	4.10-7 - 8.10-7
Mørk (infrarød) varmestråling	8·10 ⁻⁷ - 8·10 ⁻⁴
Elektriske bølger	2·10 ⁻⁴ - ?

Den stråling, der rammer et legeme, kan enten reflekteres (diffust eller spejlende), absorberes i legemet og omdannes til varme eller transmitteres (gennemtrænge visse legemer eller luftarter).

Betegner

f_R reflektionsforholdet

f_A absorptionsforholdet

f_T transmissionsforholdet

gælder: $f_R + f_A + f_T = 1$

3.54

Det absolut sorte legeme Et legeme, der har $f_A = 1$, $f_R = 0$ og $f_T = 0$ kaldes et absolut sort legeme.

Afhængighed af bølgelænger For alle andre legemer vil f_R , f_A og f_T variere med bølgelængden, d.v.s. at man må præcisere, hvilken energifordeling over bølgelængdeområdet forholdene gælder for, om de f.eks. er for sollys eller for mørk varmestråling. Det kan nævnes, at en almindelig dobbeltrude har følgende forhold:

Overfor sollys:	Overfor mørk varmestråling:
$f_A = 0.16$	$f_A \approx 1$
$f_R = 0.12$	$f_R \cong 0$
$f_T = 0.72$	$f_T \cong 0$

3.3.1 Emission

Ved emission forstås udsendelse af energi i form af elektromagnetiske bølger. Ved samme temperatur har det absolut sorte legeme af alle legemer størst emissionsevne. Emissionsevnen E angiver energiudsendelsen pr. tids- og arealenhed, der for det absolut sorte legeme fås af:

$$\begin{split} E_s &= \sigma_s \, T^4 \; \; hvor \\ \sigma_s &= 5,67 \cdot 10^{\cdot 8} \; W/m^2 K^4 \\ T &= fladens \; absolutte \; temperatur \; (K) \end{split}$$

Såfremt et legeme overalt i bølgelængdeområdet udsender en konstant brøkdel f_E af det absolut sorte legemes stråling, kaldes legemet en gråstråler. f_E = emissionsforholdet d.v.s. at:

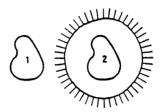
$$f_E = \frac{\sigma}{\sigma_s}$$
 og
$$E = f_E \cdot \sigma_s \cdot T^4 = \sigma \cdot T^4$$
hvor $E = \text{emissionen (W/m}^2)$

$$\sigma = \text{strålingstallet (W/m}^2 \text{K}^4)$$

T = absolut temp. (K)

I appendix 3 er angivet en lang række strålingstal for forskellige overflader. Ud for hvert strålingstal er anført, ved hvilken temperatur strålingstallet er målt, eller det temperaturområde det gælder for. Er ingen temperatur anført kan strålingstallet benyttes ved de temperaturer, der normalt optræder i praksis.

3.55 Emission fra absolut sort legeme


Gråstrålere

3.56

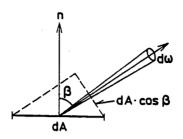
3.57 Emission fra gråstråler

3.3.2 Love og definitioner

To vilkårlige legemer 1 og 2 med samme overflade F tænkes skiftevis anbragt inde i et absolut sort hulrum, der har konstant overfladetemperatur T. De to legemer har samme temperatur T, således at der er temperaturligevægt.

Legeme 1 er absolut sort, d.v.s. $f_{A1}=1$ og $f_{R1}=0$. Legeme 2 er gråt med $f_{A2}<1$ og $f_{R2}>0$. Skal der være temperaturligevægt, må legeme 1 og 2 udsende lige så meget stråling, som de absorberer, d.v.s.:

$$\sigma_s \cdot T^4 \cdot A = f_{A1} \cdot Q_{ind} \cdot A$$
 og


$$\sigma_2 \cdot T^4 \cdot A = f_{A2} \cdot Q_{ind} \cdot A$$

hvor Q_{ind} er den strålingseffekt, der udsendes af hulrummet, og som rammer legemerne. Denne effekt må nødvendigvis være uafhængig af hvilket legeme, der er anbragt i hulrummet og er derfor ens i de to tilfælde.

Af ligningerne 3.58 og 3.59 fås:
$$\frac{\sigma_2 \cdot T^4 \cdot A}{\sigma_s \cdot T^4 \cdot A} = \frac{f_{A2} \cdot Q_{ind} \cdot A}{f_{Al} \cdot Q_{ind} \cdot A} \text{ eller}$$

emissionsforholdet
$$f_{E2} = \frac{\sigma_2}{\sigma_s} = \frac{f_{A2}}{f_{As}} = f_{A2}$$

Kirchoffs lov siger altså, at absorptionsforholdet f_A for et gråt legeme = emissionsforholdet f_E . Af alle legemer har det absolut sorte legeme derfor såvel størst absorption som størst emission ved en given temperatur.

Figur 3.9 Definitioner

Strålingsstyrken $I_{\beta}=$ den inden for rumvinklen d ω i retningen ω udstrålede effekt delt med d ω , altså:

Strålingsstyrken

$$I_{\beta} = \frac{d\phi_{\beta,d\omega}}{d\omega}$$

3.61

Strålingsintensiteten i er strålingsstyrken pr. arealenhed af den udstrålende flade målt vinkelret på strålingsretningen, d.v.s.

Strålingsintensiteten

$$i = \frac{I_{\beta}}{dA \cdot \cos \beta}$$

3.62

For et absolut sort legeme er strålingsintensiteten ens i alle retninger, altså:

Lamberts cosinuslov

$$i = \frac{I_{\beta}}{dA \cdot \cos \beta} = \frac{I_{n}}{dA} = konstant$$

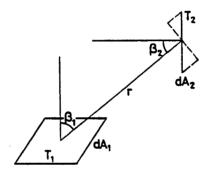
$$I_{\beta} = I_n \cdot \cos \beta$$

3.63

Emissionen E fra fladen til halvrummet kan findes ved integration af strålingsstyrken over halvkuglen hvorved fås:

Emission til halvkuglen

$$E = \pi \cdot i$$


3.64

3.3.3 Strålingsudveksling mellem faste legemer

I det følgende skal udledes formler for den gensidige strålingsudveksling mellem to legemer. Det har vist sig lettest at udlede formler for strålingsudveksling mellem absolut sorte legemer, der jo absorberer al den stråling, som rammer legemet, for bagefter at udvide formlernes gyldighedsområde til gråstrålere.

To faste legemer i vilkårlig indbyrdes stilling På figur 3.10 ses to absolut sorte legemer med arealerne dA_1 og dA_2 , der har temperaturerne henholdsvis T_1 og T_2 . På figuren er endvidere indtegnet fladenormalerne, den indbyrdes afstand r og fladenormalernes vinkler β_1 og β_2 med forbindelseslinien.

Figur 3.10

Flade dA₁ udsender til halvkuglen ifølge formel 3.55:

$$d\phi_1 = \sigma_s \cdot dA_1 \cdot T_1^4$$

men ifølge formel 3.62, 3.63 og 3.64 er:

$$d\phi_1 = \pi \cdot i \cdot dA_1 = \pi \cdot I_{n1}$$

Strålingsstyrken i retningen β_1 er da:

$$I_{\beta_1} = I_{nI} \cdot \cos \beta_1 = \frac{\sigma_s}{\pi} dA_1 \cdot T_1^4 \cos \beta_1$$

Den rumvinkel, hvorunder dA₂ ses fra dA₁, er:

$$d\omega_1 = \frac{dA_2 \cdot \cos \beta_2}{r^2}$$

Den del af strålingen fra dA₁, der rammer dA₂, bliver derfor:

$$d\phi_{1-2} = I_{\beta_1} \cdot d\omega_1 = \frac{\sigma_s}{\pi} \frac{dA_1 \cdot dA_2}{r^2} T_1^4 \cos \beta_1 \cos \beta_2$$
3.65

Ganske tilsvarende fås:

$$d\phi_{2-1} = \frac{\sigma_s}{\pi} \cdot \frac{dA_1 \cdot dA_2}{r^2} T_2^4 \cos\beta_1 \cos\beta_2$$
3.66

Da begge flader er absolut sorte, absorberes al indfaldende stråling. Den resulterende varmestrøm fra dA_1 til dA_2 bliver da:

$$d\phi = d\phi_{1-2} - d\phi_{2-1} = \frac{\sigma_s}{\pi} \frac{dA_1 \cdot dA_2}{r^2} \cos\beta_1 \cos\beta_2 \cdot [T_1^4 - T_2^4]$$
3.67

Den samlede varmestrøm fra hele flade 1 til hele flade 2 findes ved integration af ligningen. Imidlertid vil det blive noget besværligt at udføre denne integration hver eneste gang, strålingsudvekslingen mellem to legemer skal beregnes, derfor er integrationen udført i nogle karakteristiske tilfælde.

Flade dA₁ udsender til halvkuglen:

$$d\Phi_1 = \sigma_s \cdot dA_1 T_1^4 \tag{3.68}$$

og heraf modtager flade 2:

$$d\phi_{1-2} = \frac{\sigma_s}{\pi} \cdot \frac{dA_1 \cdot dA_2}{r^2} \cos\beta_1 \cos\beta_2 T_1^4$$

Indføres nu vinkelforholdet ψ ved:

$$\psi_{1-2} = \frac{\phi_{1-2}}{\phi_1} = \frac{\int d\phi_{1-2}}{\int d\phi_1} = \frac{\int_{F_1} \int_{F_2} \frac{\sigma_s}{\pi} \cdot \frac{dA_1 \cdot dA_2}{r^2} \cos\beta_1 \cos\beta_2 T_1^4}{\int_{F_1} \sigma_s \cdot T_1^4 dA_1}$$

$$\psi_{1-2} = \frac{\frac{\sigma_s}{\pi r^2} \cdot T_1^4 \int_{F_1} \int_{F_2} \cos\beta_1 \cos\beta_2 dA_1 \cdot dA_2}{\sigma_s T_1^4 \cdot A_1}$$

$$= \frac{1}{A_1 \pi r^2} \int_{F_1} \int_{F_2} \cos\beta_1 \cos\beta_2 dA_1 \cdot dA_2$$

der indføres i 3.67 integreret:

3.69
$$\phi = \phi_{1-2} - \phi_{2-1} = \int_{F_1} \int_{F_2} \frac{\sigma_s}{\pi} \frac{dA_1 \cdot dA_2}{r^2} \cos\beta_1 \cos\beta_2 \left[T_1^4 - T_2^4 \right]$$

Hvorved den resulterende varmestrøm fra A_1 til A_2 skrives:

3.70 Varmestrøm mellem to absolut sorte flader

$$\phi = \psi_{1-2} \cdot \sigma_{s} \cdot A_{1} [T_{1}^{4} - T_{2}^{4}]$$

Havde hele denne udledning startet med at betragte forholdene set fra A_2 , ville formel 3.70 have set således ud:

$$-\phi = \psi_{2-1} \cdot \sigma_s \cdot A_2 [T_2^4 - T_1^4]$$

Af disse to ligninger fås da vekselvirkningssætningen:

3.71 Vekselvirkningssætningen

$$\psi_{1-2} \cdot A_1 = \psi_{2-1} \cdot A_2$$

For gråstrålere, hvis emissionsforhold f_E er nær 1 kan varmestrømmen med tilstrækkelig nøjagtighed beregnes af:

3.72 Varmestrøm mellem to flader med $\sigma \sim \sigma_s$

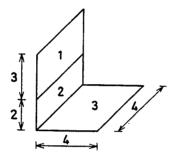
$$\Phi = \psi_{1-2} \frac{\sigma_1 \cdot \sigma_2}{\sigma_s} \cdot A_1 [T_1^4 - T_2^4]$$

hvor $\phi= \text{varmestrøm (W)}$ $\psi_{1\cdot 2}= \text{vinkelforholdet for stråling fra flade 1 til flade}$ 2 $\sigma_1 \text{ og } \sigma_2 \text{ er de to fladers strålingstal (W/m²K⁴)}$

 A_1 = arealet af flade 1 (m²)

 T_1 = absolut temperatur for flade 1 (K)

 T_2 = absolut temperatur for flade 2 (K)


Det skal bemærkes, at fejlen, der begås ved at anvende formel 3.72 for gråstrålere, øges jo større forskel der er mellem σ og σ_s . Grunden hertil er, at der i formlen ikke er taget reflekteret stråling i regning, men der fås resultater med en rimelig nøjagtighed, når strålingstallet $\sigma \geq ca.$ 4,6·10⁻⁸ W/m²K⁴. I eksempel 3.11 bliver der redegjort for fejlen.

I appendix C findes vinkelforhold for de hyppigst forekommende tilfælde af strålingsudveksling nemlig mellem parallelle flader, eller flader, der står vinkelret på hinanden.

Vinkelforhold mellem flader

Vinkelforholdet ψ_{l-3} for stråling fra et rektangel 1 til et på dette vinkelret stående rektangel 3 med mål som vist på skitsen ønskes beregnet.

Eksempel 3.10 Beregning af vinkelforhold

Løsning

$$\psi_{3-(1+2)} = \psi_{3-1} + \psi_{3-2}$$

Appendix C1 benyttes.

$$\psi_{3-(1+2)}: \begin{cases} a = 5 & \frac{a}{c} = 1,25 \\ b = 4 \\ c = 4 & \frac{b}{c} = 1 \end{cases}$$

$$\psi_{3-(l+2)} = 0.210$$

$$\psi_{3-2} : \begin{cases} a = 2 & \frac{a}{c} = 0.5 \\ b = 4 & c = 4 & \frac{b}{c} = 1 \end{cases}$$

$$\psi_{3-2} = 0.145$$

$$\psi_{3-1} = \psi_{3-(1+2)} - \psi_{3-2} = 0.210 - 0.145 = 0.065$$

Ifølge vekselvirkningssætningen haves:

$$A_1 \cdot \psi_{I-3} = A_3 \cdot \psi_{3-I}$$
 altså

$$\psi_{1-3} = \frac{A_3}{A_1} \psi_{3-1} = \frac{4}{3} \cdot 0,065 = 0,087$$

Stråling mellem flader, der omgiver hverandre, eller som er parallelle med lille indbyrdes afstand 3.73 Den resulterende varmestrøm ϕ fra et overalt konvekst legeme 1, som er helt omgivet af et overalt konkavt rum 2 fås af:

$$\phi = \frac{1}{\frac{1}{\sigma_1} + \frac{A_1}{A_2} \left(\frac{1}{\sigma_2} - \frac{1}{\sigma_s} \right)} A_1 \left[T_1^4 - T_2^4 \right]$$

hvor: σ_1 og σ_2 er de to fladers strålingstal (W/m²K⁴)

 A_1 = arealet af flade 1 (m²)

 A_2 = arealet af flade 2 (m²)

 T_1 = absolut temperatur for flade 1 (K)

 T_2 = absolut temperatur for flade 2 (K)

Det skal bemærkes, at formel 3.73 gælder for alle gråstrålere uanset emissionsforhold, og at den tillige gælder for 2 parallelle flader, der er anbragt så tæt sammen, at praktisk taget al den stråling, der udsendes fra den ene flade, rammer den anden.

Eksempel 3.11 Usikkerhed i formel 3.72 For at bedømme usikkerheden i formel 3.72 skal den anvendes for tilfældet to parallelle flader med lille indbyrdes afstand og kontrolleres ved hjælp af formel 3.73, der er nøjagtig under de givne forudsætninger. De to flader forudsættes at være gråstrå-

lere
$$f_E = \frac{\sigma}{\sigma_s}$$

Af 3.72 fås:

$$\phi = \psi_{I-2} f_{EI} \cdot f_{E2} \cdot \sigma_s \cdot A_I [T_I^4 - T_2^4]$$

og af 3.73:

$$\Phi = \frac{1}{\frac{1}{f_{E1}} + \frac{A_1}{A_2} \left(\frac{1}{f_{E2}} - 1\right)} \sigma_s \cdot A_1 \left[T_1^4 - T_2^4\right]$$

Antages nu for nemheds skyld, at

$$\sigma_s \cdot A_I [T_I^4 - T_2^4] = 100 \text{ W og da desuden}$$

$$\psi_{1-2} = 1 \text{ og } A_1 = A_2 \text{ fås}$$

for
$$f_{E1} = f_{E2} = 0.8$$
:

af 3.72:
$$\phi = 1 \cdot 0.8 \cdot 0.8 \cdot 100 = 64 \text{ W}$$

af 3.73:
$$\phi = \frac{100}{\frac{1}{0.8} + \frac{1}{0.8} - 1} = 67 \text{ W}$$

Her er der altså kun en fejl på $\frac{3\cdot100}{67}$ % = 4,5 %

$$for f_{EI} = f_{E2} = 0.5 \text{ fås}$$
:

af 3.72:
$$\phi = 1 \cdot 0.5 \cdot 0.5 \cdot 100 = 25 \text{ W}$$

$$af 3.73$$
: $\phi = \frac{100}{\frac{1}{0.5} + \frac{1}{0.5} - 1} = 33.3 W$

D.v.s. en fejl på
$$\frac{33,3-25}{33,3} \cdot 100\% = 25\%$$

Når blot strålingstallet er i nærheden af det absolut sorte legemes, kan formel 3.72 altså anvendes med rimelig nøjagtighed.

3.3.4 Solstråling

Solstråling er på flere punkter væsentlig forskellig fra mørk varmestråling. Af den ved strålingen tilførte energi skyldes ca. halvdelen synligt lys og ultraviolet stråling, mens den anden halvdel er mørk varmestråling.

Forskel mellem sollys og mørk varmestråling

Den synlige stråling adskiller sig fra mørk varmestråling derved, at ikke blot blanke metaloverflader men også hvide overflader reflekterer en stor del af strålingen. Mens farven således ikke har nogen praktisk betydning for strålingstallet ved mørk varmestråling (undtaget metallakker), har den stor betydning for absorptionsforholdet overfor de lyse stråler.

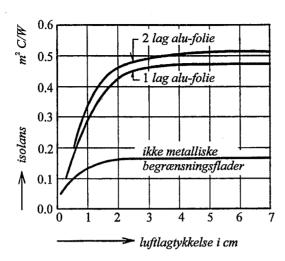
Lyse og mørke farver

De lyse farver benyttes derfor i visse tilfælde netop for at reflektere så stor en del af solstrålingen som muligt. Dette gælder f.eks. kølevogne og køleskibe, der færdes under varme himmelstrøg. De omtalte forhold har også betydning for afsmeltning af sne, idet varmetilførslen reduceres på grund af den hvide farve, mens farven ikke har betydning for varmeudstrålingen til himmelrummet. Af uheldige eksempler på farver kan nævnes tagpap og asfalt, der som bekendt kan opvarmes til temmelig høje temperaturer af solstrålingen.

Drivhusvirkning

Vinduesglas har som tidligere nævnt et reflektionsforhold $f_R = 0.12$ overfor sollys, mens 72% af sollyset slipper gennem glasset og 16% absorberes heri. Den lyse og mørke varmestråling, der er trængt ind i rummet, vil stort set absorberes af rummets flader og opvarme disse. Fladerne vil så udsende mørk varmestråling, men den del heraf, der rammer vinduet, vil absorberes af glasset ($f_a = 0.95$), som dermed kan medvirke til

opvarmning. Denne effekt drager man nytte af i drivhuse og mistbænke, og den giver et ikke ringe varmetilskud til bygningernes rumopvarmning.


3.3.5 Varmestråling til himmelrummet

Især fra vandret liggende flader kan der udsendes betydelige varmemængder til en skyfri himmel. Dette gør sig oftest gældende om natten ved vintertid, hvor der selv om lufttemperaturen > 0 kan dannes rim på jordoverfladen og på tage, og vandpytter kan fryse til is. Det bemærkes også, at rimdannelse først sker på f.eks. bilers vandrette flader, der har $\psi \approx 1$ til himmelrummet, mens de lodrette flader, der jo tildels har jorden eller bygninger som omgivelser, mere sjældent er belagt med rim.

I almindelige strålingsberegninger kan en skyfri himmel som en grov tilnærmelse regnes for en absolut sort flade med temperaturen $t_h = -40 \, \mathrm{C}$. Denne formelle temperatur afhænger i høj grad af atmosfærens renhed. Når himlen er overskyet, nærmer t_h sig til luftens temperatur.

3.4. Luftlags isolans

Plane luftlag forekommer ofte i byggeri, f.eks. som hulrum i ydervægge, gulve, lofter m. v. I sådanne hulrum overføres der varme fra den ene overflade til den anden ved konvektion og stråling. Ved relativt lille afstand mellem overfladerne vil konvektionen imidlertid bliver hindret, således at varmen overføres ved stråling mellem overfladerne og ved ledning gennem den stillestående luft. Øges afstanden forøges også konvektionsovergangen, mens varmeledningens betydning formindskes. Herved bliver luftlagets isolans stærkt afhængig af lagtykkelsen indtil ca. 20 mm, men derefter omtrent konstant som vist på følgende figur.

Figur 3.11 Isolans for lodrette luftlag

Som det fremgår af figuren udgør strålingen en overvejende del af varmetransporten, idet isolansen kan øges væsentligt ved at anvende aluminiumfolie til beklædning af overfladerne. Det fremgår også af figuren, at to lag folie overfor hinanden næppe kan svare sig i praksis, idet modstandtallet i dette tilfælde ikke er væsentligt højere end for en alufolie overfor f.eks. en trævæg.

Strålingsbidraget

Det fremgår også af figur 3.11, at termoruder helst skal have en glasafstand på 15-20 mm for at isolere bedst muligt. Oftest fremstilles termoruder dog af konstruktionsmæssige årsager med en glasafstand på 12-13 mm.

Glasafstand

Luftlag isolerer altså nogenlunde ved normalt i bygninger fore-kommende temperaturer. Men ved højere temperaturer f.eks. i ovne kan luftlag bestemt ikke anbefales anvendt som isolationslag, idet luft ved ca. 200C ikke er bedre end ildfast murværk, og allerede ved 500C isolerer et luftlag dårligere end metaller af samme tykkelse.

Luftlag ved høje temperaturer

3.5 Litteratur

- [1] Gröber/erk/Grigull: Grundgesetze der Wärmeübertragung, Springer-Verlag 1963.
- [2] Friedrich Stelzer: Wärmeübertragung und Strömung, München 1971.
- [3] Poul Becher: Varme og ventilation, bind 1, København 1971.
- [4] Rietschel/Raiß: Heiz- und Klimatechnik, Erster Band, Grundlagen Systeme Ausführung, New York 1968.
- [5] Rietschel/Raiß: Heiz- und Klimatechnik, Zweiter Band, Verfahren und Unterlagen zur Berechnung, New York 1970.
- [6] Hans Granum/Øyvind Aschehoug: Bygningsfysikk, Oslo 1969.
- [7] DS 418. Regler for beregning af bygningers varmetab, Dansk Standard, 1986, samt Tillæg 1 til DS 418. Beregning af bygningers varmetab. Tillæg omhandlende vinduer og yderdøre, Dansk Standard 1997.

Kapitel 4

FUGT

E. J. Funch C. E. Hyldgård

4.1 Fugtig luft

4.1.1 Fysiske forhold

Den atmosfæriske luft indeholder altid en vis mængde vanddamp. Hvor meget luften kan optage, afhænger af temperatur og tryk, der tilsammen bestemmer mætningspunktet. Tilsættes mere vanddamp vil den fortættes som tåge, der i modsætning til vanddampen er synlig. Blandingen vil så bestå af luft fuldt mættet med vanddamp og fint fordelte vanddråber, der svæver i luften.

Så længe, der ikke finder nogen fortætning sted, kan vanddampen i luften regnes for at være overhedet, og den kan ved normalt tryk og temperatur ligesom luften betragtes som en ideal gas, således at de fra fysikken kendte love kan anvendes.

For en ideal luftart gælder tilstandsligningen

Idealgas

 $p \cdot v = m \cdot R \cdot T$

4.1 Tilstandsligningen

der kan udtrykkes således:

Ved samme temperatur T K er produktet af tryk og rumfang konstant.

De indgående størrelser:

 $\begin{array}{ll} P & \text{er tryk i N/m}^2 = Pa \\ v & \text{er rumfang i m}^3 \\ m & \text{er masse i kg} \\ R & \text{er gaskonstanten i Nm/kg K} = J/kg K \\ T & \text{er temperatur i K} \end{array}$

For massen m = 1 kg findes for det specifikke volumen v m^3/kg :

 $p \cdot v = R \cdot T$

Tabel 4.1 Stofværdier for luftarter

Luftart	Mole- kylvægt	Gaskon- stant R	Masse- fylde ρ (0 C)	Varme- fylde c _p (0 C)
	μ	$\frac{Nm}{kg\ K}$	kg/m³	kJ kg C
Ilt	32,00	260	1,43	0,92
Kvælstof	28,02	298	1,25	1,05
Kuldioxyd	44,00	189	1,98	0,84
Kuloxid	28,00	297	1,25	1,05
Ammoniak	17,03	488	0,77	2,05
Brint	2,02	4130	0,09	14,25
Helium	4,00	2080	0,18	5,20
Klor	70,90	117	3,16	0,50
Metan	16,03	519	0,72	2,18
Svovldioxid	64,06	130	2,93	0,56
Tør luft	(29)	287	1,293	1,00
Vanddamp	18	462	0,81	1,85

Daltons lov

4.2

Ifølge Daltons lov er partialtrykkene af bestanddelene i en luftblanding uafhængige af de øvrige bestanddele i luftblandingen, og blandingens totale tryk er lig med summen af partialtrykkene.

Betegnes blandingens totaltryk p, luftens partialtryk p_l og vanddampens partialtryk $p_d, \ f \mathring{a} s$

 $p = p_l + p_d$

Sædvanligvis er $p = barometerstanden p_b$

Kun i særlige tilfælde såsom trykkamre eller vacuumanlæg, må der tages hensyn til det ændrede totaltryk af blandingen. De trykforskelle, der opstår i ventilationsanlæg, er uden betydning for beregningerne.

4.1.2 Relativ fugtighed φ

Når en luftmængde mættes med vanddamp, vil vanddampens partialtryk have nået sin højeste værdi mætningstrykket p_{dm} . For en hvilken som helst anden blanding ved samme temperatur vil partialtrykket p_d være lavere, og forholdet

$$\varphi = \frac{p_d}{p_{dm}} \tag{4.3}$$

benævnes luftens relative fugtighed. φ angives som en størrelse mellem 0 og 1 eller i %.

 p_{dm} ved forskellige temperaturer fremgår af tabel 4.2 over stofværdier for mættet luft.

4.1.3 Vandindhold x

Vandindholdet eller den absolutte fugtighed x er defineret som den vægtmængde vanddamp i kg, der befinder sig i blanding med 1 kg tør atmosfærisk luft.

Består en blanding på m_b kg af m_l kg tør luft o2g m_d kg vanddamp fås:

$$x = \frac{m_d}{m_l} \frac{kg \ vanddamp}{kg \ tor \ luft}$$

Anvendes tilstandsligningen på 1 kg tør luft blandet med x kg vanddamp og med $\varphi < 100\%$ fås med værdierne i tabel 4.1:

$$p_l \cdot v = 1 \cdot R_l \cdot T = 287T \tag{4.4}$$

$$p_d \cdot v = x \cdot R_d \cdot T = 462 \cdot x \cdot T \tag{4.5}$$

Tabel 4.2 Stofværdier for mættet luft ved 1013 mbar

Luft- temp.	Masso	efylde	Vand- damp- tryk	Stofværdier/ kg tør luft	
С	kg/m³	kg/m³	p_{dm}	Vand- indhold	Varme- indhold
	tør luft	mættet	N/m²	g/kg	kJ/kg
- 20	1,396	1,395	102,6	0,63	- 18,55
- 10	1,342	1,341	259,9	1,60	- 6,07
0	1,293	1,290	610,5	3,78	9,42
10	1,248	1,242	1228	7,63	29,2
20	1,205	1,195	2337	14,7	57,8
30	1,165	1,146	4242	27,2	99,6
40	1,128	1,097	7374	48,8	166
45	1,110	1,070	9582	65,0	213
50	1,093	1,043	12330	86,2	273
55	1,076	1,013	15730	114	352
60	1,060	0,981	19920	152	456
65	1,044	0,946	24990	204	599
70	1,029	0,909	31150	276	795
75	1,014	0,868	38540	382	1080
80	1.000	0,823	47340	545	1520
85	0,986	0,773	57810	828	2282
90	0,973	0,718	70100	1400	3818
95	0,959	0,656	84510	3120	8436
100	0,947	0,589	101300	_	-

Ved division findes, idet $p_l + p_d = p_b$:

4.6
$$\frac{p_l}{p_d} = \frac{287}{462 \cdot x} = \frac{0.622}{x} = \frac{p_b - p_d}{p_d}$$

som giver

$$p_d = \frac{x}{x + 0.622} \cdot p_b \tag{4.7}$$

Heraf fremgår, at vanddampens partialtryk kun er afhængig af blandingens totaltryk p_b og vandindholdet x, men uafhængig af blandingens temperatur.

Af 4.6 findes

$$x = 0.622 \cdot \frac{p_d}{p_b - p_d} = 0.622 \cdot \frac{\phi \cdot p_{dm}}{p_b - \phi \cdot p_{dm}}$$
 4.8

4.1.4 Luftens entalpi

En blanding af 1 kg tør luft og x kg vanddamp har varmeindholdet eller entalpien

$$i = i_l + xi_d \tag{4.9}$$

hvor i er entalpien af den fugtige luft i kJ/kg tør luft

- i_l entalpien af den tørre luft i kJ/kg. i_l benævnes også den tørre eller den fri varme.
- i_d entalpien af vanddampen i kJ/kg. i_d kaldes også den bundne eller den latente varme.
- x vanddampindholdet i kg vanddamp/kg tør luft.

De specifikke varmeindhold i₁ og i_d kan udtrykkes ved:

$$i_l = c_{pl} \cdot t$$
 og 4.10

$$i_d = r_o + c_{pd} \cdot t \tag{4.11}$$

- r_o vands fordampningsvarme ved 0 C,
- t blandingens temperatur i C.

Entalpiligningen

Indsættes disse udtryk i 4.9 fås entalpiligningen

4.12

$$i = c_{pl} \cdot t + x(r_o + c_{pd} \cdot t)$$

Som nulpunkt har man altså valgt luft ved 0 C og vand ved 0 C. Leddet r_o viser, at vandet fordamper ved 0 C, og disse vanddampe overhedes til temperaturen t, leddet $c_{pd} \cdot t$.

Indsættes stofværdierne får entalpiligningen udseendet

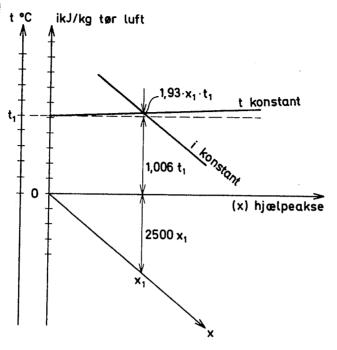
4.13

$$i = 1,006 \cdot t + 2500x + 1,93 \cdot x \cdot t \ kJ/kg \ tor \ luft$$

Det skal her præciseres, at der ved alle luftberegninger arbejdes med tilstandsændringerne for mængden af 1 kg tør luft + x kg vanddamp. Denne blanding vil altid været karakteriseret ved 2 af størrelserne t, i og x eller φ .

4.1.5 Molliers i,x diagram

Den direkte anvendelse af entalpiligningen til beregninger af lufts tilstandsændringer vil være ret omstændelig, og der er derfor gjort mange forsøg på at fremstille afhængigheden mellem i,x og t i diagramform.


Det i Danmark mest anvendte er udformet af Mollier, som i sin afbildning er gået ud fra et skævvinklet koordinatsystem med lodret i-akse og skråt nedadrettet x-akse. Denne akses hældning er bestemt ved, at den lodrette højde mellem x-aksen og normalen til i-aksen i nulpunktet er 2500 x.

Af grundligningen

$$i = 1,006t + 2500x + 1,93 \cdot x \cdot t$$

ses umiddelbart, at normalen til i-aksen i nulpunktet indeholder alle værdier af i for t=0 ved x>0. Ud ad denne linie afsættes værdierne for x, således at den optræder som hjælpeakse.

Sættes x = 0 fås i = 1,006t, hvoraf det fremgår, at i-aksen også kan anvendes som t-akse.

Figur 4.1 Molliers i,x-diagram

Ved at sætte $t = t_1$ findes

$$i = 1,006t_l + (2500 + 1,93t_l) \cdot x$$

4.14

som fremstiller en ret linie i det skævvinklede koordinatsystem gennem punktet i = $1,006t_1$ på i-aksen (t_1 på t-aksen) og hældningskoefficienten ($2500+1,93t_1$).

Af figur 4.1 ses, at der gennem hvert punkt i diagrammet går en lodret linie for x= konstant, en skråt nedadrettet linie for i= konstant og en svagt skrå linie for t= konstant. For t>0 er t-linien stigende mod højre og for t<0 er den faldende mod højre.

På næste side er vist et i,x-diagram for det almindeligst anvendte temperaturområde optegnet ved normaltryk $p_b=1013\,$ mbar.

Diagram

Af udtrykket 4.8 kan for $\varphi = 1$ findes

Mætningskurven

$$x_m = 0.622 \cdot \frac{p_{dm}}{p_b - p_{dm}}$$

4.15

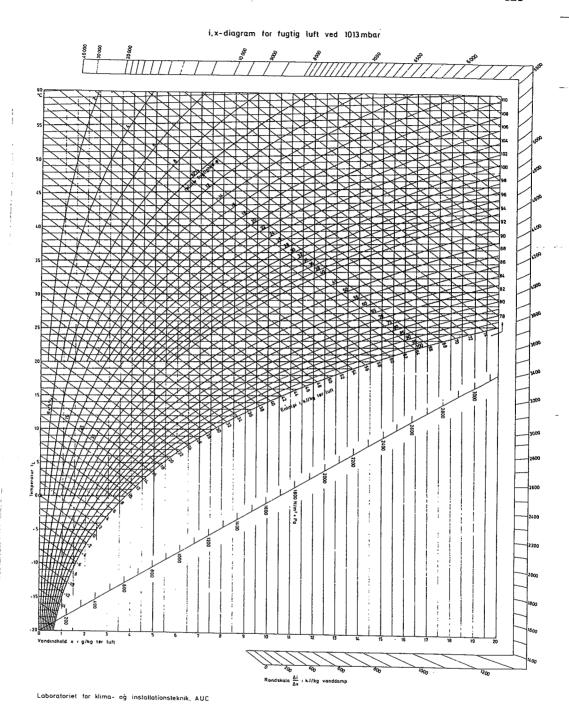
der er udtryk for den vanddampmængde, som ved en bestemt temperatur med mætningstrykket p_{dm} findes i 1 kg tør luft ved mætningstilstanden. Afsættes punkter x_m ud ad temperaturlinierne, fremkommer der en kurve for alle mætningstilstande, figur 4.3. Denne kurve er grænsekurve for det tilstandsområde, hvor den fugtige luft kan behandles som ideal gas.

 φ -kurver

Ved i 4.8 at sætte $\varphi=0,1,\ 0,2,\ldots,0,9$ kan på samme måde bestemmes punkter på kurven for $\varphi=10\%,\ 20\%\ldots.90\%$. Disse er indtegnet på i,x-diagrammet, figur 4.2.

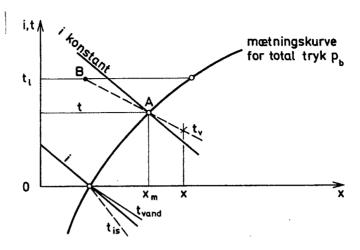
Af udtrykket

$$x = 0.622 \cdot \frac{p_d}{p_b - p_d}$$


ses, at mætningskurvens og φ -kurvernes beliggenhed i diagrammet er afhængig af totaltrykket p_b . i,x-diagrammet kan derfor kun optegnes for et bestemt totaltryk, som bør være anført på diagrammet.

Damptrykkurven

Udtrykket $p_d = \frac{x}{x + 0.622} \cdot p_b$ viser, at der for konstant p_b kan


optegnes en damptrykkurve med vandret x-akse og lodret p_d -akse. På diagrammet figur 4.2 er værdierne anført på kurven. Kurven er en svagt krummet linie, og for hvert punkt i i,x-diagrammet kan det partielle damptryk aflæses på damptrykkurven lodret under punktet, idet x = konstant.

For punkter på mætningskurven aflæses p_{dm}.

Figur 4.2. i,x-diagram

Figur 4.3 Mætningskurven

4.1.6 Luft i tågeområdet

Hvis der ved konstant temperatur tilføres vand til en luftmængde ud over mætningspunktet, vil den overskydende vandmængde (x-x_m) optræde som små vandpartikler i luften (tåge).

Den vandmængde, som ikke er fordampet, vil således kun tilføre blandingen entalpien

$$\Delta i = c_{pv} \cdot t \cdot (x - x_m)$$

hvor $c_{pv} = 4,19 \text{ kJ/kg C}$ er vandets varmefylde ved konstant tryk.

Dette betyder, at t-linierne får et knæk ved mætningskurven og i tågeområdet vil ligge lidt over linierne i = konstant, se figur 4.3.

For temperaturer under 0 C vil de frie vanddråber fryse til is, hvis entalpi er

$$i_{is} = (c_{is} \cdot t - r_{is}) \cdot x = (2, 1 \cdot t - 335) \cdot x \ kj/kg.$$

Herved får temperaturlinierne i tågeomrdet endnu et knæk, så de ved t < 0 C ligger under i-linierne, se figur 4.3.

Hvis et termometers kviksølvbeholder forsynes med en strømpe vædet med vand, vil der ske en fordampning fra strømpen, og termometret vil indstille sig på en temperatur t_v , hvor der er ligevægt mellem termometrets afkøling og fordampningen. Da luften umiddelbart omkring føleren kan betragtes som mættet, vil tilstanden i i,x-diagrammet kunne repræsenteres ved det punkt på mætningskurven, der angiver temperaturen t_v , figur 4.3 pkt. A.

Hvis den tørre temperatur t_l samtidig måles med et almindeligt termometer, vil skæringspunktet B på linien $t=t_l$ og t_v -linien forlænget bagud fra punkt A fastlægge et punkt i i,x-diagrammet. Dette punkt angiver da luftblandingens temperatur t_l , den relative fugtighed φ , det absolutte vandindhold x og entalpien i. Hvis luftblandingen er mættet med fugtighed, vil det tørre og det våde termometer naturligvis vise samme temperatur.

Undertiden forsynes i,x-diagrammet med linier for det våde termometers temperatur, da den her beskrevne metode anvendes i praksis til måling af luftens relative fugtighed. (Assmann Psychrometer).

4.1.7 Retningsmålestokken

Enhver tilstandsændring af en luftmasse kan beskrives som en entalpiændring og en vanddampændring. Sker der en ændring fra en tilstand 1 til tilstand 2 kan den retning i i,x-diagrammet, hvorefter tilstandsændringen foregår, udtrykkes ved

$$\frac{\Delta i}{\Delta x} = \frac{i_2 - i_1}{x_2 - x_1} = \frac{tilvækst \ i \ entalpi}{tilvækst \ i \ vandindhold}$$

Som hjælpemiddel til bestemmelse af retningen af tilstandsændringen er der langs randen af i,x-diagrammet, figur 4.2 afsat en retningsmålestok udtrykt ved $\frac{\Delta i}{\Delta x}$. Nulpunktet for denne målestok ligger i i,x-diagrammets nulpunkt.

Har man bestemt en tilstandsændring ved $\frac{\Delta i}{\Delta x}$ kan retningen

Vådt termometer

findes ved at trække en linie fra nulpunktet til punktet på retningsmålestokken. Den bestemte retning parallelforskydes til udgangspunktet på diagrammet, hvorefter slutpunktet kan findes.

4.2 Tilstandsændringer for fugtig luft

Når luft skal konditioneres til anvendelse i ventilations- og klimaanlæg gennemgår luftblandingen en række tilstandsændringer, der har karakter af standardprocesser. I det følgende vil en række af disse standardprocesser blive beskrevet, og deres bevægelser i i,x-diagrammet klarlagt.

4.2.1 Blanding af luftmængder

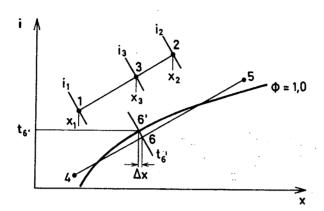
Blandes en luftmængde m_1 kg af tilstanden (x_1, i_1) med luftmængden m_2 kg af tilstanden (x_2, i_2) vil blandingens absoluttet fugtighedsindhold x_3 og entalpi i_3 blive:

$$x_3 = \frac{m_1 \cdot x_1 + m_2 \cdot x_2}{m_1 + m_2}$$

$$i_3 = \frac{m_1 \cdot i_1 + m_2 \cdot i_2}{m_1 + m_2}$$

Udtrykket 4.19 kan omskrives til:

$$m_1(i_3-i_1) = m_2(i_2-i_3)$$


$$\frac{i_3-i_1}{i_2-i_3} = \frac{m_2}{m_1} = n$$

der viser, at blandingens tilstandspunkt 3 vil ligge på forbindelseslinien mellem punkterne 1 og 2 og dele denne i forholdet

$$n = \frac{strækning \ 1-3}{strækning \ 2-3} = \frac{m_2}{m_1}$$

som vist på figur 4.4.

n benævnes blandingsforholdet.

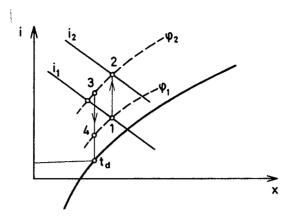
Figur 4.4 Blanding af luftmængder

Hvis blandingstilstanden falder inde i tågeområdet, som vist ved blanding af 4 og 5 til tilstand 6, vil den overskydende vanddampmængde $\Delta x = x_6 - x_6$, kondenseres ud af luftblandingen, der kommer til at bestå af fuldt mættet luft af tilstanden 6' samt vandmængden Δx i dråbeform.

4.2.2 Opvarmning ved konstant vandindhold

Ved at lede fugtig luft hen over en tør, varm overflade sker der en opvarmning uden ændring af det specifikke vandindhold x.

Da således x = konstant, bliver $\Delta x = 0$ og $\frac{\Delta i}{\Delta x} = +\infty$, d.v.s.


at tilstandsforandringen vil ske i lodret opadgående retning. Herved stiger entalpien i luftmassen, medens den relative fugtighed φ falder.

Tilstandsændringen er vist på figur 4.5 fra punkt 1 til punkt 2.

Vinterluft af 0 C og 80% RF opvarmes til stuetemperatur 21 C. Hvor stor er φ i den nye tilstand?

i,x-diagrammet figur 4.2 giver $\varphi = 20 \%$.

Figur 4.5 Opvarmning og køling ved konstant vandindindhold

4.2.3 Tør køling

På figur 4.5 er ligeledes indtegnet forløbet af en afkøling fra tilstandspunkt 3 til 4. Her er retningen $\frac{\Delta i}{\Delta x} = -\infty$. Denne

proces kan kun foregå, så længe kølefladens temperatur er højere end t_d , dugpunktet for den pågældende luftblanding. Køles luften til mætning ved dugpunktet vil der udskilles vand, og processen får en anden karakter, idet Δx da er forskellig fra 0.

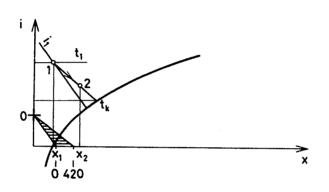
Sluttilstanden 4 ved tør køling afhænger af kølefladens størrelse, varmeovergangstallet og kølefladens middeltemperatur.

4.2.4 Befugtning med vand

Ledes m_v kg forstøvet vand til en luftblanding af m_1 kg tør luft og $x \cdot m_1$ kg vanddamp, således at hele vandmængden m_v fordamper, vil der ske en ændring i luftens absolutte vandindhold til x_2 .

Ændringen er udtrykt ved:

$$\Delta x = x_2 - x_1 = \frac{m_v}{m_1}$$


Entalpiændringen kan udtrykkes ved vandets entalpi i_v:

$$\Delta i = i_2 - i_1 = \frac{m_v \cdot i_v}{m_1}$$

således at tilstandsændringen får retningen

$$\frac{\Delta i}{\Delta x} = \frac{m_{\nu} \cdot i_{\nu}}{m_{1}} \cdot \frac{m_{1}}{m_{\nu}} = i_{\nu}$$

Da $i_v = c_{pv} \cdot t_v = 4,2t_v$ kJ/kg og vand kun kan tilføres forstøvet ved $0 < t_v < 100$ C, vil retningen på randmålestokken ligge i intervallet $0 < \frac{\Delta i}{\Delta x} < 420$, der ligger inden for en lille vinkel i diagrammet, som vist på figur 4.6.

Figur 4.6 Befugtning med vand

For $t_v = 0$ C bliver $\frac{\Delta i}{\Delta x} = 0$, og processen løber langs en

isentalp (linie for i=konstant) altså uden ændring af luftblandingens entalpi i. For de sædvanligt anvendte temperaturer indtil

20 C kan der i praksis regnes med konstant i, idet afvigelsen vil være uden betydning.

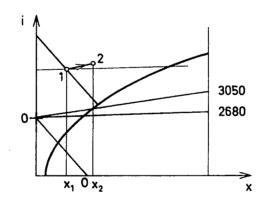
Befugtningsprocessen kan teoretisk fortsætte til mætning opnås, men kun ved at cirkulere betydeligt større vandmængder, end der skal optages, kan man nærme sig mætningskurven, d.v.s. 90-95% RF. Vandet skal desuden recirkuleres uden opvarmning eller afkøling.

Den laveste temperatur, der kan opnås på denne måde, kaldes luftens kølegrænse t_k , og afkølingen sker udelukkende ved, at fordampningsvarme hentes fra luftens fri varme og bindes i vanddampen.

Det cirkulerende vand vil antage en temperatur meget nær tk.

4.2.5 Befugtning med damp

I stedet for ved vandindsprøjtning kan befugtningen foretages ved tilførsel af vanddamp. Tilføres m_{d} kg vanddamp kan tilstandsændringens retning bestemmes af


$$\frac{\Delta i}{\Delta x} = \frac{i_2 - i_1}{x_2 - x_1} = \frac{m_d \cdot i_d}{m_d} = i_d$$

De grænser for i_d, som der normalt kan være tale om, er:

 $i_d = 2680$ kJ/kg for mættet damp af 1,0133 bar og 100 C $i_d = 3050$ kJ/kg for overhedet damp ved 10 bar og 300 C.

På figur 4.7 er vist, hvor dette område ligger på retningsmålestokken.

Figur 4.7
Befugtning med damp

Det ses af figuren, at dampbefugtning kun giver en ringe stigning i temperaturen. Sluttilstanden 2 bestemmes ved at docere den nøjagtige dampmængde x_2 - x_1 .

4.2.6 Våd køling

Som nævnt under punkt 4.2.3 kan køling med $\frac{\Delta i}{\Delta x} = -\infty$ kun

finde sted, hvis kølefladens overfladetemperatur ikke på noget punkt har lavere temperatur end luftens dugpunkt t_a .

Er denne betingelse ikke opfyldt, vil der kondenseres vand på kølefladen, således at luften i virkeligheden passerer hen over en våd overflade af en temperatur $t_v < t_d$. Holdes t_v konstant ved at fjerne varmestrømmen Φ , er luftmængden m_1 kg tør luft og fortættes der vandmængden m_d kg vand fås:

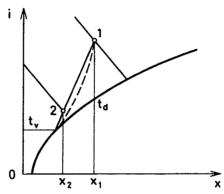
$$\Delta i = i_2 - i_1 = -\frac{\Phi + m_d \cdot i_v}{m_1} \quad \text{og}$$

$$\Delta x = x_2 - x_1 = -\frac{m_d}{m_1}$$

hvoraf retningen på randmålestokken findes til:

$$\frac{\Delta i}{\Delta x} = \frac{\Phi}{m_d} + i_v \tag{4.20}$$

Denne form for køling kan også udføres ved at recirkulere et overskud af forstøvet vand, der holdes på den konstante temperatur t_v ved afkøling.


For $\Phi = 0$ og $\frac{\Delta i}{\Delta x} = i_v$ findes den rene befugtning med vand som omtalt i pkt. 4.2.4.

Principielt kunne Φ og m_d lige så godt være positive, så udtrykket 4.20 vil gælde i alle tilfælde, hvor der fjernes eller tilføres varme i forbindelse med fortætning eller fordampning af vand.

For t_v konstant over hele arealet vil tilstandsændringen $\frac{\Delta i}{\Delta x}$ gå

mod det punkt på mætningskurven, hvor linien $t=t_v$ skærer denne. Da denne forudsætning sjældent er opfyldt i praksis, vil køleforløbet foregå efter en krum linie mellem retningen for tør køling og retningen mod t_v på mætningskurven. Forholdene er vist på figur 4.8.

Figur 4.8 Våd køling

Til beregninger i praksis vil det retlinede forløb almindeligvis være nøjagtigt nok.

Af figur 4.8 ses, at hvis temperaturen t_v hæves, vil tilstandsforandringerne efterhånden ændres til opvarmning og befugtning, idet standardprocesserne tør køling og befugtning med vand passeres.

4.2.7 Affugtning ved ad- eller absorption

Den mest almindeligt anvendte måde til affugtning af luft er ved afkøling under dugpunktet, men der findes også mulighed for at fjerne fugtighed med kemiske midler.

Adsorption

Dette kan ske ved adsorption, d.v.s. vandoptagelse i et stofs mikroskopiske porer. Som eksempel herpå kan nævnes silicagel (kiseldioxyd). Adsorptionsmidlerne kan regenereres ved opvarmning.

Absorption

Affugtning kan også ske ved, at en del af luftens vandindhold absorberes kemisk af en mættet opløsning af et salt eller selve saltet. Dette bevirker, at opløsningen fortyndes, eller at saltet flyder hen. Sådanne stoffer er fx kalciumclorid og lithiumklorid.

4.3. Fugttransport

Ethvert byggemateriale får tilført vand. Forskellige kilder for vandtilførslen kan være:

- a. luftfugtighed
- b. grundfugt
- c. slagregn
- d. byggefugt

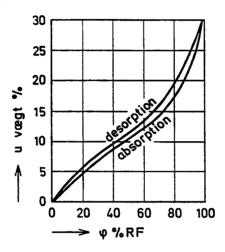
Såfremt disse fugtmængder ikke skaffes bort med samme hastighed, som de tilføres, vil der ophobes fugt i materialerne, og dette vil ofte have fugtskader til følge. Af fugtskader kan nævnes:

fugtskjolder, rindende vand, frostskader, saltudblomstringer, revner, buler, kastninger, nedsat varmeisolans, råd, korrosion, svampeangreb.

Fugtskaders alvor varierer lige fra fugtskjolder, der er ret generende uden at medføre særligt store udgifter, til frostskader, råd og korrosion, der simpelthen nedbryder materialerne på alt for kort tid. Generelt må det siges, at man i dag råder over så gode materialer, beregningsmetoder og erfaringer, at fugtskader burde være en sjældenhed i nyt byggeri.

4.3.1 Byggematerialers fugtindhold

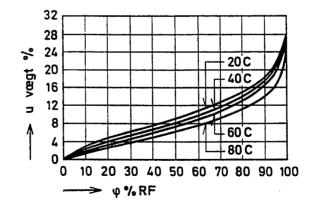
Til et materiales fugtindhold knytter sig en vis fugtbindingsenergi på grund af sammenhængskræfterne mellem materialet og de bundne vandmolekyler. Bindingskræfterne kan bestå af osmotiske kræfter, der skyldes saltes tilstedeværelse i vandet, af adsorptionskræfter også kaldet van der Waals-kræfter, eller af kapilarkræfter. Resultanten af bindingskræfterne er modsat rettet damptrykket over de bundne vandpartikler og sænker derfor dette. Lige over et fugtigt men ikke gennemblødt materiale, er vanddampen altså umættet.


Såfremt et materiale udsættes for en ydre fugtpåvirkning i form af fugtig luft, vil der indstille sig et ligevægtsfugtindhold. Ved stigende fugtindhold fyldes først de små porer, hvorefter afstan-

Fugtskader

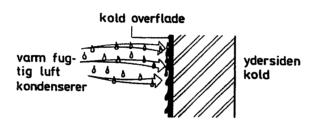
Absorption og desorption

den mellem materialeoverflade og vandpartikler øges, så at fugtbindingskræfterne formindskes. Herved opnås ved konstant temperatur en sammenhæng mellem materialets fugtindhold u og luftens relative fugtindhold φ . Ved fugtoptagelsen fås absorptionsisotermen og ved udtørring desorptionsisotermen som figur 4.9 viser for træ.


Figur 4.9 Fugtligevægt for træ ved 10°C

Sorptionsisotermer

Da der er ret lille forskel mellem absorptions- og desorptionsisotermen, angives normalt for materialer middelkurven, der betegnes sorptionsisotermen. På figur 4.10 vises temperaturens indflydelse på sorptionskurven for træ.


Figur 4.10 Sorptionsisotermer for træ

Det fremgår af figur 4.10, at temperaturafhængigheden for de temperaturer, der normalt forekommer i bygninger, er ret ringe, hvilket gælder for langt de fleste materialer. Derfor ses der normalt bort fra den, idet kurverne så betegnes sorptionskurver i stedet for sorptionsisotermer. I appendix C angives sorptionskurver for en række materialer.

I det foregående er byggematerialers fugtbalance med omgivelserne behandlet, vel at mærke når materialerne på begge sider er omgivet af fugtig luft under stationære forhold. Da symmetriske omgivelser meget sjældent forekommer i praksis og desuden normalt ikke giver problemer, behandles i de følgende afsnit de lidt mere vanskelige ydervægskonstruktioner.

4.3.2 Kondens på overflader

Figur 4.11 Kondens på overflader

Såfremt den indvendige overfladetemperatur på vægge, lofter, vinduer og lignende ligger under rumluftens dugpunkttemperatur, vil luftens indhold af vanddamp kondensere på overfladerne. En sådan kondensdannelse sker, hvis bygningsdelene er for dårligt isoleret.

Er U = transmissionstallet (W/m²C)

 α_i = indvendig varmeovergangstal (W/m²C)

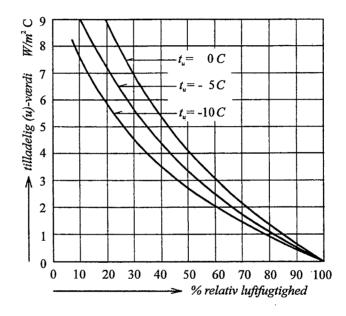
 $t_r = rumlufttemperaturen (C)$

 $t_u = udeluftens temperatur (C)$

 t_{oi} = indvendig overfladetemperatur (C)

Vil varmebalancen for den indvendige overflade i det stationære tilfælde give:

$$U(t_r-t_u) = \alpha_i(t_r-t_{oi})$$
 eller


$$U_{\max} = \frac{\alpha_i (t_r - t_{oi})}{t_r - t_u}$$

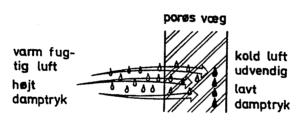
Sættes her $\alpha_i = 7,75 \text{ W/m}^2\text{C}$ og $t_r = 20\text{C}$ fås:

$$U_{\text{max}} = \frac{7,75(20 - t_{oi})}{20 - t_u}$$

Denne funktion er afbildet i figur 4.12 for varierende relativ fugtighed i rumluften og ved forskellige udetemperaturer.

Figur 4.12 Tilladelig U-værdi ved $t_r = 20C$ og $\alpha_i = 7,75$ W/ m^2C før kondensdannelse

Dug på vinduer


Af figuren ses, at termoruder med en U-værdi på ca. 3,1 W/m²C ikke altid kan være dugfri her i landet ved lave udetemperaturer, idet der hertil blot kræves en relativ luftfugtighed φ > 45%. Genen ved dugdannelse på vinduer nogle få dage om året er minimal, men såfremt der er større problemer f.eks. i svømmehaller og lignende kan forholdene forbedres, enten ved at benytte termoruder med en lavere U-værdi eller ved at forøge α_i . Det sidste gøres ved at anbringe en varmeflade under vindu-

erne eller ved at blæse varm luft op langs vinduernes inderside.

For normale ydervægge, tage m.v. er U-værdien langt under de tilladelige værdier som angivet ovenfor. Men ved lokale områder med større U-værdi, der opstår af konstruktionsmæssige årsager, de såkaldte kuldebroer, vil der blive problemer, hvis U-værdien bliver for høj. Resultatet kendes fra gipspladelofter i etplanshuse, hvor der i løbet af 2-4 år kan blive mørke striber på loftet under spærfoden, hvis isoleringen ikke ligger tæt imod denne, idet selv en usynlig kondensdannelse binder støv og røg mere end en tør overflade. Også på ydervægge kan lignende lokale skader opstå.

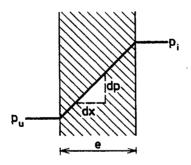
Ved konstruktionen må man derfor sikre sig, at ingen kuldebroer ved søjler, massive udmuringer m.v. får U-værdier, der er så høje, at kondensdannelse opstår ved de aktuelle rumfugtigheder og temperaturer. Hertil benyttes ligning 4.22, såfremt forholdene er anderledes end de, der er gældende for figur 4.12.

4.3.3 Indvendig kondensation

Kuldebroer

Figur 4.13
Indvendigkondensation

Med den nuværende viden på området fugttransport er det kun muligt at beregne fugttransporten i dampform, d.v.s. fugttransport fra fugtig luft gennem materialet til luft og desuden fugttransport fra fugtig luft til materialet (fugtakkumulering).


Derimod kan fugttransport i væskeform ved kapillarsugning endnu ikke beregnes, d.v.s. at nok kan den kondenserede fugtmængde i et materiale beregnes, men fugtfordelingen i matrialet er meget vanskelig at bestemme. I praktisk byggeri er det derfor tilrådeligt helt at undgå kondensation i materialerne, hvilket er muligt i langt de fleste konstruktioner.

Dampdiffusion under stationære forhold

Først skal betragtes en væg af et tørt, homogent, ikke hygroskopisk materiale under stationære hygrotermiske forhold, d.v.s. at temperatur og damptryk ikke ændres med tiden. På figur 4.14 ses en sådan væg med tykkelsen e udsat for vanddamptrykkene p_i og p_u .

Figur 4.14

Damptrykkets forløb
gennem homogen væg
uden kondensation

Ved overfladerne vil der, ganske som ved varmetransmission, være en vis overgangsmodstand, men da overgangsmodstandene mod dampdiffusionen i praksis er ubetydelig i sammenligning med materialemodstanden, kan der ses bort fra disse.

Så længe der ikke aflejres fugt i vægge, vil dampdiffusionen følge Ficks og Stefans lov, der kan udtrykkes:

$$g = -\sigma_d \frac{dp}{dx}$$

hvor g = den vanddampmængde, der pr. tids- og arealenhed diffunderer gennem væggen (kg/m^2s)

 $\sigma_{\rm d}$ = diffusionstallet for materialet (kg/m · s · Pa)

 $\frac{dp}{dx}$ = trykgradienten for de partielle damptryk, hvor trykket kan angives i Pa og afstanden i m.

Forudsat stationære tilstande, og at materialet forbliver tørt, må g være konstant. Som følge heraf er også damptrykgradien-

ten $\frac{dp}{dx}$ konstant, d.v.s. at damptrykket aftager lineært gennem

væggen fra p_i til p_u som vist på figur 4.14. I dette tilfælde fås derfor:

$$g = \sigma_d \frac{p_i \div p_u}{e} \tag{4.25}$$

Vanddampes partialtryk kan fås af et i-x diagram for fugtig luft, eller mættede vanddampes tryk kan findes af tabel 4.3. For umættede tilstande erindres blot at:

$$p_d = \varphi \cdot p_{dm}$$

hvor φ er den relative fugtighed og p_{dm} er mætningstrykket, ref. formel 4.3.

Tabel 4.3

Mættede vanddampes
tryk ved varierende
temperatur (barometerstand = 1013 mbar)

С	$Pa = N/m^2$	C	$Pa = N/m^2$
-15	165	10	1228
-14	181	11	1312
-13	199	12	1402
-12	217	13	1497
-11	237	14	1598
-10	260	15	1705
- 9	284	16	1817
- 8	309	17	1937
- 7	337	18	2063
- 6	368	19	2197
- 5	401	20	2338
- 4	437	21	2486
- 3	476	22	2643
- 2	517	23	2809
- 1	563	24	2983
0	610	25	3167
1	657	26	3360
2	705	27	3564
3	758	28	3779
4	813	29	4004
5	872	30	4242
6	934	31	4492
7	1001	32	4753
8	1073	33	5029
9	1148	34	5318

I tabel 4.4 angives en række vejledende diffusionstal for byggematerialer. Det bemærkes, at der er ret stor variation i de angivne værdier. Dette skyldes dels temperaturafhængighed, men især at langt de fleste byggemateialer er hygroskopiske, og at der sker en kapillartransport i materialet, når dette bliver fugtigt. Jo mindre hygroskopisk et materiale er, des bedre stemmer derfor beregningerne med de faktiske forhold.

Tabel 4.4 Diffusionstal for byggematerialer

Matarialan	Materialer Rumyægt Diffusionstal a			
water faler	Rumvægt kg/m³	Diffusionstal $\sigma_{\rm d}$		
	Kg/III	kg/m·s·Pa		
Natursten				
kalksandsten	1700 - 2400	19·10 ⁻¹²		
Teglsten				
massive mursten	1700 - 1900	(19-25)·10-12		
mangehulsten	1200 - 1600	$(31-62)\cdot 10^{-12}$		
murværk	1360	27·10-12		
murværk	1530	19·10-12		
Pudsmørtel				
kalk	1800	19·10-12		
kalkcement	1800 - 2000	$(10-19)\cdot 10^{-12}$		
cement	2000 - 2100	(7-13)·10 ⁻¹²		
Muremørtel		` ,		
kalk	1800	19·10-12		
kalkcement	2000	4.10-12		
cement	2000 - 2100	$(2-5)\cdot 10^{-12}$		
Gips		, , , , , , , , , , , , , , , , , , , ,		
støbt	1200	29·10 ⁻¹²		
plader	1400	31.10-12		
Mineraluld	10 - 300	$(114-156)\cdot 10^{-12}$		
Beton		, , = -		
almindelig grovbeton	2200 - 2500	$(5-6)\cdot 10^{-12}$		
beton med lette tilslag	700 - 1500	$(19-94)\cdot 10^{-12}$		
cellebeton	500 - 800	$(19-94)\cdot 10^{-12}$		
træbeton	400 - 600	$(15-62)\cdot 10^{-12}$		
Plastskum		, ,		
Polystyrenskum	10	(6-9)·10 ⁻¹²		
-	20	$(2-4)\cdot 10^{-12}$		
-	40	$(1-2)\cdot 10^{-12}$		
-	60	$(0,5-1,5)\cdot 10^{-12}$		
phenolskum	35 - 100	$(3-38)\cdot 10^{-12}$		
=	230	0,8·10-12		
polyurethan	25 - 150	(3-31)·10 ⁻¹²		
polyvinylchlorid	25 - 60	$(0,1-0,9)\cdot 10^{-12}$		
Træ		, , , , = -		
bøg, 10 vægt % fugt	ca. 600	$2,7 \cdot 10^{-12}$		
bøg, 15 vægt % fugt	ca. 600	17·10 ⁻¹²		

Tabel 4.4 fortsat

Materiale	Rumvægt kg/m³	Diffusionstal σ _d kg/m·s·Pa
bøg, 20 vægt %		
fugt	# { -	23·10 ⁻¹²
gran, 4 vægt %	ca. 400	
fugt		0,8·10 ⁻¹²
gran, 6 vægt %		
fugt]	1,1·10 ⁻¹²
gran, 8 vægt %		
fugt		1,7·10 ⁻¹²
træfiberplader	500	(14-31)·10 ⁻¹²
-	400	(38-63)·10 ⁻¹²
Bitumenpap		7.10-14
Tagpap		3·10 ⁻¹⁵
Polyvinylchloridfolie		3.10-15
Polyethylenfolie		2·10 ⁻¹⁵
Alu-folie $\geq 125 \text{ g/m}^2$		0

For tynde (overflade) lag som maling, folier og lignende er det mere praktisk i stedet for diffusionstallet $\sigma_{\rm d}$ at angive diffusionsmodstanden

$$m_d = \frac{e}{\sigma_d} \ (m^2 \cdot s \cdot Pa/kg).$$

I tabel 4.5 er anført diffusionsmodstande for nogle af de mest anvendte dampbremsende lag.

Tabel 4.5 Diffusionsmodstand for dampbremsende lag

Materiale	Diffusionsmodstand m _d Pa·m²·s/kg
Akrylmaling	3-4·109
Alkydoliemaling	10-15·10 ⁹
Alukraft	5000·10 ⁹
Kalk	0,18·10 ⁹
Linoleum	25·11 ⁹
Metal og glas	00
Olieemulsionsmaling	$0.5 \cdot 10^9$
Plastfolie, dampspærre	5000·10 ⁹
Polyethylenfolie, 0.1 mm	250·10°
Tagpap	600·10°
Tapet, limfarvet	0,18·109
Vindtæt asfaltpap	25·10 ⁹
Vinyl til gulve	100·10 ⁹

For en væg uden fugtaflejring, der er sammensat af flere lag, fås ganske som ved varmeledning:

4.26

Dampdiffusion gennem

sammensat væg

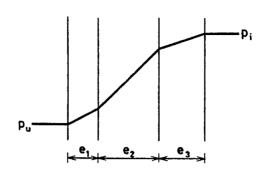
$$g = \frac{p_i - p_u}{\sum m_d}$$

hvor g

er vanddampdiffusionen (kg/m²s)

 $p_i \ og \ p_u$

vanddamppartialtrykkene på begge sider af væggen ($Pa = N/m^2$)

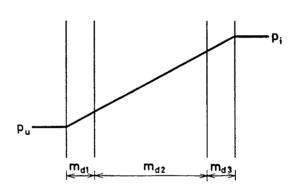

 Σm_d

er summen af diffusionsmodstandene for de enkelte materialelag

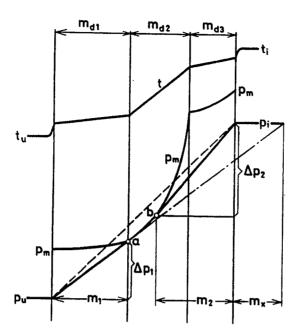
$$m_d = \frac{e}{\sigma_d} (m^2 \cdot s \cdot Pa/kg)$$

Skal g være konstant gennem væggen (stationære forhold), bliver forløbet af damptrykkurven retlinet som vist på figur 4.15.

Figur 4.15
Damptrykforløb gennem sammensat væg uden kondensation


Trykfaldet over ethvert lag i ses umiddelbart at være:

$$\Delta p_i = \frac{m_{di}}{\sum m_d} (p_i - p_u)$$


Afbildes væggen i stedet med diffusionsmodstanden som abscisse, vil damptrykket forløbe som en ret linie som vist på figur 4.16.

Figur 4.16

Damptrykforløb gennem væg uden kondensation

Denne afbildningsform er hensigtsmæssig, når en væg skal undersøges med hensyn til kondensationsrisiko. På figur 4.17 er på denne måde vist en væg bestående af tre forskellige lag. Temperaturforløbet gennem væggen er beregnet og angivet ved temperaturkurven t.

Figur 4.17 Væg med fugtudskillelse - principskitse

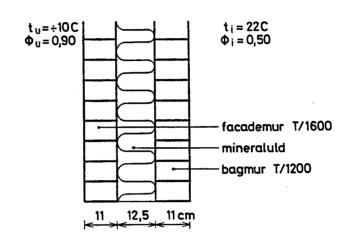
Ved hjælp af damptryktabellen 4.3 kan de mættede dampes tryk $p_{\scriptscriptstyle m}$ indtegnes. Såfremt der ikke skete kondensation i væggen, ville damptrykforløbet gennem væggen være en ret linie fra p_i til p_u (punkteret). Men da denne rette linie her skærer p_m -kurven, er en retlinet variation af p ikke mulig (p kan ikke være $> p_m$).

Vægges damptrykkurve

Kondensation eller ikke

Det indses let, at den eneste mulige damptrykkurve, der opfylder de nødvendige betingelser, fås ved at tegne tangenterne fra p_i og p_u til p_m -kurven. Damptrykkurven bliver således p_u -a-b- p_i . Enhver anden kurve, der opfylder betingelsen $p \leq p_m$ vil nemlig have knækpunkter. Disse diskontinuiteter ville imidlertid betyde, at der til området omkring knækpunktet ikke tilføres samme dampmængde, som der fjernes, hvilket er i strid med forudsætningen om stationære tilstande.

Den fugtmængde, der kondenserer i området a-b fås af formel 4.26 til:


$$g = \frac{\Delta p_2}{m_2} - \frac{\Delta p_1}{m_1}$$

Akkumuleret fugtmængde

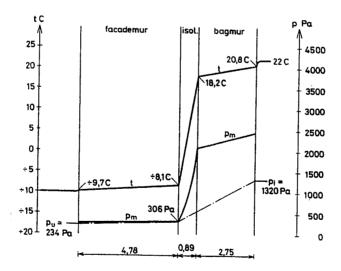
4.28

Nødvendig dampbremse For at undgå kondensation kan der på den varme side anbringes en dampbremse. Ved hjælp af damptrykdiagrammet kan dennes nødvendige diffusionsmodstand m_{x} konstrueres, idet det erindres, at damptrykkurven skal være retlinet, hvis fugtudskillelse skal undgås. Linien $P_{u}\text{-}a$ forlænges derfor blot til skæring med P_{i} som vist.

Eksempel 4.1 Fugtberegning for teglstensydervæg

I dette eksempel skal en 35 cm isoleret ydermur beregnes. Af talværdier opgives følgende:

Lag	Tykkelse e m	λ-værdi W/mC	Diffusionstal σ _d kg/m s·Pa
Facademur	0,11	0,64	23:10 ⁻¹²
Mineraluld	0,125	0,044	140·10 ⁻¹²
Bagmur	0,11	0,40	40·10 ⁻¹²

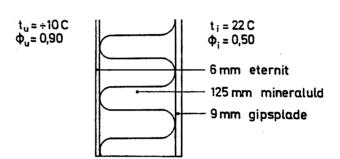

Indvendig varmeovergangsmodstand $R_i = 0.13 \text{ m}^2\text{C/W}$ Udvendig varmeovergangsmodstand $R_u = 0.04 \text{ m}^2\text{C/W}$ Løsning

Modstande:
$$R_m = \frac{e}{\lambda}$$
 og $m_d = \frac{e}{\sigma_d}$

Lag	Varmeiso- lans m²C/W	Temperatur- fald C	Diffusions- modstand m _d m ² s Pa/kg
Indv. overgang	0,13	$\frac{0,13}{3,46}$ ·32=1,2	~ 0
Bagmur	0,28	$\frac{0,28}{3,46}$ ·32=2,6	2,75·10°
Mineraluld	2,84	$\frac{2,84}{3,46}$:32=26,3	0,89·10°
Formur	0,17	$\frac{0,17}{3,46}$:32=1,6	4,78·10 °
Udv.overgang	0,04	$\frac{0.04}{3.46}$:32=0,3	~ 0
Σ	3,46	32	8,42·10°

Temperaturkurven kan nu indtegnes i afbildningen nedenfor, hvor diffusionsmodstandene er abscisse. Ved hjælp af tabel 4.3 indtegnes desuden p_m -kurven.

Som det fremgår af følgende figur, vil en ret linie fra p_i til p_u skære mætningskurven. Der vil derfor forekomme kondensation, og den virkelige damptrykkurve vil gå som vist med stiplet linie, d.v.s. at der sker en fugtudskillelse på facademurens inderside.


Den kondenserede fugtmængde fås af formel 4.28:

$$g = \frac{\Delta p_2}{m_2} - \frac{\Delta p_1}{m_1} = \frac{1320 - 306}{(2,75 + 0,89) \cdot 10^9} - \frac{306 - 234}{4,78 \cdot 10^9}$$

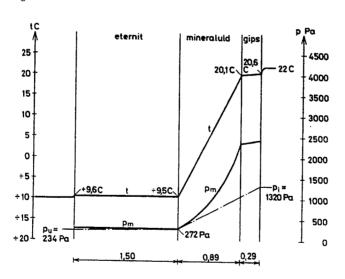
$$g = 2,64 \cdot 10^{-7} \, kg/m^2 s$$
 (1 g/m²h)

En så ringe fugtmængde vil formentlig blive fjernet ved facademurens kapillarsugning. Som tommelfingerregel kan der regnes med, at kapillarsugningen fjerner 1-2 g/m²h ved de normale porøse byggematerialer. Dette underbygges af, at målinger på ydervægge af den art, som er behandlet i dette eksempel, aldrig har vist kondensdannelse.

Eksempel 4.2 Fugtberegning for let facadeelement

Et let facadeelement er opbygget som vist på skitsen. Af talværdier opgives:

Lag	Tykkelse e m	λ-værdi W/m C	Diffusionstal σ _p kg/m s·Pa
Eternit	0,006	0,58	4·10 ⁻¹²
Min. uld	0,125	0,044	140·10 ⁻¹²
Gipsplade	0,009	0,20	31·10 ⁻¹²


Indvendig varmeovergangsmodstand $R_i = 0.13 \text{ m}^2\text{C/W}$ Udvendig varmeovergangsmodstand $R_u = 0.04 \text{ m}^2\text{C/W}$

Løsning

Modstande
$$R_m = \frac{e}{\lambda} og m_d = \frac{e}{d}$$

Lag	Varmeled- ningsmod- stand R _m m ² C/W	Temperatur- fald C	Diffusions- modstand m _d m ² s Pa/kg
Indv overgang	0,13	$\frac{0,13}{3,07} \cdot 32 = 1,4$	~ 0
Gipsplade	0,05	$\frac{0,05}{3,07}:32=0,5$	0,29:10 9
Minera-	2,84	$\frac{2,84}{3,07}$ ·32=29,6	0,89·10°
Eternit	0,01	$\frac{0.01}{3.07}$ ·32=0,1	1,5·10°
Udv.over-	0,04	$\frac{0,04}{3,07} \cdot 32 = 0,4$	~ 0
Σ	3,07	32	

Temperaturkurve t, mætningskurve p_m og damptrykkurve p tegnes:

Figur 4.18

Den fugtmængde, der udskilles på eternitpladens inderside, bliver:

$$g = \frac{1320 - 272}{(0,89 + 0,29)10^9} - \frac{272 - 234}{1,50 \cdot 10^9}$$

$$g = 8.6 \cdot 10^{-7} kg/m^2 s \ (= 3.1 \ g/m^2 h)$$

Eternitpladens kapillarsugeevne må formentlig være temmelig lille i forhold til dette tal. Beregnes den akkumulerede fugtmængde i løbet af 1 måned fås:

$$G = 8,6 \cdot 10^7 \cdot 3600 \cdot 24 \cdot 30 = 2,2 \, kg/m^2$$

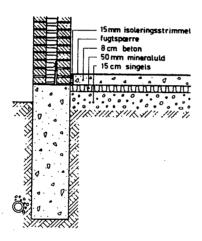
Jævnt fordelt i isoleringen svarer dette til ca. 1,7 vol. %. Dette vandindhold vil forringe mineraluldens isoleringsevne mærkbart (ifølge DS 418 regnes vandindholdet normalt til 1 vægt \approx 0,03 vol. %.

Indskydes der en dampspærre på den varme side af isoleringen må denne, for at forhindre kondensdannelse, have en diffusionsmodstand m_x givet ved:

$$\frac{272 - 234}{1,5 \cdot 10^9} = \frac{1320 - 272}{(0,89 + 0,29) \cdot 10^9 + m_r}$$

$$m_r = 4.0 \cdot 10^{10} \, m^2 \cdot s \cdot Pa/kg$$

Undertiden indskydes et ventileret luftlag på isoleringens kolde side, dette skulle ikke være nødvendigt, når blot det dampbremsende lag er udført omhyggeligt, især i samlinger!


4.3.4 Grundfugt

Grundfugt i bygningsdele kan efter årsagen opdeles i følgende to tilfælde:

- a. bygningsdele udsat for vandtryk
- b. bygningsdele befugtet ved kapillarsugning.

Såfremt der i jorden rundt om en kælder i visse perioder under regn, tøbrud og lignende kan blive en vandstand, der ligger over kældergulvets niveau, skal kælderydervæggen være udført meget omhyggeligt vandtæt, hvis indsivning af vand skal undgås. En metode til at undgå en sådan indsivning er at lægge et såkaldt omfangsdræn nær grundmuren og at tilføre et passende meget porøst materiale (grus og lignende) til dræn og grundmur. Selv med omfangsdræn skal en kælderydervæg dog altid udføres så vandtæt som muligt, især ved kabel- og rørgennemføringer, idet der under tøbrud - trods omfangsdræn - kan forekomme vandtryk lokalt.

Ved gulve på terræn kan jordens fugt transporteres opad ved kapillarsugning gennem materialerne. Denne kapillarsugning kan afbrydes ved at anbringe mindst 15 cm kapillarbrydende stenlag med en mindste kornstørrelse på 4 mm mellem selve gulvkonstruktionen og jorden, som vist på følgende tegning.

Kapillarsugning

Figur 4.19 Kapillarbrydende stenlag

Tidligere troede man, at et dampstandsende lag f.eks. plastfolie anbragt under isoleringen var nødvendig for at sikre mod kondensdannelse på isoleringens underside, når denne var koldere end vanddampen i det kapillarbrydende lag. Det er dog nu bevist, at denne risiko ikke foreligger under opvarmede rum. Tværtimod vil en sådan folie ofte gøre skade, idet betonlaget, som er vist på tegningen, vanskeligt vil kunne udtørre efter støbningen, såfremt der anbringes endnu en fugtspærre over dette.

Den på figuren viste øverste fugtspærre er ikke nødvendig i normale rum, men kan f.eks. være vinyl eller lignende.

Specielt for frysehuse

Det der her er sagt om, at der ikke er kondensrisiko på oversiden af det kapillarbrydende lag gælder ikke frysehuse! Under fryserum vil undersiden af den egentlige gulvkonstruktion kunne have konstant temperatur, der er under frysepunktet. Herved vil vanddampen i det kapillarbrydende lag kunne kondenseres og fryse oppefra og nedefter, således at også jorden under laget efterhånden fryser. Frysehuset hæves - og revner!!! Dette har vi eksempler på her i landet i dag - med store frysehuse. Ofte vil det ved dybfrosthuse være nødvendigt at opvarme gulvet for at forhindre gulvets underside i at blive for kold. Ved kølerum m.v. må man i det hele taget tænke sig godt om hvad fugttransport angår.

4.3.5 Slagregn

Den form for nedbør, der oftest er anledning til fugtskader, er slagregn, d.v.s. regn i forbindelse med stærk blæst. Det er velkendt, at regndråber i stærk blæst falder mod jorden med en betydelig vandret hastighedskomposant. Det vil sige, at også en bygnings lodrette flader rammes af slagregn.

Med tilstrækkelig kraftig slagregn vil der især ved høje bygninger drive en vandfilm ned over facaden. Samtidig vil den kraftige blæst skabe et overtryk på bygningens vindside og et undertryk på læsiden, således at trykforskellen bliver af størrelsesorden $\Delta p = 0.7 \cdot 1/2 \rho v_2$, hvor ρ er luftens massefylde og v dens hastighed. F.eks. fås ved vindhastigheden 20 m/s og $\rho = 1.2$ kg/m³:

 $\Delta p = 0.7 \cdot \frac{1}{2} \cdot 1.2 \cdot 20^2 = 168 \text{ N/m}^2.$

Over facademuren vil der kun være en del af dette trykfald, men denne del er altid tilstrækkelig til, at vandet nok skal finde de revner, der måtte være i ydervæggen. I perioder, hvor vandfilmen ikke er til stede, vil blæsten trænge ind gennem revnerne og drive vandet med ind.

Den bedste forholdsregel mod slagregn er naturligvis, at det yderste lag af klimaskærmen er vandtæt. Imidlertid udføres mange ydervægge yderst af et porøst materiale f.eks. teglsten, som vandet langsomt vil kunne trænge gennem. Desuden kan der være huller i fuger og andre samlinger, der tillader vandet at trænge ind. Er der sådanne små lækager, er det vigtigt, at vandet, der er trængt gennem konstruktionens yderste lag, kan ledes bort udad. I en teglstensydervæg som f.eks. den på figur 4.19 klares opgaven af det viste tjærepap, der anbringes mellem facademur og sokkel og bøjes op over bagmurens tredie skifte. Herved vil vand, der er trængt ind i isoleringslaget, langsomt kunne ledes bort gennem ydervæggen ved kapillarsugning.

Modforholdsregler mod slagregn

Ved lettere ydervægskonstruktioner anvendes undertiden en udvendig regnskærm af metalplade eller lignende efterfulgt af et ventileret lodret luftlag udenfor isolering m.v. En sådan konstruktion sikrer mod slagregns indtrængning i isoleringen, men der er mange andre kompakte ydervægge, der klarer sig udmærket.

Det store problem ved slagregn er normalt fuger om vinduer og døre m.v. samt samlinger mellem elementer. Før den plastiske fugemasse fremkom, var vind- og regntæthed vanskelig at opnå, men en plastisk fuge, der er lagt omhyggeligt, er fuldstændig lufttæt og forbliver lufttæt -så længe fugematerialet holder sin plasticitet.

4.3.6 Byggefugt

Byggefugt stammer fra materialernes tilstand ved indbygningen eller fra specielle påvirkninger på materialerne under selve byggeprocessen.

I organiske fibermaterialer i naturen findes der altid store fugtmængder. Træ, der står på roden, indeholder ofte 100% vand eller mere, når vandindholdet beregnes i % af tørvægten. Ved levering indeholder naturligt tørret træ normalt 15-20% vand. Dette er ofte 5-10% mere end det vandindhold, træet vil have, efter at bygningen har været i brug et stykke tid (se figur 4.10). For hver m³ træ skal der således oftest fjernes 50-1001 vand ved udtørring.

Naturfugt

Produktionsfugt

Beton, mørtel m.v. må - for at kunne anvendes - indeholde betydeligt større mængder vand end det, der eventuelt er nødvendigt til hærdeprocessen. Kalkholdigt mørtel vil desuden udvikle vand under selve hærdeprocessen, idet hærdningen af kalk foregår efter ligningen

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

Den frigjorte vandmængde svarer i vægt ca. til vægtmængden af kalkmørtelen. Hærdeprocessen af kalkmørtel vil gå forholdsvis langsomt, da den jo er afhængig af tilført CO₂ fra atmosfæren. I tykke mure sat med kalkmørtel kan hærdningen tage år, i særlige tilfælde ved ekstremt tykke mure ovenikøbet århundreder. I vore dage er der fundet murværk fra middelalderen, der endnu ikke er gennemhærdet.

Beton indeholder ved udstøbningen normalt ca. 200 liter vand pr. m³. Noget af vandet bindes ved hærdeprocessen. Er beton nogenlunde beskyttet mod regn, vil den normalt indstille sig på et fugtindhold på ca. 1%, dette betyder, at ca. 150 liter vand skal fjernes ved udtørring for hver m³ beton. Udtørring af beton og lignende støbemasser, der ikke producerer vand under hærdeprocessen, vil naturligvis gå forholdvis hurtigere end udtørring af kalkmørtel. Tørretiden afhænger i høj grad af lagtykkelsen, af luftens temperatur og fugtighed og af eventuelle dæklag på betonen. Normalt kan støbte betondæk og betonvægge udtørres i løbet af nogle måneder, mens tynde afretningslag og pudslag udtørres på nogle få uger.

Vintertørring

Man må regne med, at udtørring om vinteren i vort klima tager forholdsvis lang tid og kræver ret store brændselsmængder - især naturligvis, hvis byggematerialerne har fået tilført meget nedbør under byggeriet. For at undgå dette, gælder det derfor om hurtigst muligt at få bygningen under tag. Efter at vindues-, døråbninger m.v. er lukket, opvarmes huset samtidig med, at der sørges for en passende ventilation, således at luftens fugtighed indendørs bliver så lav som muligt.

Efter eventuelt at have kørt med en kraftig udtørring et stykke tid, hvorefter alle overflader er tørre, skal man ikke derfor tro, at udtørringen er gennemført. Inden der påføres overfladerne eventuelle dampbremsende lag, vil det være klogt i ca. to uger helt eller delvis at standse opvarmningen for at se, om der trænger fugt ud til overfladerne. Gør der det, må udtørringen sættes igang igen.

Oftest vil en bygning ved indflytning endnu ikke være helt udtørret. Derfor må der regnes med, at der går en hel del varme til fordampningen af vandet, hvilket stiller unormalt store krav til varmeanlægget. Det første års varmeudgifter kan som følge heraf aldrig tages som norm for bygningen.

De(t) første år i nyt byggeri

4.4 Litteratur

- [1] P. Becher: Varme og Ventilation, bind 1, København 1971.
- [2] N. F. Bisgaard: Klima- og ventilationsteknik, bind 1, København 1973.
- [3] Glent & Co.: Glent Ventilation, København 1968.
- [4] P. Lund-Hansen: Fugttransport i byggematerialer, 1967.
- [5] Gösele/Schüle: Schall, Wärme, Feuchtigkeit, 1972.
- [6] Karl Seiffert: Wasserdampfdiffusion im Bauwesen, 1967.
- [7] Karl Moritz: Richtig und Falsch im Wärmeschutz, feuchtigkeitsschutz, bautenschutz, 1965.
- [8] Frits B. Olesen: Elementær bygningsfysik, 1969.
- [9] Lars-Olof Anderson: Begränsning av fuktskador i yttervägg, R28-1973.
- [10] Byggforskningen, R11-1973: Fukt i golv och väggar.
- [11] Croome/Sherrat: Condensation in Buildings, London 1972.
- [12] DS 418. Regler for beregning af bygningers varmetab,
 Dansk Standard, 1986, samt
 Tillæg 1 til DS 418. Beregning af bygningers varmetab.
 Tillæg omhandlende vinduer og yderdøre, Dansk Standard
 1997.

Kapitel 5

VARME- OG FUGTBALANCE

Mogens Steen-Thøde

5.1 Indledning

Et rums indeklima fremkommer ved et kompliceret samspil mellem bygningskonstruktionen, klimatiseringsanlæg og belastninger. For de enkelte klimaparametre må dette samspil klarlægges ved opstilling af en balance, hvori indgår de til rummet tilførte påvirkninger og de fra rummet bortførte påvirkninger. Man stilles således overfor et antal balanceproblemer, hvor det gælder om at afgøre, på hvilken måde og med hvilke foranstaltninger man mest hensigtsmæssigt opnår det ønskede indeklima. Sådanne balanceproblemer er rummets varmebalance og rummets vanddampbalance.

Klimabalancer

Hvis de påvirkninger, der indgår i en balance kun ændres lidt med tiden, kan forholdene betragtes som stationære, hvilket forenkler balanceligningen, i modsætning til den ikke-stationære situation, hvor påvirkningernes tidsmæssige variation må tages i regning.

Stationære og ikkestationære forhold

Påvirkninger, der ikke hidrører fra klimatiseringsanlæg (varme-, ventilationsanlæg eller lignende), betegnes i det følgende som belastninger.

Belastninger

5.2 Rums stationære varme- og vanddampbalance

Under stationære forhold udtrykker et rums varme- og vanddampbalance, at den i rummet producerede eller tilførte varmeeller vanddampmængde, er lig den fra rummet udstrømmende varme- eller vanddampmængde.

De to balanceligninger kan udtrykkes ved:

$$\Phi_H + \Phi_S + \Phi_B + \Phi_P + \Phi_M = \Phi_{Tr} + \Phi_V$$

5.1 Varmebalance

5.2 Vanddampbalance

$$m_P + m_M = m_D + m_V$$

heri er Φ og m varme- og vanddampmængde, der tilføres i det betragtede tidsrum, og

- Φ_{H} varmetilførsel fra lokalt opstillede varmeflader, radiatorer m.v.
- Φ_{S} varmetilførsel med solindstråling gennem vinduer og glasflader,
- Φ_B varmetilførsel fra belysning, motorer m.v.,
- Φ_P varmeudvikling i arbejdsmaskiner (spåntagning, smedning m.v.) og oplagrede varer (gærings- og modningsprocesser),
- $\Phi_{\rm M}$ varmetilførsel fra tilstedeværende personer (total),
- Φ_{Tr} varmetabet ved transmission gennem rummets begrænsningsflader,
- $\Phi_{\rm v}$ varmetab ved ventilation,
- m_P vanddamptilførsel ved fabrikationsprocesser,
- m_M vanddamptilførsel fra tilstedeværende personer,
- $m_D \quad vanddamp diffusion gennem indvendige begrænsningsflader$
- my vanddamp bortført med ventilationsluft.

De fleste typer belastninger er nævnt i det foregående, men alle behøver naturligvis ikke at optræde samtidigt, ligesom andre bidrag kan tilkomme.

Ventilation

Rummet forudsættes at være ventileret, enten mekanisk, hvor et ventilationsanlæg udskifter rumluften, eller naturligt, hvor luftfornyelsen sker gennem fuger omkring vinduer og døre. Rumluftens temperatur t_i og vanddampindhold x_i regnes at være ens overalt i rummet, dermed bliver rumluftens varmeindhold (entalpi) i_i , hvilket også er varmeindholdet i den fra rummet udsugede luftmængde m_L . Har den indstrømmende luft tilstanden (t_l,x_l,i_l) , bliver varmetabet ved ventilation $\Phi_V=m_L(i_l-i_l)$, og den med ventilationsluften bortførte vanddampmængde bliver $m_V=m_L(x_l-x_l)$.

Lufttilstand

Varmebalancen 5.1 og vanddampbalancen 5.2 kan omskrives til:

5.3 Varmebalance

$$\Phi_H + \Phi_S + \Phi_B + \Phi_P + \Phi_M = B_t(t_i - t_u) + B_r(t_i - t_r) + m_L(i_i - i_l)$$

$$m_P + m_M = m_D + m_L(x_i - x_I)$$

5.4 Vanddampbalance

heri er

 B_t varmetabet ved transmission til det fri pr. grads temperaturforskel, $B_t = \Sigma U A$,

 B_r varmetabet til omgivende rum pr. grads temperaturforskel, $B_r = \Sigma UA$,

t_u udetemperaturen,

t_r omgivende rums temperatur,

U transmissionstal og

A fladeareal.

På grundlag af de opstillede balanceligninger kan et klimatiseringsanlægs ydelse bestemmes, således at der opnås en ønsket rumtilstand (t_i, x_i) , når belastningerne er kendt, eller rumtilstanden kan beregnes for kendte belastninger og ydelser for klimatiseringsanlæg.

Varmebalancen 5.3 holder regnskab med de totale varmemængder, d.v.s. både fri varme og varme bundet i den tilførte vanddampmængde. I mange tilfælde er det ønskeligt at kunne opstille varmebalancen således, at der kun tages hensyn til de frie varmemængder. Dette kan med god tilnærmelse gøres, når følgende to betingelser er opfyldt:

varme + bunden varme

Total varme = fri

- der foregår ingen fordampning fra våde overflader, eller direkte vandforstøvning i rummet, og
- 2) der ses bort fra vanddampdiffusion gennem indvendige begrænsningsflader, $m_D=0$, denne tilnærmelse vil normalt kunne anses for opfyldt for lokaler, der er blot nogenlunde ventilerede, idet der her vil gælde $m_D << m_V$.

Indføres udtrykket for luftens entalpi

$$i = c_{pl}t + r_ox + c_{pd}xt$$

fås nu

$$\begin{split} \boldsymbol{\Sigma}\boldsymbol{\Phi} &= \boldsymbol{\Sigma}\boldsymbol{\Phi}_{fri} + \boldsymbol{\Sigma}\boldsymbol{\Phi}_{lat} \sim \boldsymbol{\Sigma}\boldsymbol{\Phi}_{fri} + \boldsymbol{r}_o\boldsymbol{\Sigma}\boldsymbol{m} &= \\ \boldsymbol{\Phi}_{Tr} + \boldsymbol{m}_L[\boldsymbol{c}_{pl}(t_i - t_l) + \boldsymbol{r}_o(\boldsymbol{x}_i - \boldsymbol{x}_l) + \boldsymbol{c}_{pd}(\boldsymbol{x}_i \cdot t_i - \boldsymbol{x}_l \cdot t_l)] \end{split}$$

Indsættes vanddampbalancen $\sum m = m_L(x_i - x_i)$ og bortkastes leddet $m_L c_{pd}(x_i t_i - x_i t_i)$, der normalt vil være en lille størrelse, fås nu

$$\Sigma \Phi_{fri} = \Phi_{Tr} + m_L c_{pl} (t_i - t_l)$$

eller idet $B_l = m_L c_{pl}$ udtrykker varmetabet ved ventilation pr. grads temperaturforskel, bliver varmebalancen

5.5 Varmebalance for fri varme

$$\Sigma \Phi_{fri} = B_l(t_i - t_u) + B_r(t_i - t_r) + B_l(t_i - t_l)$$

og vanddampbalancen

5.6 Vanddampbalance

$$\sum m = m_L(x_i - x_I)$$

Hvis der ikke mekanisk indblæses luft i rummet, hidrører luftfornyelsen udelukkende fra udeluften, d.v.s. $t_1 = t_u$, har de omkringliggende rum desuden samme temperatur som det betragtede rum $t_r = t_i$, bliver varmebalancen

5.7

$$\Sigma \Phi_{fri} = (B_t + B_l)(t_i - t_u) = B_u(t_i - t_u)$$

5.2.1 Varmetabsberegning

I varmebalancen 5.7 udtrykker højre side det samlede varmetab fra et opvarmet rum. I den danske byggelovgivning er givet bestemmelser om, hvor stort dette varmetab må være under nærmere fastsatte omstændigheder, samt hvorledes varmetabet skal beregnes. Beregningen skal foretages efter Dansk Ingeniørforenings "Regler for beregning af bygningers varmetab" DS 418, [8].

Dimensionerende varmetab Varmetabsreglerne angiver en metode til beregning af rums eller bygningers dimensionerede varmetab, hvilket er den varmeeffekt, som skal danne grundlag for dimensioneringen af dele af et varmeanlæg (fx radiatorerne) eller hele varmeanlægget. Den dimensionerende rumtemperatur t_i fastsættes i almindelighed til 20 C, og den dimensionerende udetemperatur t_u til -12 C.

Angående de nærmere bestemmelser for beregning af varmetab henvises til [8].

En bygning har et samlet varmetab pr. grad C til det fri på B_u = 10 kW/C.

Eksempel 5.1
Beregning af varmetab

Find det dimensionerende varmetab og find det gennemsnitlige varmetab i varmesæsonen, når rumtemperaturen er 24 C.

Der dimensioneres efter DS 418 med en indetemperatur på $t_i = 20$ C og en udetemperatur på $t_u = -12$ C, og for nemheds skyld tages der ikke særligt hensyn til gulve mod jord m.v.

Dimensionerende varmetab:

$$\Phi = B_u(t_i - t_u) = 10(20 + 12) = 320 \ kW$$

I den traditionelle varmesæsons ca. 227 dage er udeluftens temperatur i gennemsnit ca. 4 C (se kap. 2 Udeklima, side 52), og det gennemsnitlige varmetab bliver ved indetemperaturen t_i = 24 C.

$$\Phi = B_u(t_i - t_u) = 10(24 - 4) = 200 \ kW$$

Summeres dette gennemsnitlige varmetab over alle varmesæsonens 227 dage fås

$$Q = 200.227.24 = 1.100.000 \, kWh/år$$

Bemærk, at der her beregnes varmetab og ikke varmeforbrug, der almindeligvis er afgørende mindre.

5.2.2 Beregning af varmeforbrug

Den stationære varmebalance 5.7 kan også anvendes til overslagsmæssig bestemmelse af årlige varmeforbrug. Dette forudsætter, at der kan afgrænses en periode, varmesæsonen, hvor rumtemperaturen holdes nogenlunde konstant, og hvor eventuel varmeoverskud ikke i alt for stort omfang fjernes ved vinduesudluftning eller anden forcering af varmetabet. Er der mekanisk ventilation eller varierende drift, kompliceres forholdene, og anvendelse af metoden frarådes.

Traditionelt beregnes det årlige varmeforbrug ved

5.8 Varmeforbrug udtrykt ved graddagtallet G

$$Q = B_u \cdot 24\Sigma (t_i - t_u) = B_u \cdot 24 \cdot G$$

hvor

Q er det årlige varmeforbrug kWh/år,

 B_{u} det samlede varmetab pr. grad C kW/C,

G graddagtallet C·døgn/år.

Som anført i kap. 2 Udeklima, side 52 beregnes graddagtallet på grundlag af en rumtemperatur $t_i = 17$ C, hvorved der i nogen grad er taget hensyn til, at en del af varmetabet dækkes af tilskudsvarme fra solindfald, personvarme, elbelysning og andet.

Varmeforbruget beregnet efter 5.8 er velegnet til driftskontrol af varmeforbruget, idet graddagtallet beregnes løbende og offentliggøres af Dansk Teknologisk Institut.

Eksempel 5.2 Beregning af varmeforbrug Bygningen fra eksempel 5.1 med et samlet varmetab pr. grad C på $B_u = 10$ kW/C vil ifølge 5.8 have et gennemsnitligt varmeforbrug til rumopvarmning på

$$Q = B_{"}\cdot 24\cdot G = 10\cdot 24\cdot 2978 = 715000 \ kWh/år$$

Gennemsnittet af de sidste 20 års varmeforbrug i februar måned til rumopvarmning er opgjort til 105.000 kWh, men i februar 1993 forsøgte man at spare, og forbruget blev 89000 kW.

På varmeforbruget er således sparet

$$\frac{105-89}{105} \cdot 100 = 15\%$$

Imidlertid var graddagtallet for februar 1993 430, hvilket er lavere end normalårets 473. Det milde vejr har således forårsaget en besparelse på

$$\frac{473 - 430}{473} \cdot 100 = 9\%$$

De forsøgte sparebestræbelser har i sig selv kun medført ca. 6% besparelse.

Ved anvendelse af graddagtallet i 5.8 tages der ikke hensyn til den enkelte bygnings isoleringsstandard, idet tilskudsvarmen kan dække varmetabet i et længere tidsrum, jo bedre bygningen isoleres. Dette vil naturligvis forkorte varmesæsonens længde. Disse forhold må medtages, hvis der skal foretages beregning af det forventelige årlige varmeforbrug for en bygning eller den forventelige forskel i varmeforbrug før og efter en forbedring af bygningens isolering.

For at afgrænse den virkelige varmesæson må der foretages en bestemmelse af den udetemperatur, basistemperaturen, hvor tilskudsvarmen netop kan dække varmetabet. Formel 5.7 giver

$$\Phi_b = B_u(t_i - t_b)$$
 eller

$$t_b = t_i - \frac{\Phi_b}{B_u}$$

hvor

t_b er basistemperaturen C,

t_i indetemperaturen C,

 Φ_b basisvarmen, tilskudsvarme kW og

B_u samlet varmetab pr. grad C kW/C.

Ved beregning af tilskudsvarmen må anvendes gennemsnitsværdier for beregningsperioden. 5.9 Basistemperatur

For solindfald kan tabel 5.3 benyttes.

Det traditionelle graddagtal beregnet med basistemperaturen 17 C må herefter korrigeres. Dette sker på grundlag af en række beregnede gradtimetal med forskellig basistemperatur $GT(t_b)$ som angivet i tabel 5.1, hvorved korrektionen af graddagtallet bliver

5.10 Korrektion af graddagtal

$$G(t_b) = G(17) \frac{GT(t_b)}{GT(17)}$$

hvor $G(t_b)$ er det korrigerede graddagtal $C \cdot d \sigma g n / a r$,

G(17) graddagtallet C·døgn/år,

 $GT(t_b)$ gradtimetal C·h/år og t_b basistemperatur C.

Tabel 5.1 Gradtimetal

$GT = gradtimetal C \cdot h/år$ $t_b = basistemperatur C$ $t_u = udetemperatur C$					
	$GT(t_b) =$	$\Sigma(t_b-t_u)$ ov	er alle åre	ts timer	
t _b	GT(t _b)	GT(t _b)/ GT(17)	t _b	GT(t _b)	GT(t _b)/ GT(17)
27.0	166860	2.039	13.0	53794	0.658
26.0	158111	1.932	12.0	47838	0.585
25.0	149378	1.825	11.0	42281	0.517
24.0	140667	1.719	10.0	37039	0.453
23.0	131997	1.613	9.0	32108	0.392
22.0	123365	1.507	8.0	27496	0.336
21.0	114795	1.403	7.0	23194	0.284
20.0	106291	1.299	6.0	19213	0.235
19.0	97927	1.197	5.0	15612	0.191
18.0	89760	1.097	4.0	12342	0.151
17.0	81846	1.000	3.0	9433	0.115
16.0	74253	0.907	2.0	6987	0.086
					ĺ
15.0	67014	0.819	1.0	5006	0.061
14.0	60183	0.744	0.0	3524	0.043

Varmeforbruget beregnes herefter af 5.8 som

$$Q = B_u \cdot 24 \cdot G(t_h)$$

5.11 Varmeforbrug med korrigeret graddagtal5.11

Varmetabet til det fri er $B_u=1.5~kW/C$, der tilføres i gennemsnit pr. døgn for varmesæsonen 12 kW, og der ønskes en indetemperatur på $t_i=22~C$. Beregn det forventelige årlige varmeforbrug.

Eksempel 5.3

Basistemperaturen efter 5.9 er

$$t_b = t_i - \frac{\Phi_b}{B_u} = 22 - \frac{12}{1,5} = 14 C$$

Graddagtallet korrigeres efter 5.10 og tabel 5.1:

$$G(14) = G(17) \frac{GT(14)}{GT(17)} = 2978 \cdot 0,744 = 2200 \ C \cdot dogn/ar$$

Årligt varmeforbrug efter 5.11

$$Q = B_u \cdot 24 \cdot G(14) = 1,5 \cdot 24 \cdot 2200 = 79000 \ kWh/ar$$

Bygningen foreslås merisoleret, således at varmetabet til det fri bliver $1,2\ kW/C$.

Beregn den forventelige varmebesparelse.

Basistemperatur
$$t_b = 22 - \frac{12}{1,2} = 12 C$$

Korrigeret graddagtal:

$$G(12) = 2978 \cdot 0,585 = 1750 \ C \cdot døgn|år$$

Varmeforbrug:

$$Q = 1.2 \cdot 24 \cdot 1750 = 50000 \ kWh/år$$

Der kan således forventes en årlig besparelse i varmeforbruget på ca.

$$\frac{79-50}{79} \cdot 100 = 37\%$$

Havde graddagtallet uden korrektion været anvendt, ville den beregnede besparelse blive

$$\frac{1,5-1,2}{1,5}\cdot 100 = 20\%$$

5.3 Termiske belastninger

I afsnit 5.2 blev nævnt en del af de belastninger, der påvirker rumklimaet, og i det følgende skal angives, hvorledes disse kan bestemmes.

Ved beregning af stationære varmebalancer må altid benyttes udjævnede værdier på belastningerne, fx døgnmiddelværdier, middelværdi over varmesæsonen, eller måske årsgennemsnit.

Ved mere detaljerede undersøgelser af varmebalanceproblemer er forudsætningerne for stationære betragtninger ikke til stede, hvorfor belastningernes variation med tiden må indgå. Under disse forhold er det ligeledes vigtigt at vide, om belastningen bevirker en varmeoverføring til eller fra rumluften eller rummets overflader eller begge dele, idet varmeoverføring til rumluften tidsmæssigt vil give et andet temperaturforløb end varmeoverføring til overfladerne. Det kan ofte være vanskeligt at afgøre, hvorledes forskellige belastninger fordeler sig i så henseende, hvorfor det kan være nødvendigt at fastlægge fordelingen ved et skøn. Yderpunkterne er solindfald, der som stråling kun tilføres overfladerne, og indblæsning af ventilationsluft, der direkte blandes med rumluften.

5.3.1 Udetemperaturen

Forskellen mellem rumtemperaturen og udetemperaturen er bestemmende for et rums transmissionstab. I kap. 2 Udeklima, afsnit 2.1.4 Lufttemperatur, er udeluftens døgnmiddeltemperatur angivet i gennemsnit sammen med udsvingene i døgnets forløb.

Mere omfattende oplysninger kan fås fra referenceårets vejrdata, TRY, der indeholder timeværdier for en lang række udeklimaparametre. Det er karakteristisk for referenceårets vejrdata, at det gengiver det danske vejrligs naturlige sammenhæng og forløb gennem et typisk år. Disse data findes dels tabellagt i [1] og dels på datafiler til brug ved EDB-beregninger.

5.3.2 Solindfald

Af den solenergi, der rammer en flade, vil en del absorberes (f_A) , en del reflekteres (f_R) og en del direkte transmitteres (f_T) til det bagved liggende rum, hvorved betydelige energimængder kan tilføres rummet. For vinduesglas er f_T af størrelsesordenen 0,9, medens $f_T \sim 0$ for ugennemsigtige bygningsmaterialer, men selv om absorptionsforholdet f_A er stort for disse materialer, vil kun en ganske ringe mængde af den absorberede varme ledes til rummet. Normalt vil man kunne se bort fra denne varmetilførsel, i sammenligning med den del, der passerer vinduet.

På figur 5.1 og 5.2 er vist solindfaldet gennem dobbeltvinduer med forskellig orientering. I tabel 5.3 er angivet kvartals- og årsgennemsnit for solindfald gennem lodrette vinduer med to lag almindeligt glas. Værdierne er beregnet på grundlag af referenceårets vejrdata.

Den samlede varmestrøm, der tilføres gennem et vindue ved solindfald findes af

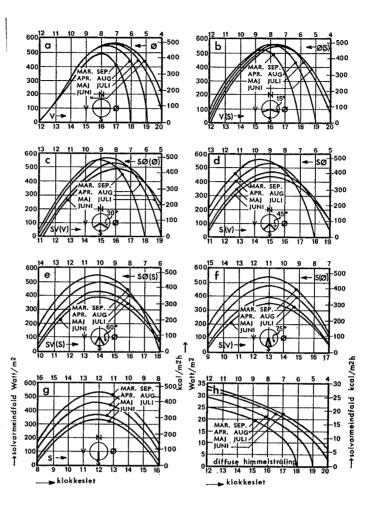
$$\Phi_S = \Phi_D \cdot A_l + (\Phi_d + \Phi_R) A$$

5.12

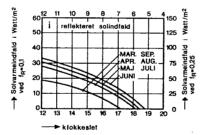
hvor A er vinduets samlede glasareal m²,

A₁ vinduets solbeskinnede glasareal m²,

 Φ_D direkte solindfald W/m²,


 Φ_d diffus solindfald W/m²,

 Φ_R reflekteret solindfald W/m^2


 Φ_s samlet solindfald W

Figur 5.1

Transmiteretsolstråling gennem lodrette, uafskærmede vinduer med to lag almindeligt glas. Kurverne a-g angiver den direkte - og kurve h den diffuse stråling. Kurverne gælder for 56° n.br.

Figur 5.2 Reflekteret solstråling fra jordoverfladen gennem et vindue med 2 lag glas (56° n.br.)

Der kan regnes med følgende refleksionskoefficienter f_R ved forskellige overfladebelægninger

Tabel 5.2 Refleksionskoefficienter

Ny sne	0,85
Gammel sne	0,4-0,7
Lyse farver, gult og lyst rødt tegl	0,5
Beton, mørk rød tegl, vissent græs og buske	0,3
Græs, buske og løvskov, lyst sand	0,25
Sand, makadam, lys skifer	0,20
Nåleskov	0,15
Asfalt, skifer, fugtig ubevokset mark	0,10

	Nord	Øst	Syd	Vest
1. kvartal 2. kvartal 3. kvartal 4. kvartal	0,014 0,053 0,045 0,009	0,035 0,101 0,077 0,018	0,080 0,090 0,088 0,054	0,043 0,101 0,080 0,018
Referenceåret	0,030	0,058	0,078	0,060

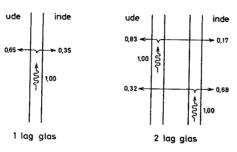
Tabel 5.3 Kvartals- og årsgennemsnit for solindfald gennem vinduer med to lag almindeligt glas. Enhed kW/m²

5.3.3 Solafskærmning af vinduer

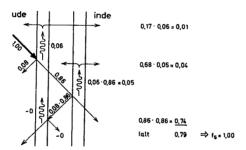
For at nedsætte virkningerne af solindfald er det i mange tilfælde nødvendigt at afskærme vinduerne. En effektiv solafskærmning skal være virksom overfor både den direkte og den diffuse solstråling, da den sidste kan give et betydeligt bidrag. Den mest effektive form for afskærmning er den udvendige, fx markiser eller udvendige persienner. Har solstrålingen nemlig først fået lov til at passere ind gennem glasset, vil den blive absorberet af rummet og opvarme dette. Situationen kan måske reddes, hvis man kan reflektere solstrålingen ud igen, inden den absorberes, fx ved hjælp af et tæt, hvidt gardin.

 $Solafskærmningsfaktor \\ f_s$

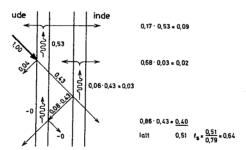
Effektiviteten af en solafskærmning angives ved hjælp af en solafskærmningsfaktor f_s , der er bestemt som forholdet mellem den totale solvarme, som passerer gennem det afskærmede vindue, og den totale solvarme, der passerer gennem to lag almindeligt, ubeskyttet glas. Det skal bemærkes, at de fleste afskærmninger vil reducere lysmængden betydelige mere end varmeindfaldet. Dette har betydning, hvis man ønsker at forhindre direkte blænding og hindre, at belysningen på arbejdspladser nær vinduet bliver alt for stærk. I tabel 5.4 er angivet orienterende værdier for solafskærmningsfaktorer.


Tabel 5.4 Solafskærmningsfaktorer

Afskærmningsform	Afskærm- ningsfaktor f _s
Et lag glas	1,12
To lag glas	1,00
Tre lag glas	0,8
Udvendig foran to lag glas,	
persienner, lyse, 45°	0,10-0,15
markiser	0,25-0,50
Imellem to lag glas	
gardiner, lyse	0,30
gardiner, mørke	0,45
persienner, lyse, 45°	0,35
Indvendig bag to lag glas	
gardiner, lyse	0,50
gardiner, mørke	0,80
persienner, lyse, 45°	0,60
Varmereflekterende glas udvendigt, almin-	*
deligt glas indvendigt	0,40-0,65
Varmeabsorberende glas udvendigt, almin-	
deligt glas indvendigt	0,60-0,75


Solafskærmningsfaktorerne varierer noget i afhængighed af solens indfaldsvinkel samt luftbevægelsen henover glasset. Faktorerne opgives ofte for vindhastigheder på 3-4 m/s med et ydre varmeovergangstal på $\alpha_u=17~W/m^2~C$ og et indre på α_i

= 9 W/m²C. På en stille, varm dag kan det ydre overgangstal falde til det halve, og det indre kan, hvis der indblæses luft langs glasset, stige til det dobbelte.


På figur 5.3 er vist, hvorledes den absorberede varme strømmer indad og udad fra almindeligt vinduesglas, og på figur 5.4 og 5.5 er vist, hvorledes solindfaldet kan beregnes for en vilkårlig kombination af forskellige glas. Varmestrømsfordelingen gælder kun, når der er samme temperatur inde og ude, og for varmeovergangstallene $\alpha_i = 9 \text{ W/m}^2 \text{ C}$ og $\alpha_u = 17 \text{ W/m}^2 \text{ C}$.

Figur 5.3 Fordeling af varmestrøm forårsaget af absorberet solvarme i vinduesglas

Figur 5.4 Varmestrøm gennem et vindue med to lag almindeligt glas med f_A = 0,06, f_R = 0,08 og f_T = 0,86

Figur 5.5 Varmestrøm gennem et vindue med absorberende glas udvendigt med $f_A = 0.53$, $f_R = 0.04$ og $f_T = 0.43$, almindeligt glas indvendigt

5.3.4 Varmetilførsel fra belysning og elektriske maskiner

Rummets kunstige belysning kan give et væsentligt bidrag til den interne varmebelastning. En tilført effekt på 50-100 W/m² gulvareal er ikke ualmindeligt. Belastningen er ikke alene afhængig af det krævede belysningsniveau, men også af valget af lyskilde og armatur. Lysudbyttet for lysstofrør er flere gange større end for glødelys ved samme effektforbrug.

Da belysningsanlæggene som regel dimensioneres til at dække behovet for lys i de mørke timer, er man tilbøjelig til at overse belysningens indflydelse på det termiske indeklima i dagtimerne. I praksis benyttes belysningen også i en stor del af de lyse timer, og er den først blevet tændt, forbliver den tændt resten af dagen.

Varmebelastningen fra belysning kan beregnes af

5.13

$$\Phi_B = installeret \ kW \cdot \kappa_1 \cdot \kappa_2$$

hvor κ_1 er samtidighedsfaktoren, der tager hensyn til, hvor stor en brøkdel af belysningen, der anvendes samtidigt, og

 κ_2 er en korrektionsfaktor < 1, hvis der udsuges særligt omkring belysningslegemerne, og > 1, fx 1,2, hvor der anvendes lysstofrør, som er forsynet med tændspoler eller modstande, der udvikler varme.

Som overslagsværdier for Φ_B kan nedenstående tabel 5.5 anvendes. Ved anvendelse af energibesparende lysstofrør med høj virkningsgrad kan varmebelastningen nedsættes til ca. 30% af de for lysstofrør angivne værdier. Af belysningsvarmen vil 60-80% tilføres rummet ved konvektion og resten ved stråling, afhængig af armaturets udformning.

Varmeudviklingen fra eldrevne maskiner kan beregnes ud fra maskinens påstemplede effekt, idet

$$\Phi_B = \frac{stemplet \ kW}{\eta} \kappa_1 \cdot \kappa_3$$

hvor η er nyttevirkningen,

 κ_1 samtidighedsfaktoren, og

 κ_3 belastningsfaktoren (< 1), som angiver hvor stor en brøkdel af maksimalbelastningen maskinen arbejder med.

Rum	Belysnings- styrke	$\Phi_{\rm B}~{ m i}~{ m W/m^2}$	
	lux	Glødelamper	Lysstofrør
Kontor	200-400	35-70	10-20
Tegnestue	300-500	50-90	20-30
Værksted	100-200	20-40	7-15
Finmeka- nisk værk- sted	500-1000	90-175	30-60
Klasserum Butik	100-200 300-800	20-40 50-140	7-15 20-50

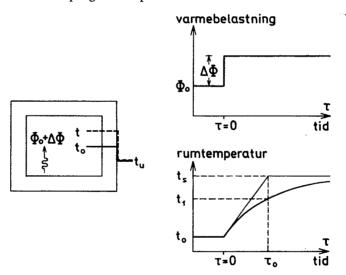
Tabel 5.5 Tilført varmestrøm i afhængighed af belysningsstyrken

5.3.5 Varmeafgivelse fra personer

Varmeafgivelsen fra personer er udførligt beskrevet i kap. 1 Indeklima, og værdier for varmeafgivelsens størrelse kan findes i tabel 1.3, side 18 for forskellig beklædning og aktivitet.

Bemærk, at det kun er bidragene for konvektion og stråling, der skal medtages, når der regnes med fri varmeafgivelse.

5.4 Varmebalance under ikke-stationære forhold


Ved opstilling af varmebalancen for et rum under ikke-stationære forhold må der tages hensyn til bygningskonstruktionens varmekapacitet, idet der akkumuleres varmeenergi i bygningsdelene, når deres temperatur ændres. Dette bevirker en udjævning af svingninger i rumtemperaturen, når rummet udsættes for vekslende belastninger. Varmebalancen under disse forhold må derfor udtrykke, at den tilførte varmeenergi er lig varmetabet plus den akkumulerede varmeenergi. I dette afsnit benyttes varmebalancen som grundlag for opstilling af beregningsudtryk til bestemmelse af rumtemperaturens tidsmæssige forløb som følge af vekslende belastninger. Da både bygningens termiske egenskaber og de klimatekniske installationers ydelse og driftsmåde indgår i varmebalancen, er det gennem disse beregninger muligt at bedømme indeklimakvalitet og ressourceforbrug for det løsningsforslag, der regnes på. Der er herigennem åbnet mulighed for at bestemme et optimalt løsningsforslag for bygningen med dens klimatiseringsanlæg for opnåelse af et specificeret indeklima.

5.4.1 Beregningsprincippet

Inden gennemgangen af de egentlige beregningsudtryk er det nyttigt at give en stærkt forenklet fremstilling af temperaturforløbet i et rum, hvor den termiske belastning ændres, efter at den i lang tid har været konstant.

Der betragtes et rum, der på alle sider er omgivet af udeluft med temperaturen t_u . I rummet tilføres varmestrømmen Φ_o , hvorved rumtemperaturen bliver t_o . Som vist på figur 5.6 antages hele varmetabet mellem rum og omgivelser at være koncentreret i de yderste lag af bygningskonstruktionen. Varmetabet pr. grads temperaturforskel er B.

Figur 5.6 Forenklet temperaturforløb ved pludselig belastningsændring

Varmekapacitet

Er væggenes masse m og deres varmefylde c, skal der tilføres en varmemængde $S=m\,c$ for at ændre væggenes temperatur 1 C. S er væggenes varmekapacitet.

Under stationære forhold lyder varmebalancen

$$\Phi_o = B(t_o - t_u)$$

5.15

Til tiden $\tau=0$ sker der et pludseligt spring $\Delta\Phi$ i varmebelastningen, hvorved rumtemperaturen begynder at ændre sig. Er ændringen $\frac{dt}{d\tau}$ grader pr. tidsenhed, bliver varmebalancen

$$\Phi_o + \Delta \Phi = B(t - t_u) + S \frac{dt}{d\tau}$$

5.16 Varmebalance

Indføres 5.15 heri fås

$$\Delta\Phi = B(t-t_o) + S\frac{dt}{d\tau}$$

5.17

5.17 omskrives, idet
$$\frac{dt}{d\tau} = \frac{d(t-t_o)}{d\tau}$$

$$\frac{d(t-t_o)}{d\tau} + \frac{B}{S}(t-t_o) = \frac{\Delta \Phi}{S}$$

5.18

Denne ligning indeholder kun temperaturstigningen i rummet og belastningsændringen. Løses ligningen, idet begyndelsesbetingelsen er t = $t_{\rm o}$ for $\tau=0$ fås

$$t = t_o + \frac{\Delta \Phi}{B} (1 - e^{-\frac{B}{S}\tau})$$

5.19 Temperaturforløb

Efter uendelig lang tids forløb vil rumtemperaturen antage en ny stationær værdi

$$t_s = t_o + \frac{\Delta \Phi}{R}$$

5.20 Stationær temperatur

som kun er afhængig af rummets varmetab pr. grads temperaturforskel og belastningsændringens størrelse.

Tangenten i begyndelsespunktet af temperaturkurven skærer t_s

efter forløbet af tiden

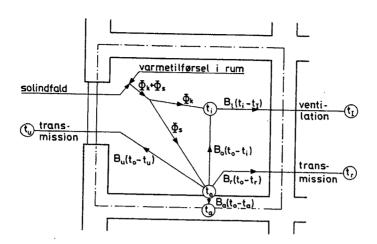
5.21 Tidskonstanten

$$\tau_o = \frac{S}{B}$$

 $\tau_{\rm o}$ kaldes tidskonstanten. Efter forløbet af en tid svarende til tidskonstanten er rumtemperaturen efter 5.19

$$t_1 = t_o + \frac{\Delta \Phi}{B} (1 - e^{-1}) = t_o + 0.63 \frac{\Delta \Phi}{B}$$

Der er efter forløbet af denne tid kun opnået 63% af den endelige temperaturændring.


Alt efter bygningskonstruktionens opbygning varierer tidskonstanten fra nogle få timer til flere døgn, og skal rumtemperaturen bestemmes nøjere, må der derfor tages hensyn til både varmetabet og -akkumuleringen samt de termiske belastningers variation i tiden.

5.4.2 Beregningsmodellen

Modellen, der blev anvendt i figur 5.6 er for grov til praktisk brug. Den afgørende termiske klimafaktor er rumtemperaturen, der er sammensat af indelufttemperaturen t_i og de indvendige overfladetemperaturer t_o, og det er altså disse to temperaturer, der må beregnes til forskellige tidspunkter. Der må derfor opstilles varmebalanceligninger for rumluften, for overfladerne og for tynde snit af vægge, gulv og loft (i lighed med Schmidts metode, se kap. 3 Varmetransport, side 88).

Dette kan ske på grundlag af en beregningsmodel som vist på figur 5.7. Her er søgt den størst forsvarlige forenkling, idet de rumafgrænsende bygningsdeles varmekapacitet tænkes placeret i et uendelig tyndt varmeakkumulerende lag med samme temperatur t_a i alle seks lag, der omgiver rummet. Temperaturen t_o på de indvendige overflader regnes ligeledes at være ens overalt. Det bliver derfor kun nødvendigt at opstille tre varmebalancer med de tre ubekendte temperaturer

- t_i rumluftens temperatur,
- t_o de indvendige overfladers temperatur, og
- t_a de varmeakkumulerende lags temperatur.

Figur 5.7 Beregningsmodel

5.4.3 Rumluftens varmebalance

Rumluften modtager belastningernes konvektive varmeafgivelse, hvis samlede bidrag benævnes Φ_K . Desuden overføres varme ved konvektion mellem rummets overflader og rumluften bestemt ved

$$\sum \alpha A(t_o - t_i) = B_o(t_o - t_i)$$
 5.23

hvor α er det konvektive varmeovergangstal, der kan sættes til 3,3 W/m² C for lodrette flader og 2,3 W/m² C for vandrette flader,

A overfladearealet m², og

 $B_o = \Sigma \alpha A$ varneoverføringen pr. grads temperaturforskel.

Fra rumluften bortføres eller tilføres varme ved ventilationsluften, der indblæses med temperaturen $t_{\rm I}$

$$m_L c_P(t_i - t_I) = B_I(t_i - t_I)$$
 5.24

hvor m_L er ventilationsluftmængden (naturlig eller mekanisk) kg/s,

 c_P luftens specifikke varmefylde 1,006 kJ/kg C, og

 $B_l = m_L c_P$ varmeoverføringen pr. grads temperaturforskel.

Idet der ses bort fra den helt ubetydelige varmeakkumulering i rumluften, bliver varmebalancen for rumluften

5.25 Rumluftens varmebalance

$$\Phi_K + B_o(t_o - t_i) = B_l(t_i - t_I)$$

5.4.4 Overfladernes varmebalance

Beregningsmodellen bygger på, at al strålingstilført varme fordeles ligeligt på de indvendige overflader, hvorved alle overflader, med god tilnærmelse, kan antages at have samme temperatur $t_{\rm o}$.

Den samlede mængde strålevarme, der tilføres overfladerne fra solindfald, personer, belysning m.v., benævnes Φ_S .

Fra overfladerne afgives varme til rumluften som anført i afsnit 5.4.3, desuden afgives varme ved transmission gennem væggene til det fri, og måske til omgivende rum. Denne transmission påvirkes af varmeakkumuleringen, men da størsteparten af transmissionstabet i et godt isoleret rum sker gennem vinduerne, der ingen varmekapacitet har, er det tilladeligt at se bort fra denne påvirkning.

Varmeoverføringen pr. grads temperaturforskel mellem overfladerne og

5.26

det fri

 $B_u = \Sigma U A$

5.27

til omgivende rum

 $B_r = \Sigma UA$

Transmissionstallene beregnes efter DS 418, og den indvendige overgangsmodstand skal medtages.

Der sker ingen varmeakkumulering i overfladerne, da bygningsdelenes varmekapacitet er samlet i et uendelig tyndt lag med passende placering i det indre af bygningeskonstruktionen. Varmeoverføringen fra overfladerne til de varmeakkumulerende lag pr. grads temperaturforskel benævnes

$$B_a = \Sigma U'_a A$$

hvor U'a er transmissionstallet fra overfladen til det varmeakkumulerende lag (altså uden indvendig overgangsmodstand).

Varmebalancen for overfladerne bliver herefter

$$\Phi_S = B_u(t_o - t_u) + B_r(t_o - t_r) + B_o(t_o - t_r) + B_o(t_o - t_o)$$

5.29 Overfladernes varmebalance

5.4.5 De varmeakkumulerende lags varmebalance

Varmeoverføringen pr. grads temperaturforskel fra overfladen til det varmeakkumulerende lag benævnes som før B_a . Afhængig af temperaturfaldets retning vil væggene akkumulere eller afgive varme. Ændres det varmeakkumulerende lags temperatur dt_a i løbet af tiden $d\tau$, bliver den akkumulerede varmemængde pr. tidsenhed

$$\Sigma c \rho A e \frac{dt_a}{d\tau} = S \frac{dt_a}{d\tau}$$
 5.30

hvor S er rummets varmekapacitet kJ/kg C,

c varmefylden kJ/kg C,

 ρ massefylden kg/m³,

A arealet m² og

e tykkelsen af det medregnede akkumulerende lag m.

Varmebalancen for de varmeakkumulerende lag bliver således

$$B_a(t_o - t_a) = S \frac{dt_a}{d\tau}$$

5.31 De varmeakkumulerende lags varmebalance

Til den samlede varmekapacitet S medtages den varmeakkumulerende masse af de lag, der ligger mellem rumoverfladerne og isoleringslag, for rumadskillende konstruktioner (samme temperatur på begge sider) højst fra overflade til midten af konstruktionen. I almindelighed bør der højst medregnes de inderste 0,1 m for bygningsdele af tunge materialer (beton, tegl) og 0,05 m for lette materialer (træ, beton).

Placering af de varmeakkumulerende lag Det fiktive varmeakkumulerende lag placeres principielt i midten af den medregnede varmeakkumulerende masse, men ikke dybere end svarende til $U'_a > 2 \text{ W/m}^2\text{C}$.

Er et rums vægge, gulv og loft meget forskellige i deres opbygning, således at tidskonstanten $\tau_o = \frac{S}{B_a}$ ved den nævnte

placering for enkelte af fladerne afviger mere end en faktor 3 fra

$$\tau_o = \frac{\Sigma S}{\Sigma B_a},$$

kan det være rimeligt at foretage en korrektion for de pågældende flader. Primært ændres placeringen af det fiktive varmeakkumulerende lag (B_a ændres), men for konstruktioner med et tyndt isolerende lag inderst mod rummet (fx et tæppe) reduceres varmekapaciteten (S), hvorved også B_a skal ændres i overensstemmelse med ovenstående.

Ved bestemmelse af S og B_a er det i reglen overflødigt at medtage mindre ganske tynde og lette bygningsdele som vinduer og døre.

Varmefylden for byggematerialer kan tages fra tabel 5.6, medens massefylde og varmeledningstal kan findes i DS 418.

Tabel 5.6 Varmefylde

Varmefylde	kJ/kg C
Uorganiske bygge- og isoleringsmate-	
rialer	0,88 (0,75-1,05)
Pap og papir	1,34
Træ, normalt fugtindhold	1,80
Organiske isoleringsmaterialer	1,88 (1,72-2,05)

5.4.6 Beregningsformler

For at kunne løse de tre varmebalanceligninger ved numerisk beregning må differentialligningen 5.31 ændres til en dif-

ferensligning. Opdeles den betragtede tid i tidsintervaller af længden $\Delta \tau$ gælder for det n'te tidsinterval

$$B_a(t_{o,n-1}-t_{a,n-1}) = S \frac{t_{a,n}-t_{a,n-1}}{\Delta \tau}$$
 5.32

og de to andre varmebalancer 5.25 og 5.29 giver

$$\Phi_{K,n} + B_o(t_{o,n} - t_{i,n}) = B_l(t_{i,n} - t_{I,n})$$
 5.33

$$\Phi_{S,n} = B_u(t_{o,n} - t_{u,n}) + B_r(t_{o,n} - t_{r,n}) + B_o(t_{o,n} - t_{i,n}) + B_a(t_{o,n} - t_{a,n})$$
5.34

Disse tre ligninger løses, hvilket giver

$$t_{a,n} = a_1 t_{a,n-1} + a_2 t_{o,n-1} 5.35$$

$$t_{o,n} = b_1 t_{a,n} + b_2 t_{r,n} + b_3 t_{u,n} + b_4 t_{I,n} + b_5 \Phi_{K,n} + b_6 \Phi_{S,n}$$
 5.36

$$t_{i,n} = c_1 t_{o,n} + c_2 t_{I,n} + c_3 \Phi_{K,n}$$
 5.37

$$\begin{array}{cccc} hvor & B_a & = & \Sigma U_a {}^{\backprime}A \\ & B_I & = & m_L c_P \\ & B_o & = & \Sigma \alpha A \\ & B_r & = & \Sigma UA \end{array}$$

$$B_u = \Sigma UA$$

 $S = \Sigma \rho cAe$

$$a_1 = 1 - \frac{B_a \Delta \tau}{S}$$

$$a_2 = 1-a_1$$

$$b_{1} = \frac{B_{a}}{B_{a} + B_{r} + B_{u} + \frac{B_{o}B_{l}}{B_{a} + B_{l}}}$$

$$b_2 = b_1 \frac{B_r}{B_a}$$

$$b_3 = b_1 \frac{B_u}{B_a}$$

$$b_{4} = b_{1} \frac{c_{1}B_{l}}{B_{a}} = 1 - b_{1} - b_{2} - b_{3}$$

$$b_{5} = b_{1} \frac{c_{1}}{B_{a}}$$

$$b_{6} = b_{1} \frac{1}{B_{a}}$$

$$c_{1} = \frac{B_{o}}{B_{o} + B_{l}}$$

$$c_{2} = 1 - c_{1}$$

$$c_{3} = c_{1} \frac{1}{B_{o}}$$

Indeks n betegner temperaturerne t vedslutningen af det n'te tidsinterval

Beregningernes gennemførelse

Beregningerne indledes med, at de for rummet givne konstanter (B_a , B_1 , B_o , B_u og S) bestemmes. Tidsintervallet $\Delta \tau$ vælges til fx 1 time, hvorefter beregningskonstanterne (a, b, c) kan bestemmes. For nøjagtig beregning bør $a_2 < 0,1$.

Dernæst opstilles en tidstabel for belastningerne (Φ_K , Φ_S , t_u , t_I og t_r), og beregningen af temperaturerne indledes med, at begyndelsestidspuntet n=0 fastsættes til et bestemt klokkeslet og dato. Desuden må de varmeakkumulerende lags temperatur fastlægges (skønnes) til begyndelsestidspunktet. Derefter kan beregningerne fortsættes tidsinterval efter tidsinterval.

Døgnstationære tilstande

Gentages beregningerne gennem nogle døgn med samme belastninger vil det hurtigt vise sig, at forholdene går mod døgnstationære tilstand, d.v.s. at temperaturerne vil gentage sig til samme klokkeslet døgn efter døgn.

Den døgnstationære tilstand er som regel urealistisk, fordi den fordrer mange døgn med samme gentagne belastning, men har dog beregningsmæssig interesse. Under disse forhold er den varmemængde, der tilføres under et døgn, lig den varmemængde, der transmitteres og ventileres bort. Døgnmiddelværdierne

af overfladetemperaturerne og de varmeakkumulerende lags temperatur må derfor være den samme $\bar{t}_o = \bar{t}_a$ under døgnstationære forhold. Indsættes dette i 5.34 fås

$$\bar{t}_{o} = \frac{B_{o}\bar{t}_{i} + B_{r}\bar{t}_{r} + B_{u}\bar{t}_{u} + \overline{\Phi}_{s}}{B_{o} + B_{r} + B_{u}}$$
5.38

og af 5.33 fås

$$\bar{t}_i = \frac{B_l \bar{t}_l + B_o \bar{t}_o + \overline{\Phi}_K}{B_l + B_o}$$
 5.39

hvor samtlige temperaturer og varmebelastninger er døgnmiddelværdier.

Bestemmes disse døgnmiddelværdier inden beregningerne af temperaturforløbet startes, giver de en idé om, hvordan resultatet vil blive, og dermed, om det i det hele taget er værd at interessere sig for denne løsning for rummet.

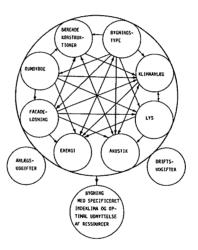
Ofte er det ved disse overslag tilstrækkeligt nøjagtigt at antage, at alle middeltemperaturer i rummet er de samme, hvorved 5.38 og 5.39 er stattes af

$$\bar{t}_{i} = \bar{t}_{o} = \bar{t}_{a} = \frac{B_{i}\bar{t}_{I} + B_{u}\bar{t}_{u} + B_{r}\bar{t}_{r} + \overline{\Phi}_{K} + \overline{\Phi}_{s}}{B_{i} + B_{u} + B_{r}}$$
 5.40

Det ses, at 5.40 er identisk med den tidligere anvendte stationære varmebalance.

Der findes ingen tilsvarende let metode til bestemmelse af udsvingene fra døgnmiddelværdierne.

På grundlag af de her opstillede beregningsudtryk er der udarbejdet flere EDB-programmer til beregning af bygningers varmebalance. Her skal blot nævnes programmet tsbi2, [2], der på grundlag af referenceårets vejrdata beregner bygningers forventelige indetemperatur og energiforbrug gennem et helt år.


EDB-program

Beregningsresultaterne giver således mulighed for sammenhængende bestemmelse af indeklimakvalitet, driftsudgifter og anlægsudgifter for bygninger og deres klimatekniske installationer.

5.4.7 Varmebalancens anvendelse

På figur 5.8 er skematisk vist, hvorledes de vigtigste bygningsmæssige og indeklimatiske faktorer påvirker hinanden. En ændring af én parameter vil straks påvirke en del af de øvrige og en fastlåsning af én parameter, vil delvis begrænse mulighederne for at nå den optimale løsning. Det er derfor vigtigt at kunne dokumentere de mange alternative løsningsmuligheders konsekvenser, så der ved tværfagligt samarbejde under bygningens projektering kan vælges gunstige løsninger på grundlag af langsigtede helhedsbetragtninger.

Figur 5.8
Bygningsmæssige og indeklimatiske faktorer

5.4.8 Eksempel. Beregning af temperaturerne i et kontorrum under ikke stationære forhold

Kontorrummet har sydvendte vinduer, og bag det ligger en 2,2 m bred korridor og derefter et tilsvarende nordvendt kontor. De øvrige omgivende rum har samme udformning og anvendelse som det undersøgte kontorrum.

Kontorrummet har følgende opbygning:

Kontorets opbygning

højde x bredde x dybde = $2,50 \times 4,93 \times 5,00 \text{ m}$,

vindue: 4,1 m² i hele rummets bredde, dobbeltglas med 12 mm afstand

brystning: indefra 9,5 cm beton, 4 cm mineraluld, 6,5 cm beton,

skillevægge og bagvæg: 2 lag 0,5 cm hårde træfiberplader med mellemlag af 6 cm letbeton $\rho = 550 \text{ kg/m}^3$,

gulv og loft: 1 cm tæppe, 2 cm støbeasfalt, 2 cm betonafretning, 18 cm betonplade med gennemgående huller med diameter 10 cm pr. 1,2 m bredde. Under betonpladen ligger tre betondragere 30x20 cm, hvoraf to er sammenfaldende med skillevæggene. Mellem dragerne er et nedhængt loft 8 cm under betonpladen. Det består af 0,1 cm aluminiumsplade med 1,5 cm mineraluld over.

Rummet får friskluft gennem ventiler i facaden, og der udsuges mekanisk 0,033 m³/s, svarende til et luftskifte på 2 gange i timen. Opvarmningen sker ved radiatorer, men varmeanlægget forudsættes ude af drift i beregningsperioden.

Kontorrummet benyttes kl. 8-16 af to personer. Der er to PC'er samt andet el-udstyr med en samlet mærkeeffekt på 240 W. Den elektriske belysning benyttes ikke i beregningsprioden.

Varmekapaciteten S.

Det varmeakkumulerende lag placeres i brystningen: bag det 9,5 cm betonlag, bagvæg og skillevægge: midt i letbetonpladen gulv og loft: midt i den 18 cm betonplade, og dragerne: i midten, d.v.s. 10 cm under overfladen.

Betonpladen opdeles i et 4 cm tykt massivt lag og et 5 cm tykt lag regnet til 55% beton modsvarende hulandelen 45%.

Den samlede varmekapacitet bestemmes ud fra varmekapaciteten for de enkelte lag: $S = c\rho Ae$.

Kontorets brug

Bestemmelse af rummet beregningskonstanter

Placering af varmeakkumulerende lag Beregning af varmekapacitet

		kJ/C	kJ/C	Ialt
Brystning 8,3 m ²				
Beton				
0,88 2300 8,3 0,095	=	1590		1590
Bagvæg 12,4 m²				
Træfiberplade				
1,80.900.12,4.0,005	=	100		
Letbeton				
0,88.550.12,4.0,03	=	180		280
Skillevægge 22 m²				
Træfiberplade				
1,80 900 22 0,005	=	180		
Letbeton				
0,88.550.22.0,03		320		500
Gulvet 25 m ²				
Тæрре				
1,88 250 25 0,01	=	120		
Asfalt				
0,84 2100 25 0,02	name .	880		
Afretning				
0,88 2300 25 0,02	=	1010		
Betonplade				
0,88 2300 25 0,04	==	2020		
+0,88·2300·25·0,05·0,55	=	1390		5420
Loft 25 m ²				
Aluminiumplade		0		
Mineraluld		0		
Betonplade		3410		3410
Dragere				
Beton				
0,88.2300.0,3.0,2.5.2	=	1210		1210
For hele rummet			S =	12410
			~	12400

 B_a varmeoverføring pr. C fra de indvendige overflader til de fiktive varmeakkumulerende lag, normalt placeret i midten af den varmeakkumulerende masse.

For hver flade er

$$B_a = U_a'A = \frac{1}{\frac{e_1}{\lambda_1} + \frac{e_2}{\lambda_2} + \dots} A$$

For betondragerne er der set bort fra, at varmestrømmen er todimensional.

Varmeoverføring fra indvendig overflade til varmeakkumulerende lag, B_a.

	W/C
Brystning $\frac{8,3}{0,5\cdot0,095} = \frac{1,75}{1,75}$	300
$\frac{12,4}{\frac{0,005}{0,13} + \frac{0,5 \cdot 0,03}{0,17}} =$	100
Skillevægge $\frac{22}{\frac{0,05}{0,13} + \frac{0,5 \cdot 0,03}{0,17}} =$	175
Gulvet $\frac{25}{\frac{0,01}{0,12} + \frac{0,02}{0,8} + \frac{0,02}{1,75} + \frac{0,02}{1,75}} =$	190
Overført	765

Overført	765
$ \frac{25}{\frac{0,015}{0,044} + 0,17 + \frac{0,04}{1,75}} = $	45
Dragere $\frac{6}{0.5 \cdot 0.1} = \frac{1}{1.75}$	210
For hele rummet B _a	= 1020

For de enkelte flader bliver forholdet mellem varmekapaciteten og varmeoverføringen pr. C fra de indvendige overflader til de varmeakkumulerende lag

Tidskonstanter for bygningsdele

Brystning
$$\frac{S}{B_a} = \frac{1590 \cdot 10^3}{300 \cdot 3600} = 1,5 \ timer$$

Bagvæg $\frac{280 \cdot 10^3}{100 \cdot 3600} = 0,8 \ time$

Skillevægge $\frac{500 \cdot 10^3}{175 \cdot 3600} = 0,8 \ time$

Gulv $\frac{5420 \cdot 10^3}{190 \cdot 3600} = 7,9 \ timer$

Loft $\frac{3410 \cdot 10^3}{45 \cdot 3600} = 21 \ timer$

Dragere $\frac{1210 \cdot 10^3}{210 \cdot 3600} = 1,6 \ timer$

For hele rummet $\frac{S}{B_a} = \frac{12400 \cdot 10^3}{1020 \cdot 3600} = 3,4 \ timer$

For loftet og gulvet må der foretages korrektion. Der er her regnet med for store varmekapaciteter, idet disse ikke kan udnyttes på grund af isoleringen dels i det nedhængte loft dels i tæppebelægningen. Det varmeakkumulerende lag for loftet flyttes ud mod rummet, således at der kun regnes med 4 cm beton i pladen og tilsvarende for gulvet. For loftet fås nu

$$S = 2020 \text{ kJ/C og } B_a = 50 \text{ W/C},$$

herved bliver for loftet

$$\frac{S}{B_a} = \frac{2020 \cdot 10^3}{50 \cdot 3600} = 11 \ h,$$

og for gulvet S = 4030 kJ/C og $B_a = 210 \text{ W/C}$, der giver

$$\frac{S}{B_a} = \frac{4030 \cdot 10^3}{210 \cdot 3600} = 5.3 \text{ h, og for hele rummet}$$

$$\frac{S}{B_a} = \frac{9600 \cdot 10^3}{1045 \cdot 3600} = 2,6 \ h$$

Der foretages ikke yderligere reduktion af varmekapaciteten for loftet, idet modstanden for det nedhængte akustikloft antagelig er regnet for stor.

 B_{l} varmemængden pr. C til opvarmning af ventilationsluften.

Ventilation, B₁

Den udsugede luftmængde er 0,033 m³/s, varmefylden $c_p = 1,006$ kJ/kg C og massefylden $\rho = 1,2$ kg/m³, altså

$$B_l = 1,006 \cdot 1,2 \cdot 0,033 \cdot 10^3 = 40 \ W/C$$

 B_{o} varmeoverføringen pr. C fra de indvendige overflader til rumluften.

Dragernes vandrette areal medregnes i loftets areal, og de

lodrette arealer af de to dragere i skillevæggene medregnes i skillevæggenes areal.

De enkelte bidrag til $B_0 = \alpha A$ bliver

	W/C
Facade og bagvæg	
3,34,932,502 =	80
Skillevægge	
3,3.5,00.2,50.2 =	80
Gulv og loft	
2,34,93·5,00·2 =	110
Midterste drager	
3,3.5,00.0,3.2 =	10
For hele rummet	$B_0 = 280$

 \boldsymbol{B}_{r} varmetransmission pr. C fra indervæggens indvendige overflade til omkringliggende rum.

Varmetab gennem vægge, B_r og B_u

$$B_r = UA = \frac{A}{m_i + \frac{e_1}{\lambda_1} + \dots + m_i}$$

For bagvæggen fås

$$B_r = \frac{12,4}{0,13 + \frac{0,005}{0,13} + \frac{0,06}{0,17} + \frac{0,005}{0,13} + 0,13} = 18 \text{ W/C}$$

 $\boldsymbol{B}_{\!\scriptscriptstyle u}$ varmetransmission pr C fra ydervæggens indvendige overflade til det fri.

Ydervæggen består af vindue og brystning, og for hver er $B_u = UA$, hvor U beregnes som det sædvanlige transmissiontal, altså for

W/C
13

Brystning 8,3m²

For hele rummet

$$\frac{8,3}{0,13 + \frac{0,095}{1,75} + \frac{0,04}{0,044} + \frac{0,065}{1,75} + 0,04} = 7$$

Rummets beregningskonstanter er altså

Beregningskonstanter, oversigt

 $B_u = 20$

$$S = 9600 \text{ kJ/C}$$

$$B_a = 1045 \text{ W/C}$$

$$B_i = 40 \text{ W/C}$$

$$B_0 = 280 \text{ W/C}$$

$$B_r = 18 \text{ W/C}$$

$$B_u = 20 \text{ W/C}$$

Ses der bort fra varmetabet til korridoren bliver rummets tidskonstant

$$\tau_o = \frac{S}{B_l + B_u} = \frac{9600 \cdot 10^3}{(40 + 20)3600} = 44 \text{ timer}$$

Rummets tidskonstant $\tau_{\rm o}$

Dette betyder, se figur 5.9, at hvis rummet ud fra en vilkårlig begyndelsestilstand udsættes for varmebelastninger, der svinger på samme måde og er af samme størrelse døgn efter døgn, så vil der gå ca. 2 døgn, før døgnmiddeltemperaturen bliver 63% af den endelige, og der vil gå yderligere et par døgn, inden der opstår døgnstationære tilstande.

Temperaturforholdene i kontorrummet ønskes beregnet i en varm periode omkring begyndelsen af august måned.

Belastninger

Solindfald. Bestemmes ud fra figur 5.1, som summen af direkte solindfald, diffus himmelstråling og reflekteret stråling fra omgivelserne ($f_R=0,1$). Vinduernes glasareal er 3,7 m², men

på grund af fremspring omkring vinduerne, der giver nogen skyggevirkning, er glasarealet bergningsmæssigt reduceret med 10% til 3,3 m². Der regnes ellers ikke med solafskærning.

Ventilationsluften og udeluftens temperatur er den samme hele døgnet. Udeluftens døgnmiddeltemperatur sættes til 20 C og amplituden til 5,5 C, således at udetemperaturens døgnvariation kan beregnes af

$$t_u = t_{um} + \Delta t_u \cos \frac{2\pi (\tau - 14)}{24}$$

hvor τ er klokkeslettet i timer.

Kontorpersonalet afgiver hver ca. 100 W fri varme, og der regnes med, at de er i kontoret ca. 80% af arbejdstiden. Eludstyrets mærkeeffekt er 240 W, og der regnes med, at der afgives 50% af denne effekt, når det er i brug. Belastningerne fordeles ligeligt til rumluften og overfladerne og bliver

2 personer à 100 W
$$\cdot$$
 0,8 = 160 W
El-udstyr á 240 W \cdot 0,5 = 120 W
Ialt 280 W

I tabel 5.7 er alle belastninger angivet time for time.

Temperaturen i korridoren er ikke kendt, og ses der foreløbig bort fra varmestrømmen fra kontorrummet til korridoren, kan kontorets døgnstationære temperaturer findes af 5.38 og 5.39

$$\begin{split} \bar{t}_{a} &= \bar{t}_{o} = \frac{B_{o}\bar{t}_{i} + B_{u}\bar{t}_{u} + \overline{\Phi}_{s}}{B_{l} + B_{o}} = \frac{280\overline{t}_{i} + 20 \cdot 20 + 470}{20 + 280} \\ \bar{t}_{i} &= \frac{B_{l}\bar{t}_{l} + B_{o}\bar{t}_{o} + \overline{\Phi}_{K}}{B_{l} + B_{o}} = \frac{40 \cdot 20 + 280 \cdot \bar{t}_{o} + 45}{40 + 280} \end{split}$$

Heraf findes $\bar{t}_a = \bar{t}_o = 29,1$ C og $\bar{t}_i = 28,2$ C.

Anvendes i stedet 5.40 fås

$$\bar{t}_i = \bar{t}_o = \frac{40 \cdot 20 + 20 \cdot 20 + 45 + 470}{40 + 20} = 28,6 \ C$$

Sydvendt kontor

Dette er sådan set tilstrækkeligt nøjagtigt til den første grove bedømmelse, men man får ikke den oplysning, at overfladernes temperatur er højere end lufttemperaturen.

Klokken	$t_{u}=t_{I}$	Φ_{K}	$\Phi_{ ext{S}}$
RIORROII	C	W W	W W
0	15,2	0	0
1	14,8	0	0
2	14,5	0	0
3	14,8	0	0
4	15,2	0	0
5	16,1	0	35
6	17,2	0	35
7	18,6	0	115
8	20,0	140	560
9	21,4	140	1060
10	22,8	140	1410
11	23,9	140	1670
12	24,8	140	1710
13	25,3	140	1670
14	25,5	140	1410
15	25,3	140	1060
16	24,8	0	420
17	23,9	0	115
18	22,8	0	35
19	21,4	0	35
20	20,0	0	0
21	18,6	0	0
22	17,2	0	0
23	16,1	0	0
Døgnmiddel	20	45	470

Tabel 5.7 Udeluftens og ventilationsluftens temperatur samt varmeafgivelsen til rumluften Φ_{K} og de indvendige overflader Φ_{S}

For det nordvendte kontorrum på den anden side af korridoren kan døgnmiddelværdien af solindfaldet sættes til 70 W svarende til solindfaldet i det sydvendte fra den diffuse himmelstråling og den reflekterede stråling. De øvrige belastninger er de samme, måske bortset fra eventuel punktbelysning.

Døgnmiddeltemperaturen i det nordvendte kontorrum bestemmes af 5.40

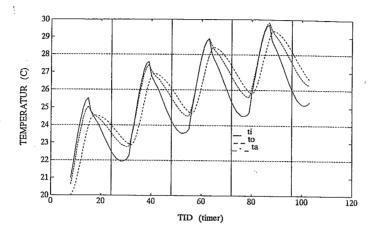
Nordvendt kontor

$$\overline{t'}_{i} = \overline{t'}_{o} = \frac{40 \cdot 20 + 20 \cdot 20 + 45 + (45 + 70)}{40 + 20} = 22,7 C$$

I korridoren vil der være behov for belysning i hele arbejdstiden, fordres fx 200 lux, vil en installeret effekt på 20 W/m^2 være nødvendig.

Korridorens areal er 2,2.4,93 m², og belastningen bliver i middel over døgnet

$$\overline{\Phi}'' = 20 \cdot 2, 2 \cdot 4, 93 \frac{8}{24} = 75 W$$

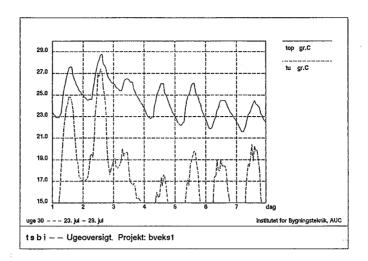

Herved bliver korridorens døgnmiddeltemperatur

$$\bar{t}_{i}^{"} = \frac{B_{r}\bar{t}_{i} + B_{r}\bar{t}_{i}^{"} + \overline{\Phi}^{"}}{B_{r} + B_{r}} = \frac{18 \cdot 28,6 + 18 \cdot 22,7 + 75}{18 + 18} = 27,7 C$$

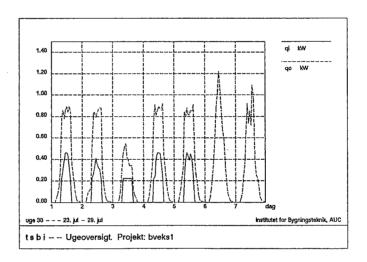
Døgnmiddeltemperaturen i korridoren vil således afvige meget lidt fra døgnmiddeltemperaturen i det sydvendte kontorrum, og der kan her ses bort fra varmestrømmen mellem de to rum. Dette gøres lettest ved at sætte $B_{\rm r}=0$.

Vurdering af de beregnede forhold Af disse døgnmidler for temperaturen af rumluften og overfladetemperaturen $\bar{t}_i = 28,2$ C og $\bar{t}_o = 29,1$ C ses allerede, at der vil blive for varmt i kontoret. Hvis ventilationsluftmængden øges til det dobbelte, hjælper det noget, det giver $\bar{t}_i = 25$ C, men det er stadig for højt, varmebelastningerne er for store, der må skærmes for solen.

På figur 5.9 er vist temperaturforløbet gennem de første fire døgn, med de her angivne belastninger. Simuleringen er startet 1. dag kl. 8 med den antagelse, at det varmeakkumulerende lags temperatur er $t_a = 20 \text{ C}$.

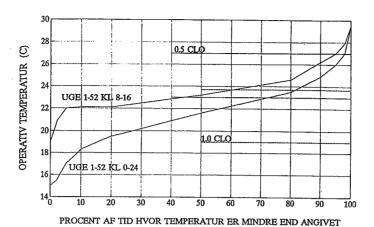


Figur 5.9 Temperaturforløb i sydvendt kontorrum


På figurerne 5.10 til 5.12 er vist eksempler på beregningsresultater fra EDB-programmet tsbi2 for et helt års simulering af kontorrummets drift. Programmet anvender data fra referenceåret TRY til udetemperatur og til beregning af solindfald. Der er regnet med solafskærmning med gardiner ($f_s = 0.6$), når solindfaldet ellers ville blive større end 600 W, desuden regnes punktbelysning på 150 W tændt i hele arbejdstiden og yderligere 250 W tændes i mørke dagtimer. Varmeanlægget reguleres, således at rumtemperaturen holdes på 22 C i arbejdstiden og nedsættes til 15 C uden for arbejdstid. I vinterperioden standses ventilationen om natten, hvorved luftskiftet nedsættes til ½ gang pr. time. Korridorens temperatur regnes til 27,5 C i sommerperioden og 22 C i vinterperioden.

På figur 5.10 ses udviklingen af den operative temperatur sammen med forløbet af udetemperaturen i uge 30 og de tilsvarende belastninger fordelt på konvektivt og strålingstilført bidrag ($\overline{\Phi}_K = q_i \ og \ \overline{\Phi}_S = q_o$) er angivet i figur 5.11. Rumtemperaturen er meget høj i den første del af ugen, hvilket dels skyldes høj udetemperatur og stort solindfald, dels at solafskærmningen ikke har været i brug i den forudgående week-end, der også har været varm og solrig.

Figur 5.10 Temperaturforløb, uge 30


Figur 5.11 Belastninger, uge 30

Varighedskurve, fraktiler

En samlet oversigt over temperaturforholdene i kontorrummet fås af figur 5.12, der viser varighedskurverne (fraktiler) for den operative temperatur, dels i arbejdstiden (kl. 8-16, ialt 2080 timer) og dels for hele året (kl. 0-24, ialt 8736 timer).

I diagrammet er yderligere indlagt grænsetemperaturerne for PPD $\leq 10\%$ ved et aktivitetsniveau på 1,2 met og en beklædningsmodstand på henholdsvis 0,5 og 1,0 clo, svarende til stillesiddende aktivitet med sommer- og vinterbeklædning.

Figur 5.12 Varighedskurver for operativ temperatur

De termiske forhold er stort set tilfredsstillende, idet den øvre komfortgrænse 27 C kun overskrides i 5% af arbejdstiden (100 timer). Det vil dog være ønskeligt at kunne følge de vejledende krav i Norm for specifikation af indeklima DS474 [7], der angiver, at den operative temperatur i brugstiden højst bør overskride 26 C i 100 timer og 27 C i 25 timer i løbet af et typisk år. Dette vil kun kunne opnås, hvis belastningerne reduceres, fx ved anvendelse af en mere effektiv solafskærmning og begrænsning af varmeafgivelsen fra belysning. At den operative temperatur ligger under de ønskede 22 C i ca. 5% af arbejdstiden skyldes, at genopvarmningen efter natsænkning altid starter kl. 5, hvilket er for sent i de koldeste perioder af året, specielt efter en week-end. Det skal i øvrigt bemærkes, at radiatoreffekten er forøget med 50% i forhold til den dimensionsgivende (2000 W) for at kunne gøre genopvarmningstiden så kort som muligt.

Fra tsbi2-simuleringen kan fås følgende oversigt over varmetilførslen over året, fordelt på de enkelte bidrag.

Varmetilførsel fra	belysning	435 kWh
	interne belastninger	610 kWh
	solindfald	1925 kWh
	basisvarme i alt	2970 kWh
Varmetilførsel fra v	/armeanlæg	1750 kWh
Samlet varmetilførs	el	4720 kWh

Det fremgår heraf, at varmeanlægget kun bidrager med 37% af den samlede energitilførsel til kontorrummet, mens solen bidrager med 40%.

5.41

5.4.9 Løsning af varmebalanceliningerne ved periodestationære tilstande

Ved periodestationære tilstande kan varmebalanceligningerne 5.31, 5.36 og 5.37 løses direkte, idet de periodiske belastninger kan udtrykkes ved Fourierrækker.

Hvis perioden er T_o , kan funktionen $f(\tau)$, som er symmetrisk om $\tau = 0$, d.v.s. $f(\tau) = f(-\tau)$, skrives som

$$f(\tau) = p_o + p_1 \cos \omega \tau + p_2 \cos 2 \omega \tau + p_3 \cos 3 \omega \tau + \dots$$

hvor vinkelfrekvensen
$$\omega = \frac{2\pi}{T_o} og p_o, p_1, p_2 o.s.v.$$
 gives

passende værdier. Nøjagtigheden, hvormed $f(\tau)$ fremstilles, beror på det antal cosinusled, der medtages. Udtrykket 5.41 kan også skrives

$$f(\tau) = p_o + \sum_{n=1}^{\infty} p_n \cos n \omega \tau$$
 $n = 1,2,3...$

Leddet p_o udgør middelværdien af funktionen $f(\tau)$ over perioden T_o .

De indgående belastninger i varmebalancen kan herefter udtrykkes ved

5.43
$$\Phi_{K} = \overline{\Phi}_{K} + \sum_{n=1}^{\infty} \Delta \Phi_{Kn} \cos(n \omega \tau + \phi_{n})$$

5.44
$$\Phi_{S} = \overline{\Phi}_{S} + \sum_{n=1}^{\infty} \Delta \Phi_{Sn} \cos(n\omega \tau + \psi_{n})$$

hvor ϕ_n og ψ_n er fasevinkler, der muliggør frit valg af tiden $\tau=0$.

Udetemperaturen angives ved cosinusfunktionen

$$t_u = \bar{t}_u + \Delta t_u \cos(\omega \tau + \epsilon)$$
 5.45

På tilsvarende måde kan de omgivende rums temeratur t_r og ventilationsluftens indblæsningstemperatur t_l angives. I det følgende regnes t_r dog konstant

$$t_r = \bar{t}_r$$
5.46

og t_I sættes til

$$t_I = \bar{t}_I + \Delta t_I \cos(\omega \tau + \gamma)$$
 5.47

De tre varmebalanceligninger til bestemmelse af de tre ubekendte temperaturer t_a , t_o , og t_i er Løsning af varmebalanceligningerne ved periodicitet

$$B_a(t_o - t_a) = S \frac{dt_a}{d\tau}$$
 5.31

$$t_o = b_1 t_a + b_2 t_r + b_3 t_u + b_4 t_I + b_5 \Phi_K + b_6 \Phi_S$$
 5.36

$$t_i = c_1 t_o + c_2 t_I + c_3 \Phi_K$$
 5.37

Indsættes 5.36 i 5.31 fås

$$\frac{dt_a}{d\tau} + \frac{B_a}{S} (1 - b_1) t_a = \frac{B_a}{S} (b_2 t_r + b_3 t_u + b_4 t_I + b_5 \Phi_K + b_6 \Phi_S)$$
 5.48

Den periodiske løsning til denne ligning er

$$t_{a} = \frac{b_{2}}{1 - b_{1}} \bar{t}_{r} + \frac{b_{3}}{1 - b_{1}} [\bar{t}_{u} + \Delta t_{u} D_{1} \cos(\omega \tau + \epsilon - \delta_{1})]$$

$$5.49 \text{ Det varmeakkumulerende lags temperatur}$$

$$+ \frac{b_{4}}{1 - b_{1}} [\bar{t}_{I} + \Delta t_{I} D_{1} \cos(\omega \tau + \gamma - \delta_{1})]$$

$$+ \frac{b_{5}}{1 - b_{1}} [\overline{\Phi}_{K} + \sum_{n=1}^{\infty} \Delta \Phi_{Kn} D_{n} \cos(n \omega \tau + \phi_{n} - \delta_{n})] + ..$$

$$+\frac{b_6}{1-b_1}\left[\overline{\Phi}_S+\sum_{n=1}^{\infty}\Delta\Phi_{Sn}D_n\cos(n\omega\tau+\psi_n-\delta_n)\right]$$

hvor

5.50 Amplitudedæmpning

$$D_n = \frac{1}{\sqrt{1 + \left(\frac{n\omega}{B_a}(1 - b_1)\right)^2}}$$

5.51 Faseforskydning

$$tg\,\delta_n = \frac{n\,\omega}{\frac{B_a}{S}(1-b_1)}$$

Indsættes det fundne ta i 5.36 fås

5.52 Overfladernes temperatur

$$\begin{split} t_o &= \frac{b_2}{1 - b_1} \bar{t}_r + \frac{b_3}{1 - b_1} [\bar{t}_u + (1 - b_1) \Delta t_u \cos(\omega \tau + \epsilon) + b_1 \Delta t_u D_1 \\ & \cos(\omega \tau + \epsilon - \delta_1)] \\ &+ \frac{b_4}{1 - b_1} [\bar{t}_I + (1 - b_1) \Delta t_I \cos(\omega \tau + \gamma) + b_1 \Delta t_I D_1 \cos(\omega \tau + \gamma - \delta_1)] \\ &+ \frac{b_5}{1 - b_1} [\overline{\Phi}_K + \sum_{n=1}^{\infty} [(1 - b_1) \Delta \Phi_{Kn} \cos(n\omega \tau + \phi_n) + b_1 \Delta \Phi_{Kn} D_n \\ & \cos(n\omega \tau + \phi_n - \delta_n)]] \\ &+ \frac{b_6}{1 - b_1} [\overline{\Phi}_s + \sum_{n=1}^{\infty} [(1 - b_1) \Delta \Phi_{Sn} \cos(n\omega \tau + \psi_n) + b_1 \Delta \overline{\Phi}_{Sn} D_n \cos(n\omega \tau + \psi_n - \delta_n)]] \end{split}$$

Sluttelig kan dette uddtryk for $t_{\rm o}$ indsættes i ligning 5.37, hvilket giver

5.53 Rumluftens temperatur

$$t_{i} = \frac{c_{1}b_{2}}{1-b_{1}}\bar{t}_{r} + \frac{c_{1}b_{3}}{1-b_{1}}[\bar{t}_{u} + (1-b_{1})\Delta t_{u}\cos(\omega\tau + \epsilon) + b_{1}\Delta t_{u}D_{1}..$$

$$\begin{aligned} &\cos(\omega\tau + \epsilon - \delta_1)] \\ &+ (\frac{c_1b_4}{1 - b_1} + c_2)[\bar{t}_I + P\Delta t_I \cos(\omega\tau + \gamma) + (1 - P)\Delta t_I D_1 \\ &\cos(\omega\tau + \gamma - \delta_1)] \\ &+ (\frac{c_1b_5}{1 - b_1} + c_3)[\overline{\Phi}_K + \sum_{n=1}^{\infty} [P\Delta \Phi_{Kn} \cos(n\omega\tau + \phi_n) \\ &+ (1 - P)\Delta \Phi_{Kn} D_n \cos(n\omega\tau + \phi_n - \delta_n)]] \\ &+ \frac{c_1b_6}{1 - b_1}[\overline{\Phi}_S + \sum_{n=1}^{\infty} [(1 - b_1)\Delta \Phi_{Sn} \cos(n\omega\tau + \psi_n) + b_1\Delta \Phi_{Sn} D_n \\ &\cos(n\omega\tau + \psi_n - \delta_n)]] \end{aligned}$$

hvor

$$P = \frac{c_1 b_4 + c_2}{\frac{c_1 b_4}{1 - b_1} + c_2} = \frac{c_1 b_5 + c_3}{\frac{c_1 b_5}{1 - b_1} + c_3} = \frac{B_a + B_o + B_r + B_u}{B_o + B_r + B_u} (1 - b_1)$$
5.54

Af udtrykkene for overfladetemperatur og rumlufttemperatur ses, at de består af et konstant led udtrykt ved de indgående middelværdier, et svingningsled i fase med påvirkningerne samt et dæmpet og faseforskudt led. Normalt vil man kunne se bort fra de dæmpede og faseforskudte led, specielt fra de højere harmoniske, der i sig selv er stærkt dæmpede.

Temperaturerne to og ti kan herefter udtrykkes ved

$$t_o = \overline{t}_o + b_3 \Delta t_u \cos(\omega \tau + \epsilon) + b_4 \Delta t_I \cos(\omega \tau + \gamma) + b_5 (\overline{\Phi}_K - \overline{\Phi}_K) + b_6 (\overline{\Phi}_S - \overline{\Phi}_S)$$
5.55

$$t_{i} = \overline{t_{i}} + c_{1}b_{3}\Delta t_{u}\cos(\omega\tau + \epsilon) + (c_{1}b_{4} + c_{2})\Delta t_{l}\cos(\omega\tau + \gamma)$$

$$+ (c_{1}b_{5} + c_{3})(\Phi_{K} - \overline{\Phi}_{K}) + c_{1}b_{6}(\Phi_{S} - \overline{\Phi}_{S})$$

$$5.56$$

hvor overfladernes og rumluftens middeltemperaturer er

$$\bar{t}_{o} = \frac{1}{1 - b_{1}} (b_{2} \bar{t}_{r} + b_{3} \bar{t}_{u} + b_{4} \bar{t}_{I} + b_{5} \overline{\Phi}_{K} + b_{6} \overline{\Phi})$$

$$\bar{t}_i = \frac{1}{1 - b_1} (c_1 b_2 \bar{t}_r + c_1 b_3 \bar{t}_u + (c_1 b_4 + c_2 (1 - b_1)) \bar{t}_I + (c_1 b_5 + c_3 (1 - b_1)) \overline{\Phi}_K + c_1 b_6 \overline{\Phi}_S)$$

De to middeltemperaturer er i øvrigt løsninger til ligningssystemet 5.38 og 5.39.

Inden der foretages en diskussion af de indgående faktorers indflydelse på temperaturforløbet, er det hensigtsmæssigt at indføre en fiktiv *rumtemperatur* t_{rum} , bestemt ved en vægtning af de to temperaturer t_o og t_i efter følgende definition

$$t_{rum} = \frac{B_l t_i + (B_r + B_u) t_o}{B_l + B_r + B_u}$$

Af 5.55 - 5.58 fås nu

5.60 Den periodestationære rumtemperatur t_{rum}

$$\begin{split} t_{rum} &= \overline{t}_{rum} + \Delta t_{rum} = \frac{1}{B_l + B_r + B_u} (B_r \overline{t}_r + B_u \overline{t}_u + B_l \overline{t}_l + \overline{\Phi}_K + \overline{\Phi}_S) \\ &+ \frac{1}{B_l + B_r + B_u} [(1 - b_1) B_u \Delta t_u \cos(\omega \tau + \epsilon) \\ &+ (1 - c_1 b_1) B_l \Delta t_l \cos(\omega \tau + \gamma) \\ &+ (1 - c_1 b_1) (\Phi_K - \overline{\Phi}_K) + (1 - b_1) (\Phi_S - \overline{\Phi}_S)] \end{split}$$

hvor

$$b_1 = \frac{B_a}{B_a + B_r + B_u + c_1 B_l}$$
 og $c_1 = \frac{B_o}{B_o + B_l}$

Beregningskonstanternes indflydelse belyses bedst gennem et eksempel.

5.4.10 Eksempel. Beregning af periodestationær løsning for et rum ved to konstruktionsalternativer.

Alternativ I er identisk med kontorrummet, der regnes på i kap. 5.4.8, medens alternativ II fremkommer af I ved at erstatte sideog bagvæg med en lettere konstruktion bestående af 2x13 mm gipsplade på hver side af et træskelet med mineraluld, ligesom brystningens inderste betonplade erstattes med 2x13 mm gips (B_u forudsættes uændret).

Belastninger fremgår af tabel 5.7. For enkelthedens skyld sættes $B_{\rm r}=0$.

Beregningskonstanter og faktorer angives i tabel 5.8.

Tabel 5.8 Beregningskonstanter

	Alternativ I	Alternativ II
B _u W/C	20	20
B _i W/C	40	40
B _o W/C	280	280
B _a W/C	1045	610
S kJ/C	9600	6200
$\mathbf{b_{i}}$	0,950	0,917
c_1	0,875	0,875
1-b ₁	0,050	0,083
$1-c_1b_1$	0,169	0,198

Middeltemperatur \bar{t}_{rum} efter 5.59 bliver den sammen i begge tilfælde.

$$\bar{t}_{rum} = \frac{1}{40+20} [20\cdot20+40\cdot20+45+470] = 28,6 C$$

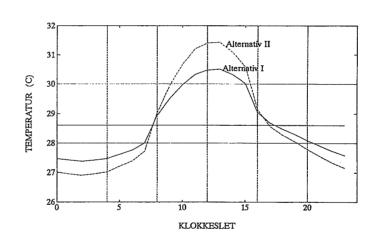
Rumtemperaturens udsving Δt_{rum} fra middeltemperaturen bliver efter 5.60

$$\Delta t_{rumI} = 0.017 \ \Delta t_u \cos(\omega \tau + \epsilon) + 0.113 \Delta t_I \cos(\omega \tau + \gamma) \dots$$

Alternativ I

Alternativ II

$$+0,0028 \left(\Phi_{K} - \overline{\Phi}_{K}\right) + 0,0008 \left(\Phi_{S} - \overline{\Phi}_{S}\right)$$


$$\Delta t_{rumII} = 0,027 \ \Delta t_{u} \cos(\omega \tau + \epsilon) + 0,132 \ \Delta t_{I} \cos(\omega \tau + \gamma)$$

$$+ 0,0033 \left(\Phi_{K} - \overline{\Phi}_{K}\right) + 0,0014 \left(\Phi_{S} - \overline{\Phi}_{S}\right)$$

Af disse to udtryk ses tydeligt, hvorledes valget af materialer har afgørende indflydelse på udsvingene i rumtemperaturen, eller rummets termiske stabilitet. Ligeledes ses, at variationer i ventilationsluftens temperatur Δt_I slår kraftigt igennem, samt betydningen af at skelne mellem konvektivt og strålingstilført varme. Det skal bemærkes, at en forbedring af rummets isolering (B_u mindre, øvrige beregningskonstanter uændret) bevirker, at variationer Δt_u i udetemperaturen slår mindre igennem, men til gengæld øges alle øvrige koefficienter i svingningsdelen, ligesom middeltemperaturen øges.

De to temperaturkurver er optegnet i fig. 5.13.

Figur 5.13
Periodestationær rumtemperatur i kontorrum ved to konstruktionsalternativer. Sydorienteret, luftskifte 2h⁻¹ (udeluft)

I 5.60 indføres kort ΔX som betegnelsen for en variabels afvigelse fra dennes middelværdi $\Delta X = X - \overline{X}$, ligesom faktorerne

$$\kappa_1 = 1 - b_1 \text{ og } \kappa_2 = 1 - c_1 b_1$$

herved fås

$$t_{rum} = \overline{t}_{rum} + \Delta t_{rum} = \frac{1}{B_l + B_r + B_u} (B_r \overline{t}_r + B_u \overline{t}_u + B_l \overline{t}_I + \overline{\Phi}_K + \overline{\Phi}_S)$$

$$+ \frac{1}{B_l + B_r + B_u} (\kappa_1 B_u \Delta t_u + \kappa_2 B_l \Delta t_I + \kappa_2 \Delta \Phi_K + \kappa_1 \Delta \Phi_S)$$
5.62

Påvirkes rummet nu yderligere med en varmestrøm $\overline{\phi}_H$, fx opvarmning eller afkøling ($\overline{\phi}_H$ negativ) fra et klimatiseringsanlæg, fås en ny rumtemperatur

$$t'_{rum} = \overline{t'}_{rum} + \Delta \overline{t'}_{rum} = \overline{t}_{rum} + \Delta t_{rum} + \frac{1}{B_1 + B_r + B_u} (\overline{\Phi}_H + \kappa_2 \Delta \Phi_H)$$
 5.63

Dette udtryk giver nu mulighed for bestemmelse af varme- eller kølebehovet Φ_H for at opnå en ønsket rumtemperatur t'_{rum} ved kendte belastninger.

Her er Φ_H angivet som en konvektiv varmestrøm tilført i rummet, men dette kan ækvivaleres med en varmestrøm tilført med ventilationsluften, hvor $B_l t_l = \Phi_H$, ved rum med egentlig ventilationsanlæg. Derimod må advares mod brug af disse ligningssystemer ved anlæg med strålevarme, idet de opstillede varmebalancer ikke er dækkende i dette tilfælde.

Af udtrykket 5.63 ses, at varme/kølebehovet Φ_H ikke alene afhænger af rummets varmeudveksling med omgivelser (B_l , B_r og B_u), men også af bygningskonstruktionens evne til varmeakkumulering udtrykt gennem faktorerne κ . Under i øvrigt ens betingelser vil en forøgelse af rummets varmekapacitet give et fald i κ -værdierne (jfr. tabel 5.8).

Ønskes rumtemperaturen konstant over døgnet $t'_{rum} = \overline{t'}_{rum}$, hvorved $\Delta t'_{rum} = 0$, kan den hertil nødvendige ydelse Φ_H bestemmes ved to bidrag. Det første bidrag $\overline{\Phi}_H$, der er konstant over døgnet, ændrer middelværdien \overline{t}_{rum} til den ønskede værdi

 $\overline{t'}_{rum}$, hvilket efter 5.63 giver

$$\overline{\Phi}_{H} = (B_{l} + B_{r} + B_{u})(\overline{t'}_{rum} - \overline{t}_{rum})$$

Det andet bidrag er en over døgnet variabel ydelse $\Delta\Phi_{H}$, der udjævner udsvingene Δt_{rum} , således at $\Delta t'_{rum} = 0$. Dermed er

$$\Delta \Phi_H = -\frac{1}{\kappa_2} (B_l + B_r + B_u) \Delta t_{rum}$$

Det samlede varme/kølebeov $\Phi_{\rm H}$ bliver, idet $\Delta t_{rum} = t_{rum} - \bar{t}_{rum}$

5.66
$$\Phi_{H} = \overline{\Phi}_{H} + \Delta \Phi_{H} = (B_{l} + B_{r} + B_{u}) (\overline{t'}_{rum} - \overline{t}_{rum}) - \frac{1}{\kappa_{2}} (B_{l} + B_{r} + B_{u}) (t_{rum} - \overline{t}_{rum})$$

Hvis der kan tillades udsving i rumtemperaturen af størrelsen $\Delta t'_{rum} = \Delta t_{rum}$, kan den nødvendige ydelse reduceres til

$$\Phi_H = \overline{\Phi}_H = (B_l + B_r + B_u)(\overline{t'}_{rum} - \overline{t}_{rum})$$

Det ses således, at der kan opnås en væsentlig besparelse i ydelsen $\Phi_{\rm H}$, hvis det ikke er nødvendigt at udjævne temperatursvingene Δt_{rum} , men kun at opretholde en ønsket middeltemperatur i rummet.

I tilfælde, hvor der forekommer kølebehov, er man ofte interesseret i at begrænse den installerede køleeffekt for at opnå anlægsbesparelser. Dette kan åbenbart opnås ved kun at sænke rummets middeltemperatur, men for at undgå for store temperatursving i rummet, peger denne løsning på en rumudformning med stor varmekapacitet, idet dette giver mindst Δt_{rum} .

I radiatoropvarmede bygninger (fx kontorer, visse institutioner m.v.) kan der ofte opnås en rimelig energibesparelse i opvarmningssæsonen ved kun at opvarme rummene til den ønskede temperatur i brugstiden, og dermed holde en lav middeltempera-

5.67

tur over døgnet. Denne driftsform kræver imidlertid en stor opvarmningseffekt til rådighed, men dette haves normalt også, når udetemperaturen blot er større end den dimensionerende udetemperatur. Jo lavere middeltemperatur, der kan holdes (og deraf følgende store temperatursving), des større energibesparelse opnås. En sådan løsning peger mod en rumudformning med lille varmekapacitet, idet det her er muligt at opnå store temperatursving samtidig med, at den nødvendige forøgelse af radiatoreffekten ikke bliver urimelig stor. Det skal dog bemærkes, at der er grænser for, hvor lav en temperatur der kan tillades uden for brugstiden bl.a. af hensyn til risiko for kondens.

Som det fremgår af det foregående, giver den periodestationære løsning til varmebalanceligningerne et godt overblik over samspillet mellem indeklima (dog kun rumtemperatur), rumudformning og de klimatekniske installationers ydelse og driftsform ved forskellige belastningssituationer. Det anførte beregningsgrundlag er derfor velegnet til en første overslagsmæssig klimateknisk analyse af et rum, hvorefter lovende løsningsforslag kan behandles mere indgående ved hjælp af de tidligere omtalte EDB-programmer.

Anvendelse af periodestationær løsning

5.5 Litteratur

- [1] Bo Andersen, Stig Eidorff, Hans Lund, Erik Petersen, Stig Rosenørn og Ole Valbjørn: Dansk referenceår, SBIrapport 135, 1982. Vejrdata for VVS-tekniske beregninger.
- [2] Brugervejledning for edb-programmet tsbi, termisk simularing af bygninger og installationer. Statens Byggeforskningsinstitut, 1985.
- [3] Poul Becher: Varme og Ventilation, 4. udgave. Teknisk Forlag. København 1971.
- [4] Bo Adamson: Värmebalans vid rum och bygnader. Tekniska Högskolan i Lund, 1968.
- [5] Bo Andersen: Beregning af varmebesparelser ved merisolering. VARME 39. årg. 1974 oktober.
- [6] Glent & Co.: Glent Ventilation. København 1968.
- [7] DS474, Norm for specifikation af indeklima, Dansk Standard, 1993.
- [8] DS 418. Regler for beregning af bygningers varmetab, Dansk Standard, 1986, samt Tillæg 1 til DS 418. Beregning af bygningers varmetab. Tillæg omhandlende vinduer og yderdøre, Dansk Standard 1997.

Appendix A

Symboler og enheder

Benævnelse	Symbol	Enhed	Enhedsnavn	
Absorptionsforhold	f _A			
Acceleration	a	m/s ²	Meter pr. sekund i anden	
Arbejde og energi	W	J	Joule	
Areal	A	m ²	Kvadratmeter	
Bølgelængde	λ	m	Meter	
Dugpunkttemperatur	t _d	C	Grad Celsius	
Dynamisk viskositet	ή	N·s/m²	Newton sekund pr. meter i anden	
Effekt	P	w	Watt	
Elektrisk spænding	U	V	Volt	
Elektrisk strøm	I	Α	Ampere	
Emissionsforhold	f_E			
Fordampningsvarme	r	kJ/kg	Kilojoule pr. kilogram	
Frekvens	f	Hz	Herz	
Friktionskoefficient	f			
Gaskonstant	R	j/kg·K	Joule pr. kilogram grad Kelvin	
Hastighed	v	m/s	Meter pr. sekund	
Kinematisk viskositet	υ	m²/s	Meter i anden pr. sekund	
Kraft	F	N	Newton	
Luftskifte	n	h ⁻¹ ,s ⁻¹	Gange pr. time eller sekund	
Længde	L	m	Meter	
Masse	m	kg	Kilogram	
Massefylde	ρ	kg/m³	Kilogram pr. kubikmeter	
Massestrøm	q_m	kg/s	Kilogram pr. sekund	
Moment	M	N·m	Newton meter	
Nedre brændværdi	\mathbf{H}_{n}	kJ/kg	Kilojoule pr. kilogram	
Omdrejningstal	n	s ⁻¹	Omdrejninger pr. sekund	
Reflektionsforhold	f_R			
Relativ luftfugtighed	φ	%	Procent relativ fugtighed	
Rumudvidelseskoeffici-				
ent	β	C-1	Grad i minus første	
Rumvinkel	ω	sr	Steradian	
Specifik entalpi	i	J/kg	Joule pr. kilogram	
Specifik volumen	v	m³/kg	Kubikmeter pr. kilogram	

Symboler og enheder

Benævnelse	Symbol	Enhed	Enhedsnavn
Strålingstal	σ	W/m²⋅K⁴	Watt pr. meter i anden grad Kelvin i
			fjerde
Temperatur	t	С	Grad Celsius
Temperatur, absolut	T	K	Grad Kelvin
Temperaturforskel	Δt eller	C el. K	Grad Celsius eller Kelvin
	ΔΤ		
Temperaturledningstal	a	m²/s	Kvadratmeter pr. sekund
Tid	τ	s	Sekund
Transmissionsforhold	f _T		
Tryk	p	Pa el. bar	Pascal (= N/m²) eller bar
Trykforskel	Δр	Pa el. bar	Pascal (= N/m²) eller bar
Tyngdeacceleration	g	m/s²	Meter pr. sekund i anden
Vanddampindhold i luft	х	kg/kg	Kilogram pr. kilogram tør luft
Varmefylde ved konstant			
tryk	C _p	J/kg·C	Joule pr. kilogram grad
Varmekapacitet	S	J/C	Joule pr. grad
Varmeledningstal	λ	W/m·C	Watt pr. meter grad
Varmeisolans	m	m²·C/W	Kvadratmeter grad Celsius pr. Watt
Varmemængde	Q ·	J	Joule
Varmeovergangstal	α	W/m²·C	Watt pr. meter i anden grad Celsius
Varmestrøm	Φ	W	Watt
Varmestrømsintensitet	Е	W/m²	Watt pr. kvadratmeter
Varmetab pr. grads			
temperaturforskel	В	W/C	Watt pr. grad Celcius
Varmetransmissionstal	U	W/m²⋅C	Watt pr. meter i anden grad Celsius
Vinkelforhold	ψ		_
Vinkelhastighed	ω	s ⁻¹	Sekund i minus første
Volumen	V	m ³	Kubikmeter
Volumenstrøm	q	m³/s	Kubikmeter pr. sekund
Våd temperatur	t _v	С	Grad Celsius

Det græske alfabet

Α	α	alfa	N	ν	····	ny
В	β	beta	E	ξ		ksi
Г	γ	gamma	0	o		omikron
Δ	δ	delta	П	π		pi
E	ϵ	epsilon	P	ρ		rho
Z	5	zeta	Σ	σ		sigma
H	η	eta	T	au		tau
θ	θ	theta	Y	υ		ypsilon
I	L	iota	Φ	$\boldsymbol{\phi}$	φ	phi
K	κ	kappa	X	χ		chi
λ		lambda	Ψ	ψ		psi
M	μ	my	Ω	ω		omega

Appendix B

Omregningsfaktorer mellem enheder

Tryk

	Pa	mbar	mm H ₂ O	atm	in WG	psi
1 Pa	1	10-2	0,102	9,869 · 10 ⁻⁶		$1,4504 \cdot 10^{-4}$
1 mbar	100	1		9,869 · 10-4	0,4015	$1,4504 \cdot 10^{-2}$
1 mm H ₂ O	9,807	$9,807 \cdot 10^{-2}$	1	9,678 · 10-5	$3,937 \cdot 10^{-2}$	$1,4223 \cdot 10^{-3}$
1 atm	$1,013 \cdot 10^5$	1013	$1.0332 \cdot 10^4$	1	406,77	14,696
1 in WG	249,10	2,491		$2,453 \cdot 10^{-3}$		3,613 · 10 ⁻²
1 psi	6895	68,95	703,1	6,805 · 10 ⁻²	27,68	1

1 atm (fysisk atmosfære) = 101,325 kPa = 760 mm Hg 1 at (teknisk atmosfære) = 1 kp/cm² = 0,968 atm = 10^4 mm H₂O

Arbejde, energi og varmemængde

	J	kpm	kWh	kcal	ft · lbf	Btu
1 J	1	0,1020	$2,778 \cdot 10^{-7}$	2,388 · 10 ⁻⁴	0,7376	9,478 · 10 ⁻⁴
1 kpm	9,80665	1	$2,724 \cdot 10^{-6}$	2,342 · 10 ⁻³	7,233	$9,295 \cdot 10^{-3}$
1 kWh	$3,6 \cdot 10^{6}$	$3,671 \cdot 10^{5}$	1	859,8	$2,655 \cdot 10^6$	3412
1 kcal	4186,8	426,9	1,163 · 10 ⁻³	1	3088	3,968
1 ft•lbf	1,3558	0,1383	$3,766 \cdot 10^{-7}$	3,238 · 10 ⁻⁴	1	$1,285 \cdot 10^{-3}$
1 Btu	1055,06	107,6	2,931 · 10-4	0,252	778,2	1

Effekt, varmestrøm

	kW	kp⋅m/s	hk	kcal/h	ft·lb/s	hp	Btu/h	ton of ref.
1 kW	1	102	1,36	860	738	1,34	3310	2,84
1 kp·m/s	$9,81 \cdot 10^{-3}$	1	$1,33\cdot 10^{-2}$	8,44	7,23	$1,32 \cdot 10^{-2}$	32,5	$2,79 \cdot 10^{-2}$
1 hk	0,735	75	1	632	542	0,986	2510	2,09
1 kcal/h	$1,16 \cdot 10^{-3}$	0,119	$1,58 \cdot 10^{-3}$		0,858	$1,56 \cdot 10^{-3}$		3,31 · 10 ⁻⁴
1 ft·lb/s	1,36	0,138	1,84 · 10 ⁻³	1,17	1	$1,82 \cdot 10^{-3}$	4,63	3,86 · 10 ⁻³
1 hp	0,745	76	1,014	642	550	1	2550	2,12
1 Btu/h	2,93 · 10 ⁻⁴	$2,99 \cdot 10^{-2}$	3,99 · 10-4	0,252	0,216	$3,93 \cdot 10^{-4}$	1	$8,33 \cdot 10^{-3}$
1 ton of ref.	3,52	35,9	0,479	3024	259	0,471	1200	1

Varmekonduktivitet

	W/ (m·K)	kcal/ (m·h·°C)	Btu/ (ft·h·°F)
1 W/(m · K)	. 1	0,860	0,5778
1 kcal/(m·h·°C)	1,163	1	0,6720
1 Btu/(ft·h·°F)	1,731	1,4882	1

Varmeovergangstal

W/ (m ² · K)	kcal/ (m²·h·°C)	Btu/ (ft²·h·°F
1	0,860	0,1761
1,163	1	0,205
5,678	4,882	1
	(m ² ·K) 1 1,163	(m ² ·K) (m ² ·h·°C) 1 0,860 1,163 1

Varmefylde

		J/(kg·K)	kcal/(kg·°C)	Btu/(lb · °F)
	1 J/(kg · K)	1	2,388 · 10 ⁻⁴	2,388 · 10 ⁻⁴
Į	1 kcal/(kg·°C)	4186,8	1	1
	1 Btu/(lb · °F)	4186,8	1	1

Præfikser

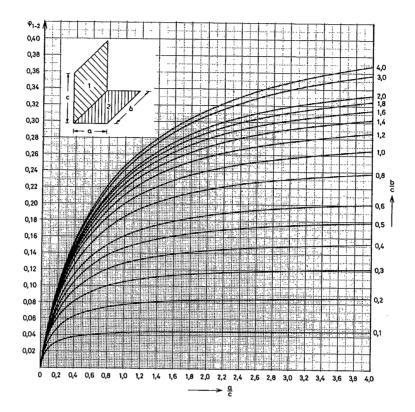
Præfikser til angivelse af decimale mangefold af metriske enheder

Mangefold	Præfiks	Symbol	Mangefold	Præfiks	Symbol
1012	tera	${f T}$	10^{-1}	deci	d
10 ⁹	giga	G	10-2	centi	с
10 ⁶	mega	M	10-3	milli	m
10^{3}	kilo	k	10 ⁻⁶	micro	μ
10^{2}	hecto	\mathbf{h}	10 ⁻⁹	nano	n
10	deca	da	10-12	pico	ŋ

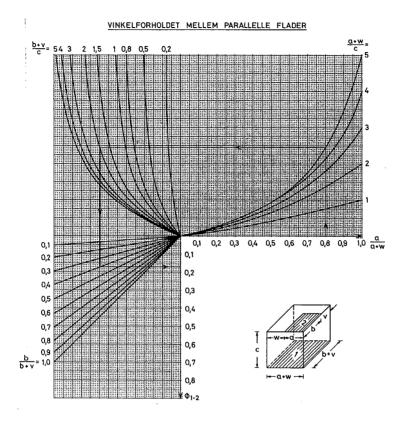
Appendix C

Tabel C1. Strålingstal for forskellige overflader

Materiale Materiale	Тетр. С	Strålingstal σ W/m²K⁴
Absolut sort legeme	alle	5,67·10 ⁻⁸
Asbest og eternit	0-200	5,54·10 ⁻⁸
Asfalt		
0,025 mm tyk		1,56·10 ⁻⁸
0,05 mm tyk		2,65·10 ⁻⁸
0,13 mm tyk		4,15·10 ⁻⁸
Beton	0-100	5,42·10 ⁻⁸
Glas		
Glat almindeligt glas	0-200	5,48·10 ⁻⁸
Pyrex	0-300	5,19·10 ⁻⁸
Gummi		
Hårdt, sort	20	5,42·10 ⁻⁸
Blødt, gråt	20	4,96·10 ⁻⁸
Is	0	5,60·10 ⁻⁸
Keramik		
Fajance	20	5,19·10 ⁻⁸
Porcelæn	22	5,31·10 ⁻⁸
Ildfast, sort	93	5,42·10 ⁻⁸
Ildfast, hvidt	93	5,19·10 ⁻⁸
Klæde	0-100	5,19·10 ⁻⁸
Lampesod	0-50	5,48·10 ⁻⁸
Maling		
Aluminiummaling	0-100	3,17·10 ⁻⁸
Aluminiumbronzema-	100	1,15-2,30·10 ⁻⁸
ling		
Bronzemaling	0-100	4,61·10 ⁻⁸
Glas malet sort	0-100	5,19·10 ⁻⁸
Grøn maling	0-100	5,48·10 ⁻⁸
Grå maling	0-100	5,48·10 ⁻⁸
Guldlak	0-100	2,13·10 ⁻⁸
Hvid lak	0-100	5,48·10 ⁻⁸
Kønrøg Sort skinnende lak	0-100	5,48·10 ⁻⁸
	0-100	5,08·10 ⁻⁸
Menneskehud		5,48·10 ⁻⁸
Marmor lysegråt poleret		
	0-100	5,19·10 ⁻⁸

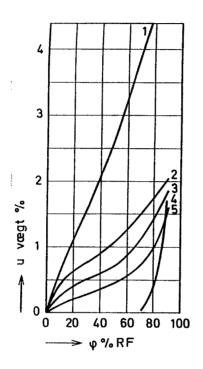

Tabel C1 fortsat

Materiale	Temp. C	Strålingstal σ W/m²K ⁴
Metaller		The second of the last
	lass	0.46.10.8
Aluminium poleret	lav	0,46·10-8
Aluminium ikke oxy-	100	0.47.40%
deret	100	0,17·10 ⁻⁸
Aluminium oxyderet	200	0,63·10-8
Aluminiumsfolie	100	0,35·10-8
Guld	100	0,12·10-8
Jernplade nypudset	20	1,38·10 ⁻⁸
Jernplade helt rød af		
rust	20	3,98·10 ⁻⁸
Støbejern med støbe-		
hud	23	4,67·10 ⁻⁸
Støbejern rustet	0-250	5,37·10 ⁻⁸
Kobber poleret	19	$0,23 \cdot 10^{-8}$
Kobber noget anløbet	23	$0,29 \cdot 10^{-8}$
Kobber mat	23	$1,28\cdot10^{-8}$
Kobber irret	200	3,46.10-8
Kobber sort oxyderet	25	4,56.10-8
Krom	0-100	$0,46\cdot10^{-8}$
Messing blank	0-100	$0,29 \cdot 10^{-8}$
Messing mat	50-350	1,15.10-8
Oxyderet messing	0-200	3,52.10-8
Nikkel poleret	lav	0,69·10 ⁻⁸
Nikkel ikke oxyderet	lav	0,29·10 ⁻⁸
Rustfrit stål	lav	0,92·10 ⁻⁸
Sølv	0-100	$0,12 \cdot 10^{-8}$
Tin oxyderet	25	$0,29 \cdot 10^{-8}$
Zink poleret	lav	$0,29 \cdot 10^{-8}$
Zink ikke anløbet	lav	1,33·10-8
Zink oxyderet grå	lav	1,62.10-8
Mursten		,
Røde teglsten	0-200	5,42·10 ⁻⁸
Kieselsten	1000	4,62·10-8
Schamottesten	1000	4,33.10-8
Papir enhver farve	0-100	5,42·10 ⁻⁸
Puds	0-200	5,19·10 ⁻⁸
Rimlag	0	5,65.10-8


Tabel C1 fortsat

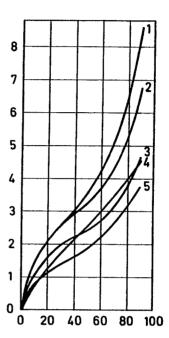
Materiale	Temp. C	Strålingstal σ W/m²K ⁴
Tagpap	20	5,37·10 ⁻⁸
Træ, høvlet	0-200	5,14·10 ⁻⁸
Vand	omg.	5,54·10 ⁻⁸

Figur C1 Vinkelforhold mellem to flader, der står vinkelret på hinanden.


Figur C2 Vinkelforhold mellem to parallelle flader.

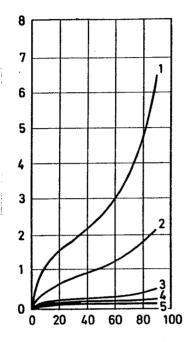
Figur C3

Sorptionskurver for:


- 1. Cementmørtel 2040 kg/m³
- 2. Beton 2300 kg/m³
- 3. Kalkmørtel 1800 kg/m³
- 4. Gips 1340 kg/m³
- 5. Kalkpuds 1600 kg/m^3

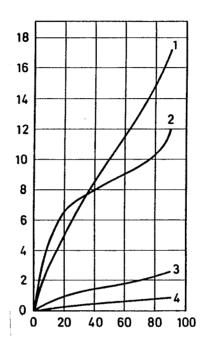
Figur C4

Sorptionskurver for:


- 1. Sinterbimsbeton 1470 kg/m³
- 2. Siporex 520 kg/m³
- 3. Siporex 760 kg/m³
- 4. "Hüttebimsbeton 1580 kg/m³"
- 5. Slaggebeton 1140 kg/m³

Figur C5

Sorptionskurver for:


- 1. Kalksandsten 900 kg/m³
- 2. Kalksandsten 1740 kg/m³
- 3. Teglsten 1880 kg/m³
- 4. Teglsten 1530 kg/m³
- 5. Klinker 2050 kg/m³

Figur C6

Sorptionskurver for:

- 1. Stramit 250 kg/m³
- 2. Træuldbeton 300 kg/m³
- 3. Kork 95 kg/m³
- 4. Mineraluld 120 kg/m³

Appendix D

Fangers komfortligning

For fuldstændighedens skyld skal her anføres Fangers betingelsesligning for termisk komfort i sin helhed. I varmebalancen 1.3, side 11 indsættes målte værdier for de indgåede størrelser samt betingelserne 1.5 og 1.6, side 13, hvorved komfortligningen får følgende form:

$$\frac{M}{A_{Du}} - 2,6 \cdot 10^{-3} (5770 - 7,16 \frac{M}{A_{Du}} - p_d) - 0,42 (\frac{M}{A_{Du}} - 58)$$

$$-1,72 \cdot 10^{-5} \frac{M}{A_{Du}} (5800 - p_d) - 0,0012 \frac{M}{A_{Du}} (34 - t_1) =$$

$$3,96 \cdot 10^{-8} [(t_{cl} + 273)^4 - (t_{ms} + 273)^4] + \alpha_K (t_{cl} - t_1)$$

hvor

$$t_{cl} = 35,7 - 0,028 \frac{M}{A_{Du}} - 0,155I_{cl} \left[\frac{M}{A_{Du}} - 2,6 \cdot 10^{-3} \cdot (5770 - 7,16 \frac{M}{A_{Du}} - p_d) - 0,42(\frac{M}{A_{Du}} - 58) - 1,72 \cdot 10^{-5} \cdot (5800 - p_d) - 0,0012 \frac{M}{A_{Du}} (34 - t_1) \right]$$

og

$$\alpha_K = \max \begin{cases} 2.38 (t_{cl} - t_1)^{0.25} \\ 12.1 \sqrt{v} \end{cases}$$

Ud over de tidligere anførte parametre er

- p_d vanddamppartialtrykket i luften (N/m²)
- v relativ lufthastighed (m/s)
- α_{K} det konvektive varmeovergangstal ved den beklædte persons udvendige overflade (W/m²C).

STIKORDSREGISTER

A

Aktivitetsniveau, 9 Amplitudedæmpning, 198 Atmosfærisk klima, 27 Atmosfærisk elektricitet, 42

В

Basistemperatur, 161
Basisvarme, 161
Befugtning med damp, 128
Befugtning med vand, 125
Beklædningens varmemodstand, 10
Belastninger, 155
Belysning, 170
Betingelser for termisk komfort, 11
Bevægelsesligningen, 88
Bioeffluenter, 37
Blanding af luftmængder, 124
Byggefugt, 151

C

Clo-værdier, 10 Cylindertilfældet, 72

D

Daltons lov, 114 Dampdiffusion under stationære forhold, 136 Damptrykforløb, 142 Dansk Indeklima Mærkning, 34 Decipol, 39 Differentialligningen, 88 Diffus stråling, 48 Diffus solindfald, 165 Diffusionsmodstand, 141 Diffusionstal, 139 Dimensionerende rumtemperatur, 159 Dimensionerende udetemperatur, 52, 159 Dimensionerende varmetab, 158 Direkte solindfald, 165 Direkte stråling, 48 Drivhusvirkning, 108 Døgnmiddeltemperatur, 50

\mathbf{E}

Elektriske maskiner, 170 Emission, 99 Emission til halvkuglen, 101 Energiligningen, 88 Entalpiligningen, 118

F

Faseforskydning, 198
Forureningsbelastning, 40
Fouriers varmeledningsligning, 61
Fraktiler, 194
Fri og laminar strømning, 94
Fri varme, 158
Fri og latent varme, 6
Friskluftmængder, 39
Fugtberegning, 144
Fugtig luft, 113
Fugtskader, 131
Fugttransport, 131

G

Globalstråling, 49 Graddage, 52 Graddagstal, 53, 160 Gradtimetal, 162 Grashofs tal, 92 Grundfugt, 148 Grænseværdier, 34, 36 Gråstrålere, 99

I

Idealgas, 113 Indeklima, 1 Indvendig kondensation, 135 Instationær varmeledning, 84

J

Jordatmosfæren, 46

K

Kapillarbrydende stenlag, 149
Kapillarsugning, 149
Kildestyrke, 39
Kirchoffs lov, 100
Klimabalancer, 155
Klimafaktorer, 8
Komfortindeks, 23
Komfortligningen, 13
Kondens på overflader, 133
Konvektion, 87
Kuldebroer, 135
Kuldenedfald, 21

L

Lamberts cosinuslov, 101 Legemets varmeproduktion, 2, 9 Ligevægtskoncentrationen, 29 Love og definitioner, 100 Luftens entalpi, 117 Luftlags isolans, 109 Lugt, 37 Lyse og mørke farver, 108

\mathbf{M}

Menneskets varmeafgivelse, 3 Middelstrålingstemperatur, 12 Modeller, 88 Modelloven for varmeovergang, 90 Molliers i,x diagram, 118 Mættede vanddampes tryk, 138

N

Naturfugt, 151 Nussells tal, 92

\mathbf{o}

Olf, 39 Olf-værdier, 40 Operativ temperatur, 13, 195 Oplevet luftkvalitet, 39 Optimal termisk komfort, 14, 23 Opvarmning ved konstant vandindhold, 125

P

Peclets tal, 91 Plan strålingstemperatur, 19 PMV (Predicted Mean Vote), 24 Potentialligningen, 64 PPD (Predicted Percentage of Dissatisfied), 25 Prandtls tal, 92 Produktionsfugt, 152

R

Referenceår, 49 Referenceår TRY, 56, 193 Reflekteret solindfald, 165 Relativ fugtighed, 115 Relaxationsmetoden, 76 Reynolds tal, 91 Rummets varmebalance, 155 Rummets vanddampbalance, 155 Rumtemperatur, 200

S

Slagregn, 150 Solafskærmning, 167 Solafskærmningsfaktor, 168 Solindfald, 165 Solkonstanten, 47, 49 Solstråling, 108 Sorptionsisotermer, 132 Stationær, todimensional varmeledning, 75 Stationær, endimensional varmeledning, 64 Stofbalanceligningen, 28 Stofskifte, 3 Stofværdier for luftarter, 114 Stofværdier for luft og vand, 93 Stofværdier for mættet luft, 116 Stråling mellem flader, 106 Strålingsfelter, 19 Strålingsstyrken, 101 Strålingstemperaturasymmetri, 19 Strålingsudveksling mellem faste legemer, 102 Strålinsintensiteten, 101

T

Temperaturgradient, 20 Termisk komfort, 8, 18 Termisk klima, 2 Termiske belastninger, 164 Termoreceptorer, 3 Tidskonstanten, 174, 178 Tilnærmelsesmetoder for stationær todimensional varmeledning, 81 Tilstandsligningen, 113 Tilstandsændringer for fugtig luft, 124 Tobaksrøg, 38 Træk, 20 Turbulensintensiteten, 20 Tvungen og laminar strømning, 95, 96 Tvungen og turbulent strømning, 95, 96 Tør køling, 126

\mathbf{U}

Udeklima, 45

V

Vanddampbalance, 156 Vandindhold, 115 Varighedskurve, 194 Varme- og vanddampafgivelsen, 18 Varmebalance, 155, 173, 175, 176, 177 Varmeforbrug, 160 Varmefylde, 178 Varmekapacitet, 171, 172, 177 Varmeledning, 61 Varmeledningsevne, 68 Varmeovergang, 70 Varmestråling til himmelrummet, 109 Varmestråling, 98 Varmesæson, 51, 160 Varmetabsberegning, 158 Veirdata, 56 Vekselvirkningssætningen, 104 Vinkelforhold, 105 Vintertørring, 152 Vægges damptrykkurve, 143 Våd køling, 129

Udgivelser i Klimagruppens kompendieserie:

Forurenende Processer - og den almene ventilation Peter V. Nielsen, december 1990

Displacement Ventilation - theory and design Peter V. Nielsen, august 1993

Computational Fluid Dynamics in Ventilation Peter V. Nielsen, maj 1994

Grundlæggende klimateknik og bygningsfysik E. J. Funch, C.E. Hyldgård og M. Steen-Thøde, august 1994

Aalborg Universitet

Instituttet for Bygningsteknik Sohngaardsholmsvej 57 9000 Aalborg

Tlf.: 96358080 Fax: 98148243

